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Abstract

This is a note about the basic spectral sequences , including spectral sequences of exact couples,
filered complexes and double complexes. Moreover, we will make some examples to show how
them work. Furthermore, we also introduce Cartan-Eilenberg Resolutions and lts most important

application, Grothendieck spectral sequences and its applications such as Leray spectral sequences.
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1 Preliminaries

Difinition 1.1. Let A be an additive category, a double complex in it is a system {AP9,d", d5}, (ez
where dy? 1 AP9 — APTLA B9 AP — AP9TL satisfies
(1) d:llﬂrl,q o dllhl] — O,’
(2) d127,q+1 ° dg’q =0;
p,q+1 | gpq _ gp+1l,q  gp.q
(8) di ody™ = dy odi™.

| g 1

s APl L oAb+l

, +1,
] Tigeoa

AP:4 o Aptla o ..

[

The associated total complexr as

A" = Tot™(A") = @) Ave
p+g=n

with g, = Ty gm0 + (-1)7d5)

ptg=n

Difinition 1.2. Let A be an abelian category.
(1) A filtered object of A is a pair (A, F) where A € Obj(A) and F = (F™A) where

AD---DF"ADF"A>...00;

(2) A morphism f: (A, F) — (B,F) as f(F'A) C F'B;

(8) Let X C A, then the induced filtration as F"X = X N F"A;

(4) It is called finite if there exists m,n such that F"A = A, F™A =0;
(5) It is called separated if (\F'A =0, called exhaustive if | JF'A = A.

Difinition 1.3. Let A be an abelian category.
(1) A spectral sequence is a system (E,,d,),>s such that d?> = 0 with E, 1 = ker(d,)/Im(d,);
(2) A morphism f : (Ey,dy)r>s = (E),d.)r>s as frod, = d.. o f, and such that f,y1 induced by

fr via E.y1 = ker(d,)/Im(d,) and B = ker(d])/Im(d}.).
Remark 1.4. Given a spectral sequence (Ey,d,),>s we will define
0=B;,C---CB.,C---CZ.,C---CJZs=EF;s

by the following simple procedure. Set Bsy1 = Im(ds) and Zsy1 = ker(ds). Then it is clear that
dst1 : Zsy1/Bs+1 — Zs41/Bsy1. Hence we can define Bsio as the unique subobject of Es containing
Bsi1 such that Bsia/Bst1 is the image of dsq1. Similarly we can define Z,.o as the unique subobject
of Es containing Bsy1 such that Zsyo/Bs11 is the kernel of dsy1. And so on and so forth. In particular
we have E, = Z,./B,..

Difinition 1.5. Let A be an abelian category and let a spectral sequence (E, dy)r>s.

(1) If the subobjects Zoo = [ Zr and Bs = |J B, exists, then we define the limit of the spectral
sequence 18 Eso = Zoo/Boo;

(2) We say that the spectral sequence (E,,d,),>s degenerates at E, if d, =---=0.



2 Spectral Sequences of exact comples

Difinition 2.1. Let A be an abelian category.
(1) An exact couple is a datum (A, E,«, f,g) with

A—=— > A

such that is a exract sequence;

(2) A morphism t: (A, E,a, f,g) = (A, E', o, f',q) as

A a—— A
/tA ‘/f<tA /g
A o —— A’ E
N Ve /
f’\ {g' tg
E e
where o/ otg =tpoa, flfotg=tpof and g oty =tgog.
Theorem 2.2. Let (A, E,«, f,g) be an exact couple, let
(1)d:=go f:E— E, so that d*> = 0;
(2) E' = kerd/Imd, A’ = Ima;
(8) o : A — A induced by «;
(4) '+ B' = A’ induced by f;
(5) g : A — E' induced by goa~t.
A—> A A" = Ima of A’
E’ =kerd/Imd

Then we have
(a) kerd = f~(kerg) = f~(Ima);
(b) Imd = g(Imf) = g(ker a);
(c) (A E &\ [ g") be an exact couple.

Proof. We will show how o/, f/, g’ work. Actually o/ works by trivial reason. Next, kerd = kergo f =
f~(ker g) = f~}(Ima), then f maps ker d into Ima and since fog = 0, we can induce to f': B/ — A’.
Finally, since Imd = Imgo f = g(Imf) = g(ker o), we choose a,b € a~1(s), then g(a) — g(b) € Imd. So
we can induce to ¢’ : A — E’. It’s easy to see that (A’, E', &/, f',¢’) be an exact couple. O

So if we let By = E,dy =d,Ey = E’',ds = ¢’ o f/ and so on, we get (E,,d,.).

Difinition 2.3. Let (A, E, «, f,g) be an exact couple. We say the spectral sequence associated to exact
couple is defined (E,,d,) as above.

Remark 2.4. So in this case we can let Byy1 = gkera”), Z, 41 = f~*(Ima™). Let

B =g <U ker of) CZo=f" <ﬂ Ima’“)

and Eow = Zoo/Boo



3 Spectral Sequences of filtered complexes

3.1 Main Results

Difinition 3.1. Let A be an abelian category. A filtered complex K* of A is a complex of filtered
objects.

So it seems as follows.

T

L pp-lgmntl o, FPEKn+1 Fp+lpgn+l

| | l

S PPUIRN « FPRM ¢ pPHIgTM

| | |

ce—— FPolgmel . ppgmel o ppHlgnelo

[ [ [

We now assume the category A has countable direct sums and countable direct sums are exact. Next
we will construct the spectral sequence associated to it.

Let K* be the filtered complex and let Ey = €D, , E¢'?, Ey? = gr? KP4 where for a filtered object
A, we denotes grP(A) = FPA/FPHLA gr(A) = @D, er”(A). We call p the filtration degree, and ¢ is
called the complementary degree.

Let dy = @ db?,do? : B2 — EPIH! Now we define

- FPKPTa N g=L(Fptr Kptatl) 4 pr+l gpta
Zrt = Fotlgpta
and
b FPKPtaN d(Fp*rHKerq*l) + Frtlgpta
Byt = Fr+lKp+q

where d be the differential of K*. So

FPKPtaN d—l(Fp+7'Kp+q+1) + Frtlpgpta

Pd — 7P | BPd —
EP = Z29/BY1 = FrKptan d(Fp—r+1 Kpta=1) 4 Fp+lp+e '

Also, we let d2? : EP9 — EPTra=—rHl ag »  FPHLKPTG oy dp 4 v+l gpretl




Theorem 3.2. Let A be an abelian category with exact countable direct sums. Let K* be a filtered com-
plex of A. There is a spectral sequence defined as above. Further more, we have EV'? = HPT1(grP (K*)).

.. . . . ker P-4
Proof. Trivial by the discussion above. In this case Effl = hnd,;fw O

Proposition 3.3. Let A be an abelian category with countable direct sums. Let K* be a filtered

complex of A. Let the spectral sequence associated to K* is (E,,d,). Then the map d"? : EPY =

HPTa(grP (K*)) — EPYHY = grtatl(grbtl(K*)) is equal to the boundary map of the following short
exact sequence
0 — gr?™H(K*) — FPK*/FPP2K* — gr’(K*) — 0.

Proof. This is just a diagram chase. O
If we let K* be a filtered complex, then the induced filtration on H"(K*) defined by FPH"(K*) =
Im(H™(FPK*) — H"(K*)). Then

kerd N FPK™ +Imd N K™ kerdN FPK™
DTN * — D ITn *)
FPH™ (K™, d) Imd N K" and gt H(K7) = 4 i o Tmd 1 FP R

Proposition 3.4. Let A be an abelian category and let K* be a filtered complex of A. If Z2:9 BP:1
exist, then

(1) The limit Eo exists and with bigraded object with EX9 = Z2:1/BP:1;

(2) grPH™(K™) is a subquotient of EP:"~P.

Proof. (1) is trivial and now we have

ﬂr(Fpr+q e d—l(Fp+er+q+1) + Fp+1Kp+q)

D,q
Bt = UT(Fpr+q N d(FP*”“F]-KP‘HZ*l) + Fp+1Kp+q)'

For (2) we let ¢ = n — p, then we have

kerd N FPK™ 4+ FPHIg™ n(F:va-i-q N d—l(Fp-i-T'Kp-i-q-‘rl) + Fp+1Kp+q)
T

and
P Ertand(pr=rt gty 4 FPEUKPTY) C Imd 0 FPK™ + FPHUK™,

T

then a subquotient of EZ" 7P is

kerd N FPK™ 4+ FPtlKn B kerd N FPK™
ImdN FPK™ + FrtlKn  kerd N FPTLK"™ + Tmd N FPK™’

we win. O

Difinition 3.5. Let A be an abelian category and let K* be a filtered complex of A. Let the spectral
sequence associated to K* is (E,,d;)r>r,. We say it is

(1) regular if for all p,q there exists b =0b(p,q) such that d2? =0 for all r > b;

(2) coregular if for all p,q there exists b = b(p, q) such that d2="9"=Y =0 for all r > b;

(3) bounded if for all n there are only a finite number of nonzero EL:"7P; bounded below (resp.
above) if there exists b = b(n) such that EX"™P =0 for p > b(resp. p < B);

(4) weakly converges to H*(K*) if gtP H*(K*) = ER"~P;

(5) abuts to H*(K™) if it weakly converges to H*(K™) and (), FPH"(K*) =0 andJ, FPH"(K*) =
H"(K*) for all n;

(6) converges to H* (K*) if it is reqular, abuts to H*(K*) and H™(K*) = lim, H"(K*)/FPH"(K*).



Theorem 3.6. Let A be an abelian category and let K* be a filtered complex of A. Let the spectral
sequence associated to K* is (E,,d,). If for all n each filtration on K™ is finite, then the spectral
sequence (Ey,d,) is bounded, the filtration on each H™(K*) is finite and (Ey,d,) converges to H*(K*).

Proof. The first two statements are trivial. Finally since for r > 0 we have FPT"K™ = 0 and
Fp=rtlfn—1 — k"=l then we have the equality

kerdN FPK™ + FPTIK™ — ﬂ(Fpr+q Nd~ Y (FPHrgpratly 4 prtl grta)

T

and
U(FprJrq A d(FP-rT gPaty 4 Fp+1Kp+q) =ImdN FPK™ + FPTIK™,

T

so (E,,d,) weakly converges to H*(K™*). Since the filtration on each H™(K™) is finite, so it is abuts
and converges to H*(K™). O

3.2 An Application

Example 1 (Exact sequence from short one to long one). Consider a short exact sequence of complex
0— A* — B* — C* — 0, show that there exists a exact sequence

o= HY(A*) = HY(B*) —» H'(C*) = HTY(A*) — ...

Proof. Consider the filtration B* > A* D 0, then we have F'B? = B* F'B* = A F?B* = 0. So
we have By’ = C% Ey* = A1, For r = 1 we have EY' = H(gr°(B*)) = H'(C*) and E}" =
Hit1(gr!(B*)) = H*1(A*). As we said, d?? as the boundary map, then we have By’ = ker 6, 3" =
cokerd®. So the spectral sequence as the following diagram:

CiHl A2 IO 5 HIF2(AY) 0 _ kerd™t!  cokerdit!

ci A H(C*) — H'TY(A*) 0 ker5i$o

C

citl AT HEYCY) — HI(AY) ker 52‘—1}%“ 0

c
In this case Fy = E,. By the diagram above, we have
0 — kerd* — H'(C*) — H"™"(A*) — cokerd® — 0.
By the theorem we know that the spectral sequence converge to H*(C*), thus
HY(B*)/F'H'(B*) = ¢t H'(B*) = E%' = EJ"" = ker ¢
and F'H!(B*) = gr' H(B*) = EL'=! = E}"™! = cokerd?, so we have
0 — cokerd’ — H'(B*) = ker6'™' =0

is exact. So we combine these exact sequences and then we have the results. O



4 Spectral Sequences of double complexes
4.1 Main Results

Consider a double complex K**, then there are two natrul filterations on Tot(K**) as

FY(Tot"(K**)= @ K", F(Tot"(E>*)= € K.

i+j=n,i>p i+j=n,j>p
See the following diagram.
F? Fy
p
p n n+1 n n+1

Then we get two filtered complexes

A

Tot™H (K**) —=— F}/r(Tot" ™ (K*7))
TLT * %k B) n * %k ) n * ok B)

Tot"(K**) —=— F} ;;(Tot™(K**)) —=— F?,;(Tot™(K**)) ——
1\

Tot" ' (K**) —— F} ;;(Tot" " (K**)) —— F,,,(Tot" ' (K**)) —
1\

(Tot™ 1 (K**)) —

I/IT

and can associated them two spectral sequences ('E,.,'d,) and ("E,., d,).

We now denote H?(K**) as the collections of ker d??/Tmd? "% and HY,(K**) as the collections
of ker dy /Tmdy*~". So we have HY, (HP(K**)) and H?(H{,(K**)).
Theorem 4.1. Let A be an abelian category and let K** be a double complex, then

(1) 'EDY = KPa with 'l = (—1)Pd5? : KP4 — KPa+l;

(2) "EPT = KOP with "db? = d¥P ;. K9P — KTthp;

(3) /BP9 = Ha(KP*) with 'di = HP(d0™);

(4) Y = HOCK™) with " = (1)),

(5) "By = Hi (Hj (K™")) and Ey" = Hy (Hf (K™7)).

Proof. By the previous section this is easy to see. O

Now we say ('E,,d,) and ("E,.,” d,.) weakly converge to, abuts to and converge to is Similar as
the previous section. So we see that ('E,.,d,.) and ("E,.,” d,) weakly converge if and only if for all n
we have

gt (H(Tot(K*))) = @) "E29, grp, (H (Tot(K*))) = () "Era.

ptg=n p+q=n



Theorem 4.2. Let A be an abelian category and let K** be a double complex. Assmue that for all n
there are only finitely many nonzero KP1 with p 4+ q=n. Then

(1) two spectral sequences ('E,., d,.) and ("E.,” d,) are all bounded;

(2) two filtrations Fr, Fry on H™(Tot(K**)) are finite;

(8) two spectral sequences ('Ey., d,.) and ("E,,” d,.) all converge to H*(Tot(K**)).

Proof. This is just the restatement of the theorem in the previous section. O

4.2 Some Applications

Example 2 (Snake Lemma). Consider the following commutative diagram with exact rows.

A-Lt,p_*2,¢ 0
N
0 Xty tyz
Then we have the following exact sequence
ker s kert kerr cokers —— cokert —— cokerr

Proof. We may think it as a double complex as the following

where the dotted arrow means they are not be the part of exactness. Then the second spectral sequence
as the following

C Z 0 — cokerh
]

B Y 0 —0
fT kT

A X ker f —— 0

Then "Eo = "E;. So ker f = "E%Y = gr%(H(Tot)), so H°(Tot) = ker f since F};H°(Tot) = 0.
Similarly, we have that the cohomological group of Tot are ker f,0, 0, cokerh.
The first spectral sequence as the following

X Y A cokers — cokert — cokerr

sT —tT ’I“T

A B C kers — kert —— kerr
0 L M’ N’ E M’ N’

M$o L M F

So since the result of the second spectral sequence, we have L = ker f, M = M’ = 0, N’ = cokerh and



L' — N is an isomorphism since £ = F' = 0. So finally the first spectral sequence as

X Y Z cokers — cokert — cokerr
ST 7tT TT
A B C kers — kert —— kerr
L 0 kerh 0 0 kerh
-0 coker coker
keekf 0 PN Ker f 0 0

Since L' = N, we find that ker(cokers — cokert) = coker(kert — kerr) in the second diagram of the
first spectral sequence. Similarly, we have ker(kers — kert) = ker f and coker(cokers — cokert) =

cokerh and ker s — kert — kerr and cokers — cokert — cokerr are exact. So we can combine them
into a long exact sequence

0 —— ker f ker s kert kerr

|

0 <—— cokerh <—— cokerr +—— cokert «+—— cokers

And we win. O

Example 3 (Balanced Tor and Ext). We works in modules categroy for some ring R (we can replace
it to be some enough projective or injective abelian categroies). Let A, B be one of it and pick projective
resolutions P* - A — 0 and Q* — B — 0. So we have a double complex P* @ Q*. Then we claim
that H™(Tot(P* ® Q*)) = TorZ(A, B).

Actually we have the spectral sequence as following

P 1®Qiy1 Pi®Qiy1 Pir1®Qit 0 0 0
N N N
P 1®Q; P ®Q; P11 ®Q; 0 0 0
N 1 N
P_1®Qi-1 FPRQi-1 Pii®Qi—x P, 1®B — P®B -+ P1®B
0 0 0
0 0 0
Torf(A,B) ~ Torf(A,B) Tork(A,B)

Then the claim is right. Ext is similar.

Example 4 (The Frolicher Spectral Sequence). Consider X be a compact complex manifold and let
(**(X),0,0) be a double complex where o/P9(X) be the space of p,q-forms of X. So the spectral
sequence associated to (o/**(X),0,0) is called the Frélicher spectral sequence.

This spectral sequence converges since it is bounded. So we can see that 'EV'? = HP9(X) and it is
converge to H*(Tot(«/P9(X))) = H*(Q*(X)) = H*(X,C). So the limit term'ER? = grl, HPT9(X,C).

In the case of compact Kihler manifold, the Frolicher spectral sequence degenerates at 'Ey. This
because we now have r such that 'ER? =" EP9 = grl, HPT4(X,C). Since dim’EP? < dim'EPY and
the equality holds if and only if d; = 0 and since by the basic Hodge theory we know that dim’'EL9 =
dim’EY?) so it is degenerates at 'E;.



Example 5 (Cech-de Rham Spectral Sequence). Let M be a manifold and 4 = {U;} be a good cover
over M. Consider the double complex

Kt =cr,0) = [ T, Q9

i<+ <iyp
as
4 td 4
0+ QM) 5 [L;, T(Uip, 2Y) 3 Ty <, TUigiy, Q1) $ -+
Td T Td
0- QO(M) > Hio F(UioaQO) g Hz‘o<i1 F(Uioil’QO) g
Ti Ti
COUR) —2 5 CLUR) —2— ..
T T
0 0

where Usy...i, = (Nj—ig<...<i, Uj- In the diagram r: Q*(M) — K*° are the restriction and C*(,R) be

the kernel of bottom d and i be the inclution. Moreover, d is the usual differential between differential
forms and § defined as

p+1
(6w)io~~ip+1 = Z(*l)jwiomij—ljjﬂ~-'i,;+17w € H F(Uio"'ip7 Qq)'
§=0 ig< e <ip

We first get the second spectral sequence as

; :
Hio<i1 F(Uioil ) QO) Hi0<i1 F(Ui()i1 ) Ql) T 00— 00— -
T T
IL, D(Usy, 2°) IL, T(Usy, ) QUM) » QY (M) » -

0 0
Hpp(M)  Hpp(M)

80" Eo ="Ey for now. So we get the classical result that Hpyp (M) = @, ,—,, H}(C* (U, Q%)) where
HP(C*(44, Q%)) as the cohomological group worked with D = d + (—1)Pd and on CP (4, Q7).
Now we consider the first spectral sequence as

: :
Hio F(Uio’ Ql) H¢0<i1 P(Uioil ) Ql) T 0 0
T T
Hio F(Uioa QO) Hi0<il F(Uioil ’ QO) T Oo(ﬂ, R) - Cl(u7 R) o

0 0

HO(LR)  H(SR)

10



So'Es ='Ey and H*(4,R) = HE(C*(4,Q%)). In summary, we now have H*(U,R) = HS,(M).

5 Grothendieck Spectral Sequence and It’s Applications

5.1 Cartan-Eilenberg Resolutions

Consider a complex C* and an injective resolution as follows

Lol ]

. In—l,l 1 In,l

d;z,fl,OT d?,OT d;t«l»l‘OT
n—1,0 n,0

X I"_l’o 1 In,O 1 In+1,0 .

J ] J

. on-1 dnt on da" Con+l

| | |

0 0 0

where each C™ — I"™* be an injective resolution and I*™ be complexes.
Now let ZP(C*) = kerdP, BP(C*) = ImdP™! and ZP(I*9) = kerd}"?, BP(I*7) = Imd’f“’q. Then
we have three complexes as following
0 — ZP(C*) — ZP(I*°) — ZP(I*1) — -+
0 — BP(C*) — BP(I*") — BP(I*1) — ---
0 — HP(C*) — HP(I*9) — HP(I*Y) — ---

Difinition 5.1. We say the injective resolution C* — I** is a Cartan-Eilenberg Resolutions (also
called fully injective resolution) if the previous three sequences are injective resolutions.

Theorem 5.2. Let A be an abelian category with enough injectives. Then every complex C* admits
a Cartain-Filenberg resolution.

Proof. Actually we can use the horseshoe lemma (See any books about homological algebra like [Rotl])
twice at the following two exact sequences, respectively.

0 — B*(C*) — Z™(C*) — H™(C*) — 0
0 — Z"(C*) —— C" —— B"TYC*) — 0

Then we can combine it into a resolution of C* by the universal property of injective objects. O

Remark 5.3. Cartan-FEilenberg resolutions are in some sense the most correct type of injective reso-
lutions and they are play an important role in the construction of the Grothendieck spectral sequence.

11



5.2 Grothendieck Spectral Sequence

Theorem 5.4 (Grothendieck Spectral Sequence). Let F': A — B and G : B — C be additive functors
between abelian categories where A, B have enough injectives and C is cocomplete (that is, colimits
always exist), and suppose that F sends injectives to G-acyclics. Then for any object A € A there is
a first quadrant spectral sequence E starting on page zero, such that

EY? = RPG(RIF(A)) = RPTI(G o F)(A).
Proof. Let the complex C* be an injective resolution of A, and let the bicomplex I** be a Cartan-
Eilenberg resolution of the complex F'C* with I”? = 0 unless p,q > 0.

Consider the double complex GI** and we have two first quadrant spectral sequences 'E,.,” E,
associated to it both converging to the cohomology of Tot(GI**). Moreover, we have

By = HY(H},(GI')) = HY(RIG(FC))

But C* is a complex of injectives and F' sends injectives to G-acyclics, so for ¢ > 0 the complex
RIG(FC*) =0, and for ¢ = 0 it is canonically isomorphic to GFC*. So we have 'E, page as

. RP— 1(GF RP(GF)(A Rp+1 Fm
So 'Ey ="EL. So we have
H"(Tot(GI**)) ='E% = R"(GF)(A).
Now we consider the second spectral sequence " E,.. We have the exact sequence
0 — ZP(I*9) — [P9 — BPTL([*9) — O

Since I** be a Cartan-Eilenberg resolution of the complex FC*, so ZP(I*?) is an injective object. So
this exact sequence is split. So

0 — GzZP(I*) — GIP? — GBPT(I*7) — 0
is split too since G is additive. So
GZP(I*7) = ker(GIPY — GBPTY(I*9)) = ZP(GI*7), GBPTY () = BPTY(GT™9).
Consider another split exact sequence
0 — BP(I*%) — ZP(I*7) — HP(I*?) — 0
So as the same reason, we have the following diagram with exact rows

0 — GBP(I*) — GZP(I*7) — GHP(I*?) — 0
= 1= :
0 — BP(GI*Y) — ZP(GI*?) — HP(GI*?) — 0

Use five-lemma, we have GHP?([*?) = HP(GI*). For now we have
"Byt = Hi (H{(GI™")) = H (GH(I"7)).
We also have injective resolution R1F(A) = HI(FC*) — H}(I**), so "ES? = RPG(RIF(A)). So"E,

is what we want. O

12



5.3 Some Applications
5.3.1 The Leray Spectral Sequence

Since we know that the category AbShy of abelian sheaves on X has enough injectives, we can define
the higher direct image. Let f: X — Y is continuous and .# € Ab&hy, we can choose an injective
resolution .#[0] — #*. Then the higher direct image R'f..# = H'(f..#*).

Lemma 5.5. The functor f,. : Ab6hy — AbGhy sends injective sheaves to flabby sheaves.

Proof. Actually we can prove that f, : AbShy — AbShy sends injective sheaves to injective sheaves.

Consider the exact sequence 0 — &/ — % on Y, then we have exact 0 = f~1/ — f~1% on X. See
the following diagram

Homgbghx(f_lﬂ,f) — Homg[bebx(f_lﬂ, f) — 0

| I

Homypesp, (£, f+f) —— Homapey, (&, f+.f) — 0

by the adjointness of (=1, f.). Well done. O

Example 6 (The Leray Spectral Sequence). In the case of Grothendieck spectral sequence, we let
A =2Ab6hy, B = AbGhy,C =Ab. Let F = f,,G =T'(X,—). Then there exists a spectral sequence

such that EY? = HP(Y,RIf..7) = HPTYUX,.F). This spectral sequence is called Leray spectral
sequence.

Remark 5.6. It shows how we can approximate the sheaf cohomology on X by looking at the sheaf
cohomology on'Y with respect to the higher direct images.

5.3.2 The Cech-to-derived Functor Spectral Sequence

Let X be a topological space and let .% be a sheaf on X. Let &l = {U;} be an open cover of X. Let
#1(X,F) be the presheaf with U +— H9(U,.%). For any presheaf & we define the Cech cohomology
HP (81, &) is cohomology repect to the following complex

[L, ZWUiy) = liy<i, P WUigin) = -+ = Tlig<ciy, P Vi) — -+

where the map as in the case of Cech-de Rham spectral sequence.

Example 7 (The Cech-to-derived functor spectral sequence). In the case of Grothendieck spectral
sequence, we let A = AbShy, B = AbPShy,C = Ab. Let F = 1,G = HO(U, —). Then there exists a
spectral sequence such that EYY = HP (U, 49X, .F)) = HPTI(X,.F). This spectral sequence is called
the Cech-to-derived functor spectral sequence.

Example 8 (Application: Affine open cover of a scheme). Let X is a quasi-compact and separated
scheme. So we can take a finite affine open cover U = {U;}. Take F be a quasi-coherent Ox-module.
Since X is separated, U,,..;, are all affine open. By the Serre theorem, we have H'(U; F) =
0,i>0. So EY? = AP (U, #9(X,.F)) =0,q > 0. So the By page of it is

0 ik

0 0 0
\

H N W.7)  HMW.F)  HYTHYZ)

So we have H™(U, ) = H(X, 7).
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5.3.3 The Local-to-Global Ext Spectral Sequence

Now we consider a ringed space (X, Ox) and for open U C X we define a sheaf
%Omﬁx (j, g)(U) = HomﬁX|U(§|U,%|U).

Similarly, since 9odx has enough injective objects, we can define & xtzx (#,9) as the sheafification
of the derived functors of #Fomeg, (F,9).

Lemma 5.7. Let (X, Ox) is a ringed space.
(1) If F € Movx is flat and & € Modyx is injective, then Home, (F,F) is injective.
(2) If F,.9 € Modx with & is injective, then Home, (F, ) is T'(X, —)-acyclic.
Proof. (1) Use the fact that Homg, (—, #ome, (F, 7)) = Home, (— Qe F,-#) and both two sides

are exact. Well done.
(2) We can find an exact sequence 0 - 2" — % — % — 0 where % is flat (See [DM2], Lemma

47). Then we get the following exact sequence
0 — Home (X, I) — Home, (¥, I) — Home, (F,I) — 0

By (1) the middle term is injective, then the use the long exact sequence we could have the conclusion.
O

Example 9 (The Local-to-Global Ext Spectral Sequence). Let (X, Ox) is a ringed space and let F,9
be the sheaf of Ox-modules. In the case of Grothendieck spectral sequence, we let A = B = Modx and
C=2b. Let F = Homg, (#,—) and G =T'(X,—). Then we have a spectral sequence such that

EYY = HY(X, Ext?, (F,9)) = Ext?H1(F,9).
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