Notes on Spectral Sequences

Xiaolong Liu

Shandong University, Taishan Collage

Abstract

This is a note about the basic spectral sequences , including spectral sequences of exact couples, filered complexes and double complexes. Moreover, we will make some examples to show how them work. Furthermore, we also introduce Cartan-Eilenberg Resolutions and lts most important application, Grothendieck spectral sequences and its applications such as Leray spectral sequences.

Contents

1 Preliminaries

Difinition 1.1. Let A be an additive category, a double complex in it is a system $\{A^{p,q}, d_1^{p,q}, d_2^{p,q}\}_{p,q\in\mathbb{Z}}$ $where d_1^{p,q}: A^{p,q} \to A^{p+1,q}, d_2^{p,q}: A^{p,q} \to A^{p,q+1}$ satisfies

 $d_1^{p+1,q} \circ d_1^{p,q} = 0;$ $(d_2^p, q^{q+1} \circ d_2^{p,q} = 0;$ (d) $d_1^{p,q+1} \circ d_2^{p,q} = d_2^{p+1,q} \circ d_1^{p,q}.$

The associated total complex as

$$
sA^n = \operatorname{Tot}^n(A^{*,*}) = \bigoplus_{p+q=n} A^{p,q}
$$

 $with d_{\text{Tot}}^n = \sum_{p+q=n} (d_1^{p,q} + (-1)^p d_2^{p,q}).$

Difinition 1.2. *Let A be an abelian category.*

(1) A filtered object of *A* is a pair (A, F) where $A \in Obj(A)$ and $F = (F^n A)$ where

$$
A \supset \cdots \supset F^n A \supset F^{n+1} A \supset \cdots \supset 0;
$$

 (2) *A* morphism $f : (A, F) \rightarrow (B, F)$ *as* $f(F^iA) \subset F^iB$;

- *(3)* Let $X \subset A$, then the induced filtration as $F^n X = X \cap F^n A$;
- $\mu(A)$ It is called finite if there exists m, n such that $F^{n}A = A$, $F^{m}A = 0$;
- *(5)* It is called separated if $\bigcap F^i A = 0$, called exhaustive if $\bigcup F^i A = A$.

Difinition 1.3. *Let A be an abelian category.*

(1) A spectral sequence is a system $(E_r, d_r)_{r \geq s}$ such that $d_r^2 = 0$ with $E_{r+1} = \text{ker}(d_r)/\text{Im}(d_r)$;

(2) A morphism $f: (E_r, d_r)_{r \geq s} \to (E'_r, d'_r)_{r \geq s}$ as $f_r \circ d_r = d'_r \circ f_r$ and such that f_{r+1} induced by *f_r via* $E_{r+1} = \ker(d_r)/\text{Im}(d_r)$ *and* $E'_{r+1} = \ker(d'_r)/\text{Im}(d'_r)$ *.*

Remark 1.4. *Given a spectral sequence* $(E_r, d_r)_{r>s}$ *we will define*

$$
0=B_s\subset\cdots\subset B_r\subset\cdots\subset Z_r\subset\cdots\subset Z_s=E_s
$$

by the following simple procedure. Set $B_{s+1} = \text{Im}(d_s)$ and $Z_{s+1} = \text{ker}(d_s)$ *. Then it is clear that* $d_{s+1}: Z_{s+1}/B_{s+1} \to Z_{s+1}/B_{s+1}$. Hence we can define B_{s+2} as the unique subobject of E_s containing B_{s+1} *such that* B_{s+2}/B_{s+1} *is the image of* d_{s+1} *. Similarly we can define* Z_{r+2} *as the unique subobject of* E_s *containing* B_{s+1} *such that* Z_{s+2}/B_{s+1} *is the kernel of* d_{s+1} *. And so on and so forth. In particular we have* $E_r = \frac{Z_r}{B_r}$.

Difinition 1.5. *Let A be an abelian category and let a spectral sequence* $(E_r, d_r)_{r>s}$ *.*

(1) If the subobjects $Z_{\infty} = \bigcap Z_r$ and $B_{\infty} = \bigcup B_r$ exists, then we define the limit of the spectral $sequence$ *is* $E_{\infty} = Z_{\infty}/B_{\infty}$;

(2) We say that the spectral sequence $(E_r, d_r)_{r \geq s}$ *degenerates at* E_r *if* $d_r = \cdots = 0$ *.*

2 Spectral Sequences of exact comples

Difinition 2.1. *Let A be an abelian category.*

(1) An exact couple is a datum (*A, E, α, f, g*) *with*

such that is a exact sequence;

 (2) *A* morphism $t:(A, E, \alpha, f, g) \rightarrow (A', E', \alpha', f', g')$ as

where $\alpha' \circ t_A = t_A \circ \alpha$, $f' \circ t_E = t_A \circ f$ and $g' \circ t_A = t_E \circ g$.

Theorem 2.2. *Let* (A, E, α, f, g) *be an exact couple, let*

- *(1) d* := *g f* : *E* → *E, so that* $d^2 = 0$ *;*
- $\chi(2)$ $E' = \ker d / \text{Im} d, A' = \text{Im} \alpha;$
- $(3) \alpha' : A' \rightarrow A' \text{ induced by } \alpha;$
- (4) $f' : E' \rightarrow A'$ *induced by* f ;
- (5) $g' : A' \to E'$ *induced by* $g \circ \alpha^{-1}$.

$$
A \xrightarrow{a} A
$$
\n
$$
A' = \text{Im}\alpha \xrightarrow{a'} A'
$$
\n
$$
A' = \text{Im}\alpha \xrightarrow{f'} B'
$$
\n
$$
E' = \text{ker } d/\text{Im}d
$$

Then we have

 (a) ker $d = f^{-1}(\ker g) = f^{-1}(\text{Im}\alpha)$;

 (b) Im $d = g(\text{Im} f) = g(\text{ker } \alpha)$;

(c) $(A', E', \alpha', f', g')$ *be an exact couple.*

Proof. We will show how α' , f' , g' work. Actually α' works by trivial reason. Next, ker $d = \ker g \circ f =$ $f^{-1}(\ker g) = f^{-1}(\text{Im}\alpha)$, then f maps kerd into Im α and since $f \circ g = 0$, we can induce to $f' : E' \to A'$. Finally, since $\text{Im}d = \text{Im}g \circ f = g(\text{Im}f) = g(\ker \alpha)$, we choose $a, b \in \alpha^{-1}(s)$, then $g(a) - g(b) \in \text{Im}d$. So we can induce to $g' : A' \to E'$. It's easy to see that $(A', E', \alpha', f', g')$ be an exact couple. \Box

So if we let $E_1 = E$, $d_1 = d$, $E_2 = E'$, $d_2 = g' \circ f'$ and so on, we get (E_r, d_r) .

Difinition 2.3. *Let* (A, E, α, f, g) *be an exact couple. We say the spectral sequence associated to exact couple is defined* (E_r, d_r) *as above.*

Remark 2.4. *So in this case we can let* $B_{r+1} = g(\ker \alpha^r), Z_{r+1} = f^{-1}(\text{Im}\alpha^r)$ *. Let*

$$
B_{\infty} = g\left(\bigcup_{r} \ker \alpha^{r}\right) \subset Z_{\infty} = f^{-1}\left(\bigcap_{r} \text{Im}\alpha^{r}\right)
$$

 $and E_{\infty} = Z_{\infty}/B_{\infty}.$

3 Spectral Sequences of filtered complexes

3.1 Main Results

Difinition 3.1. Let A be an abelian category. A filtered complex K^* of A is a complex of filtered *objects.*

So it seems as follows.

We now assume the category A has countable direct sums and countable direct sums are exact. Next we will construct the spectral sequence associated to it.

Let K^* be the filtered complex and let $E_0 = \bigoplus_{p,q} E_0^{p,q}, E_0^{p,q} = \text{gr}^p K^{p+q}$ where for a filtered object *A*, we denotes $gr^p(A) = F^pA/F^{p+1}A$, $gr(A) = \bigoplus_p gr^p(A)$. We call *p* the filtration degree, and *q* is called the complementary degree.

Let $d_0 = \bigoplus d_0^{p,q}, d_0^{p,q}: E_0^{p,q} \to E_0^{p,q+1}$. Now we define

$$
Z_r^{p,q} = \frac{F^p K^{p+q} \cap d^{-1} (F^{p+r} K^{p+q+1}) + F^{p+1} K^{p+q}}{F^{p+1} K^{p+q}}
$$

and

$$
B_r^{p,q} = \frac{F^p K^{p+q} \cap d(F^{p-r+1} K^{p+q-1}) + F^{p+1} K^{p+q}}{F^{p+1} K^{p+q}}
$$

where *d* be the differential of *K[∗]* . So

$$
E_r^{p,q} = Z_r^{p,q} / B_r^{p,q} = \frac{F^p K^{p+q} \cap d^{-1} (F^{p+r} K^{p+q+1}) + F^{p+1} K^{p+q}}{F^p K^{p+q} \cap d(F^{p-r+1} K^{p+q-1}) + F^{p+1} K^{p+q}}.
$$

Also, we let $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ as $z + F^{p+1}K^{p+q} \to dz + F^{p+r+1}K^{p+q+1}$.

Theorem 3.2. *Let A be an abelian category with exact countable direct sums. Let K[∗] be a filtered complex of A. There is a spectral sequence defined as above. Further more, we have* $E_1^{p,q} = H^{p+q}(\text{gr}^p(K^*))$ *.*

Proof. Trivial by the discussion above. In this case $E_{r+1}^{p,q} \cong \frac{\ker d_r^{p,q}}{\text{Im} d_r^{p-r,q+r-1}}$.

Proposition 3.3. *Let A be an abelian category with countable direct sums. Let K[∗] be a filtered complex of A. Let the spectral sequence associated to* K^* *is* (E_r, d_r) *. Then the map* $d_1^{p,q}$: $E_1^{p,q}$ $H^{p+q}(\text{gr}^p(K^*)) \to E_1^{p+1,q} = H^{p+q+1}(\text{gr}^{p+1}(K^*))$ *is equal to the boundary map of the following short exact sequence*

$$
0 \to \text{gr}^{p+1}(K^*) \to F^p K^* / F^{p+2} K^* \to \text{gr}^p(K^*) \to 0.
$$

Proof. This is just a diagram chase.

If we let K^* be a filtered complex, then the induced filtration on $H^n(K^*)$ defined by $F^pH^n(K^*)$ $\text{Im}(H^n(F^pK^*) \to H^n(K^*))$. Then

$$
F^pH^n(K^*,d)=\frac{\ker d\cap F^pK^n+\operatorname{Im} d\cap K^n}{\operatorname{Im} d\cap K^n}\text{ and }\operatorname{gr}^pH^n(K^*)=\frac{\ker d\cap F^pK^n}{\ker d\cap F^{p+1}K^n+\operatorname{Im} d\cap F^pK^n}.
$$

Proposition 3.4. Let *A be an abelian category and let* K^* *be a filtered complex of A. If* $Z^{p,q}_{\infty}, B^{p,q}_{\infty}$ *exist, then*

(1) The limit E_{∞} exists and with bigraded object with $E_{\infty}^{p,q} = Z_{\infty}^{p,q}/B_{\infty}^{p,q}$;

 (2) gr^p*H*ⁿ(*K*^{*}) *is a subquotient of* $E_{\infty}^{p,n-p}$ *.*

Proof. (1) is trivial and now we have

$$
E^{p,q}_{\infty} = \frac{\bigcap_r (F^p K^{p+q} \cap d^{-1} (F^{p+r} K^{p+q+1}) + F^{p+1} K^{p+q})}{\bigcup_r (F^p K^{p+q} \cap d(F^{p-r+1} K^{p+q-1}) + F^{p+1} K^{p+q})}.
$$

For (2) we let $q = n - p$, then we have

$$
\ker d \cap F^pK^n + F^{p+1}K^n \subset \bigcap_r (F^pK^{p+q} \cap d^{-1}(F^{p+r}K^{p+q+1}) + F^{p+1}K^{p+q})
$$

and

$$
\bigcup_{r} (F^{p}K^{p+q} \cap d(F^{p-r+1}K^{p+q-1}) + F^{p+1}K^{p+q}) \subset \text{Im} d \cap F^{p}K^{n} + F^{p+1}K^{n},
$$

then a subquotient of $E^{p,n-p}_{\infty}$ is

$$
\frac{\ker d \cap F^p K^n + F^{p+1} K^n}{\operatorname{Im} d \cap F^p K^n + F^{p+1} K^n} = \frac{\ker d \cap F^p K^n}{\ker d \cap F^{p+1} K^n + \operatorname{Im} d \cap F^p K^n},
$$

we win.

Difinition 3.5. *Let A be an abelian category and let K[∗] be a filtered complex of A. Let the spectral sequence associated to* K^* *is* $(E_r, d_r)_{r \geq r_0}$. We say it is

(1) regular if for all p, q there exists $b = b(p, q)$ such that $d_r^{p,q} = 0$ for all $r \geq b$;

(2) coregular if for all p, q there exists $b = b(p, q)$ such that $d_r^{p-r,q+r-1} = 0$ for all $r \ge b$;

 (3) bounded if for all *n* there are only a finite number of nonzero $E^{p,n-p}_{r_0}$; bounded below (resp. *above)* if there exists $b = b(n)$ such that $E_{r_0}^{p,n-p} = 0$ for $p \geq b (resp. p \leq B)$;

 (4) weakly converges to $H^*(K^*)$ if $gr^p H^n(K^*) = E^{p,n-p}_{\infty}$;

(5) abuts to $H^*(K^*)$ if it weakly converges to $H^*(K^*)$ and $\bigcap_p F^pH^n(K^*)=0$ and $\bigcup_p F^pH^n(K^*)=0$ $H^n(K^*)$ *for all n*;

(6) converges to $H^*(K^*)$ if it is regular, abuts to $H^*(K^*)$ and $H^n(K^*) = \lim_p H^n(K^*)/F^pH^n(K^*)$.

 \Box

 \Box

Theorem 3.6. *Let A be an abelian category and let K[∗] be a filtered complex of A. Let the spectral sequence associated to* K^* *is* (E_r, d_r) *. If for all n each filtration on* K^n *is finite, then the spectral* sequence (E_r, d_r) is bounded, the filtration on each $H^n(K^*)$ is finite and (E_r, d_r) converges to $H^*(K^*)$.

Proof. The first two statements are trivial. Finally since for $r \gg 0$ we have $F^{p+r}K^n = 0$ and $F^{p-r+1}K^{n-1} = K^{n-1}$, then we have the equality

$$
\ker d \cap F^p K^n + F^{p+1} K^n = \bigcap_r (F^p K^{p+q} \cap d^{-1} (F^{p+r} K^{p+q+1}) + F^{p+1} K^{p+q})
$$

and

$$
\bigcup_r (F^pK^{p+q} \cap d(F^{p-r+1}K^{p+q-1}) + F^{p+1}K^{p+q}) = \text{Im} d \cap F^pK^n + F^{p+1}K^n,
$$

so (E_r, d_r) weakly converges to $H^*(K^*)$. Since the filtration on each $H^n(K^*)$ is finite, so it is abuts and converges to $H^*(K^*)$. \Box

3.2 An Application

Example 1 (Exact sequence from short one to long one)**.** *Consider a short exact sequence of complex* $0 \to A^* \to B^* \to C^* \to 0$, show that there exists a exact sequence

$$
\cdots \to H^{i}(A^*) \to H^{i}(B^*) \to H^{i}(C^*) \to H^{i+1}(A^*) \to \cdots.
$$

Proof. Consider the filtration $B^* \supset A^* \supset 0$, then we have $F^0B^i = B^i, F^1B^i = A^i, F^2B^i = 0$. So we have $E_0^{0,i} = C^i, E_0^{1,i} = A^{i+1}$. For $r = 1$ we have $E_1^{0,i} = H^i(\text{gr}^0(B^*)) = H^i(C^*)$ and $E_1^{1,i} =$ $H^{i+1}(\text{gr}^1(B^*)) = H^{i+1}(A^*)$. As we said, $d_1^{p,q}$ as the boundary map, then we have $E_2^{0,i} = \text{ker } \delta^i, E_2^{1,i} =$ $\operatorname{coker}\delta^i$. So the spectral sequence as the following diagram:

$$
C^{i+1} \n\begin{array}{ccc}\nA^{i+2} & H^{i+1}(C^*) \to H^{i+2}(A^*) & 0 \quad \ker \delta^{i+1} & \text{coker}\delta^{i+1} \\
\uparrow & \uparrow & \\
C^i & A^{i+1} & H^i(C^*) \to H^{i+1}(A^*) & 0 \quad \ker \delta^i & \text{coker}\delta^i \end{array} 0
$$
\n
$$
C^{i-1} \n\begin{array}{ccc}\n\uparrow & \uparrow & \\
A^i & H^{i-1}(C^*) \to H^i(A^*) & \ker \delta^{i-1} & \text{coker}\delta^{i-1} \end{array} 0
$$

In this case $E_2 = E_\infty$. By the diagram above, we have

$$
0 \to \ker \delta^i \to H^i(C^*) \to H^{i+1}(A^*) \to \operatorname{coker} \delta^i \to 0.
$$

By the theorem we know that the spectral sequence converge to $H^*(C^*)$, thus

$$
H^{i}(B^{*})/F^{1}H^{i}(B^{*}) = \text{gr}^{0}H^{i}(B^{*}) = E^{0,i}_{\infty} = E^{0,i}_{2} = \ker \delta^{i}
$$

and $F^1 H^i(B^*) = \text{gr}^1 H^i(B^*) = E^{1,i-1}_{\infty} = E^{1,i-1}_2 = \text{coker}\delta^i$, so we have

$$
0 \to \operatorname{coker} \delta^i \to H^i(B^*) \to \ker \delta^{i-1} \to 0
$$

is exact. So we combine these exact sequences and then we have the results.

4 Spectral Sequences of double complexes

4.1 Main Results

Consider a double complex $K^{*,*}$, then there are two natrul filterations on Tot $(K^{*,*})$ as

$$
F_I^p(\text{Tot}^n(K^{*,*})) = \bigoplus_{i+j=n, i \geq p} K^{i,j}, F_{II}^p(\text{Tot}^n(K^{*,*})) = \bigoplus_{i+j=n, j \geq p} K^{i,j}.
$$

See the following diagram.

Then we get two filtered complexes

$$
\begin{array}{c}\n\vdots \\
\uparrow \text{Tot}^{n+1}(K^{*,*}) \xrightarrow{\supset} F^1_{I/II}(\text{Tot}^{n+1}(K^{*,*})) \xrightarrow{\supset} F^2_{I/II}(\text{Tot}^{n+1}(K^{*,*})) \xrightarrow{\supset} \cdots \\
\uparrow \text{Tot}^n(K^{*,*}) \xrightarrow{\supset} F^1_{I/II}(\text{Tot}^n(K^{*,*})) \xrightarrow{\supset} F^2_{I/II}(\text{Tot}^n(K^{*,*})) \xrightarrow{\supset} \cdots \\
\uparrow \text{Tot}^{n-1}(K^{*,*}) \xrightarrow{\supset} F^1_{I/II}(\text{Tot}^{n-1}(K^{*,*})) \xrightarrow{\supset} F^2_{I/II}(\text{Tot}^{n-1}(K^{*,*})) \xrightarrow{\supset} \cdots \\
\uparrow \vdots\n\end{array}
$$

and can associated them two spectral sequences $({}^{\prime}E_r, {}^{\prime}d_r)$ and $({}^{\prime\prime}E_r, {}^{\prime\prime}d_r)$.

We now denote $H_I^p(K^{*,*})$ as the collections of ker $d_1^{p,q}/\text{Im}d_1^{p-1,q}$ and $H_{II}^q(K^{*,*})$ as the collections of ker $d_2^{p,q}/\text{Im}d_2^{p,q-1}$. So we have $H_{II}^q(H_I^p(K^{*,*}))$ and $H_I^p(H_{II}^q(K^{*,*}))$.

Theorem 4.1. *Let A be an abelian category and let K∗,[∗] be a double complex, then* (f) $'E_0^{p,q} = K^{p,q}$ *with* $'d_0^{p,q} = (-1)^p d_2^{p,q} : K^{p,q} \to K^{p,q+1}$; $\chi^2(2)$ $''E_0^{p,q} = K^{q,p}$ with $''d_0^{p,q} = d_1^{q,p} : K^{q,p} \to K^{q+1,p}$; $\chi(\hat{\mathcal{G}})'$ $'E_1^{p,q} = H^q(K^{p,*})$ *with* $'d_1^{p,q} = H^p(d_1^{p,*})$; $d^{p,q} = (-1)^q H^q (d_2^{*,p})$ *with* $d_1^{p,q} = (-1)^q H^q (d_2^{*,p})$; $(S)'E_2^{\vec{p},q} = H_I^p(H_{II}^q(K^{*,*}))$ and $''E_2^{\vec{p},q} = H_{II}^p(H_I^q(K^{*,*})).$

Proof. By the previous section this is easy to see.

Now we say $('E_r,' d_r)$ and $('E_r,' d_r)$ weakly converge to, abuts to and converge to is Similar as the previous section. So we see that $(F_r, 'd_r)$ and $({''E_r}, 'd_r)$ weakly converge if and only if for all *n* we have

$$
\mathrm{gr}_{F_I}(H^n(\mathrm{Tot}(K^{*,*}))) = \bigoplus_{p+q=n}{}'E^{p,q}_{\infty}, \mathrm{gr}_{F_I I}(H^n(\mathrm{Tot}(K^{*,*}))) = \bigoplus_{p+q=n}{}''E^{p,q}_{\infty}.
$$

Theorem 4.2. Let A be an abelian category and let $K^{*,*}$ be a double complex. Assmue that for all n *there are only finitely many nonzero* $K^{p,q}$ *with* $p + q = n$ *. Then*

- (1) two spectral sequences $({}^{\prime}E_r, {}^{\prime}d_r)$ and $({}^{\prime\prime}E_r, {}^{\prime\prime}d_r)$ are all bounded;
- $\mathcal{F}(2)$ *two filtrations* F_I, F_{II} *on* $H^n(\text{Tot}(K^{*,*}))$ *are finite;*
- (3) two spectral sequences (F_r, d_r) and $(F_{r, r}^{\prime\prime} d_r)$ all converge to $H^*(\text{Tot}(K^{*,*}))$.

Proof. This is just the restatement of the theorem in the previous section.

4.2 Some Applications

Example 2 (Snake Lemma)**.** *Consider the following commutative diagram with exact rows.*

$$
A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

$$
\downarrow s \qquad \downarrow t \qquad \downarrow r
$$

$$
0 \longrightarrow X \xrightarrow{k} Y \xrightarrow{h} Z
$$

Then we have the following exact sequence

$$
\ker s \longrightarrow \ker t \longrightarrow \ker r \longrightarrow \operatorname{coker} s \longrightarrow \operatorname{coker} t \longrightarrow \operatorname{coker} r
$$

Proof. We may think it as a double complex as the following

where the dotted arrow means they are not be the part of exactness. Then the second spectral sequence as the following

Then $''E_{\infty} = ''E_1$. So ker $f = ''E_{\infty}^{0,0} = \text{gr}^0(H^0(\text{Tot}))$, so $H^0(\text{Tot}) = \text{ker } f$ since $F_{II}^1H^0(\text{Tot}) = 0$. Similarly, we have that the cohomological group of Tot are ker *f,* 0*,* 0*,* coker*h*.

The first spectral sequence as the following

So since the result of the second spectral sequence, we have $L = \ker f, M = M' = 0, N' = \text{coker}h$ and

 $L' \rightarrow N$ is an isomorphism since $E = F = 0$. So finally the first spectral sequence as

Since $L' \cong N$, we find that ker(cokers \rightarrow cokert) = coker(ker $t \rightarrow \ker r$) in the second diagram of the first spectral sequence. Similarly, we have ker(ker $s \to \ker t$) = ker f and coker(cokers \to cokert) = cokerh and ker $s \to \ker t \to \ker r$ and cokers $\to \infty$ cokerr are exact. So we can combine them into a long exact sequence

 \Box

And we win.

Example 3 (Balanced Tor and Ext)**.** *We works in modules categroy for some ring R (we can replace it to be some enough projective or injective abelian categroies). Let A, B be one of it and pick projective* resolutions $P^* \to A \to 0$ and $Q^* \to B \to 0$. So we have a double complex $P^* \otimes Q^*$. Then we claim *that* $H^n(\text{Tot}(P^* \otimes Q^*)) = \text{Tor}_n^R(A, B)$ *.*

Actually we have the spectral sequence as following

$$
P_{i-1} \otimes Q_{i+1} \qquad P_1 \otimes Q_{i+1} \qquad P_{i+1} \otimes Q_{i+1} \qquad \qquad 0 \qquad \longrightarrow 0 \qquad \longrightarrow 0
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad 0 \qquad \longrightarrow 0 \qquad \longrightarrow 0
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad 0 \qquad \longrightarrow 0 \qquad \longrightarrow 0
$$
\n
$$
P_{i-1} \otimes Q_i \qquad P_i \otimes Q_i \qquad \qquad P_{i+1} \otimes Q_i \qquad \qquad 0 \qquad \longrightarrow 0 \qquad \longrightarrow 0
$$
\n
$$
P_{i-1} \otimes B \to P_i \otimes B \to P_{i+1} \otimes B
$$
\n
$$
0 \qquad \qquad 0 \qquad \qquad 0
$$
\n
$$
0 \qquad \qquad 0 \qquad \qquad 0
$$
\n
$$
0 \qquad \qquad 0 \qquad \qquad 0
$$
\n
$$
0 \qquad \qquad 0 \qquad \qquad 0
$$
\n
$$
0 \qquad \qquad 0 \qquad \qquad 0
$$
\n
$$
0 \qquad \qquad 0 \qquad \qquad 0
$$

Then the claim is right. Ext is similar.

Example 4 (The Frölicher Spectral Sequence)**.** *Consider X be a compact complex manifold and let* $(\mathscr{A}^{*,*}(X), \partial, \overline{\partial})$ *be a double complex where* $\mathscr{A}^{p,q}(X)$ *be the space of* p, q -forms of X. So the spectral *sequence associated to* $(A^{*,*}(X), \partial, \overline{\partial})$ *is called the Frölicher spectral sequence.*

This spectral sequence converges since it is bounded. So we can see that $'E_1^{p,q} = H^{p,q}(X)$ and it is converge to $H^*(\operatorname{Tot}(\mathscr{A}^{p,q}(X))) = H^*(\Omega^*(X)) = H^*(X,\mathbb{C})$. So the limit term $'E_{\infty}^{p,q} = \operatorname{gr}_{F_I}^p H^{p+q}(X,\mathbb{C})$.

*In the case of compact Kähler manifold, the Frölicher spectral sequence degenerates at ′E*1*. This* because we now have r such that $'E^{p,q}_{\infty} =' E^{p,q}_{r} = \text{gr}_{F_1}^p H^{p+q}(X,\mathbb{C})$. Since $\dim' E^{p,q}_{i} \leq \dim' E^{p,q}_{i-1}$ and *the equality holds if and only if* $d_i = 0$ *and since by the basic Hodge theory we know that* dim $'E_{\infty}^{p,q} =$ $\dim' E_1^{p,q}$, so it is degenerates at $'E_1$.

Example 5 (Čech-de Rham Spectral Sequence). Let M be a manifold and $\mathfrak{U} = \{U_i\}$ be a good cover *over M. Consider the double complex*

$$
K^{p,q} = C^p(\mathfrak{U}, \Omega^q) = \prod_{i_0 < \dots < i_p} \Gamma(U_{i_0 \dots i_p}, \Omega^q)
$$

as

$$
\vdots \qquad \vdots \qquad \vdots \qquad \vdots
$$
\n
$$
0 \rightarrow \Omega^{1}(M) \stackrel{\tau}{\rightarrow} \prod_{i_{0}} \Gamma(U_{i_{0}}, \Omega^{1}) \stackrel{\delta}{\rightarrow} \prod_{i_{0} < i_{1}} \Gamma(U_{i_{0}i_{1}}, \Omega^{1}) \stackrel{\delta}{\rightarrow} \cdots
$$
\n
$$
\uparrow_{d} \qquad \uparrow_{d} \qquad \uparrow_{d}
$$
\n
$$
0 \rightarrow \Omega^{0}(M) \stackrel{\tau}{\rightarrow} \prod_{i_{0}} \Gamma(U_{i_{0}}, \Omega^{0}) \stackrel{\delta}{\rightarrow} \prod_{i_{0} < i_{1}} \Gamma(U_{i_{0}i_{1}}, \Omega^{0}) \stackrel{\delta}{\rightarrow} \cdots
$$
\n
$$
\uparrow_{i} \qquad \uparrow_{i} \qquad \uparrow_{i}
$$
\n
$$
C^{0}(\mathfrak{U}, \mathbb{R}) \stackrel{\delta}{\longrightarrow} C^{1}(\mathfrak{U}, \mathbb{R}) \stackrel{\delta}{\longrightarrow} \cdots
$$
\n
$$
\uparrow \qquad \uparrow
$$
\n
$$
0 \qquad 0
$$

where $U_{i_0\cdots i_p} = \bigcap_{j=i_0<\cdots < i_p} U_j$. In the diagram $r: \Omega^*(M) \to K^{*,0}$ are the restriction and $C^*(\mathfrak{U}, \mathbb{R})$ be *the kernel of bottom d and i be the inclution. Moreover, d is the usual differential between differential forms and δ defined as*

$$
(\delta \omega)_{i_0\cdots i_{p+1}}=\sum_{j=0}^{p+1} (-1)^j \omega_{i_0\cdots i_{j-1}j_{j+1}\cdots i_{p+1}}, \omega\in \prod_{i_0<\cdots
$$

We first get the second spectral sequence as

. ∏ *i*0*<i*¹ Γ(*Ui*0*i*¹ *,* Ω 0) ∏ *i*0*<i*¹ Γ(*Ui*0*i*¹ *,* Ω 1) *· · ·* 0 0 *· · ·* ∏ *i*0 Γ(*Ui*⁰ *,* Ω 0) ∏ *i*0 Γ(*Ui*⁰ *,* Ω 1) *· · ·* Ω 0 (*M*) Ω 1 (*M*) *· · ·* 0 0 *· · · H*⁰ *DR*(*M*) *H*¹ *DR*(*M*) *· · ·*

 $So''E_{\infty} =''E_2$ for now. So we get the classical result that $H_{DR}^n(M) = \bigoplus_{p+q=n} H_D^{p,q}(C^*(\mathfrak{U}, \Omega^*))$ where $H^{p,q}_D(C^*(\mathfrak{U}, \Omega^*))$ as the cohomological group worked with $D = d + (-1)^p \delta$ and on $C^p(\mathfrak{U}, \Omega^q)$.

Now we consider the first spectral sequence as

$$
\begin{array}{cccc}\n\vdots & \vdots & \vdots & \vdots \\
\uparrow & \uparrow & \uparrow & \\
\prod_{i_0} \Gamma(U_{i_0}, \Omega^1) & \prod_{i_0 < i_1} \Gamma(U_{i_0 i_1}, \Omega^1) & \cdots & 0 \longrightarrow 0 \longrightarrow \cdots \\
\uparrow & \uparrow & & \\
\prod_{i_0} \Gamma(U_{i_0}, \Omega^0) & \prod_{i_0 < i_1} \Gamma(U_{i_0 i_1}, \Omega^0) & \cdots & C^0(\mathfrak{U}, \mathbb{R}) \rightarrow C^1(\mathfrak{U}, \mathbb{R}) \rightarrow \cdots \\
& & & & \\
& & & & & \\
\hline\n\end{array}
$$

So $'E_{\infty} = 'E_2$ and $H^k(\mathfrak{U}, \mathbb{R}) = H_D^k(C^*(\mathfrak{U}, \Omega^*))$. In summary, we now have $H^k(\mathfrak{U}, \mathbb{R}) = H_{DR}^n(M)$.

5 Grothendieck Spectral Sequence and It's Applications

5.1 Cartan-Eilenberg Resolutions

Consider a complex *C ∗* and an injective resolution as follows

. *· · · I n−*1*,*1 *I n,*1 *I n*+1*,*1 *· · · · · · I n−*1*,*0 *I n,*0 *I n*+1*,*0 *· · · · · · C ⁿ−*¹ *C ⁿ C n*+1 *· · ·* 0 0 0 *d ⁿ−*¹ *d n d n−*1*,*0 1 *d n,*0 1 *d n−*1*,*1 1 *d n,*1 1 *d n−*1*,*0 2 *d n,*0 1 *d n*+1*,*0 2

where each $C^n \to I^{n,*}$ be an injective resolution and $I^{*,m}$ be complexes.

Now let $Z^p(C^*) = \ker d^p$, $B^p(C^*) = \text{Im} d^{p+1}$ and $Z^p(I^{*,q}) = \ker d_1^{p,q}$, $B^p(I^{*,q}) = \text{Im} d_1^{p+1,q}$. Then we have three complexes as following

$$
0 \to Z^p(C^*) \to Z^p(I^{*,0}) \to Z^p(I^{*,1}) \to \cdots
$$

$$
0 \to B^p(C^*) \to B^p(I^{*,0}) \to B^p(I^{*,1}) \to \cdots
$$

$$
0 \to H^p(C^*) \to H^p(I^{*,0}) \to H^p(I^{*,1}) \to \cdots
$$

Difinition 5.1. We say the injective resolution $C^* \to I^{*,*}$ is a Cartan-Eilenberg Resolutions (also *called fully injective resolution) if the previous three sequences are injective resolutions.*

Theorem 5.2. *Let A be an abelian category with enough injectives. Then every complex C [∗] admits a Cartain-Eilenberg resolution.*

Proof. Actually we can use the horseshoe lemma (See any books about homological algebra like [\[Rot](#page-13-1)]) twice at the following two exact sequences, respectively.

$$
0 \to B^n(C^*) \to Z^n(C^*) \longrightarrow H^n(C^*) \longrightarrow 0
$$

$$
0 \to Z^n(C^*) \longrightarrow C^n \longrightarrow B^{n+1}(C^*) \longrightarrow 0
$$

Then we can combine it into a resolution of *C [∗]* by the universal property of injective objects. \Box

Remark 5.3. *Cartan-Eilenberg resolutions are in some sense the most correct type of injective resolutions and they are play an important role in the construction of the Grothendieck spectral sequence.*

5.2 Grothendieck Spectral Sequence

Theorem 5.4 (Grothendieck Spectral Sequence). Let $F : A \rightarrow B$ and $G : B \rightarrow C$ be additive functors *between abelian categories where A, B have enough injectives and C is cocomplete (that is, colimits always exist), and suppose that* F *sends injectives to* G *-acyclics. Then for any object* $A \in \mathcal{A}$ *there is a first quadrant spectral sequence E starting on page zero, such that*

$$
E_2^{p,q} = R^p G(R^q F(A)) \Rightarrow R^{p+q} (G \circ F)(A).
$$

Proof. Let the complex C^* be an injective resolution of *A*, and let the bicomplex $I^{*,*}$ be a Cartan-Eilenberg resolution of the complex FC^* with $I^{p,q} = 0$ unless $p, q \ge 0$.

Consider the double complex $GI^{*,*}$ and we have two first quadrant spectral sequences $'E_r$," E_r associated to it both converging to the cohomology of $Tot(GI^{*,*})$. Moreover, we have

$$
{}^{\prime}E_{2}^{p,q} = H_{I}^{p}(H_{II}^{q}(GI^{*,*})) = H^{p}(R^{q}G(FC^{*})).
$$

But C^* is a complex of injectives and *F* sends injectives to *G*-acyclics, so for $q > 0$ the complex $R^qG(FC[*]) = 0$, and for $q = 0$ it is canonically isomorphic to *GFC^{*}*. So we have *[']E*₂ page as

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0
$$

\n
$$
\cdots \longrightarrow R^{p-1}(GF)(A) \longrightarrow R^p(GF)(A) \longrightarrow R^{p+1}(GF)(A) \longrightarrow \cdots
$$

So $'E_2 = 'E_\infty$. So we have

$$
H^n(\text{Tot}(GI^{*,*})) = 'E^{n,0}_{\infty} \cong R^n(GF)(A).
$$

Now we consider the second spectral sequence *′′Er*. We have the exact sequence

$$
0 \longrightarrow Z^p(I^{*,q}) \longrightarrow I^{p,q} \longrightarrow B^{p+1}(I^{*,q}) \longrightarrow 0
$$

Since $I^{*,*}$ be a Cartan-Eilenberg resolution of the complex FC^* , so $Z^p(I^{*,q})$ is an injective object. So this exact sequence is split. So

$$
0 \longrightarrow GZ^p(I^{*,q}) \longrightarrow GI^{p,q} \longrightarrow GB^{p+1}(I^{*,q}) \longrightarrow 0
$$

is split too since *G* is additive. So

$$
GZ^{p}(I^{*,q}) \cong \ker(GI^{p,q} \to GB^{p+1}(I^{*,q})) = Z^{p}(GI^{*,q}), GB^{p+1}(I^{*,q}) = B^{p+1}(GI^{*,q}).
$$

Consider another split exact sequence

$$
0\,\longrightarrow\,B^p(I^{*,q})\,\longrightarrow\,Z^p(I^{*,q})\,\longrightarrow\,H^p(I^{*,q})\,\longrightarrow\,0
$$

So as the same reason, we have the following diagram with exact rows

$$
0 \to GB^p(I^{*,q}) \to GZ^p(I^{*,q}) \to GH^p(I^{*,q}) \to 0
$$

\n
$$
\downarrow \cong \qquad \qquad \downarrow \cong
$$

\n
$$
0 \to B^p(GI^{*,q}) \to Z^p(GI^{*,q}) \to H^p(GI^{*,q}) \to 0
$$

Use five-lemma, we have $GH^p(I^{*,q}) \cong H^p(GI^{*,q})$. For now we have

$$
{}^{\prime\prime}E_2^{p,q} = H^p_{II}(H^q_I(GI^{*,*})) = H^p_{II}(GH^q_I(I^{*,*})).
$$

We also have injective resolution $R^qF(A) = H^q(FC^*) \to H^q_I(I^{*,*})$, so $''E_2^{p,q} = R^pG(R^qF(A))$. So $''E_r$ is what we want.

5.3 Some Applications

5.3.1 The Leray Spectral Sequence

Since we know that the category \mathfrak{AbG} _X of abelian sheaves on X has enough injectives, we can define the higher direct image. Let $f : X \to Y$ is continuous and $\mathscr{F} \in \mathfrak{AbG} \mathfrak{h}_X$, we can choose an injective resolution $\mathscr{F}[0] \to \mathscr{I}^*$. Then the higher direct image $R^i f_* \mathscr{F} = H^i(f_* \mathscr{I}^*)$.

Lemma 5.5. *The functor* $f_* : \mathfrak{AbGh}_X \to \mathfrak{AbGh}_Y$ *sends injective sheaves to flabby sheaves.*

Proof. Actually we can prove that $f_* : \mathfrak{AbG} \mathfrak{h}_X \to \mathfrak{AbG} \mathfrak{h}_Y$ sends injective sheaves to injective sheaves. Consider the exact sequence $0 \to \mathscr{A} \to \mathscr{B}$ on *Y*, then we have exact $0 \to f^{-1}\mathscr{A} \to f^{-1}\mathscr{B}$ on *X*. See the following diagram

$$
\operatorname{Hom}_{\mathfrak{Ab} \mathfrak{Sh}_X}(f^{-1}\mathscr{B}, \mathscr{I}) \longrightarrow \operatorname{Hom}_{\mathfrak{Ab} \mathfrak{Sh}_X}(f^{-1}\mathscr{A}, \mathscr{I}) \longrightarrow 0
$$

$$
\downarrow \cong \qquad \qquad \downarrow \cong
$$

$$
\operatorname{Hom}_{\mathfrak{Ab} \mathfrak{Sh}_Y}(\mathscr{B}, f_*\mathscr{I}) \longrightarrow \operatorname{Hom}_{\mathfrak{Ab} \mathfrak{Sh}_Y}(\mathscr{A}, f_*\mathscr{I}) \longrightarrow 0
$$

by the adjointness of (f^{-1}, f_*) . Well done.

Example 6 (The Leray Spectral Sequence)**.** *In the case of Grothendieck spectral sequence, we let* $\mathcal{A} = \mathfrak{Ab}\mathfrak{Sh}_{X}$, $\mathcal{B} = \mathfrak{Ab}\mathfrak{Sh}_{Y}$, $\mathcal{C} = \mathfrak{Ab}$ *. Let* $F = f_*, G = \Gamma(X, -)$ *. Then there exists a spectral sequence* such that $\widehat{E}_2^{p,q} = H^p(Y, R^q f_* \mathscr{F}) \Rightarrow H^{p+q}(X, \mathscr{F})$. This spectral sequence is called Leray spectral sequence.

Remark 5.6. *It shows how we can approximate the sheaf cohomology on X by looking at the sheaf cohomology on Y with respect to the higher direct images.*

5.3.2 The Čech-to-derived Functor Spectral Sequence

Let *X* be a topological space and let $\mathscr F$ be a sheaf on *X*. Let $\mathfrak{U} = \{U_i\}$ be an open cover of *X*. Let $\mathscr{H}^q(X,\mathscr{F})$ be the presheaf with $U \mapsto H^q(U,\mathscr{F})$. For any presheaf \mathscr{P} we define the Čech cohomology $\check{H}^p(\mathfrak{U}, \mathscr{P})$ is cohomology repect to the following complex

$$
\prod_{i_0} \mathscr{P}(U_{i_0}) \longrightarrow \prod_{i_0 < i_1} \mathscr{P}(U_{i_0 i_1}) \longrightarrow \cdots \longrightarrow \prod_{i_0 < \cdots < i_k} \mathscr{P}(U_{i_0 \cdots i_k}) \longrightarrow \cdots
$$

where the map as in the case of Čech-de Rham spectral sequence.

Example 7 (The Čech-to-derived functor spectral sequence)**.** *In the case of Grothendieck spectral* $sequence, we let A = \mathfrak{AbG} \mathfrak{h}_X, B = \mathfrak{Ab}\mathfrak{B}\mathfrak{G} \mathfrak{h}_X, C = \mathfrak{Ab}.$ Let $F = \iota, G = \check{H}^0(\mathfrak{U}, -)$ *. Then there exists a* spectral sequence such that $E_2^{p,q} = \check{H}^p(\mathfrak{U}, \mathcal{H}^q(X, \mathcal{F})) \Rightarrow H^{p+q}(X, \mathcal{F})$. This spectral sequence is called *the Čech-to-derived functor spectral sequence.*

Example 8 (Application: Affine open cover of a scheme)**.** *Let X is a quasi-compact and separated scheme. So we can take a finite affine open cover* $\mathfrak{U} = \{U_i\}$ *. Take* $\mathscr F$ *be a quasi-coherent* $\mathscr O_X$ *-module.* Since X is separated, $U_{i_0\cdots i_k}$ are all affine open. By the Serre theorem, we have $H^i(U_{i_0\cdots i_k},\mathscr{F})=$ $0, i > 0$ *. So* $E_2^{p,q} = \check{H}^p(\mathfrak{U}, \mathcal{H}^q(X, \mathcal{F})) = 0, q > 0$ *. So the* E_2 page of it is

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots
$$

$$
\widetilde{H}^{n-1}(\mathfrak{U},\mathscr{F}) \longrightarrow \widetilde{H}^{n}(\mathfrak{U},\mathscr{F}) \longrightarrow \widetilde{H}^{n+1}(\mathfrak{U},\mathscr{F}) \longrightarrow \cdots
$$

 $So we have \check{H}^n(\mathfrak{U}, \mathscr{F}) \cong H^n(X, \mathscr{F}).$

5.3.3 The Local-to-Global Ext Spectral Sequence

Now we consider a ringed space (X, \mathscr{O}_X) and for open $U \subset X$ we define a sheaf

$$
\mathcal{H}om_{\mathscr{O}_X}(\mathscr{F},\mathscr{G})(U) = \text{Hom}_{\mathscr{O}_X|_U}(\mathscr{F}|_U,\mathscr{G}|_U).
$$

Similarly, since \mathfrak{Mod}_X has enough injective objects, we can define $\mathscr{E}xt^p_{\mathscr{O}_X}(\mathscr{F},\mathscr{G})$ as the sheafification of the derived functors of $\mathscr{H}om_{\mathscr{O}_{X}}(\mathscr{F},\mathscr{G})$.

Lemma 5.7. *Let* (X, \mathscr{O}_X) *is a ringed space.*

(1) If $\mathcal{F} \in \mathfrak{Mod}_X$ *is flat and* $\mathcal{I} \in \mathfrak{Mod}_X$ *is injective, then* \mathcal{H} *om*_{$\mathcal{O}_X(\mathcal{F}, \mathcal{I})$ *is injective.*}

(2) If $\mathscr{F}, \mathscr{I} \in \mathfrak{Mod}_X$ *with* \mathscr{I} *is injective, then* $\mathscr{H}om_{\mathscr{O}_X}(\mathscr{F}, \mathscr{I})$ *is* $\Gamma(X, -)$ *-acyclic.*

Proof. (1) Use the fact that $\text{Hom}_{\mathscr{O}_X}(-,\mathscr{H}om_{\mathscr{O}_X}(\mathscr{F},\mathscr{I})) = \text{Hom}_{\mathscr{O}_X}(-\otimes_{\mathscr{O}_X}\mathscr{F},\mathscr{I})$ and both two sides are exact. Well done.

(2) We can find an exact sequence $0 \to \mathscr{X} \to \mathscr{Y} \to \mathscr{F} \to 0$ where \mathscr{Y} is flat (See [[DM2](#page-13-2)], Lemma 47). Then we get the following exact sequence

$$
0 \to \mathscr{H}\mathit{om}_{\mathscr{O}_X}(\mathscr{X}, \mathscr{I}) \to \mathscr{H}\mathit{om}_{\mathscr{O}_X}(\mathscr{Y}, \mathscr{I}) \to \mathscr{H}\mathit{om}_{\mathscr{O}_X}(\mathscr{F}, \mathscr{I}) \to 0
$$

By (1) the middle term is injective, then the use the long exact sequence we could have the conclusion. $\mathbf{1}$

Example 9 (The Local-to-Global Ext Spectral Sequence). Let (X, \mathcal{O}_X) is a ringed space and let \mathcal{F}, \mathcal{G} *be the sheaf of* \mathscr{O}_X *-modules. In the case of Grothendieck spectral sequence, we let* $\mathcal{A} = \mathcal{B} = \mathfrak{Mod}_X$ *and* $\mathcal{C} = \mathfrak{Ab}$ *. Let* $\overline{F} = \text{Hom}_{\mathcal{O}_X}(\mathscr{F}, -)$ and $G = \Gamma(X, -)$ *. Then we have a spectral sequence such that*

$$
E_2^{p,q} = H^p(X, \mathscr{E}xt^q_{\mathscr{O}_X}(\mathscr{F}, \mathscr{G})) \Rightarrow \text{Ext}^{p+q}(\mathscr{F}, \mathscr{G}).
$$

References

- [BT] Raoul Bott, Loring W. Tu, *Differential Forms in Algebraic Topology*, Springer, 1982.
- [CV] Claire Voisin, *Hodge Theory and Complex Algebraic Geometry, I*, Cambridge, 2002.
- [DM1] Daniel Murfet, *Spectral Sequences*, [http://therisingsea.org/notes/SpectralSequences.](http://therisingsea.org/notes/SpectralSequences.pdf) [pdf](http://therisingsea.org/notes/SpectralSequences.pdf), 2006.
- [DM2] Daniel Murfet, *Derived Categories of Sheaves*, [http://therisingsea.org/notes/](http://therisingsea.org/notes/DerivedCategoriesOfSheaves.pdf) [DerivedCategoriesOfSheaves.pdf](http://therisingsea.org/notes/DerivedCategoriesOfSheaves.pdf), 2006.
- [JPD] Jean-Pierre Demailly, *Complex Analytic and Differential Geometry*, [https://www-fourier.](https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf) [ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf](https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf), 2012 .
- [Rot] Joseph J. Rotman, *An Introduction to Homological Algebra, Second Edition*, Springer, 2009.
- [St] Stacks project collaborators, *Stacks project*, <https://stacks.math.columbia.edu/>.
- [Wb] Charles A. Weibel, *An Introduction to Homological Algebra*, Cambridge, 1994.
- [XR] Xiong Rui, *Spectral Sequence, My Homological Saw*, [https://www.cnblogs.com/XiongRuiMath/](https://www.cnblogs.com/XiongRuiMath/p/14992978.html) [p/14992978.html](https://www.cnblogs.com/XiongRuiMath/p/14992978.html), 2021.