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Abstract
I take some notes about the book Algebraic Spaces and Stacks written by Prof. Martin

Olsson [5], aiming to study some basic theory of algebraic stacks. We will also read some
pages of [2], which is a wonderful website of algebraic geometry.
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1 Some Notes
♣(Page 30, THEOREM 1.5.7) Read [1].
♣(Page 54, 2.3.14) The aim is that we will introduce: Consider ringed topos (C, T,Λ), if F ∈
ModΛ and let H i(F ) ∈ PModΛ sending X ∈ C to Hi(C/X,F ). Then why H i(−) is the i-th
derived functor of inclusion functor ModΛ ↪→ PModΛ?

Actually this is nearly trivial when we show some fundamental results.
First, giving a ringed topos (C, T,Λ) and let X ∈ C, we need to know something about the

localization of ringed sites (follows from St 03DH). Consider forgetful functor jX : C/X → C,
which trivially induce a morphism between topoi jX = (j∗X , jX,∗) : (C, T ) → (C/X,T/X). Let
ΛX = jX,∗Λ such that making (C/X,T/X,ΛX) to be a ringed topos (Note that there are some
difference between this book and the stacks project, actually f∗, f∗ in this book coorespond to
the u!, u

−1 in the stacks project).
Second, as we defined Hi(C,−) = RiΓ(C,−) := RiHom(Λ,−), we again defined for X ∈ C,

Hi(X,−) = RiΓ(X,−).
LEMMA.(St 03F3) (1) If I is an injective Λ-module, then I|U = jX,∗I is an injective ΛX -module;

(2) For any F ∈ ModΛ, we have Hp(X,F ) = Hp(C/X,F ).

Proof of Lemma. Trivial as j∗X exact.

PROPOSiTiON.(St 06YK) Consider ringed topos (C, T,Λ), if F ∈ ModΛ and let H i(F ) ∈ PModΛ
sending X ∈ C to Hi(C/X,F ). Then H i(−) is the i-th derived functor of inclusion functor
i : ModΛ ↪→ PModΛ.
Proof. Easy to see that i is left exact, choose injective resolution F → I∗. So Rpi = Hp(I∗).
Hence the section of Rpi(F ) over X ∈ C is given by

ker(In(X) → In+1(X))

Im(In−1(X) → In(X))
,

which is just Hp(X,F ) = Hp(C/X,F ). Well done.
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♣(Page 54, PROPOSiTiON 2.3.15)
LEMMA.(St 01FW) Let ringed site (C,Λ). Let F ∈ ModΛ and let X ∈ C. Let p > 0 and we
take ξ ∈ Hp(C/X,F ). Then there exists a covering {Xi → X} such that ξ|Ui = 0 for all i.

Proof of Lemma. Easy to see, just as St 01FW.

So now in the proof of the PROPOSiTiON 2.3.15, α is zero in Ȟ0(X ,H i0(F )). But it is not
zero in Hi0(C/X,F )! And we find that if s + t = i0, 0 < s < i0, then Ȟs(X ,H t(F )) = 0.
Together with Ȟi0(X ,H 0(F )) = Ȟi0(X , F ) and the spectral sequence

Es,t
2 = Ȟs(X ,H t(F )) ⇒ Hs+t(C/X,F ),

we get that α is not zero in Ȟi0(X , F ), well done.
♣(Page 122, 5.1.15)
♣(Page 129, 5.4.3) Let f : X → Y be morphism of algebraic spaces which is representable by
schemes and P be a property of morphisms of schemes which is stable in the étale topology.
We claim that f have property P iff there is an étale cover V → Y such that V ×Y X → V has
property P . Actually for any scheme T with T → Y , we consider

V ×Y X T ×Y V ×Y X T ×Y X

V T ×Y V T

hgf

where both squares are fibre product squares. Now as f : V ×Y X → V has property P , then
so is g. Then as P is stable (locally on the base), so h has property P .
♣(Page 135, 5.5.2, see [4]) After assuming U and X are quasi-compact, we will rewrite the proof
of this theorem, because the proof in this book is not so clear and confusing.

Let’s start. We first need a lemma:
LEMMA 1.(St 03H6) Let S be a scheme. Let X be an algebraic space over S. Then X is
quasi-compact if and only if there exists an étale surjective morphism U → X with U an affine
scheme.
Proof of Lemma 1. This is from a fact that for any algebraic spaceX, one can choose a surjective
étale morphism U → X, where U =

⨿
i Ui where Ui are affine schemes by trivial reasons.

So now we choose a étale surjective morphism π : X0 → X where X0 affine by lemma. By
St 06NF, we get π is separated, as we can have a π : X0 → X1 → X where X1 is an open
subscheme of X and X0 → X1 is étale surjective.

Next, as π is étale, then it is formally étale and locally of finite presentation. We need to
show π is quasi-compact. Actually consider the fundamental diagram:

X0 X0 ×S X X

X X ×S X

id×π

π

∆X/S

(π,id)

pr2

where the composition of the top horizontal arrow is π and the the square below is cartesian.
As ∆X/S is quasi-compact and by the transitivity of fibre products, we find that X0 → X0×SX
is quasi-compact. And pr2 is quasi-compact as we all passing S into Spec(Z). Hence π is
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quasi-compact. So we get π is quasi-finite. (This paragraph is just the standard method in
basic scheme theory) Now we use the weak version of Zariski main theorem (St 02LR) to some
base-change, we get π is quasi-affine.

As we already know q : X → X is a sheaf-theoric injective, we need to show q is a sheaf-
theoric surjective. Just need to show that π ◦ q is a sheaf-theoric surjective.

[To be continued...]
♣(Page 140, LEMMA 6.2.9, see [3]) Actually the diagram in the previous of the lemma is wrong.
It use the same notation as [3] but have the different meanings. Now we use the meanings in
[5]. So the diagram should be

A0 A1 A2 X1 ×s,X0,t X1 X1 X0

A0 A1 X1 X0

δ0
δ′2

δ′1
δ1 δ′0

δ1

δ0

pr1 t

s

t

s

m

pr2

which is comes from the definitions of groupoids in EXERCiSE 3.E. So we can split the diagram
into three parts (we only do this at the first diagram)

A1 A2 A1 A2 A1 A2

A0 A1 A0 A1 A0 A1

δ′1

δ1

δ0

δ′0 δ0

δ0

δ′1

δ′2

δ1

δ′0

δ′2

δ1

which are all cocartesians now. So by the base change of the first and the third diagram, we get

δ0(Pδ1(T, δ0(a))) = Pδ′0
(T, δ′1δ0(a)),

δ1(Pδ1(T, δ0(a))) = Pδ′0
(T, δ′2δ0(a))

as the characteristic polynomials (actually it is norms here) commutes commutes with arbitrary
base change. See St 0BD2. By the second diagram, we get δ′1δ0 = δ′2δ0. Hence Pδ1(T, δ0(a)) has
all coefficients in A. By Cayley-Hamilton theorem, we have

δ0(a)
n − δ1(σ1)δ0(a)

n−1 + · · ·+ (−1)nδ1(σn)

= δ0(a
n − σ1a

n−1 + · · ·+ (−1)nσn) = 0.

As there exists τ : A1 → A0 such that τ ◦ δ0 = id since the definition of groupoids, we get δ0
(and δ1, similarly) is injective. Hence well done.
♣(Page 142, 6.2.13)
♣(Page 142, COROLLARY 6.2.14)
♣(Page 147, PROPOSiTiON 6.3.4)
♣(Page 149, THEOREM 6.4.1) Assume that we reduced to the case that U is quasi-compact.
♣(Page 158, THEOREM 7.2.10)
♣(Page 161, EXAMPLE 7.2.15)
♣(Page 162, THEOREM 7.3.1)
♣(Page 163, LEMMA 7.4.2)
♣(Page 166, 7.5.3)
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♣(Page 169, DEFiNiTiON 8.1.1) Here we need to think of a S-scheme U and an algebraic space X
over S (even for a presheaf over (Sch/S) by the same construction) as two fibered categories over
groupoids. First we consider U . This is easy, we think of U as the natural functor (Sch/U)et →
(Sch/S)et.

For algebraic space X over S, we think of X as a category SX with object class is {(U, x) :
U ∈ (Sch/S), x ∈ X(U)} and morphisms as

HomSX
((U, x), (V, y)) = {f ∈ HomSch/S(U, V ) : f∗y = x},

hence we get SX → (Sch/S), (U, x) 7→ U fibered in sets (so in groupoids) over (Sch/S) (this
need some argument and we omitted here, see this at St 0049).

These two things are compactible by PROPOSiTiON 3.2.8.
♣(Page 169, LEMMA 8.1.3) The core of this proof is EXERCiSE 5.G which is easy to prove by
using étale equivalence relation. We will rewrite this proof follows from St 0300.

First V ×Y X is fibred in setoids, so by some category-theoric method (St 0045) we get that
it is equivalent to SF for some presheaf F over (Sch/S)et. By some formal argument we get
V ×Y X → V is representable by algebraic spaces and correspond to F → G by some category-
theoric method (St 04SC). Hence F → G is representable by algebraic spaces by 2-Yoneda
lemma. Use EXERCiSE 5.G and well done.
♣(Page 171, EXAMPLE 8.1.12) Note that this definition of quotient stack is actually the same
of the original one, by St 04WM.

Here the final step of proving [X/G] is an algebraic stack need some corrections as follows.

X SX

T [X/G] (Sch/T )et [X/G]
(P,π)

(GX ,ρ)

p

q

The diagram on the left is actually the right side one where q : (V, x) 7→ (V, x∗GX , x∗ρ) and
p : (f : U → T ) 7→ (U, f∗P, f∗π) (Use some kind of Yoneda lemma).

Now Ob(SP) = {(U, x) : U ∈ (Sch/T ), x ∈ P(U)} (As section be trivialization), so we find
that the fiber product of that diagram is SP .

[To be continued...]
♣(Page 176, LEMMA 8.2.4) We actually have further more results of this.
▶ LEMMA. Let P be a property of schemes which is local in the smooth topology, Let X be an
algebraic stack. The following are equivalent:

(1) X has property P ;
(2) for every scheme X and every smooth morphism X → X the scheme X has property P ;
(3) for some algebraic space X and some surjective smooth morphism X → X the algebraic

space X has property P ;
(4) for every algebraic space X and every smooth morphismX → X the algebraic space X

has property P .

Proof. Actually (2) implies (1), (4) implies (2) and (1) implies (3) are all trivial, we only need to
show (3) implies (4). Let surjective smooth morphism X → X and smooth morphismY → X
with algebraic spaces X,Y .

Consider surjective étale morphisms X ′ → X and Y ′ → Y with schemes X ′, Y ′. As X be
an algebraic stack (hence its diagonal is representable), we get X ′ ×X Y ′ be an algebraic space.
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Consider a surjective étale morphisms W → X ′ ×X Y ′ we get the diagram as follows

W X ′ ×X Y ′ Y ′ Y

X ′ X X

Hence this is easy to see.

♣(Page 178, DEFiNiTiON 8.2.12) Here we defined for any morphism f : X → Y between alge-
braic stacks the separated and quasi-separated property of f (here f may not representable!).
But these are have some different points.

Why? Because the diagonal of morphisms of algebraic spaces are separated (St 03HK), so
is the morphisms of algebraic stacks which is representable by algebraic spaces. BUT the
morphisms of algebraic stacks (may not representable) need not be separated!

But now we show that there are no conflicts with the already existing notions if f is repre-
sentable by algebraic spaces.
▶ PROPOSiTiON 1. Let f : X → Y be a morphism of algebraic stacks representable by algebraic
spaces. Then the following are equivalent:

(1) f is separated in sence of DEFiNiTiON 8.2.9;
(2) ∆X /Y is a closed immersion;
(3) ∆X /Y is proper;
(4) ∆X /Y is universally closed.

Proof. See St 04YS for details.

▶ PROPOSiTiON 2. Let f : X → Y be a morphism of algebraic stacks representable by algebraic
spaces. Then the following are equivalent:

(1) f is quasi-separated in sence of DEFiNiTiON 8.2.9;
(2) ∆X /Y is quasi-compact (hence qcqs);
(3) ∆X /Y is of finite type.

Proof. See St 04YT for details.

♣(Page 179, 8.3.4) Why we can check on algebraic closed fields? Since we let ∆ : X → X ×SX
is locally of finite presentation, so Isom(x, y) → U is locally of finite presentation. Hence, we
can check formally unramified for Isom(x, y) → U on geometric points, where we have the fiber
product:

Isom(x, y) U

X X ×S X∆

(x,y)

When we prove this converse-direction, if Autx is formally unramified and let f : Spec(Ω) →
U , then PΩ = Isom(f∗u1, f

∗u2). If PΩ is empty, well done. If not, we have PΩ is an Autx-torsor.
That is, if we have two isomorphisms then α, β are related by unique automorphism β−1 ◦ α!
Hence here PΩ

∼= Autx, well done.
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♣(Page 180, PROOF OF THEOREM 8.3.3) In the last paragraph, we can draw a diagram to
explain it:

Specks0

E Ar
S′ Ar

S Speck0

S′ S Speck
etale

Q

x′

(a1,...,ar)

∃

So we get
W X ×S Ar

S′

X ×S E X ×S′ Ar
S′

etale P×id

Hence we get Wy 6= ∅ with
W X ×S E X

E Setale

Hence
⨿

y Wy ↠ X being an étale covering.
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