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Abstract

This is a note about the basic spectral sequences , including spectral sequences of exact couples,
filered complexes and double complexes. Moreover, we will make some examples to show how
them work. Furthermore, we also introduce Cartan-Eilenberg Resolutions and lts most important
application, Grothendieck spectral sequences and its applications such as Leray spectral sequences.
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1 Preliminaries
Difinition 1.1. Let A be an additive category, a double complex in it is a system {Ap,q, dp,q1 , dp,q2 }p,q∈Z
where dp,q1 : Ap,q → Ap+1,q, dp,q2 : Ap,q → Ap,q+1 satisfies

(1) dp+1,q
1 ◦ dp,q1 = 0;

(2) dp,q+1
2 ◦ dp,q2 = 0;

(3) dp,q+1
1 ◦ dp,q2 = dp+1,q

2 ◦ dp,q1 .
...

...

· · · Ap,q+1 Ap+1,q+1 · · ·

· · · Ap,q Ap+1,q · · ·

...
...

dp,q+1
1

dp,q
2 dp+1,q

2

dp,q
1

The associated total complex as

sAn = Totn(A∗,∗) =
⊕

p+q=n

Ap,q

with dnTot =
∑

p+q=n(d
p,q
1 + (−1)pdp,q2 ).

Difinition 1.2. Let A be an abelian category.
(1) A filtered object of A is a pair (A,F ) where A ∈ Obj(A) and F = (FnA) where

A ⊃ · · · ⊃ FnA ⊃ Fn+1A ⊃ · · · ⊃ 0;

(2) A morphism f : (A,F ) → (B,F ) as f(F iA) ⊂ F iB;
(3) Let X ⊂ A, then the induced filtration as FnX = X ∩ FnA;
(4) It is called finite if there exists m,n such that FnA = A,FmA = 0;
(5) It is called separated if

∩
F iA = 0, called exhaustive if

∪
F iA = A.

Difinition 1.3. Let A be an abelian category.
(1) A spectral sequence is a system (Er, dr)r≥s such that d2r = 0 with Er+1 = ker(dr)/Im(dr);
(2) A morphism f : (Er, dr)r≥s → (E′

r, d
′
r)r≥s as fr ◦ dr = d′r ◦ fr and such that fr+1 induced by

fr via Er+1 = ker(dr)/Im(dr) and E′
r+1 = ker(d′r)/Im(d′r).

Remark 1.4. Given a spectral sequence (Er, dr)r≥s we will define

0 = Bs ⊂ · · · ⊂ Br ⊂ · · · ⊂ Zr ⊂ · · · ⊂ Zs = Es

by the following simple procedure. Set Bs+1 = Im(ds) and Zs+1 = ker(ds). Then it is clear that
ds+1 : Zs+1/Bs+1 → Zs+1/Bs+1. Hence we can define Bs+2 as the unique subobject of Es containing
Bs+1 such that Bs+2/Bs+1 is the image of ds+1. Similarly we can define Zr+2 as the unique subobject
of Es containing Bs+1 such that Zs+2/Bs+1 is the kernel of ds+1. And so on and so forth. In particular
we have Er = Zr/Br.

Difinition 1.5. Let A be an abelian category and let a spectral sequence (Er, dr)r≥s.
(1) If the subobjects Z∞ =

∩
Zr and B∞ =

∪
Br exists, then we define the limit of the spectral

sequence is E∞ = Z∞/B∞;
(2) We say that the spectral sequence (Er, dr)r≥s degenerates at Er if dr = · · · = 0.
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2 Spectral Sequences of exact comples
Difinition 2.1. Let A be an abelian category.

(1) An exact couple is a datum (A,E, α, f, g) with

A A

E
f

α

g

such that is a exact sequence;
(2) A morphism t : (A,E, α, f, g) → (A′, E′, α′, f ′, g′) as

A A

A′ A′ E

E′

tA tA

tE

α

gf

α′

g′f ′

where α′ ◦ tA = tA ◦ α, f ′ ◦ tE = tA ◦ f and g′ ◦ tA = tE ◦ g.

Theorem 2.2. Let (A,E, α, f, g) be an exact couple, let
(1) d := g ◦ f : E → E, so that d2 = 0;
(2) E′ = ker d/Imd,A′ = Imα;
(3) α′ : A′ → A′ induced by α;
(4) f ′ : E′ → A′ induced by f ;
(5) g′ : A′ → E′ induced by g ◦ α−1.

A A A′ = Imα A′

E E′ = ker d/Imd

α

gf

α′

f ′ g′

Then we have
(a) ker d = f−1(ker g) = f−1(Imα);
(b) Imd = g(Imf) = g(kerα);
(c) (A′, E′, α′, f ′, g′) be an exact couple.

Proof. We will show how α′, f ′, g′ work. Actually α′ works by trivial reason. Next, ker d = ker g ◦ f =
f−1(ker g) = f−1(Imα), then f maps ker d into Imα and since f ◦g = 0, we can induce to f ′ : E′ → A′.
Finally, since Imd = Img ◦ f = g(Imf) = g(kerα), we choose a, b ∈ α−1(s), then g(a)− g(b) ∈ Imd. So
we can induce to g′ : A′ → E′. It’s easy to see that (A′, E′, α′, f ′, g′) be an exact couple.

So if we let E1 = E, d1 = d,E2 = E′, d2 = g′ ◦ f ′ and so on, we get (Er, dr).

Difinition 2.3. Let (A,E, α, f, g) be an exact couple. We say the spectral sequence associated to exact
couple is defined (Er, dr) as above.

Remark 2.4. So in this case we can let Br+1 = g(kerαr), Zr+1 = f−1(Imαr). Let

B∞ = g

(∪
r

kerαr

)
⊂ Z∞ = f−1

(∩
r

Imαr

)

and E∞ = Z∞/B∞.
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3 Spectral Sequences of filtered complexes
3.1 Main Results
Difinition 3.1. Let A be an abelian category. A filtered complex K∗ of A is a complex of filtered
objects.

So it seems as follows.

...
...

...

· · · F p−1Kn+1 F pKn+1 F p+1Kn+1 · · ·

· · · F p−1Kn F pKn F p+1Kn · · ·

· · · F p−1Kn−1 F pKn−1 F p+1Kn−1 · · ·

...
...

...

We now assume the category A has countable direct sums and countable direct sums are exact. Next
we will construct the spectral sequence associated to it.

Let K∗ be the filtered complex and let E0 =
⊕

p,q E
p,q
0 , Ep,q

0 = grpKp+q where for a filtered object
A, we denotes grp(A) = F pA/F p+1A, gr(A) =

⊕
p grp(A). We call p the filtration degree, and q is

called the complementary degree.
Let d0 =

⊕
dp,q0 , dp,q0 : Ep,q

0 → Ep,q+1
0 . Now we define

Zp,q
r =

F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and
Bp,q

r =
F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

where d be the differential of K∗. So

Ep,q
r = Zp,q

r /Bp,q
r =

F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q
.

Also, we let dp,qr : Ep,q
r → Ep+r,q−r+1

r as z + F p+1Kp+q 7→ dz + F p+r+1Kp+q+1.

• • • •

• • • •

• • • •

• • • •

d∗,∗
0

d∗,∗
1

d∗,∗
2

d∗,∗
3
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Theorem 3.2. Let A be an abelian category with exact countable direct sums. Let K∗ be a filtered com-
plex of A. There is a spectral sequence defined as above. Further more, we have Ep,q

1 = Hp+q(grp(K∗)).

Proof. Trivial by the discussion above. In this case Ep,q
r+1

∼= ker dp,q
r

Imdp−r,q+r−1
r

.

Proposition 3.3. Let A be an abelian category with countable direct sums. Let K∗ be a filtered
complex of A. Let the spectral sequence associated to K∗ is (Er, dr). Then the map dp,q1 : Ep,q

1 =

Hp+q(grp(K∗)) → Ep+1,q
1 = Hp+q+1(grp+1(K∗)) is equal to the boundary map of the following short

exact sequence
0 → grp+1(K∗) → F pK∗/F p+2K∗ → grp(K∗) → 0.

Proof. This is just a diagram chase.

If we let K∗ be a filtered complex, then the induced filtration on Hn(K∗) defined by F pHn(K∗) =

Im(Hn(F pK∗) → Hn(K∗)). Then

F pHn(K∗, d) =
ker d ∩ F pKn + Imd ∩Kn

Imd ∩Kn
and grpHn(K∗) =

ker d ∩ F pKn

ker d ∩ F p+1Kn + Imd ∩ F pKn
.

Proposition 3.4. Let A be an abelian category and let K∗ be a filtered complex of A. If Zp,q
∞ , Bp,q

∞
exist, then

(1) The limit E∞ exists and with bigraded object with Ep,q
∞ = Zp,q

∞ /Bp,q
∞ ;

(2) grpHn(K∗) is a subquotient of Ep,n−p
∞ .

Proof. (1) is trivial and now we have

Ep,q
∞ =

∩
r(F

pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q)∪
r(F

pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q)
.

For (2) we let q = n− p, then we have

ker d ∩ F pKn + F p+1Kn ⊂
∩
r

(F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q)

and ∪
r

(F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q) ⊂ Imd ∩ F pKn + F p+1Kn,

then a subquotient of Ep,n−p
∞ is

ker d ∩ F pKn + F p+1Kn

Imd ∩ F pKn + F p+1Kn
=

ker d ∩ F pKn

ker d ∩ F p+1Kn + Imd ∩ F pKn
,

we win.
Difinition 3.5. Let A be an abelian category and let K∗ be a filtered complex of A. Let the spectral
sequence associated to K∗ is (Er, dr)r≥r0 . We say it is

(1) regular if for all p, q there exists b = b(p, q) such that dp,qr = 0 for all r ≥ b;
(2) coregular if for all p, q there exists b = b(p, q) such that dp−r,q+r−1

r = 0 for all r ≥ b;
(3) bounded if for all n there are only a finite number of nonzero Ep,n−p

r0 ; bounded below (resp.
above) if there exists b = b(n) such that Ep,n−p

r0 = 0 for p ≥ b(resp. p ≤ B);
(4) weakly converges to H∗(K∗) if grpHn(K∗) = Ep,n−p

∞ ;
(5) abuts to H∗(K∗) if it weakly converges to H∗(K∗) and

∩
p F

pHn(K∗) = 0 and
∪

p F
pHn(K∗) =

Hn(K∗) for all n;
(6) converges to H∗(K∗) if it is regular, abuts to H∗(K∗) and Hn(K∗) = limp H

n(K∗)/F pHn(K∗).
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Theorem 3.6. Let A be an abelian category and let K∗ be a filtered complex of A. Let the spectral
sequence associated to K∗ is (Er, dr). If for all n each filtration on Kn is finite, then the spectral
sequence (Er, dr) is bounded, the filtration on each Hn(K∗) is finite and (Er, dr) converges to H∗(K∗).

Proof. The first two statements are trivial. Finally since for r � 0 we have F p+rKn = 0 and
F p−r+1Kn−1 = Kn−1, then we have the equality

ker d ∩ F pKn + F p+1Kn =
∩
r

(F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q)

and ∪
r

(F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q) = Imd ∩ F pKn + F p+1Kn,

so (Er, dr) weakly converges to H∗(K∗). Since the filtration on each Hn(K∗) is finite, so it is abuts
and converges to H∗(K∗).

3.2 An Application
Example 1 (Exact sequence from short one to long one). Consider a short exact sequence of complex
0 → A∗ → B∗ → C∗ → 0, show that there exists a exact sequence

· · · → Hi(A∗) → Hi(B∗) → Hi(C∗) → Hi+1(A∗) → · · · .

Proof. Consider the filtration B∗ ⊃ A∗ ⊃ 0, then we have F 0Bi = Bi, F 1Bi = Ai, F 2Bi = 0. So
we have E0,i

0 = Ci, E1,i
0 = Ai+1. For r = 1 we have E0,i

1 = Hi(gr0(B∗)) = Hi(C∗) and E1,i
1 =

Hi+1(gr1(B∗)) = Hi+1(A∗). As we said, dp,q1 as the boundary map, then we have E0,i
2 = ker δi, E1,i

2 =
cokerδi. So the spectral sequence as the following diagram:

Ci+1 Ai+2 Hi+1(C∗) Hi+2(A∗) 0 ker δi+1 cokerδi+1

Ci Ai+1 Hi(C∗) Hi+1(A∗) 0 ker δi cokerδi 0

Ci−1 Ai Hi−1(C∗) Hi(A∗) ker δi−1 cokerδi−1 0

In this case E2 = E∞. By the diagram above, we have

0 → ker δi → Hi(C∗) → Hi+1(A∗) → cokerδi → 0.

By the theorem we know that the spectral sequence converge to H∗(C∗), thus

Hi(B∗)/F 1Hi(B∗) = gr0Hi(B∗) = E0,i
∞ = E0,i

2 = ker δi

and F 1Hi(B∗) = gr1Hi(B∗) = E1,i−1
∞ = E1,i−1

2 = cokerδi, so we have

0 → cokerδi → Hi(B∗) → ker δi−1 → 0

is exact. So we combine these exact sequences and then we have the results.
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4 Spectral Sequences of double complexes
4.1 Main Results

Consider a double complex K∗,∗, then there are two natrul filterations on Tot(K∗,∗) as

F p
I (Totn(K∗,∗)) =

⊕
i+j=n,i≥p

Ki,j , F p
II(Totn(K∗,∗)) =

⊕
i+j=n,j≥p

Ki,j .

See the following diagram.

Then we get two filtered complexes

...

Totn+1(K∗,∗) F 1
I/II(Totn+1(K∗,∗)) F 2

I/II(Totn+1(K∗,∗)) · · ·

Totn(K∗,∗) F 1
I/II(Totn(K∗,∗)) F 2

I/II(Totn(K∗,∗)) · · ·

Totn−1(K∗,∗) F 1
I/II(Totn−1(K∗,∗)) F 2

I/II(Totn−1(K∗,∗)) · · ·

...

⊃ ⊃

⊃ ⊃

⊃ ⊃

⊃

⊃

⊃

and can associated them two spectral sequences (′Er,
′ dr) and (′′Er,

′′ dr).
We now denote Hp

I (K
∗,∗) as the collections of ker dp,q1 /Imdp−1,q

1 and Hq
II(K

∗,∗) as the collections
of ker dp,q2 /Imdp,q−1

2 . So we have Hq
II(H

p
I (K

∗,∗)) and Hp
I (H

q
II(K

∗,∗)).

Theorem 4.1. Let A be an abelian category and let K∗,∗ be a double complex, then
(1) ′Ep,q

0 = Kp,q with ′dp,q0 = (−1)pdp,q2 : Kp,q → Kp,q+1;
(2) ′′Ep,q

0 = Kq,p with ′′dp,q0 = dq,p1 : Kq,p → Kq+1,p;
(3) ′Ep,q

1 = Hq(Kp,∗) with ′dp,q1 = Hp(dp,∗1 );
(4) ′′Ep,q

1 = Hq(K∗,p) with ′′dp,q1 = (−1)qHq(d∗,p2 );
(5) ′Ep,q

2 = Hp
I (H

q
II(K

∗,∗)) and ′′Ep,q
2 = Hp

II(H
q
I (K

∗,∗)).

Proof. By the previous section this is easy to see.

Now we say (′Er,
′ dr) and (′′Er,

′′ dr) weakly converge to, abuts to and converge to is Similar as
the previous section. So we see that (′Er,

′ dr) and (′′Er,
′′ dr) weakly converge if and only if for all n

we have
grFI

(Hn(Tot(K∗,∗))) =
⊕

p+q=n

′Ep,q
∞ , grFII

(Hn(Tot(K∗,∗))) =
⊕

p+q=n

′′Ep,q
∞ .
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Theorem 4.2. Let A be an abelian category and let K∗,∗ be a double complex. Assmue that for all n
there are only finitely many nonzero Kp,q with p+ q = n. Then

(1) two spectral sequences (′Er,
′ dr) and (′′Er,

′′ dr) are all bounded;
(2) two filtrations FI , FII on Hn(Tot(K∗,∗)) are finite;
(3) two spectral sequences (′Er,

′ dr) and (′′Er,
′′ dr) all converge to H∗(Tot(K∗,∗)).

Proof. This is just the restatement of the theorem in the previous section.

4.2 Some Applications
Example 2 (Snake Lemma). Consider the following commutative diagram with exact rows.

A B C 0

0 X Y Z

f g

k h

s t r

Then we have the following exact sequence

ker s ker t ker r cokers cokert cokerr

Proof. We may think it as a double complex as the following

0 X Y Z 0

0 A B C 0

k h

s t r

f g

where the dotted arrow means they are not be the part of exactness. Then the second spectral sequence
as the following

C Z 0 cokerh

B Y 0 0

A X ker f 0

f

g h

k

Then ′′E∞ = ′′E1. So ker f = ′′E0,0
∞ = gr0(H0(Tot)), so H0(Tot) = ker f since F 1

IIH
0(Tot) = 0.

Similarly, we have that the cohomological group of Tot are ker f, 0, 0, cokerh.
The first spectral sequence as the following

X Y Z cokers cokert cokerr

A B C ker s ker t ker r

0 L′ M ′ N ′ E M ′ N ′

L M N 0 L M F

s −t r

So since the result of the second spectral sequence, we have L = ker f,M = M ′ = 0, N ′ = cokerh and
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L′ → N is an isomorphism since E = F = 0. So finally the first spectral sequence as

X Y Z cokers cokert cokerr

A B C ker s ker t ker r

L′ 0 cokerh 0 0 cokerh

ker f 0 N ker f 0 0

s −t r

∼=

Since L′ ∼= N , we find that ker(cokers → cokert) = coker(ker t → ker r) in the second diagram of the
first spectral sequence. Similarly, we have ker(ker s → ker t) = ker f and coker(cokers → cokert) =
cokerh and ker s → ker t → ker r and cokers → cokert → cokerr are exact. So we can combine them
into a long exact sequence

0 ker f ker s ker t ker r

0 cokerh cokerr cokert cokers

And we win.
Example 3 (Balanced Tor and Ext). We works in modules categroy for some ring R (we can replace
it to be some enough projective or injective abelian categroies). Let A,B be one of it and pick projective
resolutions P ∗ → A → 0 and Q∗ → B → 0. So we have a double complex P ∗ ⊗ Q∗. Then we claim
that Hn(Tot(P ∗ ⊗Q∗)) = TorRn (A,B).

Actually we have the spectral sequence as following

Pi−1 ⊗Qi+1 P1 ⊗Qi+1 Pi+1 ⊗Qi+1 0 0 0

Pi−1 ⊗Qi Pi ⊗Qi Pi+1 ⊗Qi 0 0 0

Pi−1 ⊗Qi−1 Pi ⊗Qi−1 Pi+1 ⊗Qi−1 Pi−1 ⊗B Pi ⊗B Pi+1 ⊗B

0 0 0

0 0 0

TorR0 (A,B) TorR1 (A,B) TorR2 (A,B)

Then the claim is right. Ext is similar.

Example 4 (The Frölicher Spectral Sequence). Consider X be a compact complex manifold and let
(A ∗,∗(X), ∂, ∂) be a double complex where A p,q(X) be the space of p, q-forms of X. So the spectral
sequence associated to (A ∗,∗(X), ∂, ∂) is called the Frölicher spectral sequence.

This spectral sequence converges since it is bounded. So we can see that ′Ep,q
1 = Hp,q(X) and it is

converge to H∗(Tot(A p,q(X))) = H∗(Ω∗(X)) = H∗(X,C). So the limit term ′Ep,q
∞ = grpFI

Hp+q(X,C).
In the case of compact Kähler manifold, the Frölicher spectral sequence degenerates at ′E1. This

because we now have r such that ′Ep,q
∞ =′ Ep,q

r = grpFI
Hp+q(X,C). Since dim ′Ep,q

i ≤ dim ′Ep,q
i−1 and

the equality holds if and only if di = 0 and since by the basic Hodge theory we know that dim ′Ep,q
∞ =

dim ′Ep,q
1 , so it is degenerates at ′E1.
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Example 5 (Čech-de Rham Spectral Sequence). Let M be a manifold and U = {Ui} be a good cover
over M . Consider the double complex

Kp,q = Cp(U,Ωq) =
∏

i0<···<ip

Γ(Ui0···ip ,Ω
q)

as
...

...
...

0 Ω1(M)
∏

i0
Γ(Ui0 ,Ω

1)
∏

i0<i1
Γ(Ui0i1 ,Ω

1) · · ·

0 Ω0(M)
∏

i0
Γ(Ui0 ,Ω

0)
∏

i0<i1
Γ(Ui0i1 ,Ω

0) · · ·

C0(U,R) C1(U,R) · · ·

0 0

d

d d

δ

δ

d

d

r

r

i i

δ δ

δ

δ

d

where Ui0···ip =
∩

j=i0<···<ip
Uj. In the diagram r : Ω∗(M) → K∗,0 are the restriction and C∗(U,R) be

the kernel of bottom d and i be the inclution. Moreover, d is the usual differential between differential
forms and δ defined as

(δω)i0···ip+1 =

p+1∑
j=0

(−1)jωi0···ij−1jj+1···ip+1 , ω ∈
∏

i0<···<ip

Γ(Ui0···ip ,Ω
q).

We first get the second spectral sequence as

...
...∏

i0<i1
Γ(Ui0i1 ,Ω

0)
∏

i0<i1
Γ(Ui0i1 ,Ω

1) · · · 0 0 · · ·

∏
i0
Γ(Ui0 ,Ω

0)
∏

i0
Γ(Ui0 ,Ω

1) · · · Ω0(M) Ω1(M) · · ·

0 0 · · ·

H0
DR(M) H1

DR(M) · · ·

So ′′E∞ = ′′E2 for now. So we get the classical result that Hn
DR(M) =

⊕
p+q=n H

p,q
D (C∗(U,Ω∗)) where

Hp,q
D (C∗(U,Ω∗)) as the cohomological group worked with D = d+ (−1)pδ and on Cp(U,Ωq).

Now we consider the first spectral sequence as

...
...∏

i0
Γ(Ui0 ,Ω

1)
∏

i0<i1
Γ(Ui0i1 ,Ω

1) · · · 0 0 · · ·

∏
i0
Γ(Ui0 ,Ω

0)
∏

i0<i1
Γ(Ui0i1 ,Ω

0) · · · C0(U,R) C1(U,R) · · ·

0 0 · · ·

H0(U,R) H1(U,R) · · ·
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So ′E∞ = ′E2 and Hk(U,R) = Hk
D(C∗(U,Ω∗)). In summary, we now have Hk(U,R) = Hn

DR(M).

5 Grothendieck Spectral Sequence and It’s Applications
5.1 Cartan-Eilenberg Resolutions

Consider a complex C∗ and an injective resolution as follows

...
...

...

· · · In−1,1 In,1 In+1,1 · · ·

· · · In−1,0 In,0 In+1,0 · · ·

· · · Cn−1 Cn Cn+1 · · ·

0 0 0

dn−1 dn

dn−1,0
1 dn,0

1

dn−1,1
1 dn,1

1

dn−1,0
2 dn,0

1 dn+1,0
2

where each Cn → In,∗ be an injective resolution and I∗,m be complexes.
Now let Zp(C∗) = ker dp, Bp(C∗) = Imdp+1 and Zp(I∗,q) = ker dp,q1 , Bp(I∗,q) = Imdp+1,q

1 . Then
we have three complexes as following

0 Zp(C∗) Zp(I∗,0) Zp(I∗,1) · · ·

0 Bp(C∗) Bp(I∗,0) Bp(I∗,1) · · ·

0 Hp(C∗) Hp(I∗,0) Hp(I∗,1) · · ·

Difinition 5.1. We say the injective resolution C∗ → I∗,∗ is a Cartan-Eilenberg Resolutions (also
called fully injective resolution) if the previous three sequences are injective resolutions.

Theorem 5.2. Let A be an abelian category with enough injectives. Then every complex C∗ admits
a Cartain-Eilenberg resolution.

Proof. Actually we can use the horseshoe lemma (See any books about homological algebra like [Rot])
twice at the following two exact sequences, respectively.

0 Bn(C∗) Zn(C∗) Hn(C∗) 0

0 Zn(C∗) Cn Bn+1(C∗) 0

Then we can combine it into a resolution of C∗ by the universal property of injective objects.

Remark 5.3. Cartan-Eilenberg resolutions are in some sense the most correct type of injective reso-
lutions and they are play an important role in the construction of the Grothendieck spectral sequence.
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5.2 Grothendieck Spectral Sequence
Theorem 5.4 (Grothendieck Spectral Sequence). Let F : A → B and G : B → C be additive functors
between abelian categories where A,B have enough injectives and C is cocomplete (that is, colimits
always exist), and suppose that F sends injectives to G-acyclics. Then for any object A ∈ A there is
a first quadrant spectral sequence E starting on page zero, such that

Ep,q
2 = RpG(RqF (A)) ⇒ Rp+q(G ◦ F )(A).

Proof. Let the complex C∗ be an injective resolution of A, and let the bicomplex I∗,∗ be a Cartan-
Eilenberg resolution of the complex FC∗ with Ip,q = 0 unless p, q ≥ 0.

Consider the double complex GI∗,∗ and we have two first quadrant spectral sequences ′Er,
′′ Er

associated to it both converging to the cohomology of Tot(GI∗,∗). Moreover, we have
′Ep,q

2 = Hp
I (H

q
II(GI∗,∗)) = Hp(RqG(FC∗)).

But C∗ is a complex of injectives and F sends injectives to G-acyclics, so for q > 0 the complex
RqG(FC∗) = 0, and for q = 0 it is canonically isomorphic to GFC∗. So we have ′E2 page as

· · · 0 0 0 · · ·

· · · Rp−1(GF )(A) Rp(GF )(A) Rp+1(GF )(A) · · ·

So ′E2 = ′E∞. So we have

Hn(Tot(GI∗,∗)) = ′En,0
∞

∼= Rn(GF )(A).

Now we consider the second spectral sequence ′′Er. We have the exact sequence

0 Zp(I∗,q) Ip,q Bp+1(I∗,q) 0

Since I∗,∗ be a Cartan-Eilenberg resolution of the complex FC∗, so Zp(I∗,q) is an injective object. So
this exact sequence is split. So

0 GZp(I∗,q) GIp,q GBp+1(I∗,q) 0

is split too since G is additive. So

GZp(I∗,q) ∼= ker(GIp,q → GBp+1(I∗,q)) = Zp(GI∗,q), GBp+1(I∗,q) = Bp+1(GI∗,q).

Consider another split exact sequence

0 Bp(I∗,q) Zp(I∗,q) Hp(I∗,q) 0

So as the same reason, we have the following diagram with exact rows

0 GBp(I∗,q) GZp(I∗,q) GHp(I∗,q) 0

0 Bp(GI∗,q) Zp(GI∗,q) Hp(GI∗,q) 0

∼= ∼=

Use five-lemma, we have GHp(I∗,q) ∼= Hp(GI∗,q). For now we have
′′Ep,q

2 = Hp
II(H

q
I (GI∗,∗)) = Hp

II(GHq
I (I

∗,∗)).

We also have injective resolution RqF (A) = Hq(FC∗) → Hq
I (I

∗,∗), so ′′Ep,q
2 = RpG(RqF (A)). So ′′Er

is what we want.
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5.3 Some Applications
5.3.1 The Leray Spectral Sequence

Since we know that the category AbShX of abelian sheaves on X has enough injectives, we can define
the higher direct image. Let f : X → Y is continuous and F ∈ AbShX , we can choose an injective
resolution F [0] → I ∗. Then the higher direct image Rif∗F = Hi(f∗I ∗).
Lemma 5.5. The functor f∗ : AbShX → AbShY sends injective sheaves to flabby sheaves.
Proof. Actually we can prove that f∗ : AbShX → AbShY sends injective sheaves to injective sheaves.
Consider the exact sequence 0 → A → B on Y , then we have exact 0 → f−1A → f−1B on X. See
the following diagram

HomAbShX
(f−1B,I ) HomAbShX

(f−1A ,I ) 0

HomAbShY
(B, f∗I ) HomAbShY

(A , f∗I ) 0

∼= ∼=

by the adjointness of (f−1, f∗). Well done.

Example 6 (The Leray Spectral Sequence). In the case of Grothendieck spectral sequence, we let
A = AbShX ,B = AbShY , C = Ab. Let F = f∗, G = Γ(X,−). Then there exists a spectral sequence
such that Ep,q

2 = Hp(Y,Rqf∗F ) ⇒ Hp+q(X,F ). This spectral sequence is called Leray spectral
sequence.
Remark 5.6. It shows how we can approximate the sheaf cohomology on X by looking at the sheaf
cohomology on Y with respect to the higher direct images.

5.3.2 The Čech-to-derived Functor Spectral Sequence

Let X be a topological space and let F be a sheaf on X. Let U = {Ui} be an open cover of X. Let
H q(X,F ) be the presheaf with U 7→ Hq(U,F ). For any presheaf P we define the Čech cohomology
Ȟp(U,P) is cohomology repect to the following complex∏

i0
P(Ui0)

∏
i0<i1

P(Ui0i1) · · ·
∏

i0<···<ik
P(Ui0···ik) · · ·

where the map as in the case of Čech-de Rham spectral sequence.

Example 7 (The Čech-to-derived functor spectral sequence). In the case of Grothendieck spectral
sequence, we let A = AbShX ,B = AbPShX , C = Ab. Let F = ι, G = Ȟ0(U,−). Then there exists a
spectral sequence such that Ep,q

2 = Ȟp(U,H q(X,F )) ⇒ Hp+q(X,F ). This spectral sequence is called
the Čech-to-derived functor spectral sequence.
Example 8 (Application: Affine open cover of a scheme). Let X is a quasi-compact and separated
scheme. So we can take a finite affine open cover U = {Ui}. Take F be a quasi-coherent OX-module.
Since X is separated, Ui0···ik are all affine open. By the Serre theorem, we have Hi(Ui0···ik ,F ) =
0, i > 0. So Ep,q

2 = Ȟp(U,H q(X,F )) = 0, q > 0. So the E2 page of it is

· · · 0 0 0 · · ·

· · · Ȟn−1(U,F ) Ȟn(U,F ) Ȟn+1(U,F ) · · ·

So we have Ȟn(U,F ) ∼= Hn(X,F ).
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5.3.3 The Local-to-Global Ext Spectral Sequence

Now we consider a ringed space (X,OX) and for open U ⊂ X we define a sheaf

H omOX
(F ,G )(U) = HomOX |U (F |U ,G |U ).

Similarly, since ModX has enough injective objects, we can define E xtpOX
(F ,G ) as the sheafification

of the derived functors of H omOX
(F ,G ).

Lemma 5.7. Let (X,OX) is a ringed space.
(1) If F ∈ ModX is flat and I ∈ ModX is injective, then H omOX

(F ,I ) is injective.
(2) If F ,I ∈ ModX with I is injective, then H omOX

(F ,I ) is Γ(X,−)-acyclic.

Proof. (1) Use the fact that HomOX
(−,H omOX

(F ,I )) = HomOX
(−⊗OX

F ,I ) and both two sides
are exact. Well done.

(2) We can find an exact sequence 0 → X → Y → F → 0 where Y is flat (See [DM2], Lemma
47). Then we get the following exact sequence

0 H omOX
(X ,I ) H omOX

(Y ,I ) H omOX
(F ,I ) 0

By (1) the middle term is injective, then the use the long exact sequence we could have the conclusion.

Example 9 (The Local-to-Global Ext Spectral Sequence). Let (X,OX) is a ringed space and let F ,G
be the sheaf of OX-modules. In the case of Grothendieck spectral sequence, we let A = B = ModX and
C = Ab. Let F = HomOX

(F ,−) and G = Γ(X,−). Then we have a spectral sequence such that

Ep,q
2 = Hp(X, E xtqOX

(F ,G )) ⇒ Extp+q(F ,G ).
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