Notes on Algebraic Geometry by U.Görtz and T.Wedhorn

Xiaolong Liu

Abstract

This is a note about the book [UT1] which aims to fix some gaps in it. So we will cite the book [UT1] without statement.

Contents

1	Page 217, Subsection (8.6)	2
2	Page 350, Subsection (12.14)	2
3	Page 383, Subsection (13.7)	3
4	Page 397, Subsection (13.12)	4

1 Page 217, Subsection (8.6)

Consider the scheme S and quasi-coherent sheaf \mathscr{E} , then we define a functor $\operatorname{Grass}^{e}(\mathscr{E}) : (Sch/S)^{opp} \to (Sets)$ as

 $\operatorname{Grass}^{e}(\mathscr{E})(T) = \{ \mathscr{U} \subset h^{*}(\mathscr{E}) : h^{*}(\mathscr{E}) / \mathscr{U} \text{ is locally free of rank } e \},\$

where $h: T \to S$ be a S-scheme.

Easy to see that $\operatorname{Grass}^{e}(\mathscr{E})(T) \to \operatorname{Grass}^{e}(\mathscr{E})(T'), \mathscr{U} \mapsto f^{*}(\mathscr{U})$ induced by $f: T' \to T$ is well defined.

Lemma 1. Surjections of quasi-coherent \mathcal{O}_S -modules $v : \mathscr{E}_1 \to \mathscr{E}_2$ induce $i_v : \operatorname{Grass}^e(\mathscr{E}_2) \to \operatorname{Grass}^e(\mathscr{E}_1)$.

Proof. Consider $h: T \to S$, then define $i_v(T): \mathscr{U} \mapsto \ker(h^*(\mathscr{E}_1) \to h^*(\mathscr{E}_2)/\mathscr{U})$.

Theorem 1. Morphism $i_v : \operatorname{Grass}^e(\mathscr{E}_2) \to \operatorname{Grass}^e(\mathscr{E}_1)$ is representable and is a closed immersion.

Proof. Let $h: X \to S$ and take any $f: X \to \text{Grass}^e(\mathscr{E}_1)$. Via the Yoneda lemma, it's corresponding to $\mathscr{V}_X \in \text{Grass}^e(\mathscr{E}_1)(X)$. Consider:

Via the inverse isomorphism in Yoneda lemma it's easy to see that $f(T)(w) = w^*(\mathscr{V}_X)$. So for $g: T \to S$ we have

$$\operatorname{Grass}^{e}(\mathscr{E}_{2}) \times_{\operatorname{Grass}^{e}(\mathscr{E}_{1})} X(T) = \{ w \in X(T) : w^{*}(\mathscr{V}_{X}) \in \operatorname{Im}(i_{v}(T)) \},\$$

so $w^*(\mathscr{V}_X) \in \operatorname{Im}(i_v(T))$ if and only if $g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X) \to g^*(\mathscr{E}_2)/g^*(v)(w^*(\mathscr{V}_X)) \to g^*(\mathscr{E}_2)/\mathscr{U}$ induced by $g^*(v)$ is an isomorphism where these are locally free of rank e and $g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X) \to g^*(\mathscr{E}_2)/g^*(v)(w^*(\mathscr{V}_X))$ is surjective, then if and only if $g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X) \to g^*(\mathscr{E}_2)/g^*(v)(w^*(\mathscr{V}_X))$ is an isomorphism, which is equivalent to $\ker g^*(v) \subset w^*(\mathscr{V}_X)$, that is, $\ker(g^*(v)) \to g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X)$ is zero. So we use Proposition 8.4 to $\ker(g^*(v)) \to g^*(\mathscr{E}_1)/w^*(\mathscr{V}_X)$ and well done. \Box

2 Page 350, Subsection (12.14)

Proposition 1 (Proposition 12.66). Let k be a field and let X be a proper geometrically connected and geometrically reduced k-scheme. Then $\Gamma(X, \mathcal{O}_X) = k$.

Proof. By the condition we may assume k is an algebraically closed field. Take $s \in \Gamma(X, \mathscr{O}_X)$, we consider $s \in \operatorname{Hom}_k(k[T], \Gamma(X, \mathscr{O}_X)) = \operatorname{Hom}_k(X, \mathbb{A}^1_k)$. Consider the following diagram.

As X is proper, we know that $X \to \mathbb{A}^1_k$ and $X \to \mathbb{P}^1_k$ are also proper. The image Z = s(X) is closed in \mathbb{A}^1_k . Consider Z as a closed reduced subscheme of \mathbb{A}^1_k . Since $X \to \mathbb{P}^1_k$ is proper, Z is a proper closed in \mathbb{P}^1_k , so Z is a finite set in \mathbb{P}^1_k . As X is connected, Z is connected. So Z = Speck' for some finite extension k'/k. As k is an algebraically closed field we have k' = k. So $\Gamma(X, \mathcal{O}_X) = k$.

Thus we use Corollary 12.64 and the previous Proposition, we find that:

Theorem 2. Let k be a field and let X be a proper k-scheme. Then $\Gamma(X, \mathscr{F})$ is a finite-dimensional k-vector space for every coherent \mathscr{O}_X -module \mathscr{F} .

3 Page 383, Subsection (13.7)

In this subsection many details and definitions are omitted, so we aim to add some content about the related proj.

Let S be a scheme and \mathscr{A} be a graded quasi-coherent \mathscr{O}_S -algebra. Then for any affine open $U \subset S$ we have graded $\Gamma(U, \mathscr{O}_S)$ -algebra $\Gamma(U, \mathscr{A})$. So we have a separated U-scheme $\operatorname{Proj}\Gamma(U, \mathscr{A})$.

Take affine open sets $U \subset V \subset S$, we have the following pullback diagram

Then we can glue it into a scheme $\operatorname{Proj}_{S} \mathscr{A} \to S$ as the following pullback diagram

where ψ_U be an open immersion and $\pi^{-1}(U) = \operatorname{Im} \eta_U \cong \operatorname{Proj} \Gamma(U, \mathscr{A}).$

Next we will find out the functor $\tilde{-}$: $\mathfrak{GrQcoMod}(\mathscr{A}) \to \mathfrak{QcoMod}(\underline{Proj}_{S}\mathscr{A})$ where $\mathfrak{GrQcoMod}(\mathscr{A})$ be the category of graded quasi-coherent \mathscr{A} -modules and $\mathfrak{QcoMod}(\underline{Proj}_{S}\mathscr{A})$ be the category of quasi-coherent $\mathscr{O}_{Proj}_{S}\mathscr{A}$ -modules.

Theorem 3. Let \mathscr{M} be a graded quasi-coherent \mathscr{A} -module, then there exists a canonical quasi-coherent $\mathscr{O}_{Proj_{\mathscr{A}}}$ -module $\widetilde{\mathscr{M}}$ such that for any affine open $U \subset S$ we have

$$\eta_U^* \widetilde{\mathscr{M}} \cong \Gamma(U, \mathscr{M})^{\sim}, (\eta_U')_* \Gamma(U, \mathscr{M})^{\sim} \cong \widetilde{\mathscr{M}}|_{\mathrm{Im}\eta_U}$$

where $\eta_U : \operatorname{Proj}\Gamma(U,\mathscr{A}) \to \underline{\operatorname{Proj}}_S(\mathscr{A})$ be an open immersion and $\eta'_U : \operatorname{Proj}\Gamma(U,\mathscr{A}) \to \operatorname{Im}\eta_U$ be the isomorphism.

If $u: \mathscr{M} \to \mathscr{N}$ be a morphism of graded quasi-coherent \mathscr{A} -modules, then there is a canonical morphism $\widetilde{u}: \widetilde{\mathscr{M}} \to \widetilde{\mathscr{N}}$. So we defines a exact functor $\widetilde{-}: \mathfrak{GrQcoMod}(\mathscr{A}) \to \mathfrak{QcoMod}(Proj_{\mathfrak{S}}\mathscr{A})$.

Proof. We omit the proof and one can see [DM1] for the detailed information. The exactness of the functor follows from that $\tilde{-}: \Gamma(U, \mathscr{A}) - \mathfrak{GrQcoMod} \rightarrow \mathfrak{QcoMod}(\operatorname{Proj}\Gamma(U, \mathscr{A}))$ is exact. \Box

By this theorem, we can prove that $\underline{Proj}_{S'}(g^*\mathscr{A}) \cong \underline{Proj}_S \mathscr{A} \times_S S'$ where $g: S' \to S$. Similar as $(g^*\mathscr{M})^{\sim} \cong g'^*(\widetilde{\mathscr{M}})$ where $g': \underline{Proj}_{S'}(g^*\mathscr{A}) \to \underline{Proj}_S(\mathscr{A})$.

Difinition 1. Let $X = \operatorname{Proj}_{\mathfrak{S}} \mathscr{A}$, then we denote $\mathscr{O}_X(n) := \widetilde{\mathscr{A}(n)}$. For a quasi-coherent \mathscr{O}_X -module \mathscr{F} , we let $\mathscr{F}(n) := \mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{O}_X$.

Proposition 2. If \mathcal{M}, \mathcal{N} be graded quasi-coherent \mathcal{A} -modules, then we have

$$\widetilde{\mathscr{M}} \otimes_{\mathscr{O}_{\underline{\operatorname{Proj}}_{S}^{\mathscr{A}}}} \widetilde{\mathscr{N}} \cong (\mathscr{M} \otimes_{\mathscr{A}} \mathscr{N})^{\sim}$$

Proof. Also use the previous theorem and this is easy to see.

Then we have $\mathscr{F}(m) \otimes_{\mathscr{O}_{\underline{Proj}_S}\mathscr{A}} \mathscr{F}(n) \cong \mathscr{F}(m+n)$ for all quasi-coherent $\mathscr{O}_{\underline{Proj}_S}\mathscr{A}$ -module \mathscr{F} . Similarly we have $(\mathscr{M}(n))^{\sim} \cong \widetilde{\mathscr{M}}(n)$ for all graded quasi-coherent \mathscr{A} -module \mathscr{M} .

Difinition 2. From now we let \mathscr{A} generated by \mathscr{A}_1 as \mathscr{A}_0 -algebra. Let $X = \operatorname{Proj}_{S} \mathscr{A}$ and $\pi : X \to S$. First we define $\alpha_n : \mathscr{M}_n \to \pi_*(\mathscr{M}(n))^{\sim}$ for graded quasi-coherent \mathscr{A} -module \mathscr{M} . Since for affine U we have $\mathscr{M}_n(U) \to \Gamma(\operatorname{Proj}\Gamma(U,\mathscr{A}),\Gamma(U,\mathscr{M}(n))^{\sim}) \cong \Gamma(\pi^{-1}U,\mathscr{M}(n))$ before as $m \mapsto m/1$ at affine local, then by gluing we have the morphism $\alpha_n : \mathscr{M}_n \to \pi_*(\mathscr{M}(n))^{\sim}$. Then for quasi-coherent \mathscr{O}_X -module \mathscr{F} we let

$$\Gamma_*(\mathscr{F}) = \bigoplus_n \pi_*\mathscr{F}(n).$$

Moreover, if $f: \mathscr{F} \to \mathscr{G}$, we have $\bigoplus_n \pi_*(f(n)) : \Gamma_*(\mathscr{F}) \to \Gamma_*(\mathscr{G})$. So we defined a functor $\Gamma_*(-) : \mathbb{C}$ $\mathfrak{QcoMod}(X) \to \mathfrak{GrQcoMod}(\mathscr{A}).$

Theorem 4. Let \mathscr{A} is finitely generated as \mathscr{O}_S -algebra, then we have an adjoint pair $(\widetilde{-}, \Gamma_*(-))$:

$$\mathfrak{GrQcoMod}(\mathscr{A}) \xrightarrow{\cong} \mathfrak{QcoMod}(X)$$

Proof. This is a little bit complicated and we omitted the proof of it.

Page 397, Subsection (13.12)4

For $f: X \to Y$, the bijection

$$\operatorname{Hom}_{\mathscr{O}_X}(f^*\mathscr{G},\mathscr{F})\cong\operatorname{Hom}_{\mathscr{O}_S}(\mathscr{G},f_*\mathscr{F})$$

gives us the following decompositions.

For $u: \mathscr{G} \to f_*\mathscr{F}$ we have

and for $v: f^*\mathscr{G} \to \mathscr{F}$ we have

References

- [UT1] Ulrich Görtz, Torsten Wedhorn, Algebraic Goemetry I: Schemes, 2ed edition, Springer Spektrum, 2020.
- [St] Stacks project collaborators, *Stacks project*, https://stacks.math.columbia.edu/.
- [DM1] Daniel Murfet, The Relative Proj Construction, http://therisingsea.org/notes/, 2006.
- [EGA1] Alexander Grothendieck, Jean Dieudonné. Éléments de géométrie algébrique I, Publications Mathématiques. Institute des Hautes Études Scientifiques, 1960.