# Some Algebraic Topology

XIAOLONG LIU

# Contents

| 1        | The        | e Fundamental Group and Covering Space            | 1         |
|----------|------------|---------------------------------------------------|-----------|
| <b>2</b> | Homology   |                                                   | <b>2</b>  |
|          | 2.1        | Singular Homology                                 | 2         |
|          | 2.2        | Cellular Homology                                 | 3         |
|          | 2.3        | Mayer-Vietoris                                    | 4         |
|          | 2.4        | More Applications                                 | 5         |
|          |            | 2.4.1 Embedding and Homology                      | 5         |
|          |            | 2.4.2 Borsuk-Ulam Type Theorem                    | 5         |
|          |            | 2.4.3 The Lefschetz Fixed Point Theorem           | 7         |
| 3        | Cohomology |                                                   | 7         |
|          | 3.1        | Universal Coefficient Theorem and Künneth Formula | 7         |
|          | 3.2        | Cup and Cap Products                              | 8         |
|          | 3.3        | Orientations                                      | 10        |
|          | 3.4        | Poincaré Duality                                  | 13        |
|          | 3.5        | Other Duality                                     | 14        |
|          | 3.6        | Cohomology Rings                                  | 15        |
| 4        | App        | plications in the Classical Results               | 19        |
| 5        | Son        | ne Other Things                                   | <b>21</b> |
| Re       | References |                                                   |           |

# 1 The Fundamental Group and Covering Space

**Theorem 1.1** (van Kampen). Let  $X = \bigcup_{\alpha} A_{\alpha}$  where  $A_{\alpha}$  are path-connected open sets with a basepoint  $x_0$ . Let all  $A_{\alpha} \cap A_{\beta}$  are path-connected, then consider

$$\begin{array}{c} \pi_1(A_{\alpha} \cap A_{\beta}) & \xrightarrow{i_{\alpha\beta}} & \pi_1(A_{\alpha}) \\ \downarrow i_{\beta\alpha} & & \downarrow j_{\alpha} \\ \pi_1(A_{\beta}) & \xrightarrow{j_{\beta}} & \pi_1(X) \end{array}$$

where all maps induced by inclusions. Then  $j_{\alpha}$  induce  $\Phi : *_{\alpha}\pi_1(A_{\alpha}) \to \pi_1(X)$  is surjective. If  $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$  are path-connected, then ker  $\Phi$  is a normal subgroup generated by all elements of form  $i_{\alpha\beta}(w)i_{\beta\alpha}(w)^{-1}$  for  $w \in \pi_1(A_{\alpha} \cap A_{\beta})$ .

**Remark 1.2.** In the case of two open sets U, V with  $U \cap V$  path-connected, we have the following.

In the category of groups  $\mathfrak{Grp}$ , we can describe pushout of  $f: G \to A$  and  $g: G \to B$ . We let  $A *_G B$  as  $A * B/(f(a)g(a)^{-1})_{a \in G}$ , then we have the following universal property in  $\mathfrak{Grp}$ :



We call it the amalgamated product of A and B with amalgam G. So in the van Kampen theorem with U, V, we have

$$\pi_1(X) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V).$$

Next step we need to calculate the fundamental group of a CW complex. Obviously we just need to consider  $X_2$ .

Consider 1-skeleton X, then 2-cell  $e_{\alpha}^2$  attach on X via  $\phi_{\alpha} : S^1 \to X$ . Then we get Y. Note that if we fix a base point  $s_0 \in S^1$ , then  $\pi_{\alpha}$  is a loop. Consider the original base point  $x_0 \in X$ , let  $\gamma_{\alpha}$  is a path on X from  $x_0$  to  $\phi_{\alpha}(s_0)$ . Then  $\gamma_{\alpha}\phi_{\alpha}\overline{\gamma}_{\alpha}$  is a loop which is null-homotopy in Y when the 2-cell attaching. Let  $N \subset \pi_1(X, x_0)$  be a normal subgroup generated by  $\gamma_{\alpha}\phi_{\alpha}\overline{\gamma}_{\alpha}$ .

**Theorem 1.3.** Inclusion  $X \hookrightarrow Y$  induce surjection  $\pi_1(X, x_0) \twoheadrightarrow \pi_1(Y, x_0)$  with kernel N, that is,  $\pi_1(Y) \cong \pi_1(X)/N$ .

*Proof.* Consider a larger space Z with  $Z \simeq Y$ :



Pick one point  $y_{\alpha}$  on each 2-cells, respectively, as in the diagram. Then  $A = Z - \bigcup_{\alpha} \{y_{\alpha}\}$  can be deformation retracted to X. Let B = Z - X which is null-homopopic. Use van Kampen theorem to  $\{A, B\}$  and we get  $\pi_1(Z) \cong \pi_1(A) * \pi_1(B)/(\cdot)$  where  $(\cdot)$  is the image of  $\pi_1(A \cap B) \to \pi_1(A)$ , which is N.

**Proposition 1.4.** Let M, N are two orientable closed surfaces. Then there exists  $f : M \to N$  to be a covering space iff g(M) = mn + 1 and g(N) = m + 1 for some  $m, n \ge 0$ .

Proof. Trivial.

# 2 Homology

## 2.1 Singular Homology

**Theorem 2.1** (Excision Theorem). Let  $Z \subset A \subset X$  where  $cl(Z) \subset int(A)$ , then the inclusion  $(X - Z, A - Z) \hookrightarrow (X, A)$  induce  $H_n(X - Z, A - Z) \cong H_n(X, A)$ . If now we let B = X - Z we have  $H_n(B, A \cap B) \cong H_n(X, A)$ . **Proposition 2.2.** For good pairs (X, A), map  $q : (X, A) \to (X/A, A/A)$  induce  $q_* : H_n(X, A) \cong H_n(X/A, A/A) \cong \widetilde{H}_n(X/A)$ .

*Proof.* Let V be the open set deformation retracts into A, consider

f, u are isomorphisms by the long exact sequences of triples (X, V, A) and (X/A, V/A, A/A). And g, v are isomorphisms directly by excision. The right hand  $q_*$  is isomorphism. So is the left.

## 2.2 Cellular Homology

**Proposition 2.3.** If  $f: S^n \to S^n$  has no fixed points, then  $f \simeq -1$ . In particular, deg  $f = (-1)^{n+1}$ .

*Proof.* Consider  $f_t(x) = ((1-t)f(x) - tx)/|(1-t)f(x) - tx|$  and well done.

**Corollary 2.4.**  $\mathbb{Z}/2\mathbb{Z}$  is the only non-trivial group that can act freely on  $S^n$  is n is even.

*Proof.* Let G be such non-trivial group. The degree map give us homomorphism  $G \to \{\pm 1\}$ . Since action is free, this map sends all non-trivial elements of G to  $(-1)^{n+1}$  by Proposition 2.3. When n even, kernel is trivial. Well done.

**Corollary 2.5.** Let  $f: S^{2n} \to S^{2n}$ , then there exists  $x \in S^{2n}$  such that f(x) = x or f(x) = -x. In particular, any  $g: \mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$  has a fixed point.

*Proof.* If there are no such points for f, then f and -f both have no fixed points. Then by Proposition 2.3 this is impossible.

**Proposition 2.6.** Let  $M \in O(n+1)$  which induce  $f_M : S^n \to S^n$  by  $x \mapsto Mx$ , then deg  $f_M = \det M$ .

*Proof.* This follows from the fact that any orthogonal matrix can be decomposed into the reflection matrixes and rotation matrixes.  $\Box$ 

**Theorem 2.7** (Hairly Ball).  $S^n$  has a continuous field of nonzero tangent vectors iff n is odd.

*Proof.* Consider such vector field v(x) and view it as centering at origin. Let |v(x)| = 1 via v(x)/|v(x)|. Consider  $f_t(x) = (\cos t)x + (\sin t)v(x)$ . Then  $\deg(-\mathrm{id}) = \deg(\mathrm{id}) = 1$ , so  $(-1)^{n+1} = 1$ , so n is odd.

Conversely if n = 2k - 1, then let  $v(x_1, ..., x_{2k}) = (-x_2, -x_1, ..., -x_{2k}, -x_{2k-1})$ .

Proposition 2.8 (Euler Charactristic). We have:

- (a) For finite CW complexes X, Y, we have  $\chi(X \times Y) = \chi(X)\chi(Y)$ .
- (b) If a finite CW complex  $X = A \cup B$  of two subcomplexes A, B, then  $\chi(X) = \chi(A) + \chi(B) \chi(A \cap B)$ .
- (c) For an n-sheeted covering space of finite CW complexes  $p: \widetilde{X} \to X$ , we have  $\chi(\widetilde{X}) = n\chi(X)$ .

*Proof.* (a)(b) are trivial. For (c), given an *m*-dimensional CW-complex X, one can lift the CWstructure to a CW-structure on  $\widetilde{X}$  by lifting the characteristic maps  $\phi_{\alpha}: e_{\alpha}^k \to X$ , which can be done since  $\pi_1(D^k) = 0$ . There are exactly *n* lifts of  $\phi_\alpha$  to  $\widetilde{X}$ . So for each *k*-cell  $e^k$  in *X*, there exists n k-cells in the lifted CW-structure on  $\widetilde{X}$  which are mapped homeomorphically onto  $e^k$ . Hence well done. 

**Remark 2.9.** For (c) there is a generalization for Serre fiberations, see [Multiplicativity of the Euler characteristic for fibrations].

Now we consider CW complex X with k-skeleton  $X_k$ . We have the following elementary conclusion:

**Lemma 2.10.** (a)  $H^k(X_n, X_{n-1})$  is zero when  $k \neq n$  and free abelian with basis of n-cells of X when k = n;

(b)  $H_k(X^n) = 0$  for k > n; (c) Inclusion  $X^n \hookrightarrow X$  induces  $H_k(X^n) \cong H_k(X)$  for k < n.

**Theorem 2.11** (Cellular Boundary Formula). The map  $d_n$  in above diagram we have  $d_n(e_{\alpha}^n) = \sum_{\beta} \deg(S_{\alpha}^{n-1} = \partial e_{\alpha}^n \to X^{n-1} \to S_{\beta}^{n-1})e_{\beta}^{n-1}$  where the map is the attaching map of  $e_{\alpha}^n$  with the quotient map collapsing  $X^{n-1} - e_{\beta}^{n-1}$  to a point.

**Example 2.12.** Let  $M_g$  be the closed orientable surface of genus g, then the cellular complex is  $0 \to \mathbb{Z} \xrightarrow{0} \mathbb{Z}^{2g} \xrightarrow{0} \mathbb{Z} \to 0.$ 

**Example 2.13.** Let  $N_q$  be the closed non-orientable surface of genus g, then the cellular complex is  $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z}^g \xrightarrow{0} \mathbb{Z} \to 0$  where  $f: 1 \mapsto (2, ..., 2)$ .

**Example 2.14.** Consider  $\mathbb{R}P^n$ , then the cellular complex is

 $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \cdots \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$ 

when n is even and

$$0 \to \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \cdots \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$$

when n is odd.

**Example 2.15** (Acyclic Space). Let X obtained from  $S1 \vee S^1$  by attaching two 2-cells by words  $a^{5}b^{-3}$  and  $b^{2}(ab)^{-2}$ . Then the cellular complex is  $0 \to \mathbb{Z}^{2} \xrightarrow{f} \mathbb{Z}^{2} \xrightarrow{0} \mathbb{Z} \to 0$  where  $f = \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix}$ .

#### **Mayer-Vietoris** $\mathbf{2.3}$

**Theorem 2.16** (Mayer-Vietoris Sequence). Let  $A, B \subset X$  with  $X = int(A) \cap int(B)$ . Then we have

$$0 \longrightarrow C_n(A \cap B) \xrightarrow{x \mapsto (x, -x)} C_n(A) \oplus C_n(B) \xrightarrow{(x, y) \mapsto x + y} C_n(A + B) \longrightarrow 0$$

Then induce the long exact sequence

$$\cdots \longrightarrow H_n(A \cap B)^{(i_{1*}, -i_{2*})} H_n(A) \oplus H_n(B) \xrightarrow{g_* + j_*} H_n(X)$$

$$\downarrow_{\partial}$$

$$\cdots \longleftarrow H_{n-1}(A \cap B)$$

where  $i_1: A \cap B \to A, i_2: A \cap B \to B$  and  $g: A \to X, j: B \to X$ .

**Theorem 2.17** (Mapping Torus and Mayer-Vietoris Sequence). Let  $f, g : X \to Y$  and let  $Z = X \times I/((x,0) \sim f(x), (x,1) \sim g(x))$  be the mapping torus, then we have

$$\cdots \longrightarrow H_n(X) \xrightarrow{f_* - g_*} H_n(Y) \xrightarrow{i_*} H_n(Z)$$

$$\downarrow$$

$$\cdots \longleftarrow H_{n-1}(X)$$

More special case, we let  $f : A \cap B \to A, g : A \cap B \to B$ , then we can get the traditional Mayer-Vietoris sequence.

**Theorem 2.18** (Relative Mayer-Vietoris Sequence). Let  $(X, Y) = (A \cup B, C \cup D)$  with  $C \subset A, D \subset B$ . Then we have

$$\cdots \longrightarrow H_n(A \cap B, C \cap D) \longrightarrow H_n(A, C) \oplus H_n(B, D) \longrightarrow H_n(X, Y)$$

$$\downarrow$$

$$\cdots \longleftarrow H_{n-1}(A \cap B, C \cap D)$$

derived by nine lemma and long exact sequence.

## 2.4 More Applications

### 2.4.1 Embedding and Homology

**Theorem 2.19** (Invariance of Domain). Let M and N are both n-dimensional topological manifolds and  $f: M \to N$  is one-one and continuous, then f is open.

*Proof.* See [1] page 235.

**Corollary 2.20.** If  $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$  is continuous injective map where U is open, then  $m \leq n$ .

*Proof.* If not, we let m > n. Consider  $g: U \to \mathbb{R}^n \times \mathbb{R}^{m-n}$  with  $x \mapsto (f(x), 0)$ . By invariance of domain, the image of g, which is  $f(U) \times \{0\}$ , is open in  $\mathbb{R}^m$  which is impossible.  $\Box$ 

**Remark 2.21.** But unfortunately, for any m, n > 0, there is a continuous surjective map  $f : \mathbb{R}^m \to \mathbb{R}^n$ . See [Existence of a continuous surjective function].

### 2.4.2 Borsuk-Ulam Type Theorem

For any two-sheeted covering space  $p: X' \to X$ , we have exact sequence

$$0 \to C_n(X, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\tau} C_n(X', \mathbb{Z}/2\mathbb{Z}) \xrightarrow{p_{\sharp}} C_n(X, \mathbb{Z}/2\mathbb{Z}) \to 0$$

as  $p_{\sharp}$  is surjective follows from homotopy lifting property and as each  $\sigma : \Delta^n \to X$  has precisely two lifts  $\sigma'_1, \sigma'_2$ , then  $\tau$  maps  $\sigma$  to  $\sigma'_1 + \sigma'_2$  holds as the coefficient is  $\mathbb{Z}/2\mathbb{Z}$ . Hence from this we have the long exact sequence

$$\cdots \to H_n(X, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\tau_*} H_n(X', \mathbb{Z}/2\mathbb{Z}) \xrightarrow{p_*} H_n(X, \mathbb{Z}/2\mathbb{Z}) \to \cdots$$

This is a special case of Gysin sequence.

**Theorem 2.22** (Borsuk). A map  $f: S^n \to S^n$  with f(-x) = -f(x) must have odd degree. Proof. Consider the covering space  $p: S^n \to \mathbb{R}P^n$ . As f(-x) = -f(x), we have



We claim that the following diagram commute:

The right square is trivial. The left square commutes since for  $\sigma : \Delta^i \to \mathbb{R}P^n$  with lifts  $\sigma'_1, \sigma'_2$ , the two lifts of  $\bar{f}\sigma$  are  $f\sigma'_1, f\sigma'_2$  since f(-x) = -f(x).

Finally taking long exact sequence we can find that  $f_*: H_n(S^n, \mathbb{Z}/2\mathbb{Z}) \to H_n(S^n, \mathbb{Z}/2\mathbb{Z})$  is an isomorphism by induction on dimension using the trivial fact that they are isomorphisms in dimension 0. So f must have odd degree.

**Corollary 2.23** (Borsuk-Ulam). Every map  $g: S^n \to \mathbb{R}^n$ , there exists a point  $x \in S^n$  with g(x) = g(-x).

*Proof.* Let f(x) = g(x) - g(-x), then f is odd. If f is nowhere vanish, we replace f by f/|f| and get a morphism  $f: S^n \to S^{n-1}$  which is still odd. Restrict it on the equator, which is still odd, has odd degree by the theorem of Borsuk. But this restriction is nullhomotopic as it is a restriction of  $f|_{D^n}$  in the hemisphere.

**Corollary 2.24.** Whenever  $S^n$  is expressed as the union of n + 1 closed sets  $A_0, ..., A_n$ , then at least one of these sets must contain a pair of antipodal points.

*Proof.* We define  $d_i : S^n \to \mathbb{R}, x \mapsto \inf_{y \in A_i} |x - y|$ . Let  $g : S^n \to \mathbb{R}^n, x \mapsto (d_1(x), ..., d_n(x))$ . By Borsuk-Ulam theorem, it obtaining a pair of antipodal points x, -x with  $d_i(x) = d_i(-x), i = 1, ..., n$ . If either of these distances is 0, then well done. If not,  $x, -x \in A_0$ , well done.  $\Box$ 

**Corollary 2.25** (Ham-Sandwich). Let  $A_1, ..., A_n \subset \mathbb{R}^n$  are *n* measurable subsets, then there exists a hyperplane  $H \subset \mathbb{R}^n$  such that H cut each  $A_i$  into two parts with equal volume.

*Proof.* For any hyperplane H we can write it as  $a_1x_1 + \ldots + a_nx_n + a_{n+1} = 0$  such that  $a_1^2 + \ldots + a_{n+1}^2 = 1$ . Consider the map

$$f: S^n \to \mathbb{R}^n, \quad (a_1, ..., a_{n+1}) \mapsto (m(A_i \cap H_+) - m(A_i \cap H_-))_{1 \le i \le n}$$

where  $H_+ = {\mathbf{x} \in \mathbb{R}^n : a_1x_1 + \ldots + a_nx_n + a_{n+1} > 0}$  and  $H_-$  for < 0. Then by Borsuk-Ulam theorem well done.

**Proposition 2.26.** A map  $f: S^n \to S^n$  with f(-x) = f(x) must have even degree. Moreover if n is even, then deg f = 0. If n is odd, then deg f can be any even number.

Proof. As f(-x) = f(x), then f can factors as  $S^n \to \mathbb{R}P^n \to S^n$  where  $S^n \to \mathbb{R}P^n$  be the double covering. Hence induce  $H_n(S^n) \xrightarrow{2} H_n(\mathbb{R}P^n)$ , hence even degree and when n is even we have deg f = 0. When n odd, consider  $f_{2k} : S^n \to \mathbb{R}P^n \to \mathbb{R}P^n / \mathbb{R}P^{n-1} \cong S^n \xrightarrow{\text{deg } k} S^n$  and well done.

### 2.4.3 The Lefschetz Fixed Point Theorem

**Theorem 2.27** (Lefschetz). If X is a finite simplicial complex, or more generally a retract of a finite simplicial complex and  $f: X \to X$  is a map with  $\tau(f) = \sum_n (-1)^n \operatorname{tr}(f_*: H_n(X) \to X)$  $H_n(X) \neq 0$ , then f has a fixed point.

#### Cohomology 3

#### 3.1Universal Coefficient Theorem and Künneth Formula

**Theorem 3.1** (Universal Coefficient Spectral Sequence). For cohomology we have

$$E_2^{p,q} = \operatorname{Ext}_R^q(H_p(C_*), G) \Rightarrow H^{p+q}(C_*; G)$$

where R is a ring with unit,  $C_*$  is a chain complex of free modules over R, G is any (R, S)bimodule for some ring with a unit S. The differential  $d^r$  has degree (1-r,r).

Similarly for homology

$$E_{p,q}^2 = \operatorname{Tor}_q^R(H_p(C_*), G) \Rightarrow H_*(C_*; G)$$

and the differential  $d_r$  having degree (r-1, -r).

**Theorem 3.2** (Universal Coefficient Theorem for Homology). Let R be a PID and let  $C_*$  a chain complex of R-modules such that  $C_n$  is free for all n and let M be an R-module. Then there is a natural short exact sequence of R-modules

$$0 \to H_n(C_*) \otimes_R M \to H_n(C_* \otimes_R M) \to \operatorname{Tor}_1^R(H_{n-1}(C_*), M) \to 0$$

which is split non-naturally.

*Proof.* As  $0 \to Z_n(C_*) \to C_n \to B_{n-1}(C_*) \to 0$  is exact with  $B_{n-1}(C_*)$  free since R is PID, then this sequence split. Hence  $Z_n(C_*) \otimes_R M \to C_n \otimes_R M$  is also injective. As we have the following commutative diagram with exact rows

by some easy diagram chase we find that  $\alpha: H_n(C_*) \otimes_R M \to H_n(C_* \otimes_R M)$  injective. Let's

consider its cokernel. Pick any free resolution  $0 \to F_1 \to F_0 \to M \to 0$ . As  $C_i$  free, we have  $0 \to F_1 \otimes_R C_* \to F_0 \otimes_R C_* \to M \otimes_R C_* \to 0$  which give us the long exact sequence. Split it into short exact sequences

$$0 \longrightarrow \operatorname{coker}(H_n(C_* \otimes_R F_1) \to H_n(C_* \otimes_R F_0)) \\ \downarrow \\ H_n(C_* \otimes_R M) \\ \downarrow \\ \operatorname{ker}(H_{n-1}(C_* \otimes_R F_1) \to H_{n-1}(C_* \otimes_R F_0)) \longrightarrow$$

Actually  $\alpha$  is trivially an isomorphisms when we consider the free module. As coker $(H_n(C_*) \otimes_R)$  $F_1 \rightarrow H_n(C_*) \otimes_R F_0 \cong H_n(C_*) \otimes_R M$  and  $\ker(H_{n-1}(C_*) \otimes_R F_1 \rightarrow H_{n-1}(C_*) \otimes_R F_0) \cong$  $\operatorname{Tor}_{1}^{R}(H_{n-1}(C_{*}), M)$ , we get the theorem. 

**Theorem 3.3** (Universal Coefficient Theorem for Cohomology). Let R be a PID and let  $C_*$  a chain complex of R-modules such that  $C_n$  is free for all n and let M be an R-module. Then there is a natural short exact sequence of R-modules

$$0 \to \operatorname{Ext}^{1}_{R}(H_{n-1}(C_{*}), M) \to H^{n}(\operatorname{Hom}(C_{*}, M)) \to \operatorname{Hom}(H_{n}(C_{*}), M) \to 0$$

which is split non-naturally.

*Proof.* Similar as the version of homology.

**Theorem 3.4** (Algebraic Künneth Formula). Let R be a PID and let  $C_*, C'_*$  a chain complex of R-modules such that  $C_n$  is free for all n. Then there is a natural short exact sequence of R-modules

$$0 \to \bigoplus_{p+q=n} (H_p(C_*) \otimes_R H_q(C'_*)) \to H_n(C_* \otimes_R C'_*) \to \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R(H_p(C_*) \otimes_R H_q(C'_*)) \to 0.$$

**Theorem 3.5** (Topological Künneth Formula). Let R be a PID and let X, Y are two CW complexes. Then there is a natural short exact sequence of R-modules

$$0 \to \bigoplus_{p+q=n} (H_p(X;R) \otimes_R H_q(Y;R)) \to H_n(X \times Y;R) \to \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R(H_p(X;R) \otimes_R H_q(Y;R)) \to 0$$

**Example 3.6.** Let R be a commutative ring with ideal I, J, then  $\operatorname{Tor}_{1}^{R}(R/I, R/J) \cong \frac{I \cap J}{IJ}$  and  $\operatorname{Ext}_{R}^{1}(R/I, M) \cong \operatorname{Hom}_{R}(I, M)/M_{I}$  where  $M_{I} := \{g_{m} : i \mapsto im\} \subset \operatorname{Hom}_{R}(I, M).$ 

*Proof.* Follows from  $0 \to I \to R \to R/I \to 0$ .

## 3.2 Cup and Cap Products

**Definition 3.7** (Cross Product). Let R be a commutative ring with unit and let X, Y be spaces. We define morphism of chain complexes

$$C^*(X;R) \otimes_R C^*(Y;R) \to \operatorname{Hom}(C_*(X) \otimes C_*(Y),R) \to C^*(X \times Y;R)$$

where the first one is the natural map and the second is dual of the following Alexander-Whitney map:

$$C_*(X \times Y) \to C_*(X) \otimes C_*(Y), \sigma \mapsto \sum_{p+q=n} {}_p(\pi_X \circ \sigma) \otimes (\pi_Y \circ \sigma)_q$$

where  $p\sigma := \sigma|_{[v_0,...,v_p]}$  and  $\sigma_q := \sigma|_{[v_{n-q},...,v_n]}$  when  $\sigma \in C_n(-)$ . This induce the map

$$\bigoplus_{p+q=n} H^p(X;R) \otimes_R H^q(Y;R) \xrightarrow{\times} H^n(X \times Y;R)$$

which is the cross product.

**Definition 3.8** (Cup Product). Let R be a commutative ring with unit and let X be a space. For  $\Delta: X \to X \times X$  be the diagonal, we define

to be the cup product.

**Proposition 3.9.** Let R be a commutative ring and let X be a space.

(a) Alexander-Whitney map gives an explicit product formula:

 $(\alpha \cup \beta)(\sigma) = \alpha(p\sigma) \cdot \beta(\sigma_q), \quad \forall \alpha \in C^p(X; R), \beta \in C^q(X; R), \sigma : \Delta^{p+q} \to X.$ 

(b)  $H^*(X; R)$  is a graded commutative ring with unit:

 $\begin{array}{l} - \ Let \ 1 \in H^0(X;R) \ be \ represented \ by \ the \ cocyle \ which \ takes \ every \ singular \ 0-simplex \ to \ 1 \in R. \ Then \ 1 \cup \alpha = \alpha \cup 1 = \alpha \ for \ any \ \alpha \in H^*(X;R). \\ - \ (\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma). \\ - \ \alpha \cup \beta = (-1)^{pq} \beta \cup \alpha \ for \ all \ \alpha \in H^p(X;R) \ and \ \beta \in H^q(X;R). \end{array}$ 

(c) Let  $f: X \to Y$  be a continuous map. Then

$$f^*: H^*(Y; R) \to H^*(X; R)$$

is a morphism of graded commutative rings, i.e.  $f^*(\alpha \cup \beta) = f^*\alpha \cup f^*\beta$ .

**Remark 3.10.** Actually if we define the cup product in the level of chain complex by (a), then  $\delta(\alpha \cup \beta) = \delta \alpha \cup \beta + (-1)^k \alpha \cup \delta(\beta)$  for  $\alpha \in C^k(X; R)$ . This is coincident to the original definition since the coboundary map of complex  $C^*(X; R) \otimes_R C^*(Y; R)$  has the similar formula.

**Theorem 3.11** (Künneth Formula). Assumem R is a PID, if  $H^*(X; R)$  or  $H^*(Y; R)$  are finitely generated free R-modules, we have an isomorphism of graded commutative rings

 $H^*(X; R) \otimes_R H^*(Y; R) \xrightarrow{\times} H^*(X \times Y; R)$ 

where the first one we define  $(a \otimes b)(c \otimes d) = (-1)^{|b||c|}ac \otimes bd$ .

Definition 3.12 (Cap Product). We define

$$C^p(X;R) \times C_{p+q}(X;R) \xrightarrow{\mapsto} C_q(X;R), \phi \cap \sigma = \phi({}_p\sigma)\sigma_q.$$

Then one can check that  $\partial(\phi \cap \sigma) = (-1)^p (\phi \cap \partial \sigma - \delta \phi \cap \sigma)$ . This induce the cap product:

$$H^p(X; R) \times H_{p+q}(X; R) \xrightarrow{\cap} H_q(X; R).$$

**Proposition 3.13.** The cap product extends naturally to the relative case: for any good pair (X, A), we have

- (a)  $H^p(X, A; R) \otimes_R H_{p+q}(X, A; R) \xrightarrow{\cap} H_q(X; R);$
- (b)  $H^p(X; R) \otimes_R H_{p+q}(X, A; R) \xrightarrow{\cap} H_q(X, A; R).$

More generally, we have

$$H^p(X,A;R) \otimes_R H_{p+q}(X,A\cup B;R) \xrightarrow{i=1} H_q(X,B;R).$$

Sketch. Just need to check  $\cap$  induce  $C^*(X, A; R) \times C_*(A + B; R) \to C_*(B)$ .

**Proposition 3.14.** We have the following:

(a) If  $f: X \to Y$  continuous, then we have

$$f_*(\sigma) \cap \phi = f_*(\sigma \cap f^*\phi).$$

(b) For any 
$$\sigma \in C_{k+l}(X; R)$$
,  $\phi \in C^k(X; R)$  and  $\psi \in C^l(X; R)$ , we have  
 $\psi(\sigma \cap \phi) = (\phi \cup \psi)(\sigma).$ 

*Proof.* Directly check.

#### $\mathbf{3.3}$ Orientations

We consider the *n*-manifold is T2 with locally homeomorphic to  $\mathbb{R}^n$ . Here we let  $H_n(M|A;R) :=$  $H_n(M, M-A; R)$ . We consider a sheaf both as a functor and as a topological space by the trivial choice of topological basis.

Fix any commutative ring with unit R.

**Definition 3.15.** We define  $\mathbb{O}_R$  be a locally constant sheaf of R-modules on M whose stalk at a point is  $H_n(X|x; R)$ . Of course,  $\mathbb{O}_R = R \otimes_{\mathbb{Z}} \mathbb{O}_{\mathbb{Z}}$ .

Actually there is a associated (framed) bundle of  $\mathbb{O}_R$  as follows: we define a principal  $R^{\times}$ bundle  $\widetilde{\mathbb{O}}_R \to M$  which send the open set  $U \subset M$  to {trivializations  $\alpha : \underline{R}_U \cong \mathbb{O}_R|_U$ }.

**Definition 3.16.** An *R*-orientation of *M* is a global section of the associated principal  $R^{\times}$ -bundle  $\widetilde{\mathbb{O}}_R \to M$ . In this case we have  $\mathbb{O}_R \cong \underline{R}_M$  and we say M is R-orientable.

**Remark 3.17.** When  $\mathbb{Z} = R$ , then we will ignore R.

**Remark 3.18.** As  $H_n(M|x; R) \cong H_n(M|x; \mathbb{Z})_{\mathbb{Z}}R$ , we consider a subsheaf  $\mathbb{O}_r \subset \mathbb{O}_R$  for each  $r \in R$  consist of  $\pm \mu_x \otimes r \in H_n(M|x; R)$  where  $\mu_x$  is a generator of  $H_n(M|x; \mathbb{Z}) \cong \mathbb{Z}$ . Then as a topological space, if r = -r, then  $\mathbb{O}_r = M$ ; if not, then  $\mathbb{O}_r \cong \widetilde{\mathbb{O}}_{\mathbb{Z}}$ . Hence if M is orientable, then it is R-orientable for all R. Any manifold is  $\mathbb{F}_2$ -orientable.

**Proposition 3.19.** Consider the principal  $R^{\times}$ -bundle  $\widetilde{\mathbb{O}}_R \to M$ , then  $\widetilde{\mathbb{O}}_R$  is always R-orientable.

*Proof.* Follows from construction and  $H_n(\widetilde{\mathbb{O}}_R|\mu_x; R) \cong H_n(U(\mu_B)|\mu_x; R) \cong H_n(B|x; R) \cong$  $H_n(M|x;R)$ . Well done.

**Proposition 3.20.** Let M connected. Then M is orientable if and only if  $\hat{\mathbb{O}}_{\mathbb{Z}}$  is connected. In particular, if  $\pi_1(M)$  has no subgroup of index 2, then it is orientable.

*Proof.* In this case  $R = \mathbb{Z}$  and  $\widetilde{\mathbb{O}}_{\mathbb{Z}}$  principal  $\mathbb{Z}/2\mathbb{Z}$ -bundle which is indeed a two-sheeted covering space. Now the result follows directly from the following fact:

• If  $p: E \to X$  is a covering space with a section  $s: X \to E$ , then  $s(X) \subset E$  is both open and closed. Hence, it is a union of connected components of E.

Well done.

**Remark 3.21.** We can generalize this into R but I do not care about them.

**Theorem 3.22.** Let M be a manifold of dimension n and let  $A \subset M$  be a compact subset. Then for any section  $(x \mapsto \alpha_x) \in \Gamma(M, \mathbb{O}_R)$  there exists a unique class  $\alpha_A \in H_n(M|A; R)$  whose image in  $H_n(M|x; R)$  is  $\alpha_x$  for all  $x \in A$ . Moreover,  $H_i(M|A; R) = 0, i > n$ .

Sketch of the Proof. More details see [2]. Our method is to reduce the case in to simple one.

(i) If this hold for  $A, B, A \cap B$ , then this is also hold of  $A \cup B$ . Use the MV-principle, we have:

$$0 = H_{n+1}(M|A \cap B) \longrightarrow H_n(M|A \cup B) \longrightarrow H_n(M|A) \oplus H_n(M|B) \longrightarrow H_n(M|A \cap B)$$

then this is easy to see;

(ii) Reduce to the case  $M = \mathbb{R}^n$ . Actually we can let  $A = \bigcup_{i=1}^m A_i$  where  $A_i$  in some  $\mathbb{R}^n$ . Then use MV-principle and induction, well done;

(iii) Consider the case  $M = \mathbb{R}^n$  and  $A = \bigcup_{i=1}^m A_i$  where  $A_i$  is convex. Use the MVprinciple as (ii) we can let A is convex. Then the result is trivial by  $H_i(\mathbb{R}^n|A) \cong H_i(\mathbb{R}^n|x)$ naturally;

(iv) Consider the case  $M = \mathbb{R}^n$  and A be any compact. Let  $\alpha \in H_i(\mathbb{R}^n|A)$  represented by z and let  $C \subset \mathbb{R}^n - A$  be the union of the images of the singular simplices in  $\partial z$ . Then one can cover some closed balls over A outside of C. Let K be the union of these balls and we see that the relative cycle z defines an element  $\alpha_K \in H_i(\mathbb{R}^n|K)$  mapping to the given  $\alpha \in H_i(\mathbb{R}^n|A)$ . Use (iii) to  $H_i(\mathbb{R}^n|K)$ , well done.

### **Theorem 3.23.** Let M be a closed connected n-manifold. Then

(a) If M is R-orientable, then the map  $H_n(M; R) \to H_n(M|x; R) \cong R$  is an isomorphism for all  $x \in M$ ;

(b) If M is not R-orientable, then the map  $H_n(M; R) \to H_n(M|x; R) \cong R$  is injective for all  $x \in M$  with image  $\{r \in R : 2r = 0\}$ .

By the isomorphism  $H_n(M; R) \to H_n(M|x; R) \cong R$ , the element in  $H_n(M; R)$  is called fundamental class if its image in any  $H_n(M|x; R) \cong R$  is a generator.

*Proof.* By Theorem 3.22 for A = M, we have  $H_n(M; R) \cong \Gamma(M, \mathbb{O}_R)$ .

For (a), if M is R-orientable, then the map  $H_n(M; R) \to H_n(M|x; R) \cong R$ , which is just the evaluation map  $e_x : \Gamma(M, \mathbb{O}_R) \to H_n(M|x; R)$ , is isomorphism since  $\mathbb{O}_R \cong \underline{R}_M$  canonically.

For (b), M is not R-orientable then it is not  $\mathbb{Z}$ -orientable. By Remark 3.18 we have  $\mathbb{O}_R = \bigoplus_{r \in U} \mathbb{O}_r$  where  $U = R/\{\pm 1\}$  which is well defined since  $\mathbb{O}_r = \mathbb{O}_{-r}$ . We know that if r = -r, then  $\mathbb{O}_r = M$ ; if not, then  $\mathbb{O}_r \cong \widetilde{\mathbb{O}}_{\mathbb{Z}}$ . Hence as it is not  $\mathbb{Z}$ -orientable, there is no global section of  $\widetilde{\mathbb{O}}_{\mathbb{Z}}$ . As when r = -r there is the trivial section of  $\mathbb{O}_r = M$ . Hence we get the result.  $\Box$ 

**Corollary 3.24.** Let M be a closed connected n-manifold. If M is closed and orientable, then  $H_{n-1}(M - \{x\}) \cong H_{n-1}(M)$ .

*Proof.* Indeed, from the pair  $(M, M - \{x\})$  we have

$$\dots \to H_n(M) \to H_n(M, M - \{x\}) \to H_{n-1}(M - \{x\}) \to H_{n-1}(M) \to H_{n-1}(M, M - \{x\}) \to \dots$$

As M is orientable, then  $H_n(M) \cong H_n(M, M - \{x\})$  by Theorem 3.23(a). Since  $H_{n-1}(M, M - \{x\}) = 0$ , we have  $H_{n-1}(M - \{x\}) \cong H_{n-1}(M)$ .

**Corollary 3.25.** Let M be a closed connected n-manifold. The torsion subgroup of  $H_{n-1}(M;\mathbb{Z})$  is trivial if M is orientable and  $\mathbb{Z}/2\mathbb{Z}$  if M is nonorientable.

*Proof.* If M is orientable and if  $H_{n-1}(M;\mathbb{Z})$  contained torsion, then for some prime p and universal coefficient, we have

$$0 \to \mathbb{Z}/p\mathbb{Z} \to H_n(M; \mathbb{Z}/p\mathbb{Z}) \to \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(M), \mathbb{Z}/p\mathbb{Z}) \to 0$$

Then  $H_n(M; \mathbb{Z}/p\mathbb{Z})$  is bigger than  $\mathbb{Z}/p\mathbb{Z}$  which is impossible.

If M is nonorientable, we let  $H_{n-1}(M) = F \oplus \bigoplus_{j \in \mathbb{Z}} \mathbb{Z}/p_j \mathbb{Z}$ , then we have

$$0 \longrightarrow 0 \longrightarrow H_n(M; \mathbb{Z}/2\mathbb{Z}) \longrightarrow \bigoplus_j \operatorname{Tor}_1^{\mathbb{Z}}(\mathbb{Z}/p_j\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$
$$\| \\ \bigoplus_j \frac{p_j\mathbb{Z}\cap 2\mathbb{Z}}{2p_j\mathbb{Z}}$$

then we have  $H_{n-1}(M)_{\text{tor}} = \mathbb{Z}/2\mathbb{Z}$ .

**Proposition 3.26.** If M is a connected noncompact n-manifold, then  $H_i(M; R) = 0$  for all  $i \ge n$ .

*Proof.* Let z be a cycle represent an element of  $H_i(M; R)$ . It has a compact image and we let U be an open set cover it with compact closure. Let V = M - cl(U) and consider  $(M, U \cup V, V)$  we have

$$0 = H_{i+1}(M, U \cup V; R) \longrightarrow H_i(U \cup V, V; R) \longrightarrow H_i(M, V; R) = 0$$

$$\uparrow \cong \qquad \uparrow$$

$$H_i(U; R) \longrightarrow H_i(M; R)$$

When i > n we have  $H_i(U; R) = 0$  so z is a boundary in U and so in M, so  $H_i(M; R) = 0$ .

When i = n, class  $[z] \in H_n(M; R)$  defines a section  $x \mapsto [z]_x$  of  $M_R$ . This section determined by the value in single point since M is connected. Also consider

$$0 = H_{n+1}(M, U \cup V; R) \longrightarrow H_n(U \cup V, V; R) \longrightarrow H_n(M, V; R)$$

$$\uparrow \cong \qquad \uparrow$$

$$H_n(U; R) \longrightarrow H_n(M; R)$$

Then since M is noncompact and z has a compact image, there must have some point x such that  $[z]_x = 0$ , so  $[z]_x = 0$  for all  $x \in M$ . Then [z] = 0 in  $H_n(M, V; R)$ , so is in  $H_n(U; R)$  and then in  $H_n(M; R)$ . We win.

**Example 3.27.** Let M, N are both closed connected n-manifolds. Show that  $M \sharp N$  is orientable if and only if both M, N are orientable. What is  $H_i(M \sharp N)$ ?

Analysis. If M, N are orientable, then consider pair  $(M \sharp N, S^{n-1})$  with quotient  $M \sharp N/S^{n-1} \cong M \vee N$ . If  $M \sharp N$  is not orientable, then we have injection of  $\mathbb{Z}$ -modules  $\mathbb{Z} \oplus \mathbb{Z} \hookrightarrow \mathbb{Z}$  which is impossible.

If one of them is not orientable, we say N, then we claim that  $M \sharp N$  is not orientable. Consider the pair  $(M \sharp N, M - \{p\})$ , we have

$$\cdots \to H_n(M - \{p\}) \to H_n(M \sharp N) \to H_n(M \sharp N, M - \{p\}) \to \cdots$$

By Proposition 3.26 we have  $H_n(M - \{p\}) = 0$ . As  $H_n(M \sharp N, M - \{p\}) = H_n(M \sharp N/(M - \{p\})) = H_n(N) = 0$ , we find that  $H_n(M \sharp N) = 0$ . Hence  $M \sharp N$  is not orientable.

Now we will compute  $H_i(M \sharp N)$ . Consider pair  $(M \sharp N, S^{n-1})$  with quotient  $M \sharp N/S^{n-1} \cong M \vee N$  again. We have

$$\cdots \to \widetilde{H}_i(S^{n-1}) \to \widetilde{H}_i(M \sharp N) \to \widetilde{H}_i(M \lor N) \to \widetilde{H}_{i-1}(S^{n-1}) \to \cdots$$

Hence if  $i \neq n-1, n$ , then  $\widetilde{H}_i(M \sharp N) \cong \widetilde{H}_i(M \lor N) \cong \widetilde{H}_i(M) \oplus \widetilde{H}_i(N)$ . We consider i = n-1, n and we need to consider

$$0 \to \widetilde{H}_n(M \sharp N) \to \widetilde{H}_n(M \lor N) \to \widetilde{H}_{n-1}(S^{n-1}) \to \widetilde{H}_{n-1}(M \sharp N) \to \widetilde{H}_{n-1}(M \lor N) \to 0.$$

Three cases:

If both M, N are orientable, then so is M # N. Hence  $H_n(M \# N) \cong \mathbb{Z}$  and we have

$$0 \to \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \to H_{n-1}(M \sharp N) \to H_{n-1}(M \lor N) \to 0$$

By some analysis of topology we find that the first map is  $1 \mapsto (1,1)$  and the second one is  $(a,b) \mapsto a-b$ . Hence  $\widetilde{H}_{n-1}(M \not\equiv N) \cong \widetilde{H}_{n-1}(M \lor N)$ .

If M is orientable but N is not, then  $M \sharp N$  is not and we have  $\widetilde{H}_n(M \sharp N) = 0$  and

$$0 \to 0 \to \mathbb{Z} \oplus 0 \to \mathbb{Z} \to \widetilde{H}_{n-1}(M \sharp N) \to \widetilde{H}_{n-1}(M \lor N) \to 0.$$

We know that  $\mathbb{Z} \oplus 0 \to \mathbb{Z}$  induced by  $(1,0) \mapsto 1$  by trivial reason. Hence  $\widetilde{H}_{n-1}(M \not\equiv N) \cong \widetilde{H}_{n-1}(M \lor N)$ .

If both M, N are not orientable, so is  $M \sharp N$  and we have  $\widetilde{H}_n(M \sharp N) = 0$  and

$$0 \to 0 \to \mathbb{Z} \to \widetilde{H}_{n-1}(M \sharp N) \to \widetilde{H}_{n-1}(M \lor N) \to 0.$$

Here we need more information of these manifolds.

**Example 3.28.** Let M is a closed connected m-manifold and N is a closed connected n-manifold. Show that  $M \times N$  is orientable if and only if both M, N are orientable.

Proof. By Topological Künneth Formula, we have

$$0 \to H_m(M) \otimes H_n(N) \to H_{m+n}(M \times N) \to \operatorname{Tor}_1^R(H_m(M) \otimes H_{n-1}(N)) \oplus \operatorname{Tor}_1^R(H_{m-1}(M) \otimes H_n(N)) \to 0$$

By Theorem 3.23 we have  $H_m(M) \otimes H_n(N) \cong H_{m+n}(M \times N)$  and the result follows by Theorem 3.23 again.

### 3.4 Poincaré Duality

First consider cohomology with compact supports.

**Definition 3.29.** Let  $C_c^i(X;G)$  be the subgroup of  $C^i(X;G)$  consisting of cochains  $\phi: C^i(X) \to G$  for which there exists a compact set  $K = K_\phi \subset X$  such that  $\phi$  is zero on all chains in X - K. Note that  $\delta\phi$  is then also zero on chains in X - K, so  $\delta\phi$  lies in  $C_c^{i+1}(X;G)$  and the  $C_c^i(X;G)$ 's for varying i form a subcomplex of the singular cochain complex of X. The cohomology groups  $H_c^i(X;G)$  of this subcomplex are the cohomology groups with compact supports.

Another way we let compact  $K \hookrightarrow L$  induce  $(X, X - L) \hookrightarrow (X, X - K)$ , then we have  $C^i(X, X - K; G) \hookrightarrow C^i(X, X - L; G)$  and  $H^i(X, X - K; G) \to H^i(X, X - L; G)$ .

**Proposition 3.30.** Since  $K \subset X$  are compact sets form a direct system via inclusions. Then we have

$$\lim_{i \to \infty} H^i(X, X - K; G) \cong H^i_c(X; G).$$

**Theorem 3.31** (Poincaré Duality). Let M be a R-oriented n-manifold. First we define a map  $D_M: H^k_c(M; R) \to H_{n-k}(M; R)$ . Consider compact sets  $K \subset L \subset M$ , we have

$$\begin{array}{c|c} H_n(M|L;R) & \xrightarrow{\times} & H^k(M|L;R) & \xrightarrow{\frown} & H_{n-k}(M;R) \\ & & & & \\ i_* \downarrow & & i^* \uparrow & & \\ H_n(M|K;R) & \xrightarrow{\times} & H^k(M|K;R) \end{array}$$

By previous theorem we can find unique elements  $\mu_K \in H_n(M|K;R), \mu_L \in H_n(M|L;R)$  restricting to a given orientation of M at each point of K and L, respectively.

So we have  $i_*(\mu_L) = \mu_K$  and  $\mu_K \frown x = i_*(\mu_L) \frown x = \mu_L \frown i^*(x)$  for all  $x \in H^k(M|K;R)$ . So when K vary, we also have  $H^k(M|K;R) \xrightarrow{\mu_K \frown (-)} H_{n-k}(M;R)$  which induce

$$D_M: H^k_c(M; R) = \varinjlim H^i(X|K; G) \cong H_{n-k}(M; R).$$

**Remark 3.32.** When M is a closed R-oriented n-manifold, if [M] is the fundamental class, we have isomorphism

$$D_M: H^k(M; R) \xrightarrow{[M] \frown (-), \cong} H_{n-k}(M; R).$$

Proposition 3.33. A closed manifold of odd dimension has Euler characteristic zero.

*Proof.* If M is orientable, then  $\operatorname{rank}(H_i(M;\mathbb{Z})) = \operatorname{rank}(H^{n-i}(M;\mathbb{Z})) = \operatorname{rank}(H_{n-i}(M;\mathbb{Z}))$  by Poincaré duality and universal coefficient theorem. If n is odd, well done.

If M is not orientable, the similar argument we have  $\sum_{i}(-1)^{i} \dim H_{i}(M; \mathbb{Z}/2\mathbb{Z}) = 0$ . Now we claim that  $\sum_{i}(-1)^{i} \dim H_{i}(M; \mathbb{Z}/2\mathbb{Z}) = \sum_{i}(-1)^{i} \operatorname{rank}(H_{i}(M; \mathbb{Z}))$ . Each  $\mathbb{Z}$  summand of  $H_{i}(M; \mathbb{Z})$  gives  $\mathbb{Z}/2\mathbb{Z}$  summand of  $H_{i}(M; \mathbb{Z}/2\mathbb{Z})$ ; each  $\mathbb{Z}/m\mathbb{Z}$  (where m even) of  $H_{i}(M; \mathbb{Z})$  gives  $\mathbb{Z}/2\mathbb{Z}$  summands of  $H_{i}(M; \mathbb{Z}/2\mathbb{Z})$  and  $H_{i+1}(M; \mathbb{Z}/2\mathbb{Z})$  which canceled; each  $\mathbb{Z}/m\mathbb{Z}$  (where modd) of  $H_{i}(M; \mathbb{Z})$  contribute nothing. Well done.  $\Box$ 

### 3.5 Other Duality

**Example 3.34** (Euler Charactristic of Boundaries). Let W be a compact (2m+1)-dimensional manifold, then  $\chi(\partial W) = 2\chi(W)$ .

*Proof.* Consider  $W \times I$  as a (2m+2)-manifold with  $\partial(W \times I) = (W \times \{0\}) \cup (M \times I) \cup (W \times \{1\})$ . Let  $M = \partial W$ . Let  $U = \partial(W \times I) - (W \times \{1\})$  and  $V = \partial(W \times I) - (W \times \{0\})$ . Then U, V are open in  $\partial(W \times I)$ . Both U, V are open in  $\partial(W \times I)$ . Moreover  $U, V \simeq W, U \cap V \simeq M$ . So by MV sequence

Since  $\chi(\partial(W \times I)) = 0$  since dim  $\partial(W \times I)$  is odd. So

$$2\chi(W) = \chi(M) + \chi(\partial(W \times I)) = \chi(M)$$

well done.

**Corollary 3.35.** If  $M = \partial W$  for some compact manifold W, then  $\chi(M)$  is even.

**Example 3.36** (Boundary of Orientable Manifold is Orientable). Let M be a R-orientable n-manifold with boundary  $\partial M$ , then  $\partial M$  is R-orientable.

*Proof.* See [3].Consider a coordinate  $U \cong \mathbb{H}^n$  of  $x \in \partial M$ . Let  $V = \partial U = u \cap \partial M$ , and choose  $y \in int(U) = U - V$ . We consider *R*-coefficient homology group, then we have

$$\begin{split} H_n(\operatorname{int}(M), \operatorname{int}(M) - \operatorname{int}(U)) & \xrightarrow{R-\operatorname{orientable},\cong} H_n(\operatorname{int}(M), \operatorname{int}(M) - y) \\ & \xrightarrow{\text{Homotopy by boundary collar},\cong} H_n(M, M - y) \\ & \xrightarrow{R-\operatorname{orientable},\cong} H_n(M, M - \operatorname{int}(U)) \\ & \xrightarrow{\partial,\cong} H_n(M - \operatorname{int}(U), M - U) \\ & \xrightarrow{\text{Homotopy by boundary collar},\cong} H_n(M - \operatorname{int}(U), M - \operatorname{int}(U) - x) \\ & \xrightarrow{\text{Excision of int}(M) - \operatorname{int}(U),\cong} H_n(\partial M, \partial M - x) \\ & \xrightarrow{R-\operatorname{orientable},\cong} H_n(\partial M, \partial M - V). \end{split}$$

Well done.

Remark 3.37. In smooth case, we can calculate the transition function. See Theorem 1.3 in http://staff.ustc.edu.cn/~wangzuoq/Courses/21F-Manifolds/Notes/Lec24.pdf.

**Theorem 3.38** (Poincaré Duality with Boundaries). Suppose M is a compact R-orientable n-manifold whose boundary  $\partial M$  s decomposed as the union of two compact (n-1) dimensional manifolds A and B with a common boundary  $\partial A = \partial B = A \cap B$ . Take fundamental class  $[M] \in H_n(M, \partial M; R)$ . Then for all k we have isomorphism  $D_M : H^k(M, A; R) \xrightarrow{[M] \cap (-), \cong} H_{n-k}(M, B; R)$ .

**Corollary 3.39** (Lefschetz Duality). Suppose M is a compact R-orientable n-manifold and take fundamental class  $[M] \in H_n(M, \partial M; R)$ . Then for all k we have isomorphism  $D_M : H^k(M, \partial M; R) \xrightarrow{[M] \frown (-),\cong} H_{n-k}(M; R)$  and  $D_M : H^k(M; R) \xrightarrow{[M] \frown (-),\cong} H_{n-k}(M, \partial M; R)$ .

**Theorem 3.40** (Generalized Local Homology Groups). Let K be a compact, locally contractible subspace of a closed orientable n-manifold M, then

$$H_i(M, M - K; \mathbb{Z}) \cong H^{n-i}(K; \mathbb{Z}).$$

**Theorem 3.41** (Alexander Duality). If K is a compact, locally contractible subspace of  $S^n$ , then for all i and any abelian group G, we have

$$\widetilde{H}_i(S^n - K; G) \cong \widetilde{H}^{n-i-1}(K; G).$$

**Theorem 3.42** (Poincaré-Alexander-Lefschetz Duality). Let M be an n-manifold R-oriented by  $\vartheta$  where R is any commutative ring with an identity element. For any R-module G, and let  $L \subset K$  be compact subsets of M. Then the cap product induce the isomorphism

$$\cap [\vartheta] : \lim_{(U,V) \supset (K,L) \text{ open}} H^p(U,V;G) \xrightarrow{\cong} H_{n-p}(M-L,M-K;G).$$

*Proof.* See Theorem VI.8.3 in [1]. More corollary we refer book Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry section 14.5.  $\hfill \square$ 

**Corollary 3.43.** Let M be an n-manifold R-oriented by  $\vartheta$  where R is any commutative ring with an identity element. For any R-module G, and let  $L \subset K$  be compact subsets of M. If both of them are good pair, then the cap product induce the isomorphism

$$H^{p}(K,L;G) \cong \lim_{(U,V)\supset (K,L) open} H^{p}(U,V;G) \xrightarrow{\cap [\vartheta]} H_{n-p}(M-L,M-K;G).$$

*Proof.* From Lemma 9 and Theorem 10 in chapter 6.1 in [4].

### 3.6 Cohomology Rings

As before we have

$$\psi(\alpha \frown \phi) = (\phi \smile \psi)(\alpha)$$

where  $\alpha \in C_{k+l}(X; R), \phi \in C^k(X; R), \psi \in C^l(X; R)$ . So we have

$$\begin{array}{ccc} H^{l}(X;R) & \stackrel{h}{\longrightarrow} \operatorname{Hom}_{R}(H_{l}(X;R),R) \\ & & & & \\ \phi \sim & & & (\neg \phi)^{*} \\ H^{k+l}(X;R) & \stackrel{h}{\longrightarrow} \operatorname{Hom}_{R}(H_{k+l}(X;R),R) \end{array}$$

For closed R-orientable n-manifold M, consider an important pair:

$$H^{k}(M;R) \times H^{n-k}(M;R) \longrightarrow R$$
$$(\phi,\psi) \longmapsto (\phi \smile \psi)[M]$$

**Proposition 3.44.** This pair is nonsingular for closed *R*-orientable manifolds when *R* is a field or when  $R = \mathbb{Z}$  and torsion in  $H^*(M; \mathbb{Z})$  is factored out.

Proof. By the universal coefficient theorem and the Poincaré duality, we have an isomorphism

$$H^{n-k}(M;R) \xrightarrow{h} \operatorname{Hom}_R(H_{n-k}(M;R),R) \xrightarrow{D_M^*} \operatorname{Hom}_R(H^k(M;R),R).$$

Well done.

**Corollary 3.45.** If M is a connected closed orientable n-manifold, then for each element  $\alpha \in H^k(M; \mathbb{Z})$  of infinite order that is not a proper multiple of another element, there exists an element  $\beta \in H^{n-k}(M; \mathbb{Z})$  such that  $\alpha \smile \beta$  is a generator of  $H^n(M; \mathbb{Z}) \cong \mathbb{Z}$ . With coefficients in a field the same conclusion holds for any  $\alpha \ne 0$ .

*Proof.* Follows directly from the nonsingular pair.

**Proposition 3.46.** If  $R \to S$  be a ring map, then so is  $H^*(X, A; R) \to H^*(X, A; S)$ .

Proof. Trivial.

**Example 3.47** (Moore Spaces). Let M(G, n) is a Moore space, let G generated by  $g_i$  with relations  $F_j$ . then  $H^*(M(G, n); \mathbb{Z}) \cong \mathbb{Z}[g_i]/(g_i^2, F_j)$ .

**Example 3.48** (Oriented Closed Surfaces). Let  $g \ge 0$  and  $M_g$  be the genus g oriented closed surface. Then

$$H^*(M_g; \mathbb{Z}) \cong \frac{\mathbb{Z}[x_i, y_i, z]_{i=1}^g}{(x_i y_i - z, x_i x_j, y_i y_j, z^2, x_i z, y_i z, \{x_i y_k : i \neq k\})}$$

for deg  $x_i$  = deg  $y_i$  = 1 and deg z = 2.

*Proof.* Let  $X := \bigvee_{i=1}^{g} T_i$  where  $T_i$  are tori. Let  $i : A \hookrightarrow M_g$  be the inclusion where  $A = S^2 \setminus \prod_{j=1}^{g} D^2 \simeq \bigvee_{j=1}^{g-1} S^1$  as following diagram:



where  $q: M_g \to M_g/A \cong X$  be the qoutient map since  $M_g \cong T_1 \sharp T_2 \sharp \cdots \sharp T_g$ . Hence we get a ring map  $q^*: H^*(X) \to H^*(M_g)$ .

First we need to find the relation of cohomology classes via  $q^*: H^*(X) \to H^*(M_q)$ . The only non-trivial cases are \* = 1, 2. For \* = 1, we consider the exact sequence

$$H_1(A) \xrightarrow{i_*} H_1(M_g) \xrightarrow{q_*} H_1(X) \xrightarrow{\delta} H_0(A) \xrightarrow{i_*} H_0(M_g).$$

We find that  $i_*: H_1(A) \to H_1(M_q)$  is zero since the loops in A will be in the commutator of  $\pi_1(M_q)$  and  $H_1(M_q) = \text{Abel}(\pi_1(M_q))$ . Moreover,  $i_*: H_0(A) \to H_0(M_q)$  is injective by the definition, so  $\delta = 0$ . Hence  $q_* : H_1(M_q) \cong H_1(X)$  which induce  $q^* : H^1(X) \cong H^1(M_q)$  by universal coefficient theorem. For \* = 2, we let  $p_i : X \to T_i$  are projects in to the *i*-th torus. Then we have

$$H_2(M_g) \cong \mathbb{Z} \xrightarrow{q_*} H_2(X) \cong \mathbb{Z}^g \xrightarrow{(p_i)_*} H_2(T_i) \cong \mathbb{Z}$$

As the top cell  $e^2$  of  $M_q$  send via  $q, p_i$  is also a top cell  $T_i$ , by cellular chain complex and its homology we know that  $(p_i)_* \circ q_* : 1 \mapsto 1$ . Hence  $q_* : 1 \mapsto (1, ..., 1)$ . So  $q^* : H^2(X) \cong \mathbb{Z}^g \to \mathbb{Z}^g$  $H^2(M_q)$  given by  $\gamma_i \mapsto 1$  for the generators of every summands.

Finally we know the work of  $q^*$ . Let  $H^1(X)$  generated by  $\{\alpha_i, \beta_i\}_{i=1}^g$  and  $H^2(X)$  generated by  $\{\gamma_i\}_{i=1}^g$ . We know that  $\alpha_i \cup \beta_i = \gamma_i$  and all other cup product between them will be zero by the case of tori. Hence if we let  $x_i = q^* \alpha_i, y_i = q^* \beta_i$  and  $z = q^* \gamma_1 = \ldots = q^* \gamma_g$ , we have

$$H^*(M_g; \mathbb{Z}) \cong \frac{\mathbb{Z}[x_i, y_i, z]_{i=1}^g}{(x_i y_i - z, x_i x_j, y_i y_j, z^2, x_i z, y_i z, \{x_i y_k : i \neq k\})}$$

for deg  $x_i = \deg y_i = 1$  and deg z = 2. Well done.

**Example 3.49** (Non-oriented Closed Surfaces). Let  $g \ge 0$  and  $N_g$  be the genus g non-oriented closed surface. Then

$$H^*(N_g; \mathbb{Z}/2\mathbb{Z}) \cong \frac{\mathbb{Z}/2\mathbb{Z}[x_i, y]_{i=1}^g}{(x_i^2 = y, y^2, \{x_i x_j : i \neq j\})}$$

for deg  $x_i = 1$  and deg y = 2.

*Proof.* Here all the homology and cohomology groups are of  $\mathbb{Z}/2\mathbb{Z}$ -coefficients.

Let  $X := \bigvee_{i=1}^{g} \mathbb{R}P^2$  and let  $i : A \hookrightarrow N_g$  be the inclusion where  $A = S^2 \setminus \coprod_{i=1}^{g} D^2 \simeq \bigvee_{i=1}^{g-1} S^1$ as the orinetable case. Hence we have  $q: N_g \to M_g/A \cong X$  be the qoutient map since  $N_g \cong \mathbb{R}P^2 \sharp \mathbb{R}P^2 \sharp \cdots \sharp \mathbb{R}P^2$  and get the ring map  $q^* : H^*(X) \to H^*(N_g)$ .

First we need to find the relation of cohomology classes via  $q^*: H^*(X) \to H^*(N_g)$ . The only non-trivial cases are \* = 1, 2. For \* = 1, we consider the exact sequence

$$H_1(A) \xrightarrow{i_*} H_1(N_g) \xrightarrow{q_*} H_1(X) \xrightarrow{\delta} H_0(A) \xrightarrow{i_*} H_0(N_g).$$

We find that  $i_*: H_1(A) \to H_1(N_q)$  is zero since the loops in A will be two times of the loops in  $\pi_1(N_g)$  and  $H_1(N_g) = \operatorname{Abel}(\pi_1(N_g)) \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ . Moreover,  $i_* : H_0(A) \to H_0(N_g)$  is injective by the definition, so  $\delta = 0$ . Hence  $q_* : H_1(N_g) \cong H_1(X)$  which induce  $q^* : H^1(X) \cong H^1(N_g)$  by universal coefficient theorem. For \* = 2, we let  $p_i : X \to \mathbb{R}P^2$  are projects in to the *i*-th space. Then we have

$$H_2(N_g) \cong \mathbb{Z}/2\mathbb{Z} \xrightarrow{q_*} H_2(X) \cong \mathbb{Z}/2\mathbb{Z}^g \xrightarrow{(p_i)_*} H_2(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$$

As the top cell  $e^2$  of  $N_g$  send via  $q, p_i$  is also a top cell  $\mathbb{R}P^2$ , by cellular chain complex and its homology we know that  $(p_i)_* \circ q_* : 1 \mapsto 1$ . Hence  $q_* : 1 \mapsto (1, ..., 1)$ . So  $q^* : H^2(X) \cong \mathbb{Z}/2\mathbb{Z}^g \to \mathbb{Z}/2\mathbb{Z}^g$  $H^2(N_q)$  given by  $\gamma_i \mapsto 1$  for the generators of every summands.

Finally we know the work of  $q^*$ . Let  $H^1(X)$  generated by  $\{\alpha_i\}_{i=1}^g$  and  $H^2(X)$  generated by  $\{\beta_i\}_{i=1}^g$ . We know that  $\alpha_i^2 = \beta$  and all other cup product between them will be zero by the case of tori. Hence if we let  $x_i = q^* \alpha_i$  and  $y = q^* \beta_1 = \ldots = q^* \beta_g$ , we have

$$H^*(N_g; \mathbb{Z}/2\mathbb{Z}) \cong \frac{\mathbb{Z}/2\mathbb{Z}[x_i, y]_{i=1}^g}{(x_i^2 = y, y^2, \{x_i x_j : i \neq j\})}$$

for deg  $x_i = 1$  and deg y = 2. Well done.

**Proposition 3.50.** Let  $M_1$  and  $M_2$  be closed oriented manifolds of dimension n. If  $f: M_1 \to M_2$ is a continuous map of non-zero degree, and  $x \in H^k(M_2;\mathbb{Z})$  is non-torsion, then  $f^*x \neq 0$ .

*Proof.* Let  $x_i$  denote the oriented generator of  $H^n(M_i;\mathbb{Z})$ , then  $f^*x_2 = \deg(f)x_1$ . As  $x \in \mathcal{I}$  $H^k(M_2;\mathbb{Z})$  is non-torsion, by Poincaré duality there is  $y \in H^{n-k}(M_2;\mathbb{Z})$  with  $x \cup y \neq 0$ , so  $x \cup y = rx_2$  for  $r \neq 0$ . Now  $f^*x \cup f^*y = f^*(x \cup y) = r \operatorname{deg}(f)x_1 \neq 0$ . Hence  $f^*x \neq 0$ . 

**Corollary 3.51.** If there exists a map  $M_1 \to M_2$  of non-zero degree, then for all k we have  $\operatorname{rank} H^k(M_1) \geq \operatorname{rank} H^k(M_2)$ . In particular, if  $M_q \to M_h$  of non-zero degree, then  $g \geq h$ .

*Proof.* Directly from the Proposition.

Example 3.52 (Complex Projective Spaces). We have the ring isomorphisms

$$H^*(\mathbb{C}P^n;\mathbb{Z})\cong\mathbb{Z}[\alpha]/(\alpha^{n+1}), \quad H^*(\mathbb{C}P^\infty;\mathbb{Z})\cong\mathbb{Z}[\alpha], \quad |\alpha|=2$$

*Proof.* Inclusion  $\mathbb{C}P^{n-1} \hookrightarrow \mathbb{C}P^n$  induce the same cohomology group of degree less than 2n-2, so by induction on n we have  $H^{2i}(\mathbb{C}P^n;\mathbb{Z})$  is generated by  $\alpha^i$  for i < n. By the Corollary 3.45 we can find  $m\alpha^{i-1}$  such that  $\alpha \smile m\alpha^{n-1} = m\alpha^n$  generates  $H^{2n}(\mathbb{C}P^n;\mathbb{Z})$ , so  $m = \pm 1$ , well done. For the case of  $\mathbb{C}P^{\infty}$ , this follows from the cellular cohomology. 

**Remark 3.53.** Similarly, we have  $H^*(\mathbb{H}P^n;\mathbb{Z}) \cong \mathbb{Z}[\alpha]/(\alpha^{n+1})$  and  $H^*(\mathbb{H}P^\infty;\mathbb{Z}) \cong \mathbb{Z}[\alpha]$  for  $|\alpha| = 4.$ 

**Example 3.54** (Real Projective Spaces). We have the ring isomorphisms

$$H^*(\mathbb{R}P^n;\mathbb{Z}/2\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}[\alpha]/(\alpha^{n+1}), \quad H^*(\mathbb{R}P^\infty;\mathbb{Z}/2\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}[\alpha], \quad |\alpha|=1.$$

Furthermore, we have  $H^*(\mathbb{R}P^{\infty};\mathbb{Z}) \cong \mathbb{Z}[\alpha]/(2\alpha)$  for  $|\alpha| = 2$  and

$$H^*(\mathbb{R}P^n;\mathbb{Z}) \cong \begin{cases} \mathbb{Z}[\alpha]/(2\alpha,\alpha^{k+1}), |\alpha| = 2, & n = 2k; \\ \mathbb{Z}[\alpha]/(2\alpha,\alpha^{k+1},\beta^2,\alpha\beta), |\alpha| = 2, |\beta| = n, & n = 2k+1. \end{cases}$$

Here  $\beta$  is a generator of  $H^{2k+1}(\mathbb{R}P^{2k+1};\mathbb{Z}) \cong \mathbb{Z}$ .

*Proof.* For the coefficient of  $\mathbb{Z}/2\mathbb{Z}$  this is similar as complex projective space.

By Proposition 3.46 we have a ring map  $H^*(\mathbb{R}P^\infty;\mathbb{Z}) \to H^*(\mathbb{R}P^\infty;\mathbb{Z}/2\mathbb{Z})$ . Consider the cellular cochain as follows:

$$\cdots \xleftarrow{2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{2} \cdots (0) \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{0}$$

Hence the ring map  $H^*(\mathbb{R}P^{\infty};\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}[\alpha]$  is injective in the positive dimension with the image in the even part of  $\mathbb{Z}/2\mathbb{Z}[\alpha]$ . Hence  $H^*(\mathbb{R}P^{\infty};\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}[\alpha] = \mathbb{Z}[\alpha]/(2\alpha)$  for  $|\alpha| = 2$ .

For n = 2k this is the same, hence  $H^*(\mathbb{R}P^{2k};\mathbb{Z}) \cong \mathbb{Z}[\alpha]/(2\alpha, \alpha^{k+1})$  for  $|\alpha| = 2$ . For n = 2k + 1, note that the top cohomology is  $\mathbb{Z}$ . We let a generator of it is  $\beta$ , hence  $\alpha, \beta$  generated by  $\alpha, \beta$ . But in this case  $\beta^2 = 0$  and  $\alpha\beta = 0$  by dimension reason. Hence  $H^*(\mathbb{R}P^{2k+1};\mathbb{Z}) \cong \mathbb{Z}[\alpha]/(2\alpha, \alpha^{k+1}, \beta^2, \alpha\beta)$  for  $|\alpha| = 2, |\beta| = 2k + 1$ .

Example 3.55 (Torus). We have

$$H^*(T^n; R) \cong \bigwedge_R [\alpha_1, ..., \alpha_n]$$

for generators  $\alpha_i \in H^1(S^1; R)$ . More generally, we have

$$H^*(S^{k_1} \times \dots \times S^{k_n}; R) \cong \bigwedge_R [\alpha_1, ..., \alpha_n]$$

when all  $k_i$  odd for generators  $\alpha_i \in H^1(S^{k_i}; R)$ .

Proof. Follows directly from Künneth formula.

**Example 3.56** (Same Cohomology Group with Different Ring). The spaces  $\mathbb{C}P^2$  and  $S^2 \vee S^4$  has the same cohomology groups but with the different ring structure.

*Proof.* We have  $\widetilde{H}^*(S^2 \vee S^4; \mathbb{Z}) \cong \widetilde{H}^*(S^2; \mathbb{Z}) \oplus \widetilde{H}^*(S^4; \mathbb{Z})$ . Now as  $\alpha^2 = 0$  for  $\alpha \in H^2(S^2; \mathbb{Z})$  which is impossible for  $\mathbb{C}P^2$ , then well done.

**Example 3.57** (Same Cohomology with Additive Structure but Different Cup Product). The spaces  $\mathbb{C}P^3$  and  $S^2 \times S^4$  has the same cohomology groups but with the different ring structure.

*Proof.* By Künneth formula we have  $H^*(S^2 \times S^4; \mathbb{Z}) \cong \mathbb{Z}[\alpha]/(\alpha^2) \otimes_{\mathbb{Z}} \mathbb{Z}[\beta]/(\beta^4)$  for  $|\alpha| = 2$  and  $|\beta| = 4$  with signature-different product. Now as  $\alpha^2 = 0$  for  $|\alpha| = 2$  which is impossible for  $\mathbb{C}P^3$ , then well done.

**Remark 3.58.** Another example is  $\mathbb{C}P^2 \sharp \mathbb{C}P^2$  and  $\mathbb{C}P^1 \times \mathbb{C}P^1$ . To compute  $H^*(\mathbb{C}P^2 \sharp \mathbb{C}P^2; \mathbb{Z})$ , you may consider the map  $\mathbb{C}P^2 \sharp \mathbb{C}P^2 \to \mathbb{C}P^2 \vee \mathbb{C}P^2$ .

**Example 3.59** (Same Z-Cohomology Ring with Different  $\mathbb{Z}/2\mathbb{Z}$ -Ones). We have ring isomorphism  $H^*(\mathbb{R}P^{2k+1};\mathbb{Z}) \cong H^*(\mathbb{R}P^{2k} \vee S^{2k+1};\mathbb{Z})$  but this is not true for  $\mathbb{Z}/2\mathbb{Z}$ -coefficient rings.

*Proof.* The isomorphism  $H^*(\mathbb{R}P^{2k+1};\mathbb{Z}) \cong H^*(\mathbb{R}P^{2k} \vee S^{2k+1};\mathbb{Z})$  is trivial. But for the generator  $\alpha \in H^1(\mathbb{R}P^{2k+1};\mathbb{Z}/2\mathbb{Z})$  we have  $\alpha^{2k+1} \neq 0$ . This is impossible for  $\mathbb{R}P^{2k} \vee S^{2k+1}$ .  $\Box$ 

## 4 Applications in the Classical Results

**Example 4.1** (Jordan Curve). Actually we view  $S^1 \subset \mathbb{R}^2$  as one-point compactification  $S^1 \subset S^2$ , then we use Alexander duality as

$$\widetilde{H}_0(S^2 - S^1; \mathbb{Z}) \cong \widetilde{H}^1(S^1; \mathbb{Z}) \cong \mathbb{Z},$$

so  $H_0(S^2 - S^1; \mathbb{Z}) \cong \mathbb{Z}^2$ , well done.

**Example 4.2** (Jordan-Brouwer Separation Theorem). If  $S \subset \mathbb{R}^n$  be a connected compact hypersurface, then  $\mathbb{R}^n - S$  has two components.

*Proof.* Also we let it as in one-point compactification  $S \subset S^n$ . Now we didn't know whether S is orientable or not, we consider  $\mathbb{Z}/2\mathbb{Z}$  as coefficient, then we use Alexander duality and Poincaré duality

$$\widetilde{H}_0(S^n - S; \mathbb{Z}/2\mathbb{Z}) \cong \widetilde{H}^{n-1}(S; \mathbb{Z}/2\mathbb{Z}) \cong H_0(S; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z},$$

well done.

**Example 4.3** (Compact Hypersurface as Boundary). If  $S \subset \mathbb{R}^n$  be a connected compact hypersurface, then S be the boundary of some domain in  $\mathbb{R}^n$ .

*Proof.* Trivial by Jordan-Brouwer Separation Theorem.

**Proposition 4.4.** Let  $X \subset \mathbb{R}^n$  be a compact and locally contractible, then  $H_i(X;\mathbb{Z}) = 0$  for  $i \geq n$  and torsion-free for i = n - 1, n - 2.

*Proof.* View  $X \subset S^n$  by one-point compactification. Hence by Alexander duality we have  $\widetilde{H}_{n-i-1}(S^n - X; \mathbb{Z}) \cong \widetilde{H}^i(X; \mathbb{Z})$ . Then using universal coefficient theorem as in the following examples we can get the result.

**Example 4.5** (Compact Hypersurface in  $\mathbb{R}^n$  is Orientable). If S be a connected compact hypersurface S in  $\mathbb{R}^n$  is orientable.

*Proof 1.* Follows from Proposition 4.4 directly. But here we will go through the proof of that proposition.

Since dim S = n - 1, we have to calculate  $H_{n-2}(S;\mathbb{Z})$ . Also we let it as in one-point compactification  $S \subset S^n$ . WLOG we let n > 1. If S is not orientable, we have  $H_{n-1}(S;\mathbb{Z}) = 0$  and  $H_{n-2}(S;\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$ , then we have

$$\mathbb{Z} \cong \widetilde{H}_0(S^n - S; \mathbb{Z}) \cong H^{n-1}(S)$$
  
$$\cong \operatorname{Hom}_{\mathbb{Z}}(H_{n-1}(S; \mathbb{Z}), \mathbb{Z}) \oplus \operatorname{Ext}^1_{\mathbb{Z}}(H_{n-2}(S; \mathbb{Z}), \mathbb{Z})$$
  
$$\cong \operatorname{Ext}^1_{\mathbb{Z}}(H_{n-2}(S; \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

which is impossible. Well done.

*Proof 2.* Here we give another method. Take  $x \in S$  and  $u \in N_x(\mathbb{R}^n/S)$  with ||u|| = 1. By Jordan-Brouwer separation theorem we may let u always in the same component when x is varying on S. Consider a non-trivial vector field X(x) = u(x). Now  $i_X(\text{vol})$  restricted to S is a volume form on S where vol is the canonical volume form on  $\mathbb{R}^n$ .

*Proof 3.* Moreover we could prove that the normal bundle of S is trivial. See https://math.stackexchange.com/questions/863960/orientation-of-hypersurface.

**Example 4.6.** We show that  $\mathbb{R}P^n$  can be embedded in  $\mathbb{R}^{n+1}$  if and only if n = 1 and  $\mathbb{C}P^n$  can be embedded in  $\mathbb{R}^{2n+1}$  if and only if n = 1.

*Proof.* The same proof holds for  $\mathbb{C}P^n$  and we only consider  $\mathbb{R}P^n$ . Here we only consider the  $\mathbb{Z}/2\mathbb{Z}$ -coefficient groups.

If n = 1, then  $\mathbb{R}P^1 \cong S^1$ . Hence it can be embedded in  $\mathbb{R}^2$ .

Conversely we let  $n \ge 2$ . If  $\mathbb{R}P^n$  can be embedded in  $\mathbb{R}^{n+1}$ , then we have embedding  $\mathbb{R}P^n \hookrightarrow S^{n+1}$ . Let  $H^*(\mathbb{R}P^n) \cong \mathbb{Z}/2\mathbb{Z}[x]/(x^{n+1})$ . Consider the good pair  $(S^{n+1}, \mathbb{R}P^n)$  we have  $H^{n+1}(S^{n+1}, \mathbb{R}P^n) \cong \mathbb{Z}/2\mathbb{Z}^2$ . By Corollary 3.43 we have  $H^{n+1}(S^{n+1}, \mathbb{R}P^n) \cong H_0(S^{n+1} - \mathbb{R}P^n) \cong \mathbb{Z}/2\mathbb{Z}^2$ . Hence  $S^{n+1} - \mathbb{R}P^n$  has two connected components. Let A, B are closure of these components in  $S^{n+1}$ , hence  $A \cup B = S^{n+1}$  and  $A \cap B = \mathbb{R}P^n$ . Hence we get  $H^{n+1}(A) \oplus$ 

 $H^{n+1}(B) \cong H^{n+1}(S^{n+1} - \mathbb{R}P^n)$ . As by Corollary 3.43 again we have  $H^{n+1}(S^{n+1} - \mathbb{R}P^n) \cong H_0(S^{n+1}, \mathbb{R}P^n) = 0$ , hence  $H^{n+1}(A) = H^{n+1}(B) = 0$ .

Now since  $n \ge 2$ , we have  $H^1(S^{n+1}) = H^2(S^{n+1}) = 0$ . By MV-sequence for (A, B) we have  $H^1(A) \oplus H^1(B) \cong H^1(\mathbb{R}P^n) \cong \mathbb{Z}/2\mathbb{Z}$  via canonical pullback. WLOG we let  $H^1(B) = 0$ . Let  $i : \mathbb{R}P^n \subset A$  and  $i^*\alpha = x$ , then  $i^*\alpha^n = x^n$  generates  $H^n(\mathbb{R}P^n)$ . MV-sequence again:

$$0 \to H^{n}(A) \oplus H^{n}(B) \to H^{n}(\mathbb{R}P^{n}) \to H^{n+1}(S^{n+1}) \to H^{n+1}(A) = H^{n+1}(B) = 0.$$

This is impossible since  $H^n(A) \to H^n(\mathbb{R}P^n)$  surjective but  $H^{n+1}(S^{n+1}) \cong \mathbb{Z}/2\mathbb{Z}$ .

**Remark 4.7.** Actually you can show this using Stiefel-Whitney class for  $\mathbb{R}^n$  and total Pontryagin class for  $\mathbb{C}P^n$ , see EmbeddedProj.

## 5 Some Other Things

**Proposition 5.1.** The infinity sphere  $S^{\infty}$  is contractible.

Proof. Step 1. Consider  $f_t : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$  as  $(x_1, x_2, ...) \mapsto (1-t)(x_1, x_2, ...) + t(0, x_1, x_2, ...)$ . Step 2. Consider  $g_t : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$  as  $(x_1, x_2, ...) \mapsto (1-t)(0, x_1, ...) + t(1, 0, ...)$ . Step 3. Consider  $\frac{g_t}{|g_t|} \circ \frac{f_t}{|f_t|}$  which give us  $\mathbf{1}_{S^{\infty}} \simeq (x \mapsto (1, 0, ...))$ .

**Proposition 5.2.** Show  $S^1 \cong SO(2)$  and  $\mathbb{R}P^3 \cong SO(3)$ .

*Proof.* We have  $f: S^1 \to SO(2)$  by  $e^{i\theta} \mapsto \theta$ . Well done.

Consider  $f : D^3 \to SO(3)$  send  $\boldsymbol{x}$  into the rotation through angle  $|\boldsymbol{x}|\pi$  about the axis formed by the line through the origin in the direction of  $\boldsymbol{x}$ . This is surjective. The only non injective points are the antipodal points over  $\partial D^3 = S^2$ . This give us the homeomorphism  $\bar{f} : \mathbb{R}P^3 \cong D^3/S^2 \cong SO(3)$ .

**Remark 5.3.** We also have  $SO(4) \cong S^3 \times SO(3)$  and more information we refer Section 3.D in [2].

## References

- Glen E Bredon. Topology and geometry, volume 139. Springer Science & Business Media, 2013.
- [2] A. Hatcher. Algebraic topology. Proceedings of the Edinburgh Mathematical Society, 46(2):511-512, 2003.
- [3] J Peter May. A concise course in algebraic topology. University of Chicago press, 1999.
- [4] Edwin H. Spanier. Algebraic Topology. Springer, 1966.