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Abstract

This is a note about the book [] which aims to fix some gaps in it. So we will cite the book

[UT1] without statement.
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1 Page 217, Subsection (8.6)

Consider the scheme S and quasi-coherent sheaf &, then we define a functor Grass®(&) : (Sch/S)°PP —
(Sets) as
Grass®(&)(T) ={% C h*(&) : h*(&)/% is locally free of rank e},

where h : T — S be a S-scheme.
Easy to see that Grass®(&)(T) — Grass®(&)(T"), % +— f*(%) induced by f : T" — T is well
defined.

Lemma 1. Surjections of quasi-coherent Os-modules v : & — & induce i, : Grass®(&2) — Grass®(&1).
Proof. Consider h : T — S, then define i, (T) : % — ker(h*(&1) = h*(&2)/ ). O
Theorem 1. Morphism i, : Grass®(&) — Grass®(&1) is representable and is a closed immersion.

Proof. Let h: X — S and take any f : X — Grass®(&}). Via the Yoneda lemma, it’s corresponding
to ¥x € Grass®(61)(X). Counsider:

Grass®(€2) Xgrasse(6) X ——— X

| | I

Grass®(&3) e Grass®(61)

Via the inverse isomorphism in Yoneda lemma it’s easy to see that f(T')(w) = w*(¥x). Soforg: T — S
we have

Grass®(£2) Xarasse (&) X (T) = {w € X(T') : w*(¥x) € Im(i,(T))},

(
an isomorphism, which is equivalent to ker g*(v) C w*(¥x), that is, ker(g*(v)) — ¢*(&1)/w*(¥x) is
zero. So we use Proposition 8.4 to ker(¢*(v)) — ¢*(&1)/w*(¥x) and well done. O

2 Page 350, Subsection (12.14)

Proposition 1 (Proposition 12.66). Let k be a field and let X be a proper geometrically connected
and geometrically reduced k-scheme. Then T'(X,Ox) = k.

Proof. By the condition we may assume k is an algebraically closed field. Take s € T'(X, 0x), we
consider s € Homy,(k[T],T'(X, Ox)) = Homy (X, A}). Consider the following diagram.

s(X)

LN
=

Ay, P}

X/Z
.

Speck



As X is proper, we know that X — A} and X — P} are also proper. The image Z = s(X) is
closed in A}C. Consider Z as a closed reduced subscheme of A,lc. Since X — ]P’]lC is proper, Z is a proper

closed in P}, so Z is a finite set in Pi. As X is connected, Z is connected. So Z = Speck’ for some
finite extension k'/k. As k is an algebraically closed field we have k' = k. So I'(X, Ox) = k. O

Thus we use Corollary 12.64 and the previous Proposition, we find that:

Theorem 2. Let k be a field and let X be a proper k-scheme. Then I'(X, %) is a finite-dimensional
k-vector space for every coherent Ox-module F .

3 Page 383, Subsection (13.7)

In this subsection many details and definitions are omitted, so we aim to add some content about the
related proj.

Let S be a scheme and & be a graded quasi-coherent &g-algebra. Then for any affine open U C S
we have graded T'(U, Og)-algebra I'(U, «7). So we have a separated U-scheme Projl’(U, &).

Take affine open sets U C V' C S, we have the following pullback diagram

Projl(U, &) —— ProjI(V, )

|7 |

U Vv

Then we can glue it into a scheme Proj S,fzf — S as the following pullback diagram

Projl'(U, &) — v — Projsng

lm; |

U S

where 9;; be an open immersion and 7~ 1(U) = Imny = Projl (U, ).

Next we will find out the functor — : GtQcoMod () — QcoIMod(Proj /) where GrQcoNod ()
be the category of graded quasi-coherent </-modules and Qco9Nod(Proj S,zzf ) be the category of quasi-
coherent ﬁms w-modules.

Theorem 3. Let # be a graded quasi-coherent o/ -module, then there exists a canonical quasi-coherent
ﬁpmjsﬂ-module A such that for any affine open U C S we have

Nl = T(U, M), (1) DU, M)~ = M |y

where ny : Projl'(U, &) — Proj (/) be an open immersion and 1y, : ProjI'(U, &) — Imny be the
isomorphism.
If u : M — N be a morphism of graded quasi-coherent < -modules, then there is a canonical

morphism U : M — N . So we defines a exact functor — : GrQcoMod () — QeoMod(Proj ().

Proof. We omit the proof and one can see [DM1] for the detailed information. The exactness of the
functor follows from that — : T'(U, &) — &tQcoMod — QcoMod(Projl (U, o)) is exact. O

By this theorem, we can prove that Projs, (g* ) = Projsﬂ x g S" where g : S’ — S. Similar as

(9" M)~ = g" (M) where g’ : Proj (9" ) = Proj ().



—_~—

&/ (n). For a quasi-coherent Ox-module

Difinition 1. Let X = Proj </, then we denote Ox(n) :
F, we let F(n) = F Qpy Ox.

Proposition 2. If #, .V be graded quasi-coherent o7 -modules, then we have

%@ﬁmsd N EZ(M Ry N ).
Proof. Also use the previous theorem and this is easy to see. O
Then we have % (m) DOproj ot F(n) = F(m +n) for all quasi-coherent Opro; o-module F.
Similarly we have (. (n))™~ = ,/Z/v(n) for all graded quasi-coherent «7-module .Z .

Difinition 2. From now we let &7 generated by < as 2/y-algebra. Let X = Projsszf andm: X — 5.
First we define o, : My — 7, (M (1))~ for graded quasi-coherent o -module A . Since for affine U we
have A, (U) — T(Projl’ (U, ), T(U, # (n))~) 2 T(x~1U,.#(n)) before as m — m/1 at affine local,
then by gluing we have the morphism «, : My — w (M (N))™

Then for quasi-coherent Ox-module F we let

I.(F) =P r.Z(n).

Moreover, if f: F — 4, we have @, m.(f(n)) : T'(F) = I'(¥4). So we defined a functor T'y(—) :
QecoMod(X) — GrQcoMod ().

]

I.(-):

Theorem 4. Let & is finitely generated as Og-algebra, then we have an adjoint pair (

Gt coMod () F<:> NecoNod(X)

*

Proof. This is a little bit complicated and we omitted the proof of it. O

4 Page 397, Subsection (13.12)
For f: X — Y, the bijection
Hom, (f*9,.F) = Home, (¥, f..F)

gives us the following decompositions.
For u : ¥ — f..# we have

g u

f+7

[

e v F

[ hF

and for v : f*¢ — % we have
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