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1 The Fundamental Group and Covering Space
Theorem 1.1 (van Kampen). Let X =

⋃
αAα where Aα are path-connected open sets with a

basepoint x0. Let all Aα ∩Aβ are path-connected, then consider

π1(Aα ∩Aβ) π1(Aα)

π1(Aβ) π1(X)

iαβ

iβα

jβ

jα

where all maps induced by inclusions. Then jα induce Φ : ∗απ1(Aα) → π1(X) is surjective. If
Aα ∩Aβ ∩Aγ are path-connected, then kerΦ is a normal subgroup generated by all elements of
form iαβ(w)iβα(w)

−1 for w ∈ π1(Aα ∩Aβ).

Remark 1.2. In the case of two open sets U, V with U∩V path-connected, we have the following.
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In the category of groups Grp, we can describe pushout of f : G→ A and g : G→ B. We let
A ∗G B as A ∗B/(f(a)g(a)−1)a∈G, then we have the following universal property in Grp:

G B

A A ∗G B

H

f

g

∃!

We call it the amalgamated product of A and B with amalgam G. So in the van Kampen theorem
with U, V , we have

π1(X) ∼= π1(U) ∗π1(U∩V ) π1(V ).

Next step we need to calculate the fundamental group of a CW complex. Obviously we just
need to consider X2.
Consider 1-skeleton X, then 2-cell e2α attach on X via φα : S1 → X. Then we get Y . Note

that if we fix a base point s0 ∈ S1, then πα is a loop. Consider the original base point x0 ∈ X,
let γα is a path on X from x0 to φα(s0). Then γαφαγα is a loop which is null-homotopy in Y
when the 2-cell attaching. Let N ⊂ π1(X,x0) be a normal subgroup generated by γαφαγα.

Theorem 1.3. Inclusion X ↪→ Y induce surjection π1(X,x0) ↠ π1(Y, x0) with kernel N , that
is, π1(Y ) ∼= π1(X)/N .

Proof. Consider a larger space Z with Z ' Y :

Pick one point yα on each 2-cells, respectively, as in the diagram. Then A = Z −
⋃

α{yα}
can be deformation retracted to X. Let B = Z −X which is null-homopopic. Use van Kampen
theorem to {A,B} and we get π1(Z) ∼= π1(A) ∗π1(B)/(·) where (·) is the image of π1(A∩B) →
π1(A), which is N .

Proposition 1.4. Let M,N are two orientable closed surfaces. Then there exists f : M → N
to be a covering space iff g(M) = mn+ 1 and g(N) = m+ 1 for some m,n ≥ 0.

Proof. Trivial.

2 Homology
2.1 Singular Homology
Theorem 2.1 (Excision Theorem). Let Z ⊂ A ⊂ X where cl(Z) ⊂ int(A), then the inclusion
(X − Z,A− Z) ↪→ (X,A) induce Hn(X − Z,A− Z) ∼= Hn(X,A).

If now we let B = X − Z we have Hn(B,A ∩B) ∼= Hn(X,A).
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Proposition 2.2. For good pairs (X,A), map q : (X,A) → (X/A,A/A) induce q∗ : Hn(X,A) ∼=
Hn(X/A,A/A) ∼= H̃n(X/A).

Proof. Let V be the open set deformation retracts into A, consider

Hn(X,A) Hn(X,V ) Hn(X −A, V −A)

Hn(X/A,A/A) Hn(X/A, V /A) Hn(X/A−A/A, V /A−A/A)

f g

vu

q∗ q∗ q∗

f, u are isomorphisms by the long exact sequences of triples (X,V,A) and (X/A, V /A,A/A).
And g, v are isomorphisms directly by excision. The right hand q∗ is isomorphism. So is the
left.

2.2 Cellular Homology
Proposition 2.3. If f : Sn → Sn has no fixed points, then f ' −1. In particular, deg f =
(−1)n+1.

Proof. Consider ft(x) = ((1− t)f(x)− tx)/|(1− t)f(x)− tx| and well done.

Corollary 2.4. Z/2Z is the only non-trivial group that can act freely on Sn is n is even.

Proof. Let G be such non-trivial group. The degree map give us homomorphism G → {±1}.
Since action is free, this map sends all non-trivial elements of G to (−1)n+1 by Proposition 2.3.
When n even, kernel is trivial. Well done.

Corollary 2.5. Let f : S2n → S2n, then there exists x ∈ S2n such that f(x) = x or f(x) = −x.
In particular, any g : RP 2n → RP 2n has a fixed point.
Proof. If there are no such points for f , then f and −f both have no fixed points. Then by
Proposition 2.3 this is impossible.
Proposition 2.6. Let M ∈ O(n+ 1) which induce fM : Sn → Sn by x 7→ Mx, then deg fM =
detM .
Proof. This follows from the fact that any orthogonal matrix can be decomposed into the re-
flection matrixes and rotation matrixes.
Theorem 2.7 (Hairly Ball). Sn has a continuous field of nonzero tangent vectors iff n is odd.

Proof. Consider such vector field v(x) and view it as centering at origin. Let |v(x)| = 1 via
v(x)/|v(x)|. Consider ft(x) = (cos t)x+(sin t)v(x). Then deg(−id) = deg(id) = 1, so (−1)n+1 =
1, so n is odd.
Conversely if n = 2k − 1, then let v(x1, ..., x2k) = (−x2,−x1, ...,−x2k,−x2k−1).

Proposition 2.8 (Euler Charactristic). We have:

(a) For finite CW complexes X,Y , we have χ(X × Y ) = χ(X)χ(Y ).

(b) If a finite CW complex X = A∪B of two subcomplexes A,B, then χ(X) = χ(A)+χ(B)−
χ(A ∩B).

(c) For an n-sheeted covering space of finite CW complexes p : X̃ → X, we have χ(X̃) =
nχ(X).
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Proof. (a)(b) are trivial. For (c), given an m-dimensional CW-complex X, one can lift the CW-
structure to a CW-structure on X̃ by lifting the characteristic maps φα : ekα → X, which can be
done since π1(Dk) = 0. There are exactly n lifts of φα to X̃. So for each k-cell ek in X, there
exists n k-cells in the lifted CW-structure on X̃ which are mapped homeomorphically onto ek.
Hence well done.
Remark 2.9. For (c) there is a generalization for Serre fiberations, see [Multiplicativity of the
Euler characteristic for fibrations].

Now we consider CW complex X with k-skeleton Xk. We have the following elementary
conclusion:
Lemma 2.10. (a) Hk(Xn, Xn−1) is zero when k 6= n and free abelian with basis of n-cells of
X when k = n;

(b) Hk(X
n) = 0 for k > n;

(c) Inclusion Xn ↪→ X induces Hk(X
n) ∼= Hk(X) for k < n.

Theorem 2.11 (Cellular Boundary Formula). The map dn in above diagram we have dn(enα) =∑
β deg(Sn−1

α = ∂enα → Xn−1 → Sn−1
β )en−1

β where the map is the attaching map of enα with the
quotient map collapsing Xn−1 − en−1

β to a point.

Example 2.12. Let Mg be the closed orientable surface of genus g, then the cellular complex
is 0 → Z 0→ Z2g 0→ Z → 0.
Example 2.13. Let Ng be the closed non-orientable surface of genus g, then the cellular complex
is 0 → Z f→ Zg 0→ Z → 0 where f : 1 7→ (2, ..., 2).
Example 2.14. Consider RPn, then the cellular complex is

0 → Z 2→ Z 0→ · · · 0→ Z 2→ Z 0→ Z → 0

when n is even and
0 → Z 0→ Z 2→ · · · 0→ Z 2→ Z 0→ Z → 0

when n is odd.
Example 2.15 (Acyclic Space). Let X obtained from S1∨S1 by attaching two 2-cells by words
a5b−3 and b2(ab)−2. Then the cellular complex is 0 → Z2 f→ Z2 0→ Z → 0 where f =

(
5 −2
−3 1

)
.

2.3 Mayer-Vietoris
Theorem 2.16 (Mayer-Vietoris Sequence). Let A,B ⊂ X with X = int(A) ∩ int(B). Then we
have

0 Cn(A ∩B) Cn(A)⊕ Cn(B) Cn(A+B) 0
x 7→(x,−x) (x,y) 7→x+y

Then induce the long exact sequence

· · · Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X)

· · · Hn−1(A ∩B)

(i1∗,−i2∗) g∗+j∗

∂

where i1 : A ∩B → A, i2 : A ∩B → B and g : A→ X, j : B → X.
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Theorem 2.17 (Mapping Torus and Mayer-Vietoris Sequence). Let f, g : X → Y and let
Z = X × I/((x, 0) ∼ f(x), (x, 1) ∼ g(x)) be the mapping torus, then we have

· · · Hn(X) Hn(Y ) Hn(Z)

· · · Hn−1(X)

f∗−g∗ i∗

More special case, we let f : A ∩ B → A, g : A ∩ B → B, then we can get the traditional
Mayer-Vietoris sequence.

Theorem 2.18 (Relative Mayer-Vietoris Sequence). Let (X,Y ) = (A ∪ B,C ∪ D) with C ⊂
A,D ⊂ B. Then we have

· · · Hn(A ∩B,C ∩D) Hn(A,C)⊕Hn(B,D) Hn(X,Y )

· · · Hn−1(A ∩B,C ∩D)

derived by nine lemma and long exact sequence.

2.4 More Applications
2.4.1 Embedding and Homology
Theorem 2.19 (Invariance of Domain). Let M and N are both n-dimensional topological
manifolds and f :M → N is one-one and continuous, then f is open.

Proof. See [1] page 235.

Corollary 2.20. If f : U ⊂ Rm → Rn is continuous injective map where U is open, then
m ≤ n.
Proof. If not, we let m > n. Consider g : U → Rn × Rm−n with x 7→ (f(x), 0). By invariance
of domain, the image of g, which is f(U)× {0}, is open in Rm which is impossible.

Remark 2.21. But unfortunately, for any m,n > 0, there is a continuous surjective map
f : Rm → Rn. See [Existence of a continuous surjective function].

2.4.2 Borsuk-Ulam Type Theorem
For any two-sheeted covering space p : X ′ → X, we have exact sequence

0 → Cn(X,Z/2Z)
τ→ Cn(X

′,Z/2Z)
p♯→ Cn(X,Z/2Z) → 0

as p♯ is surjective follows from homotopy lifting property and as each σ : ∆n → X has precisely
two lifts σ′

1, σ
′
2, then τ maps σ to σ′

1 + σ′
2 holds as the coefficient is Z/2Z. Hence from this we

have the long exact sequence

· · · → Hn(X,Z/2Z)
τ∗→ Hn(X

′,Z/2Z) p∗→ Hn(X,Z/2Z) → · · · .

This is a special case of Gysin sequence.
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Theorem 2.22 (Borsuk). A map f : Sn → Sn with f(−x) = −f(x) must have odd degree.
Proof. Consider the covering space p : Sn → RPn. As f(−x) = −f(x), we have

Sn Sn

RPn RPn

f

p p

f̄

We claim that the following diagram commute:

0 Ci(RPn,Z/2Z) Ci(S
n,Z/2Z) Ci(RPn,Z/2Z) 0

0 Ci(RPn,Z/2Z) Ci(S
n,Z/2Z) Ci(RPn,Z/2Z) 0

τ p♯

τ p♯

f̄♯ f♯ f̄♯

The right square is trivial. The left square commutes since for σ : ∆i → RPn with lifts σ′
1, σ

′
2,

the two lifts of f̄σ are fσ′
1, fσ

′
2 since f(−x) = −f(x).

Finally taking long exact sequence we can find that f∗ : Hn(S
n,Z/2Z) → Hn(S

n,Z/2Z) is
an isomorphism by induction on dimension using the trivial fact that they are isomorphisms in
dimension 0. So f must have odd degree.
Corollary 2.23 (Borsuk-Ulam). Every map g : Sn → Rn, there exists a point x ∈ Sn with
g(x) = g(−x).
Proof. Let f(x) = g(x) − g(−x), then f is odd. If f is nowhere vanish, we replace f by f/|f |
and get a morphism f : Sn → Sn−1 which is still odd. Restrict it on the equator, which is still
odd, has odd degree by the theorem of Borsuk. But this restriction is nullhomotopic as it is a
restriction of f |Dn in the hemisphere.
Corollary 2.24. Whenever Sn is expressed as the union of n + 1 closed sets A0, ..., An, then
at least one of these sets must contain a pair of antipodal points.
Proof. We define di : Sn → R, x 7→ infy∈Ai

|x− y|. Let g : Sn → Rn, x 7→ (d1(x), ..., dn(x)). By
Borsuk-Ulam theorem, it obtaining a pair of antipodal points x,−x with di(x) = di(−x), i =
1, ..., n. If either of these distances is 0, then well done. If not, x,−x ∈ A0, well done.
Corollary 2.25 (Ham-Sandwich). Let A1, ..., An ⊂ Rn are n measurable subsets, then there
exists a hyperplane H ⊂ Rn such that H cut each Ai into two parts with equal volume.
Proof. For any hyperplane H we can write it as a1x1 + ... + anxn + an+1 = 0 such that a21 +
...+ a2n+1 = 1. Consider the map

f : Sn → Rn, (a1, ..., an+1) 7→ (m(Ai ∩H+)−m(Ai ∩H−))1≤i≤n

where H+ = {x ∈ Rn : a1x1 + ... + anxn + an+1 > 0} and H− for < 0. Then by Borsuk-Ulam
theorem well done.
Proposition 2.26. A map f : Sn → Sn with f(−x) = f(x) must have even degree. Moreover
if n is even , then deg f = 0. If n is odd, then deg f can be any even number.
Proof. As f(−x) = f(x), then f can factors as Sn → RPn → Sn where Sn → RPn be the
double covering. Hence induce Hn(S

n)
2→ Hn(RPn), hence even degree and when n is even we

have deg f = 0. When n odd, consider f2k : Sn → RPn → RPn/RPn−1 ∼= Sn deg k→ Sn and well
done.

6



2.4.3 The Lefschetz Fixed Point Theorem
Theorem 2.27 (Lefschetz). If X is a finite simplicial complex, or more generallya retract of
a finite simplicial complex and f : X → X is a map with τ(f) =

∑
n(−1)ntr(f∗ : Hn(X) →

Hn(X)) 6= 0, then f has a fixed point.

3 Cohomology
3.1 Universal Coefficient Theorem and Künneth Formula
Theorem 3.1 (Universal Coefficient Spectral Sequence). For cohomology we have

Ep,q
2 = ExtqR(Hp(C∗), G) ⇒ Hp+q(C∗;G)

where R is a ring with unit, C∗ is a chain complex of free modules over R, G is any (R,S)-
bimodule for some ring with a unit S. The differential dr has degree (1− r, r).

Similarly for homology

E2
p,q = TorRq (Hp(C∗), G) ⇒ H∗(C∗;G)

and the differential dr having degree (r − 1,−r).
Theorem 3.2 (Universal Coefficient Theorem for Homology). Let R be a PID and let C∗ a
chain complex of R-modules such that Cn is free for all n and let M be an R-module. Then
there is a natural short exact sequence of R-modules

0 → Hn(C∗)⊗R M → Hn(C∗ ⊗R M) → TorR1 (Hn−1(C∗),M) → 0

which is split non-naturally.
Proof. As 0 → Zn(C∗) → Cn → Bn−1(C∗) → 0 is exact with Bn−1(C∗) free since R is PID,
then this sequence split. Hence Zn(C∗) ⊗R M → Cn ⊗R M is also injective. As we have the
following commutative diagram with exact rows

Cn−1 ⊗R M Zn(C∗)⊗R M Hn(C∗)⊗R M 0

Cn−1 ⊗R M Zn(C∗ ⊗R M) Hn(C∗ ⊗R M) 0

= α

by some easy diagram chase we find that α : Hn(C∗) ⊗R M → Hn(C∗ ⊗R M) injective. Let’s
consider its cokernel.
Pick any free resolution 0 → F1 → F0 → M → 0. As Ci free, we have 0 → F1 ⊗R C∗ →

F0 ⊗R C∗ → M ⊗R C∗ → 0 which give us the long exact sequence. Split it into short exact
sequences

0 coker(Hn(C∗ ⊗R F1) → Hn(C∗ ⊗R F0))

Hn(C∗ ⊗R M)

ker(Hn−1(C∗ ⊗R F1) → Hn−1(C∗ ⊗R F0)) 0

Actually α is trivally an isomorphisms when we consider the free module. As coker(Hn(C∗)⊗R

F1 → Hn(C∗) ⊗R F0) ∼= Hn(C∗) ⊗R M and ker(Hn−1(C∗) ⊗R F1 → Hn−1(C∗) ⊗R F0) ∼=
TorR1 (Hn−1(C∗),M), we get the theorem.
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Theorem 3.3 (Universal Coefficient Theorem for Cohomology). Let R be a PID and let C∗ a
chain complex of R-modules such that Cn is free for all n and let M be an R-module. Then
there is a natural short exact sequence of R-modules

0 → Ext1R(Hn−1(C∗),M) → Hn(Hom(C∗,M)) → Hom(Hn(C∗),M) → 0

which is split non-naturally.
Proof. Similar as the version of homology.
Theorem 3.4 (Algebraic Künneth Formula). Let R be a PID and let C∗, C

′
∗ a chain complex

of R-modules such that Cn is free for all n. Then there is a natural short exact sequence of
R-modules

0 →
⊕

p+q=n

(Hp(C∗)⊗R Hq(C
′
∗)) → Hn(C∗ ⊗R C

′
∗) →

⊕
p+q=n−1

TorR1 (Hp(C∗)⊗R Hq(C
′
∗)) → 0.

Theorem 3.5 (Topological Künneth Formula). Let R be a PID and let X,Y are two CW
complexes. Then there is a natural short exact sequence of R-modules

0 →
⊕

p+q=n

(Hp(X;R)⊗RHq(Y ;R)) → Hn(X×Y ;R) →
⊕

p+q=n−1

TorR1 (Hp(X;R)⊗RHq(Y ;R)) → 0.

Example 3.6. Let R be a commutative ring with ideal I, J , then TorR1 (R/I,R/J) ∼= I∩J
IJ and

Ext1R(R/I,M) ∼= HomR(I,M)/MI where MI := {gm : i 7→ im} ⊂ HomR(I,M).
Proof. Follows from 0 → I → R→ R/I → 0.

3.2 Cup and Cap Products
Definition 3.7 (Cross Product). Let R be a commutative ring with unit and let X,Y be spaces.
We define morphism of chain complexes

C∗(X;R)⊗R C
∗(Y ;R) → Hom(C∗(X)⊗ C∗(Y ), R) → C∗(X × Y ;R)

where the first one is the natural map and the second is dual of the following Alexander-Whitney
map:

C∗(X × Y ) → C∗(X)⊗ C∗(Y ), σ 7→
∑

p+q=n

p(πX ◦ σ)⊗ (πY ◦ σ)q

where pσ := σ|[v0,...,vp] and σq := σ|[vn−q,...,vn] when σ ∈ Cn(−). This induce the map⊕
p+q=n

Hp(X;R)⊗R H
q(Y ;R)

×→ Hn(X × Y ;R)

which is the cross product.
Definition 3.8 (Cup Product). Let R be a commutative ring with unit and let X be a space.
For ∆ : X → X ×X be the diagonal, we define

Hp(X;R)⊗R H
q(X;R) Hp+q(X ×X;R)

Hp+q(X;R)

×

∆∗
∪

to be the cup product.
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Proposition 3.9. Let R be a commutative ring and let X be a space.
(a) Alexander-Whitney map gives an explicit product formula:

(α ∪ β)(σ) = α(pσ) · β(σq), ∀α ∈ Cp(X;R), β ∈ Cq(X;R), σ : ∆p+q → X.

(b) H∗(X;R) is a graded commutative ring with unit:
– Let 1 ∈ H0(X;R) be represented by the cocyle which takes every singular 0-simplex

to 1 ∈ R. Then 1 ∪ α = α ∪ 1 = α for any α ∈ H∗(X;R).
– (α ∪ β) ∪ γ = α ∪ (β ∪ γ).
– α ∪ β = (−1)pqβ ∪ α for all α ∈ Hp(X;R) and β ∈ Hq(X;R).

(c) Let f : X → Y be a continuous map. Then
f∗ : H∗(Y ;R) → H∗(X;R)

is a morphism of graded commutative rings, i.e. f∗(α ∪ β) = f∗α ∪ f∗β.
Remark 3.10. Actually if we define the cup product in the level of chain complex by (a), then
δ(α∪β) = δα∪β+(−1)kα∪δ(β) for α ∈ Ck(X;R). This is coincident to the original definition
since the coboundary map of complex C∗(X;R)⊗R C

∗(Y ;R) has the similar formula.
Theorem 3.11 (Künneth Formula). Assumem R is a PID, if H∗(X;R) or H∗(Y ;R) are finitely
generated free R-modules, we have an isomorphism of graded commutative rings

H∗(X;R)⊗R H
∗(Y ;R)

×→ H∗(X × Y ;R)

where the first one we define (a⊗ b)(c⊗ d) = (−1)|b||c|ac⊗ bd.
Definition 3.12 (Cap Product). We define

Cp(X;R)× Cp+q(X;R)
∩→ Cq(X;R), φ ∩ σ = φ(pσ)σq.

Then one can check that ∂(φ ∩ σ) = (−1)p(φ ∩ ∂σ − δφ ∩ σ). This induce the cap product:

Hp(X;R)×Hp+q(X;R)
∩→ Hq(X;R).

Proposition 3.13. The cap product extends naturally to the relative case: for any good pair
(X,A), we have

(a) Hp(X,A;R)⊗R Hp+q(X,A;R)
∩→ Hq(X;R);

(b) Hp(X;R)⊗R Hp+q(X,A;R)
∩→ Hq(X,A;R).

More generally, we have

Hp(X,A;R)⊗R Hp+q(X,A ∪B;R)
∩→ Hq(X,B;R).

Sketch. Just need to check ∩ induce C∗(X,A;R)× C∗(A+B;R) → C∗(B).
Proposition 3.14. We have the following:
(a) If f : X → Y continuous, then we have

f∗(σ) ∩ φ = f∗(σ ∩ f∗φ).

(b) For any σ ∈ Ck+l(X;R), φ ∈ Ck(X;R) and ψ ∈ Cl(X;R), we have
ψ(σ ∩ φ) = (φ ∪ ψ)(σ).

Proof. Directly check.
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3.3 Orientations
We consider the n-manifold is T2 with locally homeomorphic to Rn. Here we let Hn(M |A;R) :=
Hn(M,M − A;R). We consider a sheaf both as a functor and as a topological space by the
trivial choice of topological basis.
Fix any commutative ring with unit R.

Definition 3.15. We define OR be a locally constant sheaf of R-modules on M whose stalk at
a point is Hn(X|x;R). Of course, OR = R⊗Z OZ.

Actually there is a associated (framed) bundle of OR as follows: we define a principal R×-
bundle ÕR →M which send the open set U ⊂M to {trivializations α : RU

∼= OR|U}.

Definition 3.16. An R-orientation ofM is a global section of the associated principal R×-bundle
ÕR →M . In this case we have OR

∼= RM and we say M is R-orientable.
Remark 3.17. When Z = R, then we will ignore R.
Remark 3.18. As Hn(M |x;R) ∼= Hn(M |x;Z)ZR, we consider a subsheaf Or ⊂ OR for each
r ∈ R consist of ±µx ⊗ r ∈ Hn(M |x;R) where µx is a generator of Hn(M |x;Z) ∼= Z. Then as
a topological space, if r = −r, then Or =M ; if not, then Or

∼= ÕZ.
Hence if M is orientable, then it is R-orientable for all R. Any manifold is F2-orientable.

Proposition 3.19. Consider the principal R×-bundle ÕR →M , then ÕR is always R-orientable.

Proof. Follows from construction and Hn(ÕR|µx;R) ∼= Hn(U(µB)|µx;R) ∼= Hn(B|x;R) ∼=
Hn(M |x;R). Well done.

Proposition 3.20. Let M connected. Then M is orientable if and only if ÕZ is connected. In
particular, if π1(M) has no subgroup of index 2, then it is orientable.

Proof. In this case R = Z and ÕZ principal Z/2Z-bundle which is indeed a two-sheeted covering
space. Now the result follows directly from the following fact:
• If p : E → X is a covering space with a section s : X → E, then s(X) ⊂ E is both open
and closed. Hence, it is a union of connected components of E.

Well done.
Remark 3.21. We can generalize this into R but I do not care about them.
Theorem 3.22. Let M be a manifold of dimension n and let A ⊂ M be a compact subset.
Then for any section (x 7→ αx) ∈ Γ(M,OR) there exists a unique class αA ∈ Hn(M |A;R) whose
image in Hn(M |x;R) is αx for all x ∈ A. Moreover, Hi(M |A;R) = 0, i > n.
Sketch of the Proof. More details see [2].Our method is to reduce the case in to simple one.
(i) If this hold for A,B,A ∩B, then this is also hold of A ∪B. Use the MV-principle,

we have:

0 = Hn+1(M |A ∩B) Hn(M |A ∪B) Hn(M |A)⊕Hn(M |B) Hn(M |A ∩B)

then this is easy to see;
(ii) Reduce to the case M = Rn. Actually we can let A =

⋃m
i=1Ai where Ai in some Rn.

Then use MV-principle and induction, well done;
(iii) Consider the case M = Rn and A =

⋃m
i=1Ai where Ai is convex. Use the MV-

principle as (ii) we can let A is convex. Then the result is trivial by Hi(Rn|A) ∼= Hi(Rn|x)
naturally;
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(iv) Consider the case M = Rn and A be any compact. Let α ∈ Hi(Rn|A) represented
by z and let C ⊂ Rn−A be the union of the images of the singular simplices in ∂z. Then one can
cover some closed balls over A outside of C. Let K be the union of these balls and we see that
the relative cycle z defines an element αK ∈ Hi(Rn|K) mapping to the given α ∈ Hi(Rn|A).
Use (iii) to Hi(Rn|K), well done.
Theorem 3.23. Let M be a closed connected n-manifold. Then

(a) If M is R-orientable, then the map Hn(M ;R) → Hn(M |x;R) ∼= R is an isomorphism
for all x ∈M ;

(b) If M is not R-orientable, then the map Hn(M ;R) → Hn(M |x;R) ∼= R is injective for
all x ∈M with image {r ∈ R : 2r = 0}.

By the isomorphism Hn(M ;R) → Hn(M |x;R) ∼= R, the element in Hn(M ;R) is called
fundamental class if its image in any Hn(M |x;R) ∼= R is a generator.

Proof. By Theorem 3.22 for A =M , we have Hn(M ;R) ∼= Γ(M,OR).
For (a), if M is R-orientable, then the map Hn(M ;R) → Hn(M |x;R) ∼= R, which is just the

evaluation map ex : Γ(M,OR) → Hn(M |x;R), is isomorphism since OR
∼= RM canonically.

For (b), M is not R-orientable then it is not Z-orientable. By Remark 3.18 we have OR =⊕
r∈U Or where U = R/{±1} which is well defined since Or = O−r. We know that if r = −r,

then Or = M ; if not, then Or
∼= ÕZ. Hence as it is not Z-orientable, there is no global section

of ÕZ. As when r = −r there is the trivial section of Or =M . Hence we get the result.
Corollary 3.24. Let M be a closed connected n-manifold. If M is closed and orientable, then
Hn−1(M − {x}) ∼= Hn−1(M).
Proof. Indeed, from the pair (M,M − {x}) we have

· · · → Hn(M) → Hn(M,M−{x}) → Hn−1(M−{x}) → Hn−1(M) → Hn−1(M,M−{x}) → · · · .

As M is orientable, then Hn(M) ∼= Hn(M,M −{x}) by Theorem 3.23(a). Since Hn−1(M,M −
{x}) = 0, we have Hn−1(M − {x}) ∼= Hn−1(M).

Corollary 3.25. Let M be a closed connected n-manifold. The torsion subgroup of Hn−1(M ;Z)
is trivial if M is orientable and Z/2Z if M is nonorientable.
Proof. If M is orientable and if Hn−1(M ;Z) contained torsion, then for some prime p and
universal coefficient, we have

0 Z/pZ Hn(M ;Z/pZ) TorZ1 (Hn−1(M),Z/pZ) 0

Then Hn(M ;Z/pZ) is bigger than Z/pZ which is impossible.
If M is nonorientable, we let Hn−1(M) = F ⊕

⊕
j Z/pjZ, then we have

0 0 Hn(M ;Z/2Z)
⊕

j TorZ1 (Z/pjZ,Z/2Z) 0

⊕
j

pjZ∩2Z
2pjZ

then we have Hn−1(M)tor = Z/2Z.

Proposition 3.26. If M is a connected noncompact n-manifold, then Hi(M ;R) = 0 for all
i ≥ n.
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Proof. Let z be a cycle represent an element of Hi(M ;R). It has a compact image and we let
U be an open set cover it with compact closure. Let V =M − cl(U) and consider (M,U ∪V, V )
we have

0 = Hi+1(M,U ∪ V ;R) Hi(U ∪ V, V ;R) Hi(M,V ;R) = 0

Hi(U ;R) Hi(M ;R)

∼=

When i > n we have Hi(U ;R) = 0 so z is a boundary in U and so in M , so Hi(M ;R) = 0.
When i = n, class [z] ∈ Hn(M ;R) defines a section x 7→ [z]x ofMR. This section determined

by the value in single point since M is connected. Also consider

0 = Hn+1(M,U ∪ V ;R) Hn(U ∪ V, V ;R) Hn(M,V ;R)

Hn(U ;R) Hn(M ;R)

∼=

Then since M is noncompact and z has a compact image, there must have some point x such
that [z]x = 0, so [z]x = 0 for all x ∈ M . Then [z] = 0 in Hn(M,V ;R), so is in Hn(U ;R) and
then in Hn(M ;R). We win.
Example 3.27. Let M,N are both closed connected n-manifolds. Show that M]N is orientable
if and only if both M,N are orientable. What is Hi(M]N) ?

Analysis. If M,N are orientable, then consider pair (M]N,Sn−1) with quotient M]N/Sn−1 ∼=
M ∨ N . If M]N is not orientable, then we have injection of Z-modules Z ⊕ Z ↪→ Z which is
impossible.
If one of them is not orientable, we say N , then we claim that M]N is not orientable.

Consider the pair (M]N,M − {p}), we have

· · · → Hn(M − {p}) → Hn(M]N) → Hn(M]N,M − {p}) → · · · .

By Proposition 3.26 we have Hn(M − {p}) = 0. As Hn(M]N,M − {p}) = Hn(M]N/(M −
{p})) = Hn(N) = 0, we find that Hn(M]N) = 0. Hence M]N is not orientable.
Now we will compute Hi(M]N). Consider pair (M]N,Sn−1) with quotient M]N/Sn−1 ∼=

M ∨N again. We have

· · · → H̃i(S
n−1) → H̃i(M]N) → H̃i(M ∨N) → H̃i−1(S

n−1) → · · · .

Hence if i 6= n−1, n, then H̃i(M]N) ∼= H̃i(M ∨N) ∼= H̃i(M)⊕ H̃i(N). We consider i = n−1, n
and we need to consider

0 → H̃n(M]N) → H̃n(M ∨N) → H̃n−1(S
n−1) → H̃n−1(M]N) → H̃n−1(M ∨N) → 0.

Three cases:
If both M,N are orientable, then so is M]N . Hence H̃n(M]N) ∼= Z and we have

0 → Z → Z⊕ Z → Z → H̃n−1(M]N) → H̃n−1(M ∨N) → 0.

By some analysis of topology we find that the first map is 1 7→ (1, 1) and the second one is
(a, b) 7→ a− b. Hence H̃n−1(M]N) ∼= H̃n−1(M ∨N).
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If M is orientable but N is not, then M]N is not and we have H̃n(M]N) = 0 and

0 → 0 → Z⊕ 0 → Z → H̃n−1(M]N) → H̃n−1(M ∨N) → 0.

We know that Z ⊕ 0 → Z induced by (1, 0) 7→ 1 by trivial reason. Hence H̃n−1(M]N) ∼=
H̃n−1(M ∨N).
If both M,N are not orientable, so is M]N and we have H̃n(M]N) = 0 and

0 → 0 → 0 → Z → H̃n−1(M]N) → H̃n−1(M ∨N) → 0.

Here we need more information of these manifolds.
Example 3.28. LetM is a closed connectedm-manifold and N is a closed connected n-manifold.
Show that M ×N is orientable if and only if both M,N are orientable.
Proof. By Topological Künneth Formula, we have

0 → Hm(M)⊗Hn(N) → Hm+n(M×N) → TorR1 (Hm(M)⊗Hn−1(N))⊕TorR1 (Hm−1(M)⊗Hn(N)) → 0.

By Theorem 3.23 we have Hm(M)⊗Hn(N) ∼= Hm+n(M×N) and the result follows by Theorem
3.23 again.

3.4 Poincaré Duality
First consider cohomology with compact supports.
Definition 3.29. Let Ci

c(X;G) be the subgroup of Ci(X;G) consisting of cochains φ : Ci(X) →
G for which there exists a compact set K = Kϕ ⊂ X such that φ is zero on all chains in X −K.
Note that δφ is then also zero on chains in X−K, so δφ lies in Ci+1

c (X;G) and the Ci
c(X;G)’s

for varying i form a subcomplex of the singular cochain complex of X . The cohomology groups
Hi

c(X;G) of this subcomplex are the cohomology groups with compact supports.

Another way we let compact K ↪→ L induce (X,X − L) ↪→ (X,X − K), then we have
Ci(X,X −K;G) ↪→ Ci(X,X − L;G) and Hi(X,X −K;G) → Hi(X,X − L;G).
Proposition 3.30. Since K ⊂ X are compact sets form a direct system via inclusions. Then
we have

lim−→Hi(X,X −K;G) ∼= Hi
c(X;G).

Theorem 3.31 (Poincaré Duality). Let M be a R-oriented n-manifold. First we define a map
DM : Hk

c (M ;R) → Hn−k(M ;R). Consider compact sets K ⊂ L ⊂M , we have

Hn(M |L;R) Hk(M |L;R) Hn−k(M ;R)

Hn(M |K;R) Hk(M |K;R)

×

×

i∗ i∗

⌢

⌢

By previous theorem we can find unique elements µK ∈ Hn(M |K;R), µL ∈ Hn(M |L;R) re-
stricting to a given orientation of M at each point of K and L, respectively.

So we have i∗(µL) = µK and µK ⌢ x = i∗(µL) ⌢ x = µL ⌢ i∗(x) for all x ∈ Hk(M |K;R).
So when K vary, we also have Hk(M |K;R)

µK⌢(−)−−−−−→ Hn−k(M ;R) which induce

DM : Hk
c (M ;R) = lim−→Hi(X|K;G) ∼= Hn−k(M ;R).
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Remark 3.32. When M is a closed R-oriented n-manifold, if [M ] is the fundamental class, we
have isomorphism

DM : Hk(M ;R)
[M ]⌢(−),∼=−−−−−−−→ Hn−k(M ;R).

Proposition 3.33. A closed manifold of odd dimension has Euler characteristic zero.
Proof. If M is orientable, then rank(Hi(M ;Z)) = rank(Hn−i(M ;Z)) = rank(Hn−i(M ;Z)) by
Poincaré duality and universal coefficient theorem. If n is odd, well done.
If M is not orientable, the similar argument we have

∑
i(−1)i dimHi(M ;Z/2Z) = 0. Now

we claim that
∑

i(−1)i dimHi(M ;Z/2Z) =
∑

i(−1)irank(Hi(M ;Z)). Each Z summand of
Hi(M ;Z) gives Z/2Z summand of Hi(M ;Z/2Z); each Z/mZ (where m even) of Hi(M ;Z) gives
Z/2Z summands of Hi(M ;Z/2Z) and Hi+1(M ;Z/2Z) which canceled; each Z/mZ (where m
odd) of Hi(M ;Z) contribute nothing. Well done.

3.5 Other Duality
Example 3.34 (Euler Charactristic of Boundaries). Let W be a compact (2m+1)-dimensional
manifold, then χ(∂W ) = 2χ(W ).
Proof. ConsiderW ×I as a (2m+2)-manifold with ∂(W ×I) = (W ×{0})∪(M×I)∪(W ×{1}).
Let M = ∂W . Let U = ∂(W × I)− (W × {1}) and V = ∂(W × I)− (W × {0}). Then U, V are
open in ∂(W × I). Both U, V are open in ∂(W × I). Moreover U, V ' W,U ∩ V ' M . So by
MV sequence

Hi+1(U ∪ V ) Hi(U ∩ V ) Hi(U)⊕Hi(V ) Hi(U ∪ V )

Hi+1(∂(W × I)) Hi(M) Hi(W )⊕Hi(W ) Hi(∂(W × I))

∼= ∼= ∼= ∼=

Since χ(∂(W × I)) = 0 since dim ∂(W × I) is odd. So
2χ(W ) = χ(M) + χ(∂(W × I)) = χ(M),

well done.
Corollary 3.35. If M = ∂W for some compact manifold W , then χ(M) is even.
Example 3.36 (Boundary of Orientable Manifold is Orientable). Let M be a R-orientable
n-manifold with boundary ∂M , then ∂M is R-orientable.
Proof. See [3].Consider a coordinate U ∼= Hn of x ∈ ∂M . Let V = ∂U = u ∩ ∂M , and choose
y ∈ int(U) = U − V . We consider R-coefficient homology group, then we have

Hn(int(M), int(M)− int(U))
R−orientable,∼=−−−−−−−−−−−→ Hn(int(M), int(M)− y)

Homotopy by boundary collar,∼=−−−−−−−−−−−−−−−−−−−−−−−→ Hn(M,M − y)

R−orientable,∼=−−−−−−−−−−−→ Hn(M,M − int(U))
∂,∼=−−→ Hn(M − int(U),M − U)

Homotopy by boundary collar,∼=−−−−−−−−−−−−−−−−−−−−−−−→ Hn(M − int(U),M − int(U)− x)

Excision of int(M)−int(U),∼=−−−−−−−−−−−−−−−−−−−→ Hn(∂M, ∂M − x)

R−orientable,∼=−−−−−−−−−−−→ Hn(∂M, ∂M − V ).
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Well done.
Remark 3.37. In smooth case, we can calculate the transition function. See Theorem 1.3 in
http://staff.ustc.edu.cn/~wangzuoq/Courses/21F-Manifolds/Notes/Lec24.pdf.
Theorem 3.38 (Poincaré Duality with Boundaries). Suppose M is a compact R-orientable
n-manifold whose boundary ∂M s decomposed as the union of two compact (n− 1) dimensional
manifolds A and B with a common boundary ∂A = ∂B = A ∩ B. Take fundamental class
[M ] ∈ Hn(M,∂M ;R). Then for all k we have isomorphism DM : Hk(M,A;R)

[M ]⌢(−),∼=−−−−−−−→
Hn−k(M,B;R).
Corollary 3.39 (Lefschetz Duality). Suppose M is a compact R-orientable n-manifold and
take fundamental class [M ] ∈ Hn(M,∂M ;R). Then for all k we have isomorphism DM :

Hk(M,∂M ;R)
[M ]⌢(−),∼=−−−−−−−→ Hn−k(M ;R) and DM : Hk(M ;R)

[M ]⌢(−),∼=−−−−−−−→ Hn−k(M,∂M ;R).
Theorem 3.40 (Generalized Local Homology Groups). Let K be a compact, locally contractible
subspace of a closed orientable n-manifold M , then

Hi(M,M −K;Z) ∼= Hn−i(K;Z).

Theorem 3.41 (Alexander Duality). If K is a compact, locally contractible subspace of Sn,
then for all i and any abelian group G, we have

H̃i(S
n −K;G) ∼= H̃n−i−1(K;G).

Theorem 3.42 (Poincaré-Alexander-Lefschetz Duality). Let M be an n-manifold R-oriented
by ϑ where R is any commutative ring with an identity element. For any R-module G, and let
L ⊂ K be compact subsets of M . Then the cap product induce the isomorphism

∩[ϑ] : lim−→
(U,V )⊃(K,L)open

Hp(U, V ;G)
∼=→ Hn−p(M − L,M −K;G).

Proof. See Theorem VI.8.3 in[1]. More corollary we refer book Homology, Cohomology, and
Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry sec-
tion 14.5.
Corollary 3.43. Let M be an n-manifold R-oriented by ϑ where R is any commutative ring
with an identity element. For any R-module G, and let L ⊂ K be compact subsets of M . If both
of them are good pair, then the cap product induce the isomorphism

Hp(K,L;G) ∼= lim−→
(U,V )⊃(K,L)open

Hp(U, V ;G)
∩[ϑ]→ Hn−p(M − L,M −K;G).

Proof. From Lemma 9 and Theorem 10 in chapter 6.1 in [4].

3.6 Cohomology Rings
As before we have

ψ(α ⌢ φ) = (φ ⌣ ψ)(α)

where α ∈ Ck+l(X;R), φ ∈ Ck(X;R), ψ ∈ Cl(X;R). So we have

H l(X;R) HomR(Hl(X;R), R)

Hk+l(X;R) HomR(Hk+l(X;R), R)

h

h

ϕ⌣ (⌢ϕ)∗
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For closed R-orientable n-manifold M , consider an important pair:

Hk(M ;R)×Hn−k(M ;R) R

(φ, ψ) (φ ⌣ ψ)[M ]

Proposition 3.44. This pair is nonsingular for closed R-orientable manifolds when R is a field
or when R = Z and torsion in H∗(M ;Z) is factored out.

Proof. By the universal coefficient theorem and the Poincaré duality, we have an isomorphism

Hn−k(M ;R)
h→ HomR(Hn−k(M ;R), R)

D∗
M→ HomR(H

k(M ;R), R).

Well done.
Corollary 3.45. If M is a connected closed orientable n-manifold, then for each element
α ∈ Hk(M ;Z) of infinite order that is not a proper multiple of another element, there exists an
element β ∈ Hn−k(M ;Z) such that α ⌣ β is a generator of Hn(M ;Z) ∼= Z. With coefficients
in a field the same conclusion holds for any α 6= 0.
Proof. Follows directly from the nonsingular pair.

Proposition 3.46. If R→ S be a ring map, then so is H∗(X,A;R) → H∗(X,A;S).

Proof. Trivial.

Example 3.47 (Moore Spaces). Let M(G,n) is a Moore space, let G generated by gi with
relations Fj. then H∗(M(G,n);Z) ∼= Z[gi]/(g2i , Fj).

Example 3.48 (Oriented Closed Surfaces). Let g ≥ 0 and Mg be the genus g oriented closed
surface. Then

H∗(Mg;Z) ∼=
Z[xi, yi, z]gi=1

(xiyi − z, xixj , yiyj , z2, xiz, yiz, {xiyk : i 6= k})

for degxi = deg yj = 1 and deg z = 2.

Proof. Let X :=
∨g

i=1 Ti where Ti are tori. Let i : A ↪→ Mg be the inclusion where A =

S2\
∐g

j=1D
2 '

∨g−1
j=1 S

1 as following diagram:

A

Mg X

q

where q : Mg → Mg/A ∼= X be the qoutient map since Mg
∼= T1]T2] · · · ]Tg. Hence we get a

ring map q∗ : H∗(X) → H∗(Mg).
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First we need to find the relation of cohomology classes via q∗ : H∗(X) → H∗(Mg). The
only non-trivial cases are ∗ = 1, 2. For ∗ = 1, we consider the exact sequence

H1(A)
i∗→ H1(Mg)

q∗→ H1(X)
δ→ H0(A)

i∗→ H0(Mg).

We find that i∗ : H1(A) → H1(Mg) is zero since the loops in A will be in the commutator
of π1(Mg) and H1(Mg) = Abel(π1(Mg)). Moreover, i∗ : H0(A) → H0(Mg) is injective by the
definition, so δ = 0. Hence q∗ : H1(Mg) ∼= H1(X) which induce q∗ : H1(X) ∼= H1(Mg) by
universal coefficient theorem.
For ∗ = 2, we let pi : X → Ti are projects in to the i-th torus. Then we have

H2(Mg) ∼= Z H2(X) ∼= Zg H2(Ti) ∼= Zq∗ (pi)∗

As the top cell e2 of Mg send via q, pi is also a top cell Ti, by cellular chain complex and its
homology we know that (pi)∗ ◦ q∗ : 1 7→ 1. Hence q∗ : 1 7→ (1, ..., 1). So q∗ : H2(X) ∼= Zg →
H2(Mg) given by γi 7→ 1 for the generators of every summands.
Finally we know the work of q∗. Let H1(X) generated by {αi, βi}gi=1 and H2(X) generated

by {γi}gi=1. We know that αi ∪ βi = γi and all other cup product between them will be zero by
the case of tori. Hence if we let xi = q∗αi, yi = q∗βi and z = q∗γ1 = ... = q∗γg, we have

H∗(Mg;Z) ∼=
Z[xi, yi, z]gi=1

(xiyi − z, xixj , yiyj , z2, xiz, yiz, {xiyk : i 6= k})

for degxi = deg yj = 1 and deg z = 2. Well done.

Example 3.49 (Non-oriented Closed Surfaces). Let g ≥ 0 and Ng be the genus g non-oriented
closed surface. Then

H∗(Ng;Z/2Z) ∼=
Z/2Z[xi, y]gi=1

(x2i = y, y2, {xixj : i 6= j})
for degxi = 1 and deg y = 2.

Proof. Here all the homology and cohomology groups are of Z/2Z-coefficients.
Let X :=

∨g
i=1 RP 2 and let i : A ↪→ Ng be the inclusion where A = S2\

∐g
j=1D

2 '
∨g−1

j=1 S
1

as the orinetable case. Hence we have q : Ng → Mg/A ∼= X be the qoutient map since
Ng

∼= RP 2]RP 2] · · · ]RP 2︸ ︷︷ ︸
g

and get the ring map q∗ : H∗(X) → H∗(Ng).

First we need to find the relation of cohomology classes via q∗ : H∗(X) → H∗(Ng). The
only non-trivial cases are ∗ = 1, 2. For ∗ = 1, we consider the exact sequence

H1(A)
i∗→ H1(Ng)

q∗→ H1(X)
δ→ H0(A)

i∗→ H0(Ng).

We find that i∗ : H1(A) → H1(Ng) is zero since the loops in A will be two times of the loops in
π1(Ng) and H1(Ng) = Abel(π1(Ng)) ⊗Z Z/2Z. Moreover, i∗ : H0(A) → H0(Ng) is injective by
the definition, so δ = 0. Hence q∗ : H1(Ng) ∼= H1(X) which induce q∗ : H1(X) ∼= H1(Ng) by
universal coefficient theorem.
For ∗ = 2, we let pi : X → RP 2 are projects in to the i-th space. Then we have

H2(Ng) ∼= Z/2Z H2(X) ∼= Z/2Zg H2(RP 2) ∼= Z/2Zq∗ (pi)∗
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As the top cell e2 of Ng send via q, pi is also a top cell RP 2, by cellular chain complex and its
homology we know that (pi)∗ ◦ q∗ : 1 7→ 1. Hence q∗ : 1 7→ (1, ..., 1). So q∗ : H2(X) ∼= Z/2Zg →
H2(Ng) given by γi 7→ 1 for the generators of every summands.
Finally we know the work of q∗. Let H1(X) generated by {αi}gi=1 and H2(X) generated by

{βi}gi=1. We know that α2
i = β and all other cup product between them will be zero by the case

of tori. Hence if we let xi = q∗αi and y = q∗β1 = ... = q∗βg, we have

H∗(Ng;Z/2Z) ∼=
Z/2Z[xi, y]gi=1

(x2i = y, y2, {xixj : i 6= j})

for degxi = 1 and deg y = 2. Well done.
Proposition 3.50. LetM1 andM2 be closed oriented manifolds of dimension n. If f :M1 →M2

is a continuous map of non-zero degree, and x ∈ Hk(M2;Z) is non-torsion, then f∗x 6= 0.
Proof. Let xi denote the oriented generator of Hn(Mi;Z), then f∗x2 = deg(f)x1. As x ∈
Hk(M2;Z) is non-torsion, by Poincaré duality there is y ∈ Hn−k(M2;Z) with x ∪ y 6= 0, so
x ∪ y = rx2 for r 6= 0. Now f∗x ∪ f∗y = f∗(x ∪ y) = r deg(f)x1 6= 0. Hence f∗x 6= 0.
Corollary 3.51. If there exists a map M1 → M2 of non-zero degree, then for all k we have
rankHk(M1) ≥ rankHk(M2). In particular, if Mg →Mh of non-zero degree, then g ≥ h.
Proof. Directly from the Proposition.
Example 3.52 (Complex Projective Spaces). We have the ring isomorphisms

H∗(CPn;Z) ∼= Z[α]/(αn+1), H∗(CP∞;Z) ∼= Z[α], |α| = 2.

Proof. Inclusion CPn−1 ↪→ CPn induce the same cohomology group of degree less than 2n− 2,
so by induction on n we have H2i(CPn;Z) is generated by αi for i < n. By the Corollary 3.45
we can find mαi−1 such that α ⌣ mαn−1 = mαn generates H2n(CPn;Z), so m = ±1, well done.
For the case of CP∞, this follows from the cellular cohomology.

Remark 3.53. Similarly, we have H∗(HPn;Z) ∼= Z[α]/(αn+1) and H∗(HP∞;Z) ∼= Z[α] for
|α| = 4.
Example 3.54 (Real Projective Spaces). We have the ring isomorphisms

H∗(RPn;Z/2Z) ∼= Z/2Z[α]/(αn+1), H∗(RP∞;Z/2Z) ∼= Z/2Z[α], |α| = 1.

Furthermore, we have H∗(RP∞;Z) ∼= Z[α]/(2α) for |α| = 2 and

H∗(RPn;Z) ∼=

{
Z[α]/(2α, αk+1), |α| = 2, n = 2k;

Z[α]/(2α, αk+1, β2, αβ), |α| = 2, |β| = n, n = 2k + 1.

Here β is a generator of H2k+1(RP 2k+1;Z) ∼= Z.
Proof. For the coefficient of Z/2Z this is similar as complex projective space.
By Proposition 3.46 we have a ring map H∗(RP∞;Z) → H∗(RP∞;Z/2Z). Consider the

cellular cochain as follows:

· · · Z Z Z Z 0

· · · Z/2Z Z/2Z Z/2Z Z/2Z 0

020

000

2

0
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Hence the ring map H∗(RP∞;Z) → Z/2Z[α] is injective in the positive dimension with the
image in the even part of Z/2Z[α]. Hence H∗(RP∞;Z) ∼= Z/2Z[α] = Z[α]/(2α) for |α| = 2.
For n = 2k this is the same, hence H∗(RP 2k;Z) ∼= Z[α]/(2α, αk+1) for |α| = 2. For n =

2k + 1, note that the top cohomology is Z. We let a generator of it is β, hence α, β generated
by α, β. But in this case β2 = 0 and αβ = 0 by dimension reason. Hence H∗(RP 2k+1;Z) ∼=
Z[α]/(2α, αk+1, β2, αβ) for |α| = 2, |β| = 2k + 1.

Example 3.55 (Torus). We have

H∗(Tn;R) ∼=
∧
R

[α1, ..., αn]

for generators αi ∈ H1(S1;R).
More generally, we have

H∗(Sk1 × · · · × Skn ;R) ∼=
∧
R

[α1, ..., αn]

when all ki odd for generators αi ∈ H1(Ski ;R).

Proof. Follows directly from Künneth formula.

Example 3.56 (Same Cohomology Group with Different Ring). The spaces CP 2 and S2 ∨ S4

has the same cohomology groups but with the different ring structure.

Proof. We have H̃∗(S2 ∨ S4;Z) ∼= H̃∗(S2;Z) ⊕ H̃∗(S4;Z). Now as α2 = 0 for α ∈ H2(S2;Z)
which is impossible for CP 2, then well done.
Example 3.57 (Same Cohomology with Additive Structure but Different Cup Product). The
spaces CP 3 and S2 × S4 has the same cohomology groups but with the different ring structure.

Proof. By Künneth formula we have H∗(S2 × S4;Z) ∼= Z[α]/(α2)⊗Z Z[β]/(β4) for |α| = 2 and
|β| = 4 with signature-different product. Now as α2 = 0 for |α| = 2 which is impossible for CP 3,
then well done.
Remark 3.58. Another example is CP 2]CP 2 and CP 1 ×CP 1. To compute H∗(CP 2]CP 2;Z),
you may consider the map CP 2]CP 2 → CP 2 ∨ CP 2.

Example 3.59 (Same Z-Cohomology Ring with Different Z/2Z-Ones). We have ring isomor-
phism H∗(RP 2k+1;Z) ∼= H∗(RP 2k ∨ S2k+1;Z) but this is not true for Z/2Z-coefficient rings.

Proof. The isomorphism H∗(RP 2k+1;Z) ∼= H∗(RP 2k∨S2k+1;Z) is trivial. But for the generator
α ∈ H1(RP 2k+1;Z/2Z) we have α2k+1 6= 0. This is impossible for RP 2k ∨ S2k+1.

4 Applications in the Classical Results
Example 4.1 (Jordan Curve). Actually we view S1 ⊂ R2 as one-point compactification S1 ⊂ S2,
then we use Alexander duality as

H̃0(S
2 − S1;Z) ∼= H̃1(S1;Z) ∼= Z,

so H0(S
2 − S1;Z) ∼= Z2, well done.
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Example 4.2 (Jordan-Brouwer Separation Theorem). If S ⊂ Rn be a connected compact hy-
persurface, then Rn − S has two components.
Proof. Also we let it as in one-point compactification S ⊂ Sn. Now we didn’t know whether S is
orientable or not, we consider Z/2Z as coefficient, then we use Alexander duality and Poincaré
duality

H̃0(S
n − S;Z/2Z) ∼= H̃n−1(S;Z/2Z) ∼= H0(S;Z/2Z) ∼= Z/2Z,

well done.
Example 4.3 (Compact Hypersurface as Boundary). If S ⊂ Rn be a connected compact hyper-
surface, then S be the boundary of some domain in Rn.
Proof. Trivial by Jordan-Brouwer Separation Theorem.
Proposition 4.4. Let X ⊂ Rn be a compact and locally contractible, then Hi(X;Z) = 0 for
i ≥ n and torsion-free for i = n− 1, n− 2.
Proof. View X ⊂ Sn by one-point compactification. Hence by Alexander duality we have
H̃n−i−1(S

n − X;Z) ∼= H̃i(X;Z). Then using universal coefficient theorem as in the following
exmaples we can get the result.
Example 4.5 (Compact Hypersurface in Rn is Orientable). If S be a connected compact hy-
persurface S in Rn is orientable.
Proof 1. Follows from Proposition 4.4 directly. But here we will go through the proof of that
proposition.
Since dimS = n − 1, we have to calculate Hn−2(S;Z). Also we let it as in one-point

compactification S ⊂ Sn. WLOG we let n > 1. If S is not orientable, we have Hn−1(S;Z) = 0
and Hn−2(S;Z) = Z/2Z, then we have

Z ∼= H̃0(S
n − S;Z) ∼= Hn−1(S)

∼= HomZ(Hn−1(S;Z),Z)⊕ Ext1Z(Hn−2(S;Z),Z)
∼= Ext1Z(Hn−2(S;Z),Z) ∼= Z/2Z

which is impossible. Well done.
Proof 2. Here we give another method. Take x ∈ S and u ∈ Nx(Rn/S) with ‖u‖ = 1. By
Jordan-Brouwer separation theorem we may let u always in the same component when x is
varying on S. Consider a non-trivial vector field X(x) = u(x). Now iX(vol) restricted to S is a
volume form on S where vol is the canonical volume form on Rn.
Proof 3. Moreover we could prove that the normal bundle of S is trivial. See https://math.
stackexchange.com/questions/863960/orientation-of-hypersurface.

Example 4.6. We show that RPn can be embedded in Rn+1 if and only if n = 1 and CPn can
be embedded in R2n+1 if and only if n = 1.
Proof. The same proof holds for CPn and we only consider RPn. Here we only consider the
Z/2Z-coefficient groups.
If n = 1, then RP 1 ∼= S1. Hence it can be embedded in R2.
Conversely we let n ≥ 2. If RPn can be embedded in Rn+1, then we have embedding

RPn ↪→ Sn+1. Let H∗(RPn) ∼= Z/2Z[x]/(xn+1). Consider the good pair (Sn+1,RPn) we
have Hn+1(Sn+1,RPn) ∼= Z/2Z2. By Corollary 3.43 we have Hn+1(Sn+1,RPn) ∼= H0(S

n+1 −
RPn) ∼= Z/2Z2. Hence Sn+1 − RPn has two connected components. Let A,B are closure of
these components in Sn+1, hence A ∪ B = Sn+1 and A ∩ B = RPn. Hence we get Hn+1(A)⊕
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Hn+1(B) ∼= Hn+1(Sn+1 − RPn). As by Corollary 3.43 again we have Hn+1(Sn+1 − RPn) ∼=
H0(S

n+1,RPn) = 0, hence Hn+1(A) = Hn+1(B) = 0.
Now since n ≥ 2, we have H1(Sn+1) = H2(Sn+1) = 0. By MV-sequence for (A,B) we have

H1(A) ⊕ H1(B) ∼= H1(RPn) ∼= Z/2Z via canonical pullback. WLOG we let H1(B) = 0. Let
i : RPn ⊂ A and i∗α = x, then i∗αn = xn generates Hn(RPn). MV-sequence again:

0 → Hn(A)⊕Hn(B) → Hn(RPn) → Hn+1(Sn+1) → Hn+1(A) = Hn+1(B) = 0.

This is impossible since Hn(A) → Hn(RPn) surjective but Hn+1(Sn+1) ∼= Z/2Z.

Remark 4.7. Actually you can show this using Stiefel-Whitney class for Rn and total Pontryagin
class for CPn, see EmbeddedProj.

5 Some Other Things
Proposition 5.1. The infinity sphere S∞ is contractible.

Proof. Step 1. Consider ft : R∞ → R∞ as (x1, x2, ...) 7→ (1− t)(x1, x2, ...) + t(0, x1, x2, ...).
Step 2. Consider gt : R∞ → R∞ as (x1, x2, ...) 7→ (1− t)(0, x1, ...) + t(1, 0, ...).
Step 3. Consider gt

|gt| ◦
ft
|ft| which give us 1S∞ ' (x 7→ (1, 0, ...)).

Proposition 5.2. Show S1 ∼= SO(2) and RP 3 ∼= SO(3).

Proof. We have f : S1 → SO(2) by eiθ 7→ θ. Well done.
Consider f : D3 → SO(3) send x into the rotation through angle |x|π about the axis

formed by the line through the origin in the direction of x. This is surjective. The only non
injective points are the antipodal points over ∂D3 = S2. This give us the homeomorphism
f̄ : RP 3 ∼= D3/S2 ∼= SO(3).

Remark 5.3. We also have SO(4) ∼= S3 × SO(3) and more information we refer Section 3.D
in [2].
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