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Abstract

In this article, we will introduce the HODGE THEORY on compact Hermitian and
Kähler manifolds. First of all, we will talk about the basic definitions of some operators
and cohomology to make sure we can discuss our theory smoothly. Then we write
many properties about Hermitian manifolds which every one should know it. Then
two versions of Hodge decomposition theorems are discussed, but we only give the
proof of the second version since the first version will use some PDEs. Then we focus
on the applications of Hodge decomposition of Kähler manifolds such as hard Lefschetz
theorem and Hodge index theorem. Finally, we will introduce some basic things about
Hodge structure and introduce the meaning of Hodge conjecture. So, as you see, this
article just contains some most basic Hodge theory because the writer also has to learn
many things.
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1 INTRODUCTIONS
HODGE THEORY, named after W.V.D.Hodge, has its origin in works by Abel, Jacobi,
Gauss, Legendre and Weierstrass among many others on the periods of integrals of ra-
tional one-forms. In 1931, Hodge assimilated de Rham’s theorem and defined the Hodge
star operator. It would allow him to define harmonic forms and so fine the de Rham
theory. Hodge’s major contribution was in the conception of harmonic integrals and their
relevance to algebraic geometry.
The relative theory appeared in the late 1960’s with the work of Griffiths. He found

that higher weights generalization of the ordinary Jacobian, the intermediate Jacobian,
need not be polarized. He generalized Abel-Jacobi maps in this set-up and used these to
explain the difference of cycles and divisors. The important insight that any algebraic
variety has a generalized notion of Hodge structure was worked out in Hodge II,III.
In the relative setting, if the family acquires singularities, the Hodge structure on the
cohomology of a fiber may degenerate when the base point goes to the singular locus,
leading to the so-called limit mixed Hodge structure. Morihiko Saito introduced the
theory of Mixed Hodge Modules around 1985, which unifies many theories: algebraic
D-modules and perverse sheaves.
So this is a brief history of Hodge theory, extracted from [12]. In our field, we just dis-

cuss the most basic Hodge theory. Including the basic properties of Hermitian manifolds
and Kähler manifolds, then we will introduce the HODGE DECOMPOSITION of Hermitian
manifolds. This theorem is amazing and it can used to prove the HODGE DECOMPOSITION
in Kähler case. Then it has many applications, these applications help us to discover the
structures of cohomology of the compact Kähler manifolds. With these structures, we
can distinguish the manifold is Kähler or not. Like the famous Hopf surface, with these
analysis, we can find that it is not a Kähler manifold. In this part, we will divide it
into two parts, including lower dimension and higher dimension cohomology. Finally,
we will introduce a little bit of HODGE STRUCTURES. Its goal is to abstract the Hodge
structure in Kähler case into more general case, as any R-modules. Use this we introduce
the meaning of HODGE CONJECTURE, one of the most famous open problem in algebraic
geometry.
As you see, this article is just the summary of the most basic Hodge theory and this

is also a basic part of complex geometry. The further materials as [3] is about the Hodge
theory on complex algebraic geometry, including many things we not introduced, as the
FRÖLICHER SPECTRAL SEQUENCE. And [12], a specialized book about Hodge structures,
including many applications of mixed Hodge structures.
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2 PRELIMINARIES
In this section, we will introduce some basic definitions about some cohomology and some
differential operators and linear operators to make sure we can introduce Hodge theory
smoothly.
We will omit the basic definition about complex manifolds, complex structure and

almost complex structure. It’s worth mentioning that the complex manifolds have natural
almost complex structure, but converse statement is wrong. But if X endowed by an
integrable almost complex structure, then it must induced by a complex structure. This
due to Newlander-Nirenberg, see [1] for a easy proof in the case of analytic manifolds.

Definition 2.1. Let X be a manifold endowed by an integrable almost complex structure,
then the (p, q)−DOLBEAULT COHOMOLOGY is the vector space

Hp,q(X) =
ker(∂ : A p,q(X) → A p,q+1(X))

Im(∂ : A p,q−1(X) → A p,q(X))
.

Actually1, it’s easy to see that Hp,q(X) ∼= Hq(X,Ωp
X). This is very important.

Definition 2.2. Let X be a complex manifold, then the BOTT-CHERN COHOMOLOGY is

Hp,q
BC(X) =

{α ∈ A p,q : dα = 0}
∂∂A p−1,q−1(X)

.

Now we will endow the complex manifolds with a metric.

Definition 2.3. Let X endowed by a Riemannian metric g and g is compatible with the
natural almost complex structure, that is, for x ∈ X, we have gx(Ix(α), Ix(β)) = gx(α, β),
then we denote X be a HERMITIAN MANIFOLD.

Remark 2.4. This can induce a real (1, 1)−form ω, called FUNDAMENTAL FORM, by
ω = g(I(·), ·). Actually, we can use the almost complex structure and the fundamental
form to determine a unique Hermitian matric g(·, ·) = ω(·, I(·)). Locally, we can write
the fundamental form as ω =

√
−1
2

∑n
i,j=1 hijdzi ∧ dzj where (hij) is a positive definite

Hermitian matrix.

Now we begin to introduce some important differential and linear operators which we
will use them to construct the whole theory.

1We omit the definition of (p, q)-forms where A p,q(X) is global section of sheaf A p,q
X , the sheaf of sections

of
∧p,q X =

∧p(T 1,0X)∗ ⊗C
∧q(T 0,1X)∗.We also omit the definition of ∂ and ∂, that is, ∂ = Πp+1,qd, ∂ =

Πp,q+1d. Locally, in some chart we can see that ∂(fdzi1 ∧ · · · dzik ∧ dzj1 ∧ · · · ∧ dzjl ) =
∑n

i=1
∂f
∂zi

dzi ∧
dzi1 ∧ · · · dzik ∧ dzj1 ∧ · · · ∧ dzjl , ∂ is similar. This is just some linear algebra and you can see these in any
complex geometry books.
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Definition 2.5. (i) LEFSCHETZ OPERATOR: L :
∧k

C X →
∧k+2

C X,α 7→ α ∧ ω;
(ii) HODGE ∗−OPERATOR: ∗ :

∧k
C X →

∧2n−k
C X with α ∧ ∗β = g(α, β) ·Vol2;

(iii) DUAL LEFSCHETZ OPERATOR: Λ = ∗−1 ◦ L ◦ ∗ :
∧k

C X →
∧k−2

C X;
(iv) We denote H =

∑2n
k=0(k − n)Πk,I =

∑n
p,q=0(

√
−1)p−qΠp,q;

(v) For a m-dimensional oriented Riemannian manifold (M, g), the adjoint operator is
d∗ = (−1)m(k+1)+1 ∗ ◦d ◦ ∗ : A k(M) → A k−1(M). The LAPLACE OPERATOR ∆d =

dd∗ + d∗d. But in the complex case, we have d∗ = − ∗ ◦d ◦ ∗;
(vi) we have d∗ = ∂∗ + ∂

∗
, (∂∗)2 = (∂

∗
)2 = 0. The Laplace operator correspond to ∂, ∂ is

∆∂ = ∂∗∂ + ∂∂∗ : A p,q(X) → A p,q(X),∆∂ = ∂
∗
∂ + ∂∂

∗
: A p,q(X) → A p,q(X).

3 HODGE THEORY ON HERMITIAN MANIFOLDS
Definition 3.1. Let (X, g) be a Hermitian manifolds, we equipped A ∗

C (X) with a scalar
product as

(α, β) =

∫
X

g(α, β) ∗ 1 =

∫
X

α ∧ ∗β.

Then we have some ADJOINT PROPERTY about this.

Proposition 3.2. The operators ∂, ∂ and ∂∗, ∂
∗ are adjoint about the scalar product (, ).

Proof. For α ∈ A p−1,q(X), β ∈ A p,q(X), we have∫
X

∂α ∧ ∗β =

∫
X

∂(α ∧ ∗β)− (−1)p+q−1

∫
X

α ∧ ∂(∗β).

We find that
∫
X
∂(α∧ ∗β) = 0 by Stokes theorem since α∧ ∗β has bidegree (n− 1, n), so

(∂α, β) = −(−1)p+q−1

∫
X

α ∧ ∂(∗β) = ε

∫
X

gC(α,−∂∗β) ∗ 1 = (α, ∂∗β),

well done.

Remark 3.3. We could also verify that (α,Lβ) = (Λα, β).

Proposition 3.4. Let (X, g) be a compact Hermitian manifold. Then the following
decompositions are orthogonal with respect to (, ):
(i) DEGREE DECOMPOSITION: A ∗

C (X) =
⊕

k A k
C (X);

(ii) BIDEGREE DECOMPOSITION: A k
C (X) =

⊕
p+q=k A p,q(X);

(iii) LEFSCHETZ DECOMPOSITION: A k
C (X) =

⊕
i≥0 L

iP k−2i
C (X).(P j = ker(Λ) ⊂ A k)

2Let e1, ..., ed be an orthonormal of vector space V and {i1, ..., ik, j1, ..., jd−k} = {1, ..., d}, then ∗(ei1 ∧
· · · ∧ eik ) = sgn(i1, ..., ik, j1, ..., jd−k)ej1 ∧ · · · ∧ ejd−k

.
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Proof. Actually, these are purely linear algebra. See chapter 1 in [2].

Now we have a nice decomposition and we will prove this by the propositions above.
But before doing this, we will prove the following useful lemma first.

Lemma 3.5. Let (X, g) be a compact Hermitian manifold, then α is ∂−harmonic if and
only if ∂α = ∂

∗
α = 0. So is ∂.

Proof. We find that

(∆∂α, α) = (∂∂
∗
α, α) + (∂

∗
∂α, α) = ‖∂∗

α‖2 + ‖∂α‖2,

and well done where the last step follows from Proposition 3.2.

Corollary 3.6. Let (X, g) be a Hermitian manifold, then

H k
∂ (X, g) =

⊕
p+q=k

H p,q
∂ (X, g),H k

∂
(X, g) =

⊕
p+q=k

H p,q

∂
(X, g).

Proof. We can write α =
∑

p,q α
p,q, use Propisition 3.4 and the bidegree analysis, this is

easy to see.

Theorem 3.7 (HODGE DECOMPOSITION). Let (X, g) be a compact Hermitian manifold,
then we have the following natural orthogonal decomposition

A p,q(X) = ∂A p−1,q(X)⊕ H p,q
∂ (X, g)⊕ ∂∗A p+1,q(X),

A p,q(X) = ∂A p−1,q(X)⊕ H p,q

∂
(X, g)⊕ ∂

∗
A p+1,q(X);

Moreover, we have

ker ∂ = ∂A p−1,q(X)⊕ H p,q
∂ (X, g), ker ∂ = ∂A p−1,q(X)⊕ H p,q

∂
(X, g).

Proof. Omitted for the first part. This proof depend on some knowledge of PDEs. Now
we prove the second part by assuming the first is proved. We just prove the statement
about ∂ and ∂ is the same.
First we claim that ∂∂∗

β = 0 if and only if ∂∗β = 0. Actually, we have (∂∂∗
β, β) =

‖∂∗
β‖2, then the claim is right. Use the claim, we can find that

∂A p−1,q(X)⊕ H p,q

∂
(X, g) ⊂ ker ∂,

so just need to prove that ∂∗
A p+1,q(X) ∩ ker ∂ = 0. Let α in it with α = ∂

∗
γ, then

∂∂
∗
γ = 0. Use the claim we have α = ∂

∗
γ = 0, well done.

Corollary 3.8. Let (X, g) be a compact Hermitian manifold, then the canonical map
H p,q

∂
(X, g) → Hp,q(X) is an isomorphism.
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Proof. This map defined by α 7→ [α] is well defined by Lemma 3.5. Moreover, we use
the previous theorem we have ker ∂ = ∂A p−1,q(X)⊕H p,q

∂
(X, g), this is exactly what we

need.

Proposition 3.9. Let (X, g) be a compact Hermitian manifold and [α] ∈ Hp,q(X). Then
the harmonic representative of [α] (existence is the previous corollary) is the unique
∂−closed form with the minimal norm ‖α‖.

Proof. For any representation α+∂β of [α] where α ∈ H p,q(X, g), we use the orthogonal
Hodge decomposition find that α⊥∂β, then well done.

4 HODGE THEORY ON KÄHLER MANIFOLDS

4.1 MAIN RESULTS
Definition 4.1. We call a Hermitian manifold (X, g) a KÄHLER MANIFOLD if its fun-
damental form ω is d−closed. In this case, we say g is its KÄHLER METRIC and ω is its
KÄHLER FORM3.

Actually, a Kähler manifold is so good and it has much better properties than the
usual Hermitian manifolds. First we will prove the most important properties about
Kähler manifolds which play a vital role. Now the dreams begin.

Theorem 4.2 (KÄHLER IDENTITIES). Let (X, g) be a Kähler manifold, then the following
identities hold ture.
(i) [∂, L] = [∂, L] = 0 and [∂

∗
,Λ] = [∂∗,Λ] = 0;

(ii) [∂∗
, L] = i∂, [∂∗, L] = −i∂ and [Λ, ∂] = −i∂∗, [Λ, ∂] = i∂

∗;
(iii) ∆∂ = ∆∂ = 1

2∆d and ∆d commutes with ∗, ∂, ∂, ∂∗, ∂
∗
, L,Λ.

Proof. We only prove (i) and (iii). You can see the proof of (ii) in [2, 3, 5].
For (i), we have [∂, L]α = ∂(ω ∧ α) − ω ∧ ∂α = ∂ω ∧ α = 0 since d−closed implies

∂−closed. And [∂, L] = 0 is similar. Moreover, let α ∈ A k(X), then

[∂
∗
,Λ]α = − ∗ ∂ ∗ ∗−1L ∗ α+ ∗−1L ∗ ∗∂ ∗ α

= − ∗ ∂L ∗ α− (−1)k ∗−1 L∂ ∗ α = − ∗ [∂, L] ∗ α = 0.

3We can prove that any Kähler manifold (X, g) has a natural SYMPLECTIC STRUCTURE since the Kähler
form is a natural symplectic form, that is, ω is closed form and nowhere degenerate. So you can put Kähler
geoemetry into symplectic geometry.
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Another as [∂∗,Λ] = [∂
∗
,Λ] = [∂

∗
,Λ] = 0, well done.

For (iii), it’s easy to see ∂∂∗
+ ∂

∗
∂ = 0 by (ii). Then

∆∂ = ∂∂∗ + ∂∗∂ = i[Λ, ∂]∂ + i∂[Λ, ∂]

= i(Λ∂∂ − ∂Λ∂ + ∂Λ∂ − ∂∂Λ)

= i(Λ∂∂ − (∂[Λ, ∂] + ∂∂Λ) + ([∂,Λ]∂ + Λ∂∂)− ∂∂Λ)

= i(Λ∂∂ − i∂∂
∗ − ∂∂Λ− i∂

∗
∂ + Λ∂∂ − ∂∂Λ) = ∆∂ .

The claim ∆d = 2∆∂ is trivial. Well done.

Remark 4.3. This is an important theorem that describe some special information about
Kähler manifolds. Actually, we focus on the third statement of the theorem, that is,
∆∂ = ∆∂ = 1

2∆d tell us that H p,q
∂ (X, g) = H p,q

∂
(X, g) = H p+q

d (X, g) ∩ A p,q(X). So
from now on, we denote H p,q(X, g) := H p,q

∂ (X, g) = H p,q

∂
(X, g) in the case of Kähler.

Now we will introduce an important and interesting lemma which we use it frequently.

Lemma 4.4 (∂∂ LEMMA). Let (X, g) be a compact Kähler manifold, then for all d−closed
(p, q) form α, the following statements are equivalence:
(i) α = dβ, β ∈ A p+q−1

C (X);
(ii) α = ∂β, β ∈ A p−1,q(X);
(iii) α = ∂β, β ∈ A p,q−1(X);
(iv) α = ∂∂β, β ∈ A p−1,q−1(X);
(v) α⊥H p,q(X, g).

Proof. Actually, use the Hodge decompositon theorem of Hermitian manifolds, we know
that (v) implies (i)-(iv) and (iv) implies (i)-(iii). So we just need to prove that (v) implies
(iv) as follows.
Let α is a d−closed (p, q)−form and orthogonal to H p,q(X, g). Use Hodge de-

composition with respect to ∂, we have α = ∂γ and use with respect to ∂, we have
γ = ∂β + ∂

∗
β′ + β′′ where β′′ is harmonic. Then α = ∂∂β + ∂∂

∗
β′ + ∂β′′ = ∂∂β + ∂∂

∗
β′

by Lemma 3.5. Now we claim that ∂∂∗
β′ = 0. Use the proof of the third statement of

Theorem 4.2, we have ∂∂
∗
β′ = −∂

∗
∂β′. Then since ∂α = 0, we have ∂∂

∗
∂β′ = 0. But

we find that (∂∂∗
∂β′, ∂β′) = ‖∂∗

∂β′‖2, so ∂
∗
∂β′ = 0, well done.

Corollary 4.5. If X be a complex manifold, then we have the natural map Hp,q
BC(X) →

Hp,q(X). Additively, if (X, g) is compact Kähler manifold, then this natural is an iso-
morphism.
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Proof. Recall the definition of the Bott-Chern cohomology Hp,q
BC(X) = ker d/Im∂∂, then

we have ker d ⊂ ker ∂ and Im∂∂ ⊂ Im∂, so we have the natural map Hp,q
BC(X) → Hp,q(X).

In the case of compact Kähler, we have Im∂∂ = Im∂ by ∂∂ lemma. Similarly, we
know that d−closed if and only if both ∂− and ∂−closed, then use ∂∂ lemma we have
Im∂ = Im∂, moreover, by Hodge decomposition we find that

ker ∂ = Im∂ ⊕ H p,q(X, g) = Im∂ ⊕ H p,q(X, g) = ker ∂,

well done.

Theorem 4.6 (HODGE DECOMPOSITION). If (X, g) be a compact Kähler manifold, then
we have the decomposition

Hk
C(X) ∼=

⊕
p+q=k

Hp,q(X).

Moreover, this decomposition is not depend on the Kähler structure.

Proof. We have Hk
C(X) ∼= H k(X, g) ∼=

⊕
p+q=k H p,q(X, g) =

⊕
p+q=k H

p,q(X).
Moreover, we let g′ is another Kähler structure, then H p,q(X, g) ∼= Hp,q(X) ∼=

H p,q(X, g′). Let α ∈ H p,q(X, g) correspond to α′ ∈ H p,q(X, g′), we need to show
that [α] = [α′] ∈ Hk(X,C).We find that α = α′+ ∂γ. Use the Hodge decomposition with
respect to d and d∂γ = 0 and ∂γ⊥H k(X, g), we have ∂γ ∈ Imd, so well done.

Remark 4.7. So in the case of compact Kähler, we can use this to see the structure of
C-coefficient de Rham cohomology and break it into Dolbeault cohomology.

Corollary 4.8. If (X, g) be a compact Kähler manifold, then

Hk(X,C) ∼=
⊕

p+q=k

Hp,q
BC(X).

Proof. Immediately from the Hodge decomposition of the Kähler manifold.

4.2 APPLICATIONS
Now we try to discuss the cohomology of compact Kähler manifolds using what we just
learned. First, Let talk about the relation between the Picard group (All holomorphic
line bundles on X formed a group by tensor and dual) of a compact Kähler manifold X

and the cohomology group H1,1(X).
Now we introduce the most famous exact sequence 0 → Z → O → O∗ → 0. The long

exact sequence of it yields the maps as follows

· · · Pic(X) = H1(X,O∗) H2(X,Z) · · ·

H2(X,C) H2,0(X)⊕H1,1(X)⊕H0,2(X)
∼=

HODGE
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Moreover, we find that H0,2(X) ∼= H2(X,OX). So, for any α ∈ H2(X,C), we now have
two ways to associate to α a class of degree (0, 2). First, using the canonical projection
H2(X,C) → H0,2(X). Second, using the map H2(X,C) → H2(X,OX) induced by the
inclusion map C ↪→ OX . Two our surprise, the two ways coincide as follows.

Lemma 4.9. Let (X, g) be a compact Kähler manifold, then the previous maps coincide.

Proof. We have the following acyclic resolutions

C A 0(X) A 1(X) A 2(X) · · ·

OX A 0,0(X) A 0,1(X) A 0,2(X) · · ·

d d

Π0,1

d

Π0,2

∂ ∂ ∂

This is commute by easily verifying. Use the harmonic forms, well done.

Now we back to the Picard group. As the following diagram shows that whole com-
position is trivial.

· · · Pic(X) H2(X,Z) H2(X,OX) · · ·

H2(X,C) H0,2(X)
⊃

So Im(Pic(X) → H2(X,C)) ⊂ ker(H2(X,C) → H0,2(X)) ∩ Im(H2(X,Z) → H2(X,C)).
Using the fact that it is invariant under complex conjugation, we find that

Im(Pic(X) → H2(X,C)) ⊂ H1,1(X,Z) := Im(H2(X,Z) → H2(X,C)) ∩H1,1(X).

More surprisingly, we have

Theorem 4.10 (LEFSCHETZ THEOREM ON (1,1)-CLASSES). Let (X, g) be a compact Käh-
ler manifold, then Pic(X) → H1,1(X,Z) is SURJECTIVE.

Proof. We take α = ρ(α̂) ∈ H1,1(X,Z), then use bidegree decomposition, we have α =

α2,0 + α1,1 + α0,2 with α2,0 = α0,2. So α0,2 = 0. Conversely, if β ∈ Im(H2(X,Z) →
H2(X,C)), then β0,2 = 0 implies β ∈ H1,1(X,Z).
Actually, use the previous lemma, we find that α 7→ α0,2 similar as it induced by

C ↪→ OX . So just to check that α̂ ∈ ker(H2(X,Z) → H2(X,C) → H2(X,OX)). Consider
the following diagram

· · · Pic(X) H2(X,Z) H2(X,OX) · · ·

H2(X,C)

ρ

This is easy to see.
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Remark 4.11. (i) We call the image of Pic(X) → H2(X,R) the NERON-SEVERI GROUP
NS(X). By the case of Kähler, use the previous theorem, we know that NS(X) =

H1,1(X,Z);
(ii) We define the PICARD NUMBER ρ(X) as the rank of the image of Pic(X) →

H2(X,R). So in the case of Kähler, we have ρ(X) = rank(H1,1(X,Z)) = rank(NS(X)).

Definition 4.12. Let X be a complex manifold, then JACOBIAN as ker(Pic(X) →
H2(X,Z)), denoted by Pic0(X). So Pic0(X) = H1(X,OX)/H1(X,Z).

Now we discuss a corollary that reflect some special things about the compact Kähler
manifolds in order to finish the discussion of lower dimensional cohomology and go to the
area of higher dimensional cohomology.

Corollary 4.13. If (X, g) be a compact Kähler manifold, then Pic0(X) is a complex torus
of dimension b1(X).

Proof. Use Hodge decomposition we have

(H1(X,Z)⊗Z R)⊗R C = H1(X,C) = H1,0(X)⊕H1,0(X),

then H0,1(X) → H1(X,C) → H0,1(X) is injective with discrete image formed a lattice,
well done.

EXAMPLE. Let X be a Hopf surface, that is, Z act on C2\{0} by (z1, z2) 7→ (λkz1, λ
kz2)

and X = (C2\{0})/Z where 0 < λ < 1. Then we know that X diffeomorphic to S1 × S3.
Now we claim that it is not a complex torus, then conclude that X is not Kähler.
First, we use the KÜNNETH FORMULA as

H1(X,Z) ∼= H1(S
1 × S3,Z) ∼= (H1(S

1)⊗Z H0(S
3))⊕ (H0(S

1)⊗Z H1(S
3)) ∼= Z.

Moreover, we have H1(X,OX) ∼= H0,1(X) ∼= C by TODD-HIRZEBBRUCH FORMULA in
page 172 in [13]. So well done.
In order to discuss the higher dimensional cohomology, we first point out a fact we

have never discuss. If X is a compact Kähler manifold, easy to verify that the Lefschetz
and the dual of it as L : Hp,q(X) → Hp+1,q+1(X) and Λ : Hp,q(X) → Hp−1,q−1(X). In
this part, we will find some symmetric relation in whole Hodge numbers hp,q. First we
statement some conclusion without proof.

Definition 4.14. If X is a compact Kähler manifold, then PRIMITIVE CONOMOLOGY is
Hk(X,R)p = kerΛ, so is Hp,q(X)p.

Theorem 4.15 (HARD LEFSCHETZ THEOREM). If X is n-dimensional compact Kähler
manifold, then for all k ≤ n, we have

Ln−k : Hk(X,R) ∼= H2n−k(X,R).
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Moreover Hk(X,R) ∼=
⊕

i≥0 L
iHk−2i(X,R)p and Hk(X,R)p ⊗ C =

⊕
p+q=k H

p,q(X)p.

Proposition 4.16. If X be a compact Hermitian manifold.
(i)(HODGE DUALITY)The Hodge ∗−operator induces ∗ : H p,q

∂
(X, g) ∼= H n−q,n−p

∂ (X, g);
(ii)(SERRE DUALITY)One has H p,q

∂
(X, g) ∼= H n−p,n−q

∂ (X, g)∗.

So in the case of compact Kähler, we have ∗ : Hp,q(X) ∼= Hn−q,n−p(X) as Hodge
duality. And Hp,q(X) ∼= Hn−p,n−q(X)∗ as Serre duality. Moreover, use Hodge theorem,
we have Hp,q(X) = Hq,p(X). So these things yields many symmetric relation in whole
Hodge numbers hp,q. Now we will draw a diagram to summarize these, called HODGE
DIAMOND as follows.
Recall that hp,q = dimHp,q(X). Then

Theorem 4.17 (HODGE-RIEMANN BILINEAR RELATION). Let (X, g) be a n−dimensional
compact Kähler manifold and [ω] is its Kähler form, then for 0 6= α ∈ Hp,q(X)p, we have

ip−q(−1)
(p+q)(p+q−1)

2

∫
X

α ∧ α ∧ [ω]n−p−q > 0.

Proof. This is pure linear algebra. See any book, such as [2, 3, 5, 6].

Proposition 4.18 (HODGE INDEX THEOREM). Let (X, g) be a compact Kähler surface,
then the index of

H2(X,R)×H2(X,R) → R, (α, β) 7→
∫
X

α ∧ β

is (2h2,0 + 1, h1,1 − 1).

Proof. We find that H2(X,R) =
(
(H2,0(X)⊕H0,2(X)) ∩H2(X,R)

)
⊕ H1,1(X), take

α is an elements in H2,0(X) ⊕ H0,2(X). We find that all class in it is primitive, let
α = α2,0 + α0,2, then∫

X

α2 = 2

∫
X

α2,0 ∧ α0,2 = 2

∫
X

α2,0 ∧ α2,0 > 0,

11



Then we only need to consider H1,1(X), use Lefschetz decomposition, we have

H1,1(X) = H1,1(X)⊕ LH0(X) = H1,1(X)⊕ [ω]R,

Use Hodge ∗ duality and the orthogonality of decomposition, we have
∫
X
ω ∧α = 0. And∫

X
ω2 > 0, with Hodge-Riemann bilinear relation, we have

∫
X
α2 < 0, well done.

This result can be generalized. We omit it here. See [2, 3].

5 BASIC HODGE STRUCTURES
Definition 5.1. A HODGE STRUCTURE OF WEIGHT k on a Z-module VZ of finite type is
a direct decomposition

VC = VZ ⊗Z C =
⊕

p+q=k

V p,q, V p,q = V q,p.

Definition 5.2. Let VZ,WZ are two Hodge structure of weight k, then a morphism of it
is a homomorphism of Z-modules with its complexification fC send V p,q to W p,q.

Definition 5.3. A REAL HODGE STRUCTURE on V is a decomposition

VC = V ⊗ C =
⊕
p,q∈Z

V p,q, V p,q = V q,p.

We call the polynomial Phn(V ) =
∑

p,q∈Z h
p,q(V )upvq is associated HODGE NUMBER

POLYNOMIAL.

Actually, if a real Hodge structure V is of form V = VR ⊗R R where R is a subring
of R and VR is an R-module of finite type, then we say that VR carries an R-HODGE
STRUCTURE.
If V (k) is the real vector space underlying

⊕
p+q=k V

p,q, we say that it is the weight
k part of V . So if V = VZ ⊗Z R and V = V (k), then it is a Hodge structure of weight k.
EXAMPLE.(i) So in the case of compact Kähler (X, g), the de Rham cohomologyHk

DR(X)

has real Hodge structure of weight k by Hodge decomposition where the direct sum of
Dolbeault cohomology.
(ii) We define the HODGE STRUCTURES OF TATE on R as R(k) = R ⊗Z Z(k) =

R ⊗Z [2πi]kZ with Z(m) ⊗ C = [Z(m) ⊗ C]−m,−m. Actually, if we have any Hodge
structure VZ of weight k, then we have the TATE TWIST V (m) is a Hodge structure of
weight k − 2m. It has V ⊗ (2πi)m as underlying Z-module, while V (m)p,q = V p−m,q−m.
Next, we focus on the Hodge structures in cohomology and homology.
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Recall that the fundamental class cl(Y ) ∈ H2c(X) of a codimension c subvariety Y of
a compact complex manifold X is that for all integral cohomology class α ∈ H2n−2c(X),
we have

∫
X
α ∧ cl(Y ) =

∫
Y
α|Y .

Proposition 5.4. The fundamental cohomology class cl(Y ) ∈ H2c(X) of a codimension
c subvariety Y of a compact complex manifold X has pure type (c, c). In particular, if X
is connected, the twist trace map is an isomorphism

trX : H2n(X) ∼= Z(−n), [α] 7→ (2πi)n
∫
X

α.

Recall that the trace map is induced by Poincáre duality when k = 0. In this case, we
have tr : H2n(X) ∼= H0(X) = Z. This proposition is easy to see. Now we will introduce
the famous conjecture, HODGE CONJECTURE.
An element

∑
niYi of the free group Zk(X) on k-dimensional subvarieties of X called

an ALGEBRAIC k-CYCLE. We defines the CYCLE CLASS MAP cl : Zc(X) → H2c(X) by∑
niYi 7→

∑
nicl(Yi). The image of it is called an ALGEBRAIC CLASS. Note that if

X is projective with c = 1, then the algebraic classes are exactly integral (1, 1)-class by
Theorem 4.10. Going over to rational classes, we let

H2c
Hdg(X) = Hc,c(X) ∩ Im(H2c(X,Q) → H2c(X,C)).

⋆ HODGE CONJECTURE ⋆ Let X be a smooth projective variety. Every (c, c)-class
with rational coefficients is algebraic. That is, every class in H2c

Hdg(X) is a rational
combination of fundamental cohomology classes of subvarieties of X.

6 POSTSCRIPT
As you see, this is a brief introduction about basic Hodge theory. After reading this,
you can smoothly read [3]. You can also read [12] after you are familiar with spectral
sequence, representation theory and derived category. Since I haven’t read this (I will do
it in the next term), I didn’t write about this in the article. This is the first time for me
to write this kind of formal article, the wrong place also hopes the criticism corrects.
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