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1 Introduction
First you need to read [9]. For basic things we refer [10] and [3].

2 Preliminaries
2.1 Basic Notations and Definitions
Definition 2.1. A scheme will assume to a scheme of finite type over a field k where k
will be a algebraically closed field of characteristic 0. A veriety will assume to a integral
scheme.

Definition 2.2 (Basic notations and definitions). For convenience, we summary some
definitions and standard notations here. Let X be a normal variety.

• A prime divisor P on X is a codimension 1 irreducible and reduced subvariety of X.
The group of Weil divisors on X, WDiv(X) is the torsion free Z-module given by the
set of all formal linear combinations D =

∑
diPi of prime divisors on X with integral

coefficients. We letWDivQ(X) := WDiv(X)⊗ZQ andWDivR(X) := WDiv(X)⊗ZR.

• A divisor D ∈ WDivR(X) is effective, i.e., D ≥ 0 if D =
∑

diDi and di ≥ 0 for all
i. If D =

∑
diDi ∈ WDivR(X), then we define ‖D‖ = sup{|di|}.

• The support of a divisor D =
∑

diDi ∈ WDivR(X) is supp(D) :=
∪

di ̸=0Di ⊂ X.

• A divisor D =
∑

aiDi ∈ WDivR(X) is called reduced if coeffDDi ∈ {0, 1} for every
Di.

• A principal divisor is a divisor of the form D = (f) where f ∈ K(X) is a rational
function on X and (f) is the divisor given by the difference between the zeroes and
poles of f .

• For any D ∈ WDiv(X) the associated Weil divisorial sheaf is the OX-module OX(D)
defined by

Γ(U,OX(D)) := {D + (f) ≥ 0, f ∈ K(X)}.

• A divisor D ∈ WDiv(X) is Cartier if it is locally principal and let Div(X) ⊂ WDiv(X)
be their group.

• We let DivQ(X) := Div(X)⊗Z Q and DivR(X) := Div(X)⊗Z R.

• If Div(X) = WDiv(X), then we say that X is factorial. If DivQ(X) = WDivQ(X),
then we say that X is Q-factorial. If D ∈ Div(X), then OX(D) is invertible.
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• Two divisors D1, D2 ∈ WDiv(X) are linearly equivalent D1 ∼ D2 if D1 − D2 = (f)
for some f ∈ K(X). Note that D1 ∼ D2 if and only if OX(D1) ∼= OX(D2).

• Two divisors D1, D2 ∈ WDivQ(X) are Q-linearly equivalent D1 ∼Q D2 if D1 −D2 =∑
ai(fi) for some fi ∈ K(X) and ai ∈ Q. Two divisors D1, D2 ∈ WDivR(X) are

R-linearly equivalent D1 ∼R D2 if D1−D2 =
∑

ai(fi) for some fi ∈ K(X) and ai ∈ R.

• Let complete linear series of D is |D| = {D′ ≥ 0 : D′ ∼ D} ∼= PH0(X,OX(D)). The
linear series is a subspace of |D|.

• If D ∈ WDiv(X) and V ⊂ |D| is a linear series, then the base locus of V is

Bs(V ) :=
∩
C∈V

supp(C).

If Bs(V ) = ∅, we say that V is basepoint-free.

• Two divisor D1, D2 ∈ DivR(X) are numerically equivalent D1 ≡ D2 if for any curve
C we have (D1 −D2) · C = 0.

• The Néron-Severi group of X is N1(X) = Div(X)/ ≡ is a free abelian group of finite
rank. The rank of this group is %(X), the Picard number of X.

• Let D =
∑

diDi ∈ WDivR(X), then we define bDc =
∑

bdicDi and dDe =
∑

ddieDi.
Let D =

∑
diDi, D

′ =
∑

d′iDi ∈ WDivR(X), then D ∧D′ =
∑

min{di, d′i}Di.

• Let f : Y → X be a birational morphism, then Exc(f) be the exceptional locus. Let
D ⊂ X, then we let f−1

∗ D be the strict transformation of D.

Definition 2.3 (Some relative version). Let f : X → Z be a proper morphism of normal
varieties.

• Let Di ∈ WDivR(X), then they are R-linear equivalent over Z, i.e. D1 ∼R,Z D2 if
D1 −D2 =

∑
ri(fi)+ f∗C where ri ∈ R, fi ∈ K(X) and C be a R-Cartier divisor on

Z.

• Let Di ∈ DivR(X), then they are numerically equivalent over Z, i.e. D1 ≡Z D2 if
(D1 −D2) · C = 0 where ri ∈ R, fi ∈ K(X) and C be a R-Cartier divisor on Z.

• Real linear series over Z associated to a R-divisor D on X is

|D/Z|R := {D′ ≥ 0 : D′ ∼R,Z D}.

The stable base locus of D over Z is

B(D/Z) :=
∩

C∈|D/Z|R

supp(C).
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2.2 Reflexive sheaves
Here we select some foundamental results of reflexive sheaves (see Tag 0AVT and Tag
0EBK).

Definition 2.4. Here we work over the general schemes.
(i) Let X be an integral locally Noetherian scheme. Let F be a coherent OX-module.

The reflexive hull of F is the OX-module

F ∗∗ := H omOX
(H omOX

(F ,OX),OX).

And F is called reflexive if the canonical map j : F → F ∗∗ is an isomorphism.
(ii) Define the m-th reflexive power is F [m] := (F⊗m)∗∗ and reflexive tensor product

is F ⊗Rf,OX
G := (F ⊗OX

G )∗∗.
(iii) Let L be a rank 1 reflexive sheaf over X, then the index of it defined as the

smallest m > 0 such that L [m] is invertible.

Proposition 2.5. Fix X be an integral locally Noetherian scheme.
(i) Reflexiveness of coherent sheaves can checking on the stalks;
(ii) reflexiveness of coherent sheaves stable under pullback along a flat morphism;
(iii) reflexive coherent sheaves are torsion free;
(iv) if X is normal, then F is reflexive if and only if F is torsion free and S2, if

and only if there exists an open subscheme j : U → X such that codimX(X\U) ≥ 2 and
j∗F is finite locally free and F = j∗j

∗F .

Proof. See Tag 0AY2, Tag 0AY3, Tag 0EBF and Tag 0AY6.

Lemma 2.6. Let X be an integral locally Noetherian normal scheme. For F and G
coherent reflexive OX-modules the map

H omOX
(F ,OX)⊗Rf,OX

G → H omOX
(F ,G )

is an isomorphism. The group law (F ,G ) 7→ F ⊗Rf,OX
G defines an abelian group law

on the set of isomorphism classes of rank 1 coherent reflexive OX-modules.

Proof. See Tag 0EBL.

Theorem 2.7. Let X be an integral locally Noetherian normal scheme. The Weil divisor
class group Cl(X) is isomorphic to the group of rank 1 coherent reflexive OX-modules
by D 7→ OX(D).

Proof. See Tag 0EBM.

Remark 2.8. Hence D1 +D2 correspond to OX(D1 +D2) = OX(D1) ⊗Rf,OX
OX(D2)

and OX(mD) = OX(D)[m].
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Some times we may using this lemma:
Lemma 2.9. Let R be a Noetherian domain. Let f : M → N be a map of R-modules.
Assume M is finite, N is torsion free, and that for every prime p of R one of the
following happens

(a) Mp → Np s an isomorphism, or
(b) depth(Mp) ≥ 2,
then f is an isomorphism.

Proof. See Tag 0AV9.

2.3 Cone of curves and contractions
Definition 2.10. Let k = Q or R and V is a K-vector space. A cone N ⊂ V is a
subset with 0 ∈ N and closed under closed under multiplication by positive scalars.

A subcone M ⊂ N is called extremal if u, v ∈ N, u + v ∈ M imply that u, v ∈ M .
M is also called an extremal face of N . A 1-dimensional extremal subcone is called an
extremal ray.

Definition 2.11. Let X be a variety with proper f : X → Z.

• Let N1(X/Z) be a group of 1-cycle contracted by f is a formal linear combination of
integral proper curves contracted by f , up to the numerically equivalent, as a R-vector
space.

• Let NE(X/Z) := {
∑

ai[Ci] : di ∈ R≥0} ⊂ N1(X/Z) and let NE(X/Z) be its closure.

• For a divisor D ∈ DivR, set D≥0 := {x ∈ N1(X) : x ·D ≥ 0} (and for >,<,≤) and
D⊥ = {x : x ·D = 0}. Let NE(X/Z)D≥0 := NE(X/Z) ∩D≥0 (and for >,<,≤).

• The relative Néron-Severi group N1(X/Z)R := DivR(X)/ ≡Z .

2.4 Kodaria Dimension
Definition 2.12. Let D ∈ WDivR(X) on a normal projective variety X, define the
Kodaira dimension of D as the largest integral κ(D) such that

lim sup
m→∞

h0(X, bmDc)
mκ(D)

> 0

if h0(X, bmDc) 6= 0 for m > 0, otherwise let κ(D) = ∞. We define the Kodaira
dimension of X is κ(X) := κ(KX).

Proposition 2.13. Let D ∈ WDivQ(X) on a normal projective variety X.
(1) κ(D) = κ(aD) for any a ∈ Q>0, and
(2) κ(D) = κ(D′) if D ∼Q D′.
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Proof. (1) Just need to show the case that aD is integral where a ∈ Z>0. First we
know that κ(aD) ≤ κ(D). Conversely, if κ(D) = ∞, then so is aD. So let κ(D) ≥
0. If h0(X, bmDc) = 0 for some m > 0, then h0(X, bmaDc) ≥ h0(X, bmDc). If
h0(X, bmDc) 6= 0 for some m > 0, then bmDc ∼ G for some integral G ≥ 0. Hence
mD ∼ G+ {mD} and

bmaDc = maD ∼ aG+ a{mD}

and then a{mD} is effective and integral. Hence

h0(X, bmaDc) ≥ h0(X, aG) ≥ h0(X,G) = h0(X, bmDc).

Hence κ(aD) ≥ κ(D). Well done.
(2) Trivial by (1).

Proposition 2.14. Let f : Y → X be a contraction of normal projective varieties and
D be a Q-Cartier divisor on X, then κ(D) = κ(f∗D).

Proof. By Proposition 2.13 (1) we may let D is Cartier. Hence as f is a contraction we
get f∗OY = OX . Hence f∗f

∗OX(D) = f∗OY ⊗ OX(D) = OX(D). Hence

H0(Y, f∗OX(D)) = H0(X, f∗f
∗OX(D)) = H0(X,OX(D))

and then κ(D) = κ(f∗D).

Corollary 2.15. IfH is ample, then κ(H) = dimX. Moreover, for anyD ∈ WDivQ(X)
we have κ(D) ≤ dimX.

Proof. By Proposition 2.13 (1) we may let H is very ample. By

0 → OX((m− 1)H) → OX(mH) → OH(mH) → 0

and Serre’s vanishing theorem and induction, well done.

Theorem 2.16 (Iitaka fibration). Let D be a Q-Cartier divisor on a normal projective
variety X with κ(D) ≥ 0. Then there are projective morphisms f : W → X and
g : W → Z from a smooth W such that

• f is birational and g is a contraction;

• κ(D) = dimZ;

• if V is the generic fiber of g, then κ(f∗D|V ) = 0.

Proof. Omitted, see Theorem 2.1.33 in [12].

Remark 2.17. We can define the Kodaira dimension of non-normal varieties using
normalization (see section 2.1 in [12]), but we does not use it any more.

6



2.5 Some Fundamental Results of Positivity
Definition 2.18 (Absolute version). Let X be a normal variety with D ∈ WDivR(X).

• D ∈ WDiv(X) is called very ample if |D| induce a embedding;

• D ∈ DivR(X) is called ample if D =
∑

aiDi where ai > 0 and Di ample;

• D ∈ DivR(X) is called nef if D · C ≥ 0 for any curve C;

• D is called big if D =
∑

aiDi where ai > 0 and Di are integral big divisors. An
integral divisor D called big is κ(D) = dimX;

• D ∈ DivR(X) is called pseudo-effective if it is in the closure of the big-locus in N1(X);

• D ∈ WDiv(X) is called free if Bs(D) 6= ∅;

• D ∈ DivR(X) is called semiample if D ∼R g∗H for some projective morphism g : X →
Y and H is ample on Y .

Definition 2.19 (Relative version). Let f : X → Z be a projective morphism from a
normal variety with D ∈ WDivR(X).

• D ∈ Div(X) is called f -very ample if there is an embedding i : X → PZ(F ) for some
coherent sheaf F with OX(D) ∼= i∗OPZ(F )(1);

• D ∈ DivR(X) is called f -ample if for any p ∈ Z there is an affine neighborhood U
such that D is ample on f−1(U);

• D ∈ DivR(X) is called f -nef if D · C ≥ 0 for any curve C contracted by f ;

• D ∈ DivR(X) is called f -big if

lim sup
m→∞

rankf∗OX(bmDc)
mdim f

> 0

where dim f is the dimension of the generic fiber;

• D ∈ DivR(X) is called f -pseudo-effective if it is in the closure of the big-locus in
N1(X/Z);

• D ∈ WDiv(X) is called f -free if f∗f∗OX(D) → OX(D) is surjective;

• D ∈ DivR(X) is called f -semiample if D ∼R,Z g∗H for some projective morphism
g : X → Y over Z and H is ample over Z in Y .

Here we will give several criterions of several positivity properties which is very
important in birational geometry and higher dimensional algebraic geometry.
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Lemma 2.20 (Asymptotic Riemann-Roch Theorem). Let X be a proper scheme of
dimension n and D1, ..., Dr ∈ Div(X) with coherent sheaf F , then

χ(X,F (k1D1 + ...+ krDr)) = rank(F )
(k1D1 + ...+ krDr)

n

n!
+ lower degree terms.

Proof. We just prove the case of proper smooth case. Using the Hirzebruch-Riemann-
Roch Theorem, we get

χ(X,F (k1D1 + ...+ krDr)) =

∫
X
ch(F (k1D1 + ...+ krDr)) · td(TX) ∩ [X]

=

∫
X
ch(F )ch(k1D1 + ...+ krDr) · td(TX) ∩ [X]

= rank(F )
c1(k1D1 + ...+ krDr)

n

n!
+ lower degree terms.

For the general case, we refer [8] Corollary 18.3.11.

Theorem 2.21 (Triditional cohomology criterions of amplitude). LetL be a line bundle
over a proper scheme X, then the following are equivalent:

(i) L is ample;
(ii) for any coherent sheaf F on X, there exists a positive number M = M(F ) such

that H i(X,F ⊗ L ⊗m) = 0 for all i > 0 and m > M ;
(iii) for any coherent sheaf F on X, there exists a positive number M ′ = M ′(F )

such that F ⊗ L ⊗m generated by global sections for any m > M ′;
(iv) there exists M ′′ > 0 such that L ⊗m is very ample for every m > M ′′.

Proof. This is classical, see [9] Proposition III.5.3.

Theorem 2.22 (Absolute case for amplitude/nefness). Let X be a proper scheme and
D ∈ DivR(X), then

(i)[Nakai-Moishezon-Fujino-Miyamoto] if D correspond to some R-line bundle L
(e.g. X is a normal variety), then D is ample if and only if L dimV ·V = DdimV ·V > 0
for every positive-dimensional closed integral subscheme V ⊂ X;

(ii)[Nakai-Moishezon] if X is projective or D ∈ DivQ(X), then D is ample if and
only if DdimV · V > 0 for every positive-dimensional closed integral subscheme V ⊂ X;

(iii)[Kleiman] if X is projective, then D is ample if and only if NE(X)\{0} ⊂ D>0;
(iv)[Kleiman] if D is nef, then DdimV · V ≥ 0 for every positive-dimensional closed

integral subscheme V ⊂ X.

Proof. (i) See Theorem 1.3/1.4 in [7] for details, I will omit it; (ii) the case D ∈ DivQ(X)
is trivial by the integral case; the case X is projective see [2] Theorem 2.3.18. The
integral case we refer [10] Theorem 1.37; (iii) We refer [12] Theorem 1.4.29 for details.
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Note that (iii) is not right if X is proper but not projective and we have a counter-
example;

(iv) For the integral case we just give a sketch (for details see [4] Theorem 1.26).
Using Chow’s lemma and induction, we just need to prove Dn ≥ 0 for projective X.
Let H be an ample divisor on X and set Dt = D + tH. Consider the polynomial
P (t) = (Dt)

n and we need to show P (0) ≥ 0. Assume the contrary and since the
leading coefficient of P is positive, it has a largest positive real root t0 and P (t) > 0 for
t > t0. For every subvariety Y ⊂ X of positive dimension r < n, D|Y is nef. Easy to
show that Ds ·Hr−s · Y ≥ 0. Hence Dr

t · Y > 0 for t > 0. Then use this we can show
that Dr ·Hn−r ≥ 0.

Let Q(t) = Dn−1
t · D and R(t) = tDn−1

t · H. By Nakai-Moishezon (ii) we get Dt

is ample for t rational and t > t0, we can show that Q(t) > 0 for all t > t0. By
Dr ·Hn−r ≥ 0 and this we get R(t0) ≥ Hntn0 > 0. Hence 0 = P (t0) ≥ R(t0) > 0 which
is impossible.

Theorem 2.23 (Triditional cohomology criterions of relative amplitude). Let L be a
line bundle over scheme X and f : X → Y is proper, then the following are equivalent:

(i) L is f -ample;
(ii) for any coherent sheaf F on X, there exists a positive number M = M(F ) such

that Rif∗(X,F ⊗ L ⊗m) = 0 for all i > 0 and m > M ;
(iii) for any coherent sheaf F on X, there exists a positive number M ′ = M ′(F )

such that F ⊗ L ⊗m generated by global sections for any m > M ′;
(iv) there exists M ′′ > 0 such that L ⊗m is f -very ample for every m > M ′′.

Proof. See [12] Theorem 1.7.6.

Theorem 2.24 (Relative case for amplitude/nefness). Let f : X → Y be a proper
morphism and D ∈ DivR(X), then

(i) if D if a R-line bundle, then D is f -ample if and only if DdimV ·V > 0 for every
positive-dimensional closed integral subscheme V ⊂ X such that f(V ) is a point;

(ii) if f is projective, then D ∈ DivR(X) is f -ample if and only if NE(X/Y )\{0} ⊂
D>0;

(iii) if D ∈ DivR(X) is f -nef, then DdimV · V ≥ 0 for every positive-dimensional
closed integral subscheme V ⊂ X such that f(V ) is a point.

Proof. See [1] for the proofs.

Proposition 2.25 (Cone-relations). Let f : X → Y be a projective morphism, then
(i) Nef(X/Y ) = Amp(X/Y ) and Amp(X/Y ) = int(Nef(X/Y ));
(ii) NE(X/Y ) and N1(X/Y ) are dual, that is,

NE(X/Y ) = {γ ∈ N1(X)R : δ · γ ≥ 0 for all δ ∈ Nef(X/Y )}.
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Proof. For the absolute case, we refer [12] Theorem 1.4.23 and Proposition 1.4.28. For
the relative case, one can see [1] Theorem V.23.

Theorem 2.26 (Semi-amplitude). Let f : X → Y be a proper morphism of schemes.
Let D ∈ Div(X) then D is f -semiample if and only if there exists m > 0 such that
f∗f∗OX(D) → OX(D) is surjective.

Proof. Need to check and need to add.

Lemma 2.27 (Kodaira Lemma I). Let X be a proper normal variety and let D ∈
DivR(X) is big. Let M ∈ DivQ(X), then there exist a positive integer ` and 0 ≤ E ∈
DivR(X) such that

`D ∼ M + E.

Proof. We may let D ∈ Div(X) and X projective. Pick a sufficiently ample H, then we
get

0 → OX(`D −H) → OX(`D) → OH(`D) → 0.

Now h0(X,OX(`D − H)) > 0 by bigness of D and dimension of H. Hence so is
h0(X,OX(`D − L)) > 0!

Theorem 2.28 (Absolute bigness). Let X be a normal projective variety and D ∈
DivR(X). Then the following are equivalent:

(i) D is big;
(ii) D ∼R A+ E where A is ample and E ≥ 0;
(iii) D ≡ A+ E where A is ample and E ≥ 0.

Proof. See [12] Proposition 2.2.22 and [5] Lemma 7.10.

Lemma 2.29 (Kodaira Lemma I). Let X be a projective normal variety and let D ∈
DivQ(X) is big. LetM ∈ DivQ(X), then there exist a positive integer ε such that D−εL
is big.

Proof. We may let D ∈ Div(X). Pick a sufficiently ample H, then we get

0 → OX(`D −H) → OX(`D) → OH(`D) → 0.

Now h0(X,OX(`D−H)) > 0 by bigness of D and dimension of H. Hence `D ∼ H +E
for some E ≥ 0. Hence let ε > 0 so small such that H ′ := H − `εL ample, then
D − εL ∼Q

1
ℓ (H

′ + E) is big by Theorem 2.28.

Proposition 2.30. Let D ∈ DivQ(X) is nef on a projective normal variety X. Then
the following are equivalent:

(i) D is big;
(ii) Dn > 0;
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(iii) D ∼Q Hm+ 1
mE for allm � 0 where Hm ∈ DivQ(X) is ample and E ∈ DivQ(X)

is effective;
(iv) D ≡ Hm+ 1

mE for all m � 0 where Hm ∈ DivQ(X) is ample and E ∈ DivQ(X)
is effective.

Proof. See [10] Proposition 2.61 and Corollary 5.14 in C. Birkar’s note.

Theorem 2.31 (Relative bigness). Let f : X → Z be a projective morphisms of normal
varieties and D ∈ DivR(X). Then D is f -big if and only if D ∼R,Z A + E where A is
f -ample and E ≥ 0.

Lemma 2.32 (Compare to the classical). Let X be a projective normal variety, then
effective cone Eff(X) is the closure of the cone Eff(X) of all effective divisors.

Proof. Pick η ∈ Eff(X), then we have ηk ∈ Eff(X) such that η = limk ηk. Fix an
ample element α, then η = limk(ηk + 1

kα) which is the limit of big elements. Hence
Eff(X) ⊂ Eff(X). Conversely, by Theorem 2.28 we get Big(X) ⊂ Eff(X), well done.

Proposition 2.33 (Cone-relations). Let f : X → Y be a projective morphism of normal
varieties, then Eff(X/Y ) = Big(X/Y ) and Big(X/Y ) = int(Eff(X/Y )).

Proof. The first one is the definition and the second one follows from the openness of
bigness, using Theorem 2.31 and the openness of amplitude.

2.6 Basic Duality Theory
2.7 Cyclic Covers
Here we will disciss some general fact of cyclic covers (µm-covers). And for general
ramified covers we refer section 2.3 in [11].

Definition 2.34 (Unramified cyclic cover). Let X be a normal variety and L be a
line bundle. Let L ⊗m ∼= OX , then consider the OX-algebra A =

⊕m−1
j=0 L ⊗(−j) with

i+ j ≥ m multiplication defined by

L ⊗(−i) ⊗ L ⊗(−j) ∼= L ⊗(−i−j) ∼= L ⊗(m−i−j)

and consider σ : Xm,L = Spec
X

A → X is the corresponding unramified cyclic cover.

Proposition 2.35. Let X be a normal variety and L be a line bundle with L ⊗m ∼= OX ,
then σ : Xm,L → X is étale and σ∗L ∼= OX .
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Proof. Easy to see that σ is étale, we need to show that σ∗L ∼= OX . Easy to see that
σ∗OXm,L

=
⊕m−1

i=0 L −i, let M ∈ kerσ∗ and we get

σ∗OXm,L
= σ∗σ

∗M = M ⊗ σ∗OXm,L
=

m−1⊕
i=0

M ⊗ L −i.

By the Krull-Schmidt theorem, the decomposition of a vector bundle in a direct sum of
indecomposable ones is unique up to permutation of the summands, so we get M ∼= L i

for all i. Hence σ∗L ∼= OX .

Definition 2.36 ((Ramified) cyclic covers). Let X be a normal variety and L be a
line bundle. Fix m > 0 and s ∈ H0(X,L ⊗m) be a non-trivial section with zero divisor
D = (s)0. Then (L |X\D)

⊗m ∼= OX and we can get σ′ : Z ′ → X\D. Actually we can
extend it to σ : Z → X by let A =

⊕m−1
j=0 L ⊗(−j) with i+ j ≥ m multiplication defined

by
L ⊗(−i) ⊗ L ⊗(−j) ∼= L ⊗(−i−j) 1⊗s−→ L ⊗(−i−j) ⊗ L ⊗m ∼= L ⊗(m−i−j)

and consider σ : Xm,L = Spec
X

A → X is the corresponding cyclic cover.
Consider the general case that L be a rank 1 refiexive sheaf and fix m > 0 be an

integer. Then pick a section s ∈ H0(X,L [m]), we again define A =
⊕m−1

j=0 L [−j] with
i+ j ≥ m multiplication defined by

L [−i] ⊗ L [−j] ∼= L [−i−j] 1⊗s−→ L [−i−j] ⊗ L [m] ∼= L [m−i−j]

and consider σ : Xm,L = Spec
X

A → X is the corresponding cyclic cover.

Remark 2.37. Note that when L is a Q-line bundle of index index(L )|m, then
we can take s′ ∈ Γ(Xm,L , σ∗L ) such that (s′)m = σ∗s as the construction give us⊕m−1

j=0 L [−j] ∼=
⊕∞

j=0 L [−j]tj

tm−s . For more general case (even not over a normal variety, it
is over a demi-normal scheme), we refer [11] 2.44.

Proposition 2.38. The general σ : Xm,L → X where L is of rank 1 refiexive sheaf
such that L [m] ∼= OX , then (σ∗L )[1] ∼= OX .

Proof. Pick a locus X0 ⊂ X of codimension larger than 2 such that L |X0 is finite
locally free. Then by previous proposition we get σ∗(L |X0)

∼= Oσ−1(X0). This can
automatically extend to whole Xm,L .

Remark 2.39. For a divisor D ∈ DivQ(X), if OX(rD) ∼= OX (at least always holds
locally), then σ : Z → X is étale outside of singular locus. Hence σ∗KX = KZ . Note
that in this case σ is independent of s as s/s′ is nowhere zero function which take r-th
square.

When L = OX(KX), the cover σ : Xm,KX
→ X is called (local) index 1 cover of X.
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Theorem 2.40 (Bloch-Gieseker covers). Let X be a quasi-projective variety and D ∈
Div(X) and m ∈ N. Then there exists a finite cover g : Y → X and D′ ∈ Div(Y ) such
that gD ∼ mD′. Moreover, if X is smooth and

∑
Fj is a snc divisor on X, then we

can choose Y and g∗Fj are smooth and
∑

g∗Fj is a snc divisor.

Proof. Consider π : Pn → Pn given by (x0 : ... : xn) 7→ (xm0 : ... : xmn ), then π∗O(1) ∼=
O(m). Pick a very ample divisor H on X which induce h : X → Pn such that h∗O(1) ∼=
OX(H) and we get the following

Y Y ′ Pn

X Pn

π

h

⌜
g

hY

where Y → Y ′ be the normalization. Hence easy to see that g∗OX(H) ∼= h∗Y O(m). So
if D = H, then well done. If not, we can let D = H −H ′ and do the same thing. For
the more things given by Kleiman’s Bertini-type theorem.

2.8 Log Resolution of Singularities
Theorem 2.41 (Hironaka). Let X be a variety over char(k) = 0 with a divisor D on
it. Then a log resolution of (X,D) exists, that is, there exists a projective birational
morphism f : Y → X such that Y is smooth and Exc(f) ∪ f−1(supp(D)) is a strict
normal crossing divisor.

2.9 Some Fundamental Vanishing Theorems, a Sketch
Theorem 2.42 (Kodaira Vanishing Theorem). Let X be a smooth projective variety
and let H be an ample Cartier divisor on X. Then

H i(X,OX(KX +H)) = 0

for all i > 0.

Proof. We can using GAGA and cyclic cover (see [10] Theorem 2.47).

Theorem 2.43 (Kawamata-Viehweg Vanishing Theorem). Let X be a smooth variety
with a proper surjective morphism f : X → S where S be a variety. Let D ∈ WDivR(X)
with

(i) D is f -nef and f -big;
(ii) {D} has support with snc divisor.

Then Rif∗(KX + dDe) = 0 for any i > 0.

13



Proof. We refer [6] Theorem 3.2.1 for general case and [10] for absolute case.

Remark 2.44. For more general case, we can even let {D} has support with normal
crossing divisor. See [6] Theorem 3.2.1.

Corollary 2.45 (Grauert-Riemenschneider Vanishing Theorem). Let f : X → Y be a
generically finite morphism from a smooth variety X, then Rif∗OX(KX) = 0 for any
i > 0.

Proof. As KX − KX is f -nef and f -big since f is generically finite, then by Theorem
2.43 and well done.

Appendix A. Bend and Break

3 For Curves and Surfaces
3.1 Curves
Note that as the normalization of projective curves if the unique smooth model, the
minimal model and resolution of singularities is trivial for dimension 1.

Let X be a smooth projective curve. Let κ(X) be the Kodaira dimension of X.
From the Riemann-Roch we have the following types of smooth projective curves:

• g(X) = 0 ⇐⇒ degKX < 0 ⇐⇒ X ∼= P1 ⇐⇒ κ(X) = −∞;

• g(X) = 1 ⇐⇒ degKX = 0 ⇐⇒ X is elliptic ⇐⇒ κ(X) = 0;

• g(X) ≥ 2 ⇐⇒ degKX > 0 ⇐⇒ X is of general type ⇐⇒ κ(X) = 1.

For the positivity of divisors over smooth curves, we have the following well-known
results:

Proposition 3.1 (See [9] Corollary IV.3.2 and Corollary IV.3.3). Let D be a divisor
over a smooth projective curve X of genus g, we have

(a) D is ample if and only if degD > 0;

(b) D is base-point free if degD ≥ 2g;

(c) D is very ample if degD ≥ 2g + 1.

Now we can related to the moduli theory of curves.

Corollary 3.2 (Results related to moduli). For a smooth projective curve X of genus
g ≥ 2, we have

14



(a) KX is base point free;

(b) 3KX is very ample, so defines an embedding X ↪→ P5g−6.

Proof. (a) If x ∈ X, then by Riemann-Roch we get h0(X,KX − x)− h0(X,x) = g − 2.
First we claim that h0(X,x) = 1, otherwise there exists a non-constant f ∈ K(X)
such that (f) + x ≥ 0. Then (f) + x consists of just one point and hence give a
linear equivalence of two distinct points. Hence X is rational which is impossible!
h0(X,KX − x) = g − 1 = h0(X,KX)− 1. By [9] Proposition IV.3.1.(a), well done.

(b) By Riemann-Roch this is trivial.

Now we going to the moduli theory! Roughly speaking, we need to find a variety
such that any point on it correspond to a smooth curves of given genus g ≥ 2. But this
is impossible as they have non-trivial automorphisms (actually it is so called a smooth
Deligne-Mumford stack Mg). But if we just consider the coarse moduli space (that is,
consider closed points as smooth curves up to isomorphisms), we can get a variety Mg

(but not smooth) and dimMg = 3g − 3.
How to construct the structure of Mg? Actually using Corollary 3.2, we can consider

the subschemes in P5g−6 of the same Hilbert polynomial, which forms a Hilbert scheme
H ′. We find that it is a locally closed subscheme H ⊂ H ′ corresponding the smooth
curves. After quotients the automorphisms of P5g−6, that is, PGL(5g − 5), we can get
Mg

∼= [H/PGL(5g − 5)], the stack quotient.
But these spaces is not proper, we need some compactification (so called Deligne-

Mumford compactification) M g and Mg. As here the boundary M g\Mg is not smooth,
our aim is to find some kind of singularities and stability of curves to get M g. Deligne
and Mumford find that we need to use the nodal singularities with stable condition: ω
ample (i.e. finite automorphisms). They showed that M g is a proper smooth Deligne-
Mumford stack of dimension 3g − 3. By the theory of Keel-Mori, we get the coarse
moduli space Mg. Then Janos Kollár shows that Mg is projective!

Then many people study the geometric properties ofMg andMg, such as line bundles
and divisors on them, the Kodaira dimension of them and the canonical and minimal
models of them.

For the higher dimension, many birational geometrier want to generalized this into
higher dimension, that is, the foundation of the moduli theory of varieties of general
type. This theory related to the minimal model program of log general type and the
finiteness of automorphisms of varieties of general type (Hacon-McKernan-Xu). As
the case of curves, we need some singularities to get the compactification! Several
mathematicians develop this theory, called the moduli theory of KSBA-stable varieties
of general type, using the singularities called semi-log-canonical (slc) singularities which
we will dicuss later.
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3.2 General Surfaces
A famous theorem of blowing down (−1)-curves of Castelnuovo is needed here:
Theorem 3.3. Let X be a smooth projective surface, E ⊂ X a curve. Then E is a
(−1)-curve if and only if E is the exceptional curve of a blowing up.
Proof. See Theorem 3.30 in [2] for any characteristic.

Theorem 3.4 (Classical MMP for surfaces). Let X be a smooth projective surface and
R ⊂ NE(X) an extremal ray such that R ·KX < 0, then the contraction contR : X → Z
exists and is one of following types:

(i) Z is smooth surface and X is obtained from Z by blowing up a closed point with
%(X/Z) = 1;

(ii) Z is a smooth curve and X is a minimal ruled surface over Z with %(X) = 2;
(iii) Z is a point and %(X) = 1 with −KX is ample (in fact X ∼= P2).

Hence there is sequence of contractions X → · · · → X ′ such that X ′ is one of the
following types:

(a) KX′ is nef;
(b) X ′ is a minimal ruled surface over a smooth curve C;
(c) X ′ ∼= P2.

Proof. Pick an irreducible curve C in R and consider C2.
If C2 > 0, by Lemma 3.5 we get [C] ∈ NE(X) is an interior point. As it generate

a extremal ray, then N1(X) ∼= R. As C · KX < 0 we get −KX ample by Kleiman’s
criterion.

If C2 < 0, then by adjunction formula we get C is a (−1)-curve. Hence by Theorem
3.3 we get the results.

If C2 = 0, by Lemma V.1.7 in [9] we get H2(X,OX(mC)) = 0 for m � 1. By
Riemann-Roch theorem we get

h0(X,O(mC)) ≥ χ(X,O(mC)) =
−mC ·KX

2
+ χ(OX) ≥ 2

for m � 1. Hence taking mC ∈ H0(X,O(mC)) and pick another independent section
s ∈ H0(X,O(mC)). Then the base locus of {s,mC} is some multiple of C since C2 = 0.
Hence we can find some m′ > 0 such that we can take s′ ∈ H0(X,OX(m′C)) such
that {s′,m′C} have empty base locus. Hence we get f : X → P1. Taking the Stein
factorization we get contR : X → R. Let

∑
aiCi be a fiber of contR, then [C] =

∑
ai[Ci]

as contR is flat and the general fiber have this property. Hence [Ci] ∈ R and we get
C2
i = 0 and Ci · KX < 0. By adjunction formula we get Ci

∼= P1 and Ci · KX = −2.
Hence

−2 = C ·KX = KX ·
∑

aiCi = −2
∑

ai,

hence
∑

aiCi is P1.
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Lemma 3.5. Let X be an irreducible and projective surface with ample divisor H. Then
the set Q := {z ∈ N1(X) : z2 > 0} has two connected components Q+ = {z ∈ Q : z ·H >
0} and Q− = {z ∈ Q : z ·H < 0} with Q+ ∈ NE(X).

Proof. Taken from Corollary 1.21 in [10]. By Hodge index theorem, we can take
suitable basis such that the intersection form on N1(X) is x21 −

∑
i≥2 x

2
i and [H] =

(
√
H ·H, 0, ..., 0). Hence Q+ = {x1 > (

∑
i≥2 x

2
i )

1/2} and Q− = {x1 < (
∑

i≥2 x
2
i )

1/2}.
By Corollary V.1.8 in [9], we get D or −D effective where [D] ∈ Q. As effective curve
has positive intersection with H, we get Q+ ∈ NE(X).

4 Singularities of Pairs

5 The Basic Main Results for klt Pairs

6 Existence of Minimal models and Mori Fiber Space

7 Several Kind of Varieties
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D≥0, 5
N1(X/Z), 5
NE(X/Z), 5
NE(X/Z)D≥0, 5
Q-factorial, 2
Q-linearly equivalent, 3
R-linearly equivalent, 3
NE(X/Z), 5
f -ample, 7
f -big, 7
f -free, 7
f -nef, 7
f -pseudo-effective, 7
f -semiample, 7
f -very ample, 7

ample, 7
ample cone, 9
Asymptotic Riemann-Roch, 8

base locus, 3
basepoint-free, 3
big, 7
big cone, 11
Bloch-Gieseker cover, 13

Cartire divisor, 2
Castelnuovo’s theorem, 16
Classical MMP for surfaces, 16
complete linear series, 3
cone, 5
cyclic cover, 12

effective divisors, 2
extremal, 5
extremal face, 5
extremal ray, 5

factorial scheme, 2
free, 7

Grauert-Riemenschneider vanishing
theorem, 14

Iitaka fibration, 6
index, 4
index 1 cover, 12

Kawamata-Viehweg vanishing theorem,
13

Kleiman, 8
Kodaira dimension, 5
Kodaira vanishing theorem, 13

linear series, 3
linearly equivalent, 3
log resolution of singularities, 13

Nakai-Moishezon, 8
nef, 7
nef cone, 9
numerically equivalent, 3
Néron-Severi group, 3

Picard number, 3
prime divisor, 2
principal divisor, 2
pseudo-effective, 7
pseudoeffective cone, 11

Real linear series, 3
reduced divisor, 2
reflexive hull, 4
reflexive module, 4
reflexive power, 4
reflexive tensor product, 4
relative linear equivalent, 3
relative numerically equivalent, 3
relative Néron-Severi group, 5

scheme, 2
semiample, 7
stable base locus, 3
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support, 2

unramified cyclic cover, 11

veriety, 2

very ample, 7

Weil divisorial sheaf, 2
Weil divisors, 2
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