SOME NOTES FOR ALGEBRAiC SPACES AND STACKS BY MARTiN OLSSON

XiAOLONG LiU

Abstract

I take some notes about the book *Algebraic Spaces and Stacks* written by Prof. Martin Olsson [\[5\]](#page-5-0), aiming to study some basic theory of algebraic stacks. We will also read some pages of [\[2\]](#page-5-1), which is a wonderful website of algebraic geometry.

Contents

[1 Some Notes](#page-0-0) 1

[References](#page-0-0) 6

1 Some Notes

♣(Page 30, THEOREM 1.5.7) Read[[1\]](#page-5-2).

 \bigstar (Page 54, 2.3.14) The aim is that we will introduce: Consider ringed topos (C, T, Λ) , if $F \in$ Mod_Λ and let $\mathscr{H}^i(F) \in \text{PMod}_\Lambda$ sending $X \in C$ to $H^i(C/X, F)$. Then why $\mathscr{H}^i(-)$ is the *i*-th derived functor of inclusion functor Mod_Λ → PMod_Λ?

Actually this is nearly trivial when we show some fundamental results.

First, giving a ringed topos (C, T, Λ) and let $X \in C$, we need to know something about the localization of ringed sites (follows from [St 03DH\)](https://stacks.math.columbia.edu/tag/03DH). Consider forgetful functor $j_X : C/X \to C$, which trivially induce a morphism between topoi $j_X = (j_X^*, j_{X,*}) : (C, T) \to (C/X, T/X)$. Let $\Lambda_X = j_{X,*} \Lambda$ such that making $(C/X, T/X, \Lambda_X)$ to be a ringed topos (Note that there are some difference between this book and the stacks project, actually *f ∗ , f[∗]* in this book coorespond to the u_1, u^{-1} in the stacks project).

Second, as we defined $H^i(C, -) = R^i\Gamma(C, -) := R^i\text{Hom}(\Lambda, -)$, we again defined for $X \in C$, $H^{i}(X, -) = R^{i}\Gamma(X, -).$

LEMMA.([St 03F3](https://stacks.math.columbia.edu/tag/03F3)) (1) If *I* is an injective Λ-module, then $I|_U = j_{X,*}I$ is an injective Λ_X -module; (2) For any $F \in Mod_{\Lambda}$, we have $H^p(X, F) = H^p(C/X, F)$.

Proof of Lemma. Trivial as j_X^* exact.

PROPOSITION.[\(St 06YK\)](https://stacks.math.columbia.edu/tag/06YK) Consider ringed topos (C, T, Λ) , if $F \in Mod_{\Lambda}$ and let $\mathcal{H}^i(F) \in \text{PMod}_{\Lambda}$ sending $X \in C$ to $H^{i}(C/X, F)$. Then $\mathcal{H}^{i}(-)$ is the *i*-th derived functor of inclusion functor $i : Mod_{\Lambda} \hookrightarrow \mathrm{PMod}_{\Lambda}$.

Proof. Easy to see that *i* is left exact, choose injective resolution $F \to I^*$. So $R^p i = H^p(I^*)$. Hence the section of $R^p i(F)$ over $X \in C$ is given by

$$
\frac{\ker(I^n(X) \to I^{n+1}(X))}{\text{Im}(I^{n-1}(X) \to I^n(X))},
$$

which is just $H^p(X, F) = H^p(C/X, F)$. Well done.

 \Box

 \Box

♣(Page 54, PROPOSiTiON 2.3.15)

LEMMA.([St 01FW\)](https://stacks.math.columbia.edu/tag/01FW) Let ringed site (C, Λ) . Let $F \in Mod_{\Lambda}$ and let $X \in C$. Let $p > 0$ and we take $\xi \in H^p(C/X, F)$. Then there exists a covering $\{X_i \to X\}$ such that $\xi|_{U_i} = 0$ for all *i*.

Proof of Lemma. Easy to see, just as [St 01FW.](https://stacks.math.columbia.edu/tag/01FW)

So now in the proof of the PROPOSITION 2.3.15, α is zero in $\check{H}^0(\mathscr{X}, \mathscr{H}^{i_0}(F))$. But it is not zero in $H^{i_0}(C/X, F)!$ And we find that if $s + t = i_0, 0 < s < i_0$, then $\check{H}^s(\mathscr{X}, \mathscr{H}^t(F)) = 0$. Together with $\check{H}^{i_0}(\mathscr{X}, \mathscr{H}^0(F)) = \check{H}^{i_0}(\mathscr{X}, F)$ and the spectral sequence

$$
E_2^{s,t} = \check{H}^s(\mathcal{X}, \mathcal{H}^t(F)) \Rightarrow H^{s+t}(C/X, F),
$$

we get that α is not zero in $\check{H}^{i_0}(\mathscr{X}, F)$, well done.

♣(Page 122, 5.1.15)

 \clubsuit (Page 129, 5.4.3) Let $f: X \to Y$ be morphism of algebraic spaces which is representable by schemes and *P* be a property of morphisms of schemes which is stable in the étale topology. We claim that f have property *P* iff there is an étale cover $V \to Y$ such that $V \times_Y X \to V$ has property *P*. Actually for any scheme *T* with $T \rightarrow Y$, we consider

$$
V \times_Y X \longleftarrow T \times_Y V \times_Y X \longrightarrow T \times_Y X
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow
$$

\n
$$
V \longleftarrow T \times_Y V \longrightarrow T
$$

where both squares are fibre product squares. Now as $f: V \times_Y X \to V$ has property P, then so is *g*. Then as *P* is stable (locally on the base), so *h* has property *P*.

♣(Page 135, 5.5.2, see[[4\]](#page-5-3)) After assuming *U* and *X* are quasi-compact, we will rewrite the proof of this theorem, because the proof in this book is not so clear and confusing.

Let's start. We first need a lemma:

LEMMA 1.[\(St 03H6\)](https://stacks.math.columbia.edu/tag/03H6) Let *S* be a scheme. Let *X* be an algebraic space over *S*. Then *X* is quasi-compact if and only if there exists an étale surjective morphism $U \rightarrow X$ with *U* an affine scheme.

Proof of Lemma 1. This is from a fact that for any algebraic space *X*, one can choose a surjective étale morphism $U \to X$, where $U = \coprod_i U_i$ where U_i are affine schemes by trivial reasons. \Box

So now we choose a étale surjective morphism $\pi : X_0 \to X$ where X_0 affine by lemma. By [St 06NF](https://stacks.math.columbia.edu/tag/06NF), we get π **is separated**, as we can have a π : $X_0 \to X_1 \to X$ where X_1 is an open subscheme of *X* and $X_0 \to X_1$ is étale surjective.

Next, as π is étale, then it is formally étale and locally of finite presentation. We need to show π is quasi-compact. Actually consider the fundamental diagram:

$$
X_0 \xrightarrow[\text{idx}\pi]{X_0 \times_S X} X \xrightarrow[\text{pr}_2]{X_0} X
$$

$$
\downarrow (\pi, \text{id})
$$

$$
X \xrightarrow[\Delta_{X/S}]{X} X \times_S X
$$

where the composition of the top horizontal arrow is π and the the square below is cartesian. As $\Delta_{X/S}$ is quasi-compact and by the transitivity of fibre products, we find that $X_0 \to X_0 \times_S X$ is quasi-compact. And pr_2 is quasi-compact as we all passing *S* into Spec(\mathbb{Z}). Hence π is

 \Box

quasi-compact. So we get π **is quasi-finite**. (This paragraph is just the standard method in basic scheme theory) Now we use the weak version of Zariski main theorem([St 02LR\)](https://stacks.math.columbia.edu/tag/02LR) to some base-change, we get π **is quasi-affine**.

As we already know $q: X \to \overline{X}$ is a sheaf-theoric injective, we need to show q is a sheaftheoric surjective. Just need to show that $\pi \circ q$ is a sheaf-theoric surjective.

[To be continued...]

♣(Page 140, LEMMA 6.2.9, see [\[3](#page-5-4)]) Actually the diagram in the previous of the lemma is **wrong**. It use the same notation as[[3\]](#page-5-4) but have the different meanings. Now we use the meanings in [[5\]](#page-5-0). So the diagram should be

$$
A_0 \xrightarrow{\delta_0} A_1 \xrightarrow{\delta_2' \atop \delta_1} A_2 \xrightarrow{\delta_1' \atop \delta_0'} A_2 \xrightarrow{\text{F1} \atop \delta_1} \begin{array}{c} X_1 \times_{s, X_0, t} X_1 \xrightarrow{\text{m}} X_1 \xrightarrow{\text{s}} X_0 \\ \downarrow t \\ X_1 \xrightarrow{\text{F1}} X_0 \xrightarrow{\text{F1}} X_0 \end{array}
$$

which is comes from the definitions of groupoids in EXERCISE 3.E. So we can split the diagram into three parts (we only do this at the first diagram)

$$
\begin{array}{ccc}\nA_1 & \xrightarrow{\delta_1'} & A_2 & A_1 & \xrightarrow{\delta_2'} & A_2 \\
\uparrow \delta_1 & \uparrow \delta_0' & \uparrow \delta_0 & \uparrow \delta_1' & \uparrow \delta_1 \\
A_0 & \xrightarrow{\delta_0} & A_1 & A_0 & \xrightarrow{\delta_0} & A_1\n\end{array}\n\qquad\n\begin{array}{ccc}\nA_1 & \xrightarrow{\delta_2'} & A_2 \\
\uparrow \delta_1 & \uparrow \delta_1' & \uparrow \delta_0' \\
A_0 & \xrightarrow{\delta_1} & A_1\n\end{array}
$$

which are all cocartesians now. So by the base change of the first and the third diagram, we get

$$
\delta_0(P_{\delta_1}(T, \delta_0(a))) = P_{\delta'_0}(T, \delta'_1 \delta_0(a)),
$$

$$
\delta_1(P_{\delta_1}(T, \delta_0(a))) = P_{\delta'_0}(T, \delta'_2 \delta_0(a))
$$

as the characteristic polynomials (actually it is norms here) commutes commutes with arbitrary base change. See [St 0BD2](https://stacks.math.columbia.edu/tag/0BD2). By the second diagram, we get $\delta'_1 \delta_0 = \delta'_2 \delta_0$. Hence $P_{\delta_1}(T, \delta_0(a))$ has all coefficients in *A*. By Cayley-Hamilton theorem, we have

$$
\delta_0(a)^n - \delta_1(\sigma_1)\delta_0(a)^{n-1} + \dots + (-1)^n \delta_1(\sigma_n) \n= \delta_0(a^n - \sigma_1 a^{n-1} + \dots + (-1)^n \sigma_n) = 0.
$$

As there exists $\tau : A_1 \to A_0$ such that $\tau \circ \delta_0 = id$ since the definition of groupoids, we get δ_0 (and δ_1 , similarly) is injective. Hence well done.

♣(Page 142, 6.2.13)

♣(Page 142, COROLLARY 6.2.14)

♣(Page 147, PROPOSiTiON 6.3.4)

♣(Page 149, THEOREM 6.4.1) Assume that we reduced to the case that *U* is quasi-compact.

- *♣*(Page 158, THEOREM 7.2.10)
- *♣*(Page 161, EXAMPLE 7.2.15)
- *♣*(Page 162, THEOREM 7.3.1)
- *♣*(Page 163, LEMMA 7.4.2)
- *♣*(Page 166, 7.5.3)

♣(Page 169, DEFiNiTiON 8.1.1) Here we need to think of a *S*-scheme *U* and an algebraic space *X* over *S* (even for a presheaf over (*Sch*/*S*) by the same construction) as two fibered categories over groupoids. First we consider *U*. This is easy, we think of *U* as the natural functor $(Sch/U)_{et} \rightarrow$ $(Sch/S)_{et}$.

For algebraic space *X* over *S*, we think of *X* as a category S_X with object class is $\{(U, x) :$ $U \in (Sch/S), x \in X(U)$ } and morphisms as

$$
Hom_{S_X}((U, x), (V, y)) = \{ f \in Hom_{Sch/S}(U, V) : f^*y = x \},\
$$

hence we get $S_X \to (Sch/S), (U, x) \mapsto U$ fibered in sets (so in groupoids) over (Sch/S) (this need some argument and we omitted here, see this at [St 0049\)](https://stacks.math.columbia.edu/tag/0049).

These two things are compactible by PROPOSiTiON 3.2.8.

♣(Page 169, LEMMA 8.1.3) The core of this proof is EXERCiSE 5.G which is easy to prove by using étale equivalence relation. We will rewrite this proof follows from [St 0300](https://stacks.math.columbia.edu/tag/0300).

First $V \times_{\mathcal{Y}} \mathcal{X}$ is fibred in setoids, so by some category-theoric method [\(St 0045](https://stacks.math.columbia.edu/tag/0045)) we get that it is equivalent to S_F for some presheaf *F* over $(Sch/S)_{et}$. By some formal argument we get $V \times_{\mathscr{Y}} \mathscr{X} \to V$ is representable by algebraic spaces and correspond to $F \to G$ by some category-theoric method [\(St 04SC\)](https://stacks.math.columbia.edu/tag/04SC). Hence $F \rightarrow G$ is representable by algebraic spaces by 2-Yoneda lemma. Use EXERCiSE 5.G and well done.

♣(Page 171, EXAMPLE 8.1.12) Note that this definition of quotient stack is actually the same of the original one, by [St 04WM.](https://stacks.math.columbia.edu/tag/04WM)

Here the final step of proving [*X*/*G*] is an algebraic stack need some corrections as follows.

The diagram on the left is actually the right side one where $q : (V, x) \mapsto (V, x^*G_X, x^*\rho)$ and $p:(f:U \to T) \mapsto (U, f^*\mathscr{P}, f^*\pi)$ (Use some kind of Yoneda lemma).

Now $Ob(S_{\mathscr{P}}) = \{(U, x) : U \in (Sch/T), x \in \mathscr{P}(U)\}\$ (As section be trivialization), so we find that the fiber product of that diagram is $S_{\mathscr{P}}$.

[To be continued...]

♣(Page 176, LEMMA 8.2.4) We actually have further more results of this.

 \blacktriangleright LEMMA. Let P be a property of schemes which is local in the smooth topology, Let $\mathscr X$ be an algebraic stack. The following are equivalent:

(1) *X* has property *P*;

(2) for every scheme *X* and every smooth morphism $X \to \mathscr{X}$ the scheme *X* has property *P*;

(3) for some algebraic space X and some surjective smooth morphism $X \to \mathcal{X}$ the algebraic space *X* has property *P*;

(4) for every algebraic space *X* and every smooth morphism $X \to \mathcal{X}$ the algebraic space X has property *P*.

Proof. Actually (2) implies (1), (4) implies (2) and (1) implies (3) are all trivial, we only need to show (3) implies (4). Let surjective smooth morphism $X \to \mathscr{X}$ and smooth morphism $Y \to \mathscr{X}$ with algebraic spaces *X, Y* .

Consider surjective étale morphisms $X' \to X$ and $Y' \to Y$ with schemes X', Y' . As $\mathscr X$ be an algebraic stack (hence its diagonal is representable), we get $X' \times_{\mathcal{X}} Y'$ be an algebraic space. Consider a surjective étale morphisms $W \to X' \times_{\mathcal{X}} Y'$ we get the diagram as follows

Hence this is easy to see.

^{*≱*(Page 178, DEFINITION 8.2.12) Here we defined for any morphism $f : \mathcal{X} \rightarrow \mathcal{Y}$ between alge-} braic stacks the separated and quasi-separated property of *f* (here *f* **may not representable**!). But these are have some different points.

Why? Because the diagonal of morphisms of algebraic spaces are separated [\(St 03HK\)](https://stacks.math.columbia.edu/tag/03HK), so is the morphisms of algebraic stacks which is **representable** by algebraic spaces. BUT the morphisms of algebraic stacks (**may not representable**) need not be separated!

But now we show that there are no conflicts with the already existing notions if *f* is **representable** by algebraic spaces.

▶ PROPOSITION 1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks representable by algebraic spaces. Then the following are equivalent:

- (1) *f* is separated in sence of DEFiNiTiON 8.2.9;
- (2) $\Delta_{\mathscr{X}}/\mathscr{Y}$ is a closed immersion;
- (3) $\Delta_{\mathscr{X}}$ /*g* is proper;
- (4) $\Delta_{\mathscr{X}/\mathscr{Y}}$ is universally closed.

Proof. See [St 04YS](https://stacks.math.columbia.edu/tag/04YS) for details.

▶ PROPOSITION 2. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks representable by algebraic spaces. Then the following are equivalent:

- (1) f is quasi-separated in sence of DEFINITION 8.2.9;
- (2) $\Delta_{\mathscr{X}/\mathscr{Y}}$ is quasi-compact (hence qcqs);
- (3) $\Delta_{\mathscr{X}}$ /*g* is of finite type.

Proof. See [St 04YT](https://stacks.math.columbia.edu/tag/04YT) for details.

♣(Page 179, 8.3.4) Why we can check on algebraic closed fields? Since we let ∆ : *X → X ×^S X* is locally of finite presentation, so $Isom(x, y) \rightarrow U$ is locally of finite presentation. Hence, we can check formally unramified for $Isom(x, y) \rightarrow U$ on geometric points, where we have the fiber product:

When we prove this converse-direction, if \underline{Aut}_x is formally unramified and let $f : \text{Spec}(\Omega) \to$ *U*, then $P_{\Omega} = \underline{Isom}(f^*u_1, f^*u_2)$. If P_{Ω} is empty, well done. If not, we have P_{Ω} is an \underline{Aut}_x -torsor. That is, if we have two isomorphisms then α, β are related by unique automorphism $\beta^{-1} \circ \alpha!$ Hence here $P_{\Omega} \cong \underline{Aut}_x$, well done.

 \Box

 \Box

♣(Page 180, PROOF OF THEOREM 8.3.3) In the last paragraph, we can draw a diagram to explain it:

So we get

$$
W \xrightarrow{\text{ } \longleftarrow} X \times_S \mathbb{A}_{S'}^r
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathscr{X} \times_S E \xrightarrow{\text{ } \longleftarrow} \mathscr{X} \times_{S'} \mathbb{A}_{S'}^r
$$

Hence we get $W_y \neq \emptyset$ with

$$
W \longrightarrow \mathcal{X} \times_S E \longrightarrow \mathcal{X}
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
E \xrightarrow{etale} S
$$

Hence $\coprod_y W_y \twoheadrightarrow \mathscr{X}$ being an étale covering.

References

- [1] Jarod Alper. *Notes on Stacks and Moduli*. [https://sites.math.washington.edu/~jarod/](https://sites.math.washington.edu/~jarod/moduli-7-12-22.pdf/) [moduli-7-12-22.pdf/](https://sites.math.washington.edu/~jarod/moduli-7-12-22.pdf/), 2022-7-12.
- [2] The Stacks Project Authors. *The Stacks Project*. <https://stacks.math.columbia.edu/>, 2022.
- [3] Alexandre Grothendieck and Michel Demazure. *Schémas en groupes (SGA 3)*. Institut des Hautes Etudes Scientifiques, 1963.
- [4] Gérard Laumon and Laurent Moret-Bailly. *Champs algébriques*, volume 39. Springer, 2000.
- [5] Martin Olsson. *Algebraic spaces and stacks*, volume 62. American Mathematical Soc., 2016.