Notes on Algebraic Geometry by U.Görtz and T.Wedhorn

Xiaolong Liu

Abstract

This is a note about the book[[UT1](#page-4-0)] which aims to fix some gaps in it. So we will cite the book [\[UT1](#page-4-0)] without statement.

Contents

1 Page 217, Subsection (8.6)

Consider the scheme *S* and quasi-coherent sheaf \mathscr{E} , then we define a functor $Grass^e(\mathscr{E})$: $(Sch/S)^{opp} \rightarrow$ (*Sets*) as

Grass^{*e*}($\mathscr{E}(T) = \{ \mathscr{U} \subset h^*(\mathscr{E}) : h^*(\mathscr{E}) / \mathscr{U} \text{ is locally free of rank } e \},$

where $h: T \to S$ be a *S*-scheme.

Easy to see that $Grass^e(\mathscr{E})(T) \to Grass^e(\mathscr{E})(T'), \mathscr{U} \mapsto f^*(\mathscr{U})$ induced by $f : T' \to T$ is well defined.

Lemma 1. Surjections of quasi-coherent \mathscr{O}_S -modules $v : \mathscr{E}_1 \to \mathscr{E}_2$ induce $i_v : \text{Grass}^e(\mathscr{E}_2) \to \text{Grass}^e(\mathscr{E}_1)$.

Proof. Consider $h: T \to S$, then define $i_v(T): \mathcal{U} \mapsto \text{ker}(h^*(\mathcal{E}_1) \to h^*(\mathcal{E}_2)/\mathcal{U}$. \Box

Theorem 1. *Morphism* i_v : Grass^{e}(\mathscr{E}_2) \rightarrow Grass^{e}(\mathscr{E}_1) *is representable and is a closed immersion.*

Proof. Let $h: X \to S$ and take any $f: X \to Grass^e(\mathscr{E}_1)$. Via the Yoneda lemma, it's corresponding to $\mathscr{V}_X \in \text{Grass}^e(\mathscr{E}_1)(X)$. Consider:

Via the inverse isomorphism in Yoneda lemma it's easy to see that $f(T)(w) = w^*(\mathscr{V}_X)$. So for $g: T \to S$ we have

$$
\mathrm{Grass}^e(\mathscr{E}_2) \times_{\mathrm{Grass}^e(\mathscr{E}_1)} X(T) = \{ w \in X(T) : w^*(\mathscr{V}_X) \in \mathrm{Im}(i_v(T)) \},
$$

so $w^*(\mathscr{V}_X) \in \text{Im}(i_v(T))$ if and only if $g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X) \to g^*(\mathscr{E}_2)/g^*(v)(w^*(\mathscr{V}_X)) \to g^*(\mathscr{E}_2)/\mathscr{U}$ induced by $g^*(v)$ is an isomorphism where these are locally free of rank *e* and $g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X) \to$ $g^*(\mathscr{E}_2)/g^*(v)(w^*(\mathscr{V}_X))$ is surjective, then if and only if $g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X) \to g^*(\mathscr{E}_2)/g^*(v)(w^*(\mathscr{V}_X))$ is an isomorphism, which is equivalent to ker $g^*(v) \subset w^*(\mathscr{V}_X)$, that is, $\ker(g^*(v)) \to g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X)$ is zero. So we use Proposition 8.4 to $\ker(g^*(v)) \to g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X)$ and well done.

2 Page 350, Subsection (12.14)

Proposition 1 (Proposition 12.66)**.** *Let k be a field and let X be a proper geometrically connected and geometrically reduced k-scheme. Then* $\Gamma(X, \mathcal{O}_X) = k$ *.*

Proof. By the condition we may assume k is an algebraically closed field. Take $s \in \Gamma(X, \mathcal{O}_X)$, we consider $s \in \text{Hom}_k(k[T], \Gamma(X, \mathcal{O}_X)) = \text{Hom}_k(X, \mathbb{A}_k^1)$. Consider the following diagram.

As *X* is proper, we know that $X \to \mathbb{A}^1_k$ and $X \to \mathbb{P}^1_k$ are also proper. The image $Z = s(X)$ is As *X* is proper, we know that $X \to \mathbb{R}_k$ and $X \to \mathbb{R}_k$ are also proper. The mage $Z = s(X)$ is closed in \mathbb{A}_k^1 . Consider *Z* as a closed reduced subscheme of \mathbb{A}_k^1 . Since $X \to \mathbb{P}_k^1$ is proper, *Z* is a closed in \mathbb{P}_k^1 , so *Z* is a finite set in \mathbb{P}_k^1 . As *X* is connected, *Z* is connected. So *Z* = Spec*k*' for some finite extension k'/k . As *k* is an algebraically closed field we have $k' = k$. So $\Gamma(X, \mathcal{O}_X) = k$.

Thus we use Corollary 12.64 and the previous Proposition, we find that:

Theorem 2. Let *k* be a field and let *X* be a proper *k*-scheme. Then $\Gamma(X,\mathscr{F})$ is a finite-dimensional *k*-vector space for every coherent \mathscr{O}_X -module \mathscr{F} *.*

3 Page 383, Subsection (13.7)

In this subsection many details and definitions are omitted, so we aim to add some content about the related proj.

Let *S* be a scheme and $\mathscr A$ be a graded quasi-coherent $\mathscr O_S$ -algebra. Then for any affine open $U \subset S$ we have graded $\Gamma(U, \mathscr{O}_S)$ -algebra $\Gamma(U, \mathscr{A})$. So we have a separated *U*-scheme Proj $\Gamma(U, \mathscr{A})$.

Take affine open sets $U \subset V \subset S$, we have the following pullback diagram

Then we can glue it into a scheme $\underline{Proj}_S \mathscr{A} \to S$ as the following pullback diagram

where ψ_U be an open immersion and $\pi^{-1}(U) = \text{Im} \eta_U \cong \text{Proj} \Gamma(U, \mathscr{A})$.

Next we will find out the functor $\tilde{-}$: GrΩcoMod(*A*) → ΩcoMod(*Proj_SA*) where GrΩcoMod(*A*) be the category of graded quasi-coherent $\mathscr A$ -modules and \mathfrak{Q} **co** $\mathfrak{Mod}(Proj_S \mathscr A)$ be the category of quasicoherent $\mathscr{O}_{\underline{Proj}_S} \mathscr{A}$ -modules.

Theorem 3. *Let M be a graded quasi-coherent A -module, then there exists a canonical quasi-coherent* $\mathscr{O}_{\mathbf{Proj}_{S}}$ *a* -module *M* such that for any affine open $U \subset S$ we have

$$
\eta_U^*\widetilde{\mathscr{M}}\cong \Gamma(U,\mathscr{M})^\sim, (\eta_U')_*\Gamma(U,\mathscr{M})^\sim\cong \widetilde{\mathscr{M}}|_{\mathrm{Im}\eta_U}
$$

where $\eta_U : \mathrm{Proj}\Gamma(U, \mathscr{A}) \to \underline{Proj}_S(\mathscr{A})$ be an open immersion and $\eta'_U : \mathrm{Proj}\Gamma(U, \mathscr{A}) \to \mathrm{Im}\eta_U$ be the *isomorphism.*

If $u : \mathcal{M} \to \mathcal{N}$ be a morphism of graded quasi-coherent \mathcal{A} -modules, then there is a canonical $morphism \widetilde{u}: M \rightarrow N$. So we defines a exact functor $\widetilde{-}:\mathfrak{GrQcoMod}(\mathcal{A}) \rightarrow \mathfrak{QcoMod}(Proj_{S} \mathcal{A})$.

Proof. We omit the proof and one can see[[DM1](#page-4-1)] for the detailed information. The exactness of the functor follows from that $\tilde{-}$: Γ(*U, Δ*) − **GrΩcoMo** → **ΩcoMo** (ProjΓ(*U, Δ*)) is exact. \Box

By this theorem, we can prove that $\underline{Proj}_{S'}(g^*\mathscr{A}) \cong \underline{Proj}_{S'}\mathscr{A} \times_S S'$ where $g: S' \to S$. Similar as $(g^*\mathscr{M})^{\sim} \cong g'^*(\widetilde{\mathscr{M}})$ where $g' : \underline{Proj}_{S'}(g^*\mathscr{A}) \to \underline{Proj}_S(\mathscr{A})$.

Difinition 1. Let $X = \underline{Proj}_S \mathscr{A}$, then we denote $\mathscr{O}_X(n) := \mathscr{A}(n)$. For a quasi-coherent \mathscr{O}_X *-module* \mathscr{F} *, we let* $\mathscr{F}(n) := \mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{O}_X$.

Proposition 2. *If M, N be graded quasi-coherent A -modules, then we have*

$$
\widetilde{\mathscr{M}} \otimes_{\mathscr{O}_{\underline{Proj}_{S}^{\mathscr{A}}}} \widetilde{\mathscr{N}} \cong (\mathscr{M} \otimes_{\mathscr{A}} \mathscr{N})^{\sim}.
$$

Proof. Also use the previous theorem and this is easy to see.

Then we have $\mathscr{F}(m) \otimes_{\mathscr{O}_{\underline{Proj}_{S}}^{\mathscr{A}}} \mathscr{F}(n) \cong \mathscr{F}(m+n)$ for all quasi-coherent $\mathscr{O}_{\underline{Proj}_{S}^{\mathscr{A}}}$ -module \mathscr{F} . Similarly we have $({\mathscr M}(n))$ [∼] $\cong \widetilde{\mathscr M}(n)$ for all graded quasi-coherent ${\mathscr A}$ -module ${\mathscr M}$.

Difinition 2. From now we let $\mathscr A$ generated by $\mathscr A_1$ as $\mathscr A_0$ -algebra. Let $X = \underline{Proj}_S \mathscr A$ and $\pi : X \to S$. *First we define* $\alpha_n : \mathcal{M}_n \to \pi_* (\mathcal{M}(n))^{\sim}$ *for graded quasi-coherent* \mathcal{A} *-module* \mathcal{M} *. Since for affine U we* have $\mathcal{M}_n(U) \to \Gamma(\text{Proj}\Gamma(U,\mathcal{A}),\Gamma(U,\mathcal{M}(n))^{\sim}) \cong \Gamma(\pi^{-1}U,\mathcal{M}(n))$ before as $m \mapsto m/1$ at affine local, *then by gluing we have the morphism* $\alpha_n : \mathcal{M}_n \to \pi_*(\mathcal{M}(n))^{\sim}$.

Then for quasi-coherent \mathcal{O}_X *-module* $\mathcal F$ *we let*

$$
\Gamma_*(\mathscr{F}) = \bigoplus_n \pi_*\mathscr{F}(n).
$$

Moreover, if $f: \mathscr{F} \to \mathscr{G}$, we have $\bigoplus_{n} \pi_*(f(n)) : \Gamma_*(\mathscr{F}) \to \Gamma_*(\mathscr{G})$. So we defined a functor $\Gamma_*(-):$ \mathfrak{Q} co $\mathfrak{Mod}(X) \to \mathfrak{GrQ}$ co $\mathfrak{Mod}(\mathscr{A})$.

Theorem 4. Let $\mathscr A$ is finitely generated as $\mathscr O_S$ -algebra, then we have an adjoint pair $(\tilde{\mathscr O},\Gamma_*(-))$:

$$
\mathfrak{GrQcoMod}(\mathscr{A}) \xrightarrow[\Gamma_*(-)]{} \mathfrak{QcoMod}(X)
$$

Proof. This is a little bit complicated and we omitted the proof of it.

4 Page 397, Subsection (13.12)

For $f: X \to Y$, the bijection

$$
\operatorname{Hom}_{\mathscr{O}_X}(f^*\mathscr{G},\mathscr{F})\cong \operatorname{Hom}_{\mathscr{O}_S}(\mathscr{G},f_*\mathscr{F})
$$

gives us the following decompositions.

For $u : \mathscr{G} \to f_*\mathscr{F}$ we have

and for $v: f^*\mathscr{G} \to \mathscr{F}$ we have

 \Box

 \Box

References

- [UT1] Ulrich Görtz, Torsten Wedhorn, *Algebraic Goemetry I: Schemes, 2ed edition*, Springer Spektrum, 2020.
- [St] Stacks project collaborators, *Stacks project*, <https://stacks.math.columbia.edu/>.
- [DM1] Daniel Murfet, *The Relative Proj Construction*, <http://therisingsea.org/notes/>, 2006.
- [EGA1] Alexander Grothendieck, Jean Dieudonné. *Éléments de géométrie algébrique I*, Publications Mathématiques. Institute des Hautes Études Scientifiques, 1960.