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Chapter 1

Basic facts of general curves

1.1 Standard results
Definition 1.1.1. A curve over k is a pure one-dimensional scheme C of finite type over k. If C is
proper, we define the arithmetic genus (simply the genus) of C as g(C) := ga(C) = 1− χ(C,OC). By
Review A.3.1, if C is geometrically connected and geometrically reduced, this is equal to h1(C,OC).
Theorem 1.1.2 (St 0B5Y). Let k be a field. Let C be a proper scheme of dimension ≤ 1 over k. Let
L be an invertible OX-module. Let Ci be the irreducible components of dimension 1. Then L is ample
if and only if deg(L|Ci) > 0 for all i.
Theorem 1.1.3 (Serre duality of smooth curves). Let C be a smooth projective curve over k with
canonical bundle ωC = ΩC , then for any vector bundle F we get

H0(C,F∨ ⊗ ωC) ∼= H1(C,F )∨.

If we define the geometrical genus ge(C) = h0(C,ωC) and if C is smooth projective curve which
is geometrically connected and geometrically reduced, then h0(C,OC) = 1. Hence by serre-duality we
get ge(C) = ga(C).
Theorem 1.1.4 (Riemann-Roch for smooth curves). Let C be a smooth projective curve over k with
a line bundle L, then

χ(C,L) = h0(C,L)− h0(C,ωC ⊗ L∨) = degL+ 1− g.

Theorem 1.1.5 (Positivity of divisors on smooth curves). Let C be a smooth projective curve over k
of genus g with a line bundle L, then

(a) if degL ≥ 2g, then L is base-point-free;
(b) if degL ≥ 2g + 1, then L is very ample;
(c) if degL > 0, then L is ample.
(d) if degL < 0, then h0(C,L) = 0.

Proof. See the section IV.3 of [58] for the proof when k is algebraic closed. This is also right when k
is not algebraic closed, see section 20.2 in [80].

Here we use another method to show (d) as a special case of [58] Ex.III.7.1. We just consider the
case C is integral. If degL < 0, then L−1 is ample. Let h0(C,L) > 0 and take a nonzero s ∈ H0(C,L).
As H0(C,L) = Hom(OC , L), we can get −× s : OC → L. As C integral, s must nonzero at the generic
point, hence − × s : OC → L is injective. Hence we get L−1 ⊂ OC . Let n such that L−n generated
by global sections, we get L−n ⊂ OC . Hence H0(C,L−n) ⊂ H0(C,OC). Consider hilbert polynomial
χ(L−n) = αn+ β as degχ(L−n) = dim supp(L−1) = dimC = 1. By Serre’s vanishing theorem, we get
for n→∞, we have χ(L−n) = h0(C,L−n)→∞. This is impossible since h0(C,OC) <∞.
Theorem 1.1.6 (Riemann-Hurwtiz Theorem,St 0C1B). Let f : X → Y be a separable morphism of
smooth proper curves over a field k and if k = H0(X,OX) = H0(Y,OY ) and X and Y have genus gX
and gY , then

2gX − 2 = (2gY − 2) deg(f) + degR

9
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where R be the ramified divisor. Moreover, degR =
∑
x dx[κ(x) : k] where dx = lengthOX,x

ΩX/Y,x.
Of course if OX,x is tamely ramified over OY,f(x) then dx = ex − 1. If not, we only have dx > ex − 1
where ex is the ramification index.

1.2 Automorphisms of curves
Here we only consider smooth connected projective curves of genus g over an algebraically closed field
k.

Proposition 1.2.1. For g = 0, we get Aut(P1
k)
∼= PGL2. Moreover, if we consider all automorphisms

fixed n points, then this group is finite if and only if n ≥ 3.

Proof. See [58] Example II.7.1.1, we get Aut(P1
k)
∼= PGL2. Moreover, all automorphisms fixed n points

is finite if and only if n ≥ 3 by easy linear algebra.

Proposition 1.2.2. For curve C with g = 1, we get Aut(C) is infinite group. Moreover, if we consider
all automorphisms fixed n points, then this group is finite if and only if n ≥ 1.

Proof. In this case C is actually a group scheme of dimension 1 (by Picard varisties) and C can then
act on C. Hence C ⊂ Aut(C), hence infinite. Moreover, by [58] Corollary IV.4.7 (for char(k) 6= 2),
if we fixed one point P0, then Aut(C;P0) is finite. Indeed, let f : X → P1 such that f(P0) = ∞,
branched over 0, 1, λ,∞. Let σ ∈ Aut(C;P0), then there exists an automorphism τ ∈ Aut(P1;∞) such
that f ◦ σ = τ ◦ f . Hence τ sends {0, 1, λ} to {0, 1, λ} in some order.

(i) If τ = id, then σ = id or interchanging two sheets of f ;
(ii) If τ 6= id, then τ permutes {0, 1, λ} and the orbit of λ is of that six forms.

In both cases is finite, well done.

Proposition 1.2.3 (Hurwitz). For curve C with g ≥ 2, the group Aut(C) is finite. Moreover, if k
has characteristic 0, we have #(Aut(C)) ≤ 84g − 84.

Proof. See [58] Ex.V.1.11 and Hurwitz’s Automorphism Theorem.

Lemma 1.2.4 (St 0E67). Let X be a smooth, proper, connected curve over k of genus g.
(a) If g ≥ 2, then Derk(OX ,OX) = 0;
(b) If g = 1 and D ∈ Derk(OX ,OX) is nonzero, then D does not fix any closed point of X;
(c) If g = 0 and D ∈ Derk(OX ,OX) is nonzero, then D can fix at most 2 closed points of X.

Remark 1.2.5. We will say an element D ∈ Derk(OX ,OX) fixes x if D(I ) ⊂ I where I is the
ideal sheaf of x.

Sketch. As we have the canonical derivation d : OX → ΩX/k, taking any D ∈ Derk(OX ,OX) we get
D = f ◦ d where f ∈ HomOX

(ΩX/k,OX) and deg(ΩX/k) = 2g − 2.
(a) If g ≥ 2, then deg(ΩX/k) > 0. Hence

HomOX
(ΩX/k,OX) = HomOX

(OX , TX/k) = Γ(X,TX/k) = 0,

hence f = 0;
(b)(c) We claim that the vanishing of f at x ∈ X is equivalent to the statement that D fixes x.

Indeed, by St 0C1E we get for the uniformizer z ∈ OX,x, dz is a basis of ΩX,x. Since D(z) = f(dz),
we conclude the claim.

If g = 1, then a nonzero f does not vanish anywhere. Hence by the claim, D does not fix any
closed point of X. If g = 0, then a nonzero f vanishes in a divisor of degree 2. Hence by the claim, D
can fix at most 2 closed points of X.

Lemma 1.2.6. Let X be a proper scheme over a field k of dimension ≤ 1, then the following are
equivalent

(i) Aut(X) is geometrically reduced over k and has dimension 0;
(ii) Aut(X)→ Spec(k) is unramified;
(iii) Derk(OX ,OX) = 0.

https://stacks.math.columbia.edu/tag/0E67
https://stacks.math.columbia.edu/tag/0C1E
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Proof. See St 0DSW and St 0E6G. Note that these two lemmas can also gives the results about
automorphism groups of smooth connected curves.

Proposition 1.2.7. Let C be a curve of genus g over a field k of characteristic 0, then for any
non-trivial automorphism of C fixed at most 2g + 2 points.

Proof. See I.F-4 in [9] for now. To add.

https://stacks.math.columbia.edu/tag/0DSW
https://stacks.math.columbia.edu/tag/0E6G
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Chapter 2

Families of curves

2.1 Families of general curves
Lemma 2.1.1 (Dualizing sheaves of the families of curves). Let (S, f : C → S) in Mg (or more
general) for g ≥ 2.

(i) f∗OC = OS;
(ii) For k > 1 the sheaf f∗(Ω1

C/S)
⊗k is locally free of rank (2k−1)(g−1) on S, and for any g : S′ → S,

we get an isomorphism g∗f∗(Ω
1
C/S)

⊗k ∼= f ′∗(Ω
1
C′/S′)⊗k. Moreover, Rif∗(Ω1

C/S)
⊗k = 0, i > 0;

(iii) The sheaf f∗Ω1
C/S is locally free of rank g on S, and for any g : S′ → S, we get an isomorphism

g∗f∗Ω
1
C/S
∼= f ′∗Ω

1
C′/S′ . Moreover, R1f∗(Ω

1
C/S) = OS and Rif∗(Ω1

C/S) = 0, i > 1;
(iv) For k ≥ 3, (Ω1

C/S)
⊗k is relative very ample.

Proof. (i) By definition, for all s ∈ S the Cs is proper geometrically connected and geometrically
reduced, then by Review A.3.1 we get H0(Cs,Os) = κ(s), hence φ0s : f∗OC ⊗ κ(s) → H0(Cs,Os) is
surjective. By Review A.1.1 with i = 0, we get φ0s is an isomorphism and f∗OC is a line bundle. Now
consider the natural map OS → f∗OC induce a surjective fiber map κ(s)→ f∗OC ⊗ κ(s) by seen

κ(s)→ f∗OC ⊗ κ(s)→ H0(Cs,Os) = κ(s).

Thus OS → f∗OC is surjective, hence an isomorphism.
(ii) For all s ∈ S and k > 1 we get H1(Cs, (Ω

1
Cs/κ(s)

)⊗k) = H0(Cs, (Ω
1
Cs/κ(s)

)⊗(1−k))∨ = 0 as
(Ω1

Cs/κ(s)
)⊗(1−k) is anti-ample. Hence Hi(Cs, (Ω

1
Cs/κ(s)

)⊗k) = 0 for i > 0. Now use Review A.1.1 we
get Rif∗(Ω1

C/S)
⊗k = 0, i > 0.

On the other hand, by Riemann-Roch theorem, we get

h0(Cs, (Ω
1
Cs/κ(s)

)⊗k) = deg((Ω1
Cs/κ(s)

)⊗k) + 1− g = (2k − 1)(g − 1).

Use Review A.1.1 again, we get f∗(Ω1
C/S)

⊗k is locally free of rank (2k − 1)(g − 1) on S.
(iii) By Review A.1.1 and the fact Hi(Cs,Ω

1
C/S ⊗ κ(s)) = 0, i > 1 implies Rif∗Ω1

C/S = 0, i > 1.
Now we use the duality f∗H om(F,Ω1

C/S)
∼= H om(R1f∗F,OS), then let F = Ω1

C/S . We get f∗OC ∼=
(R1f∗Ω

1
C/S)

∗. Hence R1f∗Ω
1
C/S
∼= (f∗OC)∗ = O∗

S
∼= OS .

By Review A.1.1(ii) with i = 1, we get φ0s : f∗Ω1
C/S ⊗ κ(s)→ H0(Cs,Ω

1
Cs/κ(s)

) is surjective, hence
an isomorphism. Then apply Review A.1.1(i)-(ii) with i = 0 to imply f∗Ω1

C/S is locally free of rank
h0(Cs,Ω

1
Cs/κ(s)

) = g.
(iv) Easy to see for any s ∈ S the fiber (Ω1

Cs/κ(s)
)⊗k is very ample as deg(Ω1

Cs/κ(s)
)⊗k = k(2g−2) ≥

2g+1. Using noetherian approximation, we may let S is noetherian. Then use Review A.3.2 and well
done.

13
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Remark 2.1.2. Note that we can be generalized these statements into more general families of curves,
such as nodal curves and so on, without any modification.

Proposition 2.1.3 (Flatness Criterion over Smooth Curves). Let C be an integral and regular scheme
of dimension 1 (e.g. the spectrum of a DVR or a smooth connected curve over a field) and X → C a
qcqs morphism of schemes. A quasi-coherent OX-module F is flat over C if and only if every associated
point of F maps to the generic point of C.

2.2 Families of elliptic curves
This section are some preliminaries of the coarse moduli space of M1,1. Here we follows [75] 13.1 and
for the basic theory of single elliptic curves, we refer [58] IV.4.



Chapter 3

Singularities of curves

3.1 δ-invariant
The the more details, see St 0C3Q and St 0C3Z.

Lemma 3.1.1 (St 0C3S). Let (A,m) be a reduced 1-dimensional local ring of finite type over a field
k. Let A′ be the integral closure of A in the total ring of fractions of A. Then A′ is a normal with
A→ A′ is finite, and A′/A has finite length as an A-module.

Definition 3.1.2. Let A be a reduced 1-dimensional local ring of finite type over a field k. The
δ-invariant of A is lengthA(A′/A) where A′ is as in Lemma.

Let X be a scheme locally of finite type over k. Let x ∈ X such that OX,x is reduced with dimension
1. The δ-invariant of X at x is the δ-invariant of OX,x.

Proposition 3.1.3 (St 0C3V). Let A be a reduced 1-dimensional local ring of finite type over a field
k. Then Â has the same δ-invariant as A and A′ ⊗A Â is the integral closure of Â in its total ring of
fractions.

Proposition 3.1.4 (St 0C1R). Let X be a reduced scheme locally finite type over a field of dimension
1 with normalization f : X̃ → X. Then OX ⊂ f∗OX̃ and f∗OX̃/OX is a direct sum of skyscraper
sheaves Qx in the singular points x and Qx = (f∗OX̃)x/OX,x has finite length equal to the δ-invariant
of X at x.

3.2 Some singularities of curves
Definition 3.2.1. Let C be a curve over k. Here we let k algebraically closed and if not, we condier
the base-change.

(a) We say that p ∈ C(k) is a node is we have ÔC,p ∼= k[[x, y]]/(xy);
(b) We say that p ∈ C(k) is a cusp is we have ÔC,p ∼= k[[x, y]]/(y2 − x3);
(c) We say that p ∈ C(k) is a tacnode is we have ÔC,p ∼= k[[x, y]]/(y2 − x4).

Definition 3.2.2. A curve C has locally planar singularities at p if ÔC,p ∼= k[[x, y]]/(f) for a reduced
series f ∈ k[[x, y]].

Proposition 3.2.3. If a curve have worst locally planar singularities, then it is Gorenstein. Hence
nodal, cuspidal and tacnodal curves are all Gorenstein.

15
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Chapter 4

The varieties associated to curves

In most of cases of this chapter we focus on the proper reduced curves over an algebraically closed field k
(may not irreducible and smooth). But when we let C smooth, we will automatically let C irreducible.
When we consider C we can use the language of Riemann surfaces via Serre’s GAGA-principle.

4.1 Jacobian variety of curves
4.1.1 Analytic approach
We let C a smooth projective curve of genus g over C. We follows [9].
IApproach 1. If ω, ω′ are holomorphic forms on C, then checking locally we get ω ∧ ω′ = 0 and∫
C

√
−1ω ∧ ω > 0(ω 6= 0). Moreover we have dω = 0, hence [ω] ∈ H1

DR(C)
∼= H1(C,C).

Choose a basis ω1, ..., ωg ∈ H0(C,K) and γ1, ..., γ2g ∈ H1(C,Z). We can define the period matrix

Ω = (Ω1, ...,Ω2g)g×2g,Ωi =


∫
γi
ω1

...∫
γi
ωg

 .

Hence by construction we can see that Ω1, ...,Ω2g generates a lattice Λ in Cg. Hence we define J(C) :=
Cg/Λ as the Jacobian variety of C.
IApproach 2. Or equivalently, considerH1(C,Z) ↪→ H0(C,K)∨ by γ 7→

∫
γ
, then J(C) = H0(C,K)∨/H1(C,Z).

Sometimes we call this Albanese torus when X be a compact Kähler manifold of higher dimension (See
[62], for example).
IApproach 3. Let Pic0(C) be the degree 0 line bundles (or the kernel of the first Chern class in
higher dimension). We can consider the exponential sequence and since C is compact, thenH1(C,Z)→
H1(C,OC) is injective, hence Pic0(X) ∼= H1(C,OC)/H1(C,Z). By some easy argument of Hodge
theory (as [62] Corollary 3.3.6), it is a complex torus.

Proposition 4.1.1. These three approaches defined the same variety associated to C.

Proof. The first two approaches are the same trivially.
Now we consider the second and the third approaches. Actually this is by Serre dualityH0(C,K)∨ ∼=

H1(C,OC) and Poincaré duality H1(C,Z) ∼= H1(C,Z) which is compatible by trivial reasons.

4.1.2 Algebraic approach
Here we follows [58] and let C a smooth projective curve over an algebraically closed field k. Actually
this is just the special case of the Picard variety.

Let T be a scheme over k and we let Pic0(C ×k T ) be the subgroup of Pic(C ×k T ) consisting
of invertible sheaves whose restrict to any fibers Ct for t ∈ T has degree 0. Hence we can define
Pic0(C/T ) := Pic0(C ×k T )/p∗PicT where p : C ×k T → T .

17
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We can show that (omitted here) the functor

J(C) : (Sch/Speck)opp → (Sets), T 7→ Pic0(C/T )

is represented by a k-scheme, we also denoted J(C). Here we find that for any points x ∈ C(k), we
find that x : Speck → J(C) correspond to an element of Pic0(C). Hence this notation make sense.
Proposition 4.1.2. The Jacobian variety J(C) is a group variety over k.

Proof. We define e : Speck → J(C) correspond to 0 ∈ Pic0(C/k) be the identity. Let i : J(C)→ J(C)
correspond to L −1

univ ∈ Pic0(C/J(C)) be the inverse. Let µ : J(C) ×k J(C) → J(C) correspond to
p∗1Luniv ⊗ p∗2Luniv ∈ Pic0(C/J(C)×k J(C)) be the multiple. Then the axiom of the group varieties is
easy to check.
Proposition 4.1.3. The Zariski tangent space TJ(C),0

∼= H1(C,OC).

Proof. Consider the dual number T = k[ε]/(ε2)→ J(C) by sending Speck to 0. By [58] Ex.III.4.6, we
get

0→ H1(C,OC)→ PicC[ε]→ PicC → 0.

Hence we win.
Proposition 4.1.4. The Jacobian variety J(C) is proper and nonsingular over k.
Proof. Using valuation criterion, we need to extend the line bundle at a codimension 2 point of C ×
SpecR. This is trivial. It is nonsingular by [58] Remark IV.4.10.9.
Proposition 4.1.5. When C is a elliptic curve, then J(C) ∼= C. In particular, C has a group
structure.
Proof. Omitted, see [58] Theorem IV.4.11.

4.2 Picard varieties of curves
For more detail about the general Picard scheme, we refer [68]. Here we focus on the theory on curves
over an algebraically closed field k. We follows [11] in St 0B92.
Definition 4.2.1 (Picard functor). Let f : X → S be a morphism in the big fppf-site (Sch)fppf .
Consider the functor

PicPshX/S : (Sch/S)fppf → (Sets), T 7→ Pic(XT ).

Let PicX/S := (PicPshX/S)
fppf the sheafification in fppf-topology.

Proposition 4.2.2. (St 0B9N) Let f : X → S as in the definition which admits a section σ. Assume
that OT ∼= fT,∗OXT

for all T ∈ Ob((Sch/S)fppf ), then we have

0 PicT PicXT PicX/S(T ) 0

σ∗
T

is exact and split by σ∗
T .

sketch. • The left-exactness don’t need the σ: WLOG we let S = T . If f∗N ∼= OX , then f∗f
∗N ∼=

f∗OX ∼= OS by assumption. Since N is locally trivial, we see that the canonical map N → f∗f
∗N is

locally an isomorphism (because OS → f∗f
∗OS is an isomorphism by assumption). Hence we conclude

that N → f∗f
∗N → OS is an isomorphism and we see that N is trivial. This proves the first arrow is

injective.
The exactness in the middle is easy by fppf-descent of quasi-coherent sheaves.

• The right-exactness need the σ: Let K(T ) := ker(σ∗
T ), hence Pic(XT ) ∼= PicT ⊕K(T ) and K(T ) ⊂

PicX/S(T ). As PicX/S is the sheafification of K, we just need to show that K is a fppf-sheaf. I omitted
here.

https://stacks.math.columbia.edu/tag/0B92
https://stacks.math.columbia.edu/tag/0B9N
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Lemma 4.2.3. If C be a smooth projective curve over an algebraically closed field k, then the hypotheses
of the previous Proposition are satisfied.

Proof. We of course have a k-rational point (hence a section). Moreover, as H0(C,OC) = k, by
cohomology and base change we get OT → fT,∗OCT

is an isomorphism.

If C be a smooth projective curve over an algebraically closed field k with a closed point σ. Consider
the functor

PicC/k,σ : (Sch/k)opp → (Sets), T 7→ ker(σ∗
T : Pic(CT )→ PicT ),

which is isomorphic to PicC/k before by the previous propositions. Hence we denote it by PicC/k.

Theorem 4.2.4. (St 0B9Z, St 0BA0) Let C be a smooth projective curve of genus g over an alge-
braically closed field k.

(i) The functor PicC/k is representable by a group scheme, denote it also by PicC/k;
(ii) There is the disjoint decomposition of g-dimensional smooth proper varieties

PicC/k =
∐
d∈Z

PicdC/k;

(iii) The closed points of PicdC/k correspond to invertible OC-modules of degree d;
(iv) Pic0C/k is an open and closed subgroup scheme.

Sketch. (iv) follows from the fact (ii). (iii) is trivial by definition. For the disjoint decomposition in
(ii), by St 0B9T (locally constant of Euler characteristic) that for all d ∈ Z there is an open subfunctor
PicdC/k ⊂ PicC/k whose value on a scheme T over k consists of those L ∈ PicC/k,σ(T ) such that
χ(Ct, Lt) = d + 1 − g and moreover we have PicC/k,σ =

∐
d∈Z PicdC/k,σ. For (i) and the smoothness

and properness of PicC/k we omitted, we refer St 0BA0.

4.3 Basic fact of the determinantal varieties
We refer [9] Chapter II.

Let M =M(m,n) := AmnC be the variety of m× n matrix. Let Mk ⊂M be a subvariety consist of
matrixes at most rank k. This is called the generic determinantal variety.

We also can let M̃k = {(A,W ) ∈ M ×Gr(n − k, n) : AW = 0} be a smooth connected subvariety
of M × Gr(n − k, n). If π : Gr(n − k, n) ×M → M , then π(M̃k) = Mk. Hence we can get Mk is
irreducible of codimension (m− k)(n− k).

Proposition 4.3.1. We have Sing(Mk) =Mk−1.

Proof. This need some calculation, I omit it here.

Theorem 4.3.2 (The Second Fundamental Theorem of Invariant Theory). The ideal of Mk in M
generated by all (k + 1)× (k + 1) minors and is radical.

Proof. The proof of this fact relies on a detailed analysis of the homogeneous coordinate ring of the
Grassmannian Gr(k,N) under the Plücker embedding. See [9] Page 71-76.

Theorem 4.3.3 (The First Fundamental Theorem of Invariant Theory). Let G = GL(n,C) and act on
M(m, k)×M(k, n) as g(A,B) = (Ag−1, gB). Let the multiplication µ :M(m, k)×M(k, n)→M(m,n),
hence Imµ =Mk. If we letM(m, k)×M(k, n) = SpecS, thenMk = SpecSG. Moreover, Mk is normal.

Proof. Just some linear algebra, see [9] Page 77-79.

Theorem 4.3.4. Mk is Cohn-Macaulay.

Proof. This proof is much complicated by showing the cone over a Schubert variety is Cohen-Macaulay.
See [9] Page 80-82.

https://stacks.math.columbia.edu/tag/0B9Z
https://stacks.math.columbia.edu/tag/0BA0
https://stacks.math.columbia.edu/tag/0B9T
https://stacks.math.columbia.edu/tag/0BA0
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Now we consider the general case of the determinantal variety. If X be a scheme over C and
φ : E → F be a morphism of vector bundles of rank n,m. Let open U be the trivialization, hence φ|U
be a m× n matrix. Hence this induce f : U →M(m,n). Let Uk = f−1(Mk) and glue it together, we
get Xk(φ) ⊂ X. We call this the k-th determinantal variety. (Similarly we can get X̃k(φ). Also we
have an intrinsical definition, see [9] Page 84.)

Hence codimXXk(φ) ≤ (m− k)(n − k). Combining the previous local theorem and some algebra,
we can get:

Proposition 4.3.5. Let X be a smooth projective variety over C with φ : E → F be a morphism of
vector bundles of rank n,m. If codimXXk(φ) = (m− k)(n− k), then Xk(φ) is Cohen-Macaulay.

4.4 The varieties of special linear series on a curve
Let C be a smooth projective curve of genus g over C. Let Cd := Cd/Sd and easy to see that Cd be
the set of effective divisors of degree d on C.

Fixed p0 ∈ C we first consider C → J(C) as p 7→
∫ p
p0
, then this can extend to Div(C)→ J(C) as

∑
i

pi −
∑
j

qj 7→
∑
i

∫ pi

p0

−
∑
j

∫ qj

p0

.

Hence we have ν : Divd(C)→ J(C). Hence we also can restrict to µ : Cd → J(C).
Now using the Abel’s theorem (see [9] Page 18), we have the following factorization

Cd Divd(C) Picd(C)

J(C)

−/∼

u
νµ

IThe variety Crd : Now let
Crd = {D ∈ Cd : dim |D| ≥ r}

with the variety-structure by using Brill-Noether matrix (see [9] IV.1, omitted here).
IThe variety W r

d (C): Roughly speaking, we can let

W r
d (C) = {parametrizing complete series|D| : degD = d, h0(C,OC(D)) ≥ r + 1} ⊂ PicdC .

Hence if we consider f : Cd → PicdC , then f(Crd) =W r
d (C).

The precise argument coming from the representability of the Picard variety PicdC as follows. Let
the degree d universal line bundle (or they called Poincaré line bundle) L = Luniv on C × PicdC . Let
v : PicdC × C → PicdC be the projection.

Take E be an effective divisor on C such that m := degE ≥ 2g − d − 1. Let Γ = E × PicdC be a
divisor on C×PicdC , by some sheaf-theoric argument (kind of flat base-change, see [9] IV.2.6), we have
R1v∗L (Γ) = 0 and v∗L (Γ) is locally free of rank n = d+m− g + 1. Hence we have

0→ v∗L → K0 := v∗L (Γ)
γ−→ K1 := v∗(L (Γ)/L )→ R1v∗L → 0.

Hence ker γ = v∗L , cokerγ = R1v∗L and rankK0 = n, rankK1 = m. Now we let

W r
d (C) := Xm+d−g−r(γ) where X = PicdC .

Note that W r
d (C) is independent of the choice of E, see [9] Page 179.

By [9] Lemma IV.3.1, we get
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Proposition 4.4.1. The variety W r
d (C) represented the functor

S 7→
{
L ∈ Picd(C × S) such that the fitting rank of R1φ∗L is at least g − d+ r

}
.

(For F ∈ Coh(X) with presentation On
X

γ−→ Om
X → F the fitting rank of F is the largest integer h

such that the ideal in OX generated by the (m− h+ 1)× (m− h+ 1) minors of A vanishes.)

Also by [9] Lemma IV.3.1, we get the set of all C-valued points of W r
d (C) is just

{L ∈ Picd(C) : h0(C,L) ≥ r + 1}.

Proposition 4.4.2. For r ≥ d− g, the each component of W r
d (C) has dimension greater or equal to

the Brill-Noether number
ρ(g, r, d) = g − (r + 1)(g − d+ r).

Proof. Trivial by the local analysis above.

Proposition 4.4.3. For f : Cd → PicdC , we get f−1(W r
d (C)) = Crd .

Proof. See [9] Proposition IV.3.4.

IThe variety Grd(C): Roughly speaking, we can let

Grd(C) = {parametrizing grd of degree d and dimension r}.

For precise definition, we let
Grd(C) := X̃m+d−g−r(γ)

as previous construction. For any C-valued point (L, V ) where L ∈ Picd(C) and V be a (r + 1)-
dimensional subspace of ker γL. By [9] Lemma IV.3.1 we get ker γL = H0(C,L), we get

Grd(C)(C) = {(L, V ) : L ∈ Picd(C), V ∈ Gr(r + 1,H0(C,L))}.

Hence parametrizing all grd. Actually Grd(C) can also defined as a representable functor, we refer [9]
page 182-183 and omit it here.

Now we collect some conclusions of these three varieties in [9] section IV.4.

Proposition 4.4.4. (i) Every component of Grd(C) has dimension at least equal to the Brill-Noether
number ρ = g − (r + 1)(g − d+ r);

(ii) Let w = (L,W ⊂ H0(C,L)) be a point in Grd(C) and consider the cup product

µ0,W :W ⊗H0(C,K ⊗ L−1)→ H0(C,K) = H1(C,OC)
∨,

then dimTwG
r
d(C) = ρ + dimkerµ0,W . In particular, Grd(C) is smooth at w of dimension ρ if and

only if kerµ0,W = 0;
(iii) Let L ∈W r

d (C)\W
r+1
d (C) (hence r ≥ d−g), then TLW r

d (C)
∼= (Imµ0)

⊥ where µ0 : H0(C,L)⊗
H0(C,K ⊗ L−1)→ H0(C,K) be the cup product;

(iv) Let L ∈W r+1
d (C), then TLW r

d (C) = TLPicdC ;
(v) If Grd(C) is smooth of dimension ρ, then W r

d (C) is Cohn-Macaulay, reduced and normal. If
d < g + r then Sing(W r

d (C)) =W r+1
d (C).

Proof. For (i),(ii), we refer [9] IV.4.1; for (iii),(iv), we refer [9] IV.4.2; for (v) we refer [9] IV.4.4.



22 CHAPTER 4. THE VARIETIES ASSOCIATED TO CURVES



Chapter 5

Ramification and Plücker Formula

We will follows the sequences of exercises in [9] as Exercise I.C. Let C be a smooth projective curve of
genus g over C and we will describe the notion of ramification of a map C → Pr, or more generally, of
a linear series on C, fixed as L = (L , V ) be a grd. We also fix a point p ∈ C(C).

Lemma 5.0.1. We have ]{ordpσ : σ ∈ V \{0}} = r + 1.

Proof. There exists a basis for V consisting of sections with distinct orders of vanishing at p. To
construct this basis, replace a pair of sections with the same vanishing order by two sections, one with
the same order, and one with one higher order.

Definition 5.0.2. (i) If we let these r+1 numbers as 0 ≤ aL0 (p) < · · · < aLr (p) ≤ d, then the sequence
{aL0 (p), · · · , aLr (p)} is called vanishing sequence of L at p;

(ii) Let αLi (p) := aLi (p)− i, then the sequence {αL0 (p), · · · , αLr (p)} is called ramification sequence
of L at p. The weight wL(p) of p with respect to L is defined by

wL(p) =

r∑
i=0

αLi (p) =

r∑
i=0

aLi (p)−
(
r + 1

2

)
;

(iii) We say that L is unramified at p if {αL0 (p), · · · , αLr (p)} = {0, ..., 0}, else that p is a ramification
point of L. If we consider the canonical series (KC , |KC |), then the ramification points are called
Weierstrass points.

Remark 5.0.3. These can be also defined over some singuler curves and p be a smooth point.

Lemma 5.0.4. There are only finitely many ramification points of L on C.

Proof.

Theorem 5.0.5 (Plücker Formula). We have∑
p∈C

wL(p) = (r + 1)d+

(
r + 1

2

)
(2g + 2).

Proof. See [32] Propositon 1.1.
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Part II

The basic theory of moduli space
of curves
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Chapter 6

Mg be a Deligne-Mumford Stack
for g 6= 1

Here we mainly consider the g 6= 1 curves.

Definition 6.0.1. Let Mg be the fibered category over schemes with objects of form (S, f : C → S)
where S be a scheme and f be a proper smooth morphism such that every geometric fiber of S is a
connected genus g curve. The morphisms are base-change.

Our main result of this section is to prove that Mg is a Deligne-Mumford stack for g ≥ 2. For
g = 0 we can run the same argument and when we just consider the stack over Sch/k where k be
algebraically closed, we can get M0

∼= BPGL2. Here we follows [1].

6.1 Mg be a stack for g 6= 1

Lemma 6.1.1 (Descent for polarized schemes). Let Pol be the category whose objects are pairs
(f : X → Y, L) where f is a proper flat morphism and L is a relatively ample invertible sheaf. The
morphism are diagrams of cartesian with isomorphic pullback of line bundles. Consider the fibered
category Pol→ (Sch), then it has effective fppf-descent.

Proof. See [75] 4.4.10.

Theorem 6.1.2. For g 6= 1, the fibered category Mg is a stack.

Proof. Consider Mg → Pol sends C → S to (C → S,Ω1
C/S) when g ≥ 2 and (C → S,Ω1,⊗−1

C/S ) when
g = 0.

For a fppf covering S′ → S, then we get

Mg(S) Pol(S)

Mg(S
′ → S) Pol(S′ → S)

∼=

Hence every object of Mg(S
′ → S) is in the essential image of Mg(S). By the descent of sheaves used

in h− → h= making it fully faithful.

6.2 For g ≥ 2, Mg be a Deligne-Mumford stack
Now let LC/S = (Ω1

C/S)
⊗3. By Lemma 2.1.1 (iv), for any family of smooth curves p : D → S we get

a closed immersion D ↪→ P(p∗LD/S) where p∗LD/S is locally free of rank 5g − 5. Let H = HilbPP5g−6

27
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where P (t) = deg(L⊗t
C/S) + 1 − g = (6g − 6)t + 1 − g be the Hilbert polynomial of Ds ↪→ P5g−6

κ(s) . Let
the universal closed subscheme:

C H × P5g−6

H

π

I Claim 1. There is a unique subscheme H ′ ⊂ H consist of h ∈ H such that
(a) Ch → Spec(κ(h)) is smooth and geometrically connected;
(b) Ch ↪→ P5g−6

κ(h) is embedded by complete linear system |LCh/κ(h)|;
(c) the line bundles LCH′/H′ and OCH′ (1) differ by a pullback of a line bundle from H ′ (that is,

there exists a line bundle N over H ′ such that LCH′/H′ ⊗ p∗N = OCH′ (1)).
Moreover, if T → H be a morphism such that (a)-(c) hold for the family CT → T , then T → H factors
through H ′.

Since the condition that a fiber of a proper morphism (of finite presentation) is smooth is an open
condition on the target, the condition on H that Ch is smooth is open. Consider the Stein factorization
(St 03H0) C → H̃ := Spec

H
π∗OC → H where C → H̃ is proper with geometrically connected fibres

and H̃ → H is finite. As OH → π∗OC is a morphism between coherent sheaves, then the kernel and
cokernel of it have closed supports. Hence H̃ → H is an isomorphism over an open subscheme of H,
which is precisely where the fibers of C → H are geometrically connected. Hence the points satiefies
(a) be a open subscheme of H, denoted by H1 ⊂ H.

By Review A.1.2, there exists a locally closed subscheme H2 ⊂ H1 such that a morphism T → H1

factor through H2 if and only if LCT /T and OCT
(1) differ by a pullback of a line bundle from T . In

particular, (c) holds and for all h ∈ H2, LCh/κ(h)
∼= OCh

(1).
For (b), let π2 : C2 := CH2 → H2. Consider α : H0(P5g−6

Z ,O(1)) ⊗ OH2 → π2,∗OC2(1) of vector
bundles of rank 5g− 5 on H2 with fiber αh : H0(P5g−6

κ(h) ,O(1))→ H0(Ch,OCh
(1)) ∼= H0(Ch, LCh/κ(h)).

As they have the same rank, αh is an isomorphism if and only if h is not in supp(coker(α)). Let
H ′ = H2\(supp(coker(α))) and it satisfies (a)-(c) with that universal property.
I Claim 2. The group scheme PGL5g−5 = Aut(P5g−6

Z ) act on H as: for g ∈ Aut(P5g−6
S ) and

[D ⊂ P5g−6
S ] ∈ H(S), we let g · [D ⊂ P5g−6

S ] = [g(D) ⊂ P5g−6
S ]. As H ′ is PGL5g−5-invariant, we claim

that Mg
∼= [H ′/PGL5g−5] be an algebraic stack. (See St 044O, St 04UV for quot stacks)

Consider H ′ → Mg as [D ⊂ P5g−6
S ] 7→ (D → P5g−6

S → S) is well defined by Claim 1. This
morphism is PGL5g−5-invariant, hence descends to [H ′/PGL5g−5]

pre → Mg (Why?). We claim that
this map is fully faithful. Indeed, for a family p : D → S in H ′ given by D ⊂ P5g−6

S , we get
OD(1) ∼= LD/S ⊗ p∗M for some line bundle M on S. Use (b) we get

H0(P5g−6
Z ,O(1))⊗ OS → p∗OD(1) ∼= p∗(LD/S ⊗ p∗M) ∼= p∗LD/S ⊗M

be an isomorphism. Then any automorphism of D → S induces an automorphism of LD/S and thus
an automorphism of p∗LD/S⊗M , which induce an automorphism of P5g−6

S preserving D. By Theorem
6.1.2, Mg be a stack, hence induce [H ′/PGL5g−5] → Mg which is fully faithful since stackification
is fully faithful. Finally we check that [H ′/PGL5g−5] → Mg is essentially surjective. As these are
all stacks, then they satisfied effective descent of étale covering. Hence we just need to show that
for any p : D → S, there exists an étale covering {Si → S} such that each DSi is in the image of
H ′(Si) → Mg(Si). Actually since LD/S defined D ↪→ P(p∗LD/S) and p∗LD/S is locally free of rank
5g− 5, we let {Si} be open (zariski, hence étale) covering of S such that (p∗LD/S)|Si are all free. Well
done.
I Claim 3. The algebraic stack Mg is a Deligne-Mumford stack.

By Theorem C.1.1, we just need to show for any smooth connected proper curve C over a algebraic
closed field k, the group scheme G := Autk(C) = Aut(C) is finite and reduced. We find that TG,e
can be identified with the automorphism group of the trivial first order deformation of C. Hence by
Proposition 9.1.6, we get TG,e = H0(C, TC) = 0, well done.

https://stacks.math.columbia.edu/tag/03H0
https://stacks.math.columbia.edu/tag/044O
https://stacks.math.columbia.edu/tag/04UV
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6.3 First properties of Mg for g ≥ 2

Proposition 6.3.1. As Mg
∼= [H ′/PGL5g−5] and H ′ is locally of finite type, then Mg is locally of

finite type over Z. As H ′ is noetherian, so is Mg. So it is finite type over Z.

Proposition 6.3.2. Mg have affine diagonal. Indeed, since we have Mg
∼= [H ′/PGL5g−5] which is

an algebraic stack, then we have cartesian square

H ′ × PGL5g−5 H ′ ×H ′

Mg Mg ×Mg

As PGL5g−5 affine, then PGL5g−5 ×H ′ → H ′ ×H ′ → H ′ affine, so is PGL5g−5 ×H ′ → H ′ ×H ′.

6.4 Smoothness and dimension of Mg for g ≥ 2

Proposition 6.4.1. If C is a smooth connected projective curve of genus g ≥ 2 over k, then
dimTMg,[C] = 3g − 3.

Proof. By Proposition 9.1.2, we get TMg,[C] = H1(C, TC). As degTC < 0, we get H0(C, TC) = 0. So
by Riemann-Roch we get

dimTMg,[C] = dimH1(C, TC) = −χ(TC) = − degTC + g − 1 = 3g − 3,

well done.

Theorem 6.4.2. For g ≥ 2, the Deligne-Mumford stack Mg is smooth over Z of relative dimension
3g − 3.

Proof. Let a field k and a smooth projective connected curve C → Spec(k). Consider the following
2-diagram:

Spec(k) Spec(A0) Mg

Spec(A) Spec(Z)
f

[C]

where A→ A0 be a surjective maps of artinian local rings with residue field k with k = ker(A→ A0).
The map Spec(A0)→Mg corresponds to a family of curves C0 → Spec(A0) and a cartesian:

C C0 C ′

Spec(k) Spec(A0) Spec(A)

of solid arrows. So to find the lifting, we just need to find the dashed arrows, that is, deformation of
C along A. By Propositon 9.1.6(iii), there exists a cohomology class obC ∈ H2(C, TC) such that this
happens if and only if obC = 0. Hence this is right as C be a curve. Hence Mg is smooth. By Theorem
C.1.2, we get

dim[C] Mg = dimTMg,[C] − dimAut(C).

By the final step of the proof of the DM-ness of Mg, we get dimAut(C) = 0. Hence dim[C] Mg =
dimTMg,[C] = 3g − 3, well done.
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6.5 For g = 0

By the same argument we can get M0 be a Deligne-Mumford stack.

Proposition 6.5.1. M0 may (not) be a stack over Z isomorphic to BPGL2.

Analysis. We should repeat the proof of the case g ≥ 2. But when we consider LC/S = (Ω1
C/S)

⊗(−1)

for f : C → S, we get deg(LCs/κ(s)) = 2 and f∗LC/S is locally free of rank 3, which induce C ↪→ P2
S .

And with the Hilbert polynomial p(t) = 2t + 1. So we will use PGL3 and get M0
∼= [H ′/PGL3] for

some subscheme H ′ ⊂ Hilbp(t)P2 !
Actually by St 0C6U, we can not identify Cs over some κ(s) with P1

κ(s) since we may have no
invertible sheaves of odd degree! If we can assume this, we haveM of degree 1. The Hilbert polynomial
p(t) = t+1 in P1 and can show that it is P1 by some tricks (actually this is right for all linear subspaces).
Hence

M0
∼= [Hilbp(t)P1 /PGL2] = [Grass(2, 2)/PGL2] = BPGL2,

well done.

Corollary 6.5.2. When we consider the stack over Sch/k for any algebraically closed field k, we have
M0
∼= BPGL2.

Proof. Actually here we have invertible sheaves of degree 1. Hence any proper smooth curve of genus
0 be P1

k. The Hilbert polynomial p(t) = t+ 1 in P1
k and can show that it is P1

k by some tricks. Hence

M0
∼= [Hilbp(t)P1

k
/PGL2] = [Grassk(2, 2)/PGL2] = BPGL2,

well done.

https://stacks.math.columbia.edu/tag/0C6U
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Nodal curves

7.1 Basic facts of nodal curves
The the more details, see St 0C46.
Definition 7.1.1 (Nodes). Let C be a curve over k.

(a) If k algebraically closed, we say that p ∈ C(k) is a node is we have ÔC,p ∼= k[[x, y]]/(xy);
(b) If k need not be algebraically closed, we say a closed point p ∈ C is a node if there exists a node

p′ ∈ Ck over p.
We say C be a nodal curve if every closed point is either smooth or nodal.

Proposition 7.1.2. Let C be a curve over k. Consider the following statments.
(a) p ∈ C is a node;
(b) κ(p)/k is separable, ÔC,p ∼= κ(p)[[x, y]]/(ax2 + bxy + cy2) as a k-algebra where ax2 + bxy + cy2

is a nondegenerate quadratic form over κ(p);
(c) κ(p)/k is separable and OC,p is reduced, has δ-invariant 1.

Then we have (a)⇔(b)⇒(c).
Proof. See St 0C49 and St 0C4D.

We assume (a)⇔(b). Here by Lemma 3.1.3, we just need to consider the case OC,p ∼= κ(p)[[x, y]]/(ax2+
bxy + cy2) where Q = ax2 + bxy + cy2 is a nondegenerate quadratic form.

Case (I): If Q is split, we may let OC,p ∼= κ(p)[[x, y]]/(xy) after some coordinate transformation.
Then we get

ÕC,p ∼= κ(p)[[x, y]]/(x)× κ(p)[[x, y]]/(y);
Case (II): If not, in this case c 6= 0 and nondegenerate means b2− 4ac 6= 0. Hence κ′ = κ(p)[t]/(a+

bt+ ct2) is a degree 2 separable extension of κ(p). Then t = y/x is integral over OC,p. and we conclude
that

ÕC,p = κ′[[x]]

with y mapping to tx on the right hand side.
In both cases one verifies by hand that the δ-invariant is 1, well done.

Remark 7.1.3. (i) As for a node p ∈ C in a nodal curve C, we have κ(p)/k is separable. As the two
cases above, if p is of case (I), then f−1(p) has two points with residue fields κ(p). If p is of case (II),
then f−1(p) has only one point with residue field κ′, a degree 2 separable extension of κ(p);

(ii) As in (i), all closed points of C̃ is regular with separable residue fields over k. Hence C̃ is
smooth over k by St 00TV.
Proposition 7.1.4. If C is a curve over k and p ∈ C be a node. Then exists a finite separable field
extension K/k, a point P ∈ CK over p and ÔCK ,P

∼= K[[x, y]]/(xy).

Proof. By Proposition 7.1.2(b), we get κ(p)/k is separable, ÔC,p ∼= κ(p)[[x, y]]/(ax2 + bxy + cy2) as a
k-algebra where Q = ax2 + bxy + cy2 is a nondegenerate quadratic form over κ(p). If Q is split, well
done. If not, let K = k[t]/(at2 + bt+ c) be a separable extension over k with Q split, well done.
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7.2 Genus fomula
Let k be algebraically closed field now. Let C be a connected nodal projective curve over k. Let
z1, ..., zs be its nodes and C1, ..., Ct be its irreducible components.

By Proposition A.3.3(1) and (4), we get C̃ =
∐t
i=1 C̃i where C̃, C̃i are normalizations. Let f : C̃ →

C. By Proposition 3.1.4, we get a exact sequence

0→ OC → f∗OC̃ →
s⊕
i=1

Qi → 0

where Qi supported over zi. Since by Proposition 7.1.2(c), we get Qi = κ(zi) as the δ-invariant are
all 1, hence we get

0→ OC → f∗OC̃ →
s⊕
i=1

κ(zi)→ 0.

Hence we get long exact sequence

0→ H0(C,OC)︸ ︷︷ ︸
1

→ H0(C̃,OC̃)︸ ︷︷ ︸
t

→
s⊕
i=1

κ(zi)︸ ︷︷ ︸
s

→ H1(C,OC)︸ ︷︷ ︸
g(C)

→ H1(C̃,OC̃)︸ ︷︷ ︸∑t
i=1 g(C̃i)

→ 0

with the labels underneath indicating the dimensions.

Theorem 7.2.1 (Genus fomula). With the situation as above, we get

g(C) =

t∑
i=1

g(C̃i) + s− t+ 1.

Proof. Trivial by the argument above.

7.3 The dualizing sheaf
We have three way to see this. Consider C be a fixed nodal curve over k.

7.3.1 The first way
We find that C is locally complete intersection as we can checking locally. As for a node p ∈ C, we
have ÔC,p ∼= κ(p)[[x, y]]/(ax2 + bxy + cy2) for some nondegenerate quadratic form. By [72] Theorem
21.2(iii), we get OC,p is a complete intersection over k. Hence by [58] Theorem III.7.11 (adjunction
formula for l.c.i), if we embedding it into PN , then we have ωC ∼= ωPN ⊗

∧N−1
(I /I 2) where I be

the ideal sheaf. As this is locally complete intersection, this is a line bundle.

7.3.2 The second way
This is an abstract way of duality theory, see St 0E31 for more details. As C is locally complete
intersection, then by St 0BVA we get C is Gorenstein. By St 0BS2, C must have a dualizing complex
ω∗
C . By 0BFQ, as C is Gorenstein, ω∗

C is invertible. By C Cohen-Macaulay, ω∗
C = ωC [0]. Hence we

win.

https://stacks.math.columbia.edu/tag/0E31
https://stacks.math.columbia.edu/tag/0BVA
https://stacks.math.columbia.edu/tag/0BS2
https://stacks.math.columbia.edu/tag/0BFQ
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7.3.3 The third way
We can explicit ωC precisely. Let Σ be the set of nodes of C and let U = C\Σ. Let the normalization
f : C̃ → C and Σ̃ := f−1(Σ), Ũ := f−1(U). Now C̃ is smooth, then we have the dualizing sheaf (line
bundle) ΩC̃ . We get

0→ ΩC̃ → ΩC̃(Σ̃)→ OΣ̃ → 0.

Actually the sections of ΩC̃(Σ̃) is the rational sections of ΩC̃ with at worst simple poles in Σ̃. Hence
for any open V ⊂ C̃ and y ∈ V ∩ Σ̃ we have the residue resy : Γ(V,ΩC̃(Σ̃))→ κ(y).

Definition 7.3.1. We define the subsheaf ωC ⊂ f∗ΩC̃(Σ̃) as for any open V ⊂ C we have

Γ(V, ωC) =

{
s ∈ Γ(f−1(V ),ΩC̃(Σ̃)) : for any zi ∈ V ∩ Σ

and f−1(zi) = {pi, qi} with respi(s) + resqi(s) = 0

}
.

Hence we get two exact sequences

0 ωC f∗ΩC̃(Σ̃)
⊕

zi∈Σ κ(zi) 0

s (respi(s)− resqi(s))

and
0 f∗ΩC̃ ωC

⊕
zi∈Σ κ(zi) 0

s (respi(s))

Proposition 7.3.2. Let C be a nodal curve C over k.
(a) If g : C ′ → C be an étale morphism, then g∗ωC ∼= ωC′ ;
(b) Conclude that ωC be a line bundle.

Proof. (a) As the normalization commutes with étale base change (see St 03GE), we have the cartesian
with normalizations

C̃ ′ C̃

C ′ C

f

g

f ′

g′

By flat base change, we have the process g∗ωC ⊂ g∗f∗ΩC̃(Σ̃)
∼= f ′∗(g

′)∗ΩC̃(Σ̃) = f ′∗ΩC̃′(Σ̃′). By
definition and this process, we get g∗ωC ∼= ωC′ .

(b) Use Corollary A.2.3 and Proposition 7.1.4, there exists a separable extension K/k such that we
get the common étale neighborhood as

(U, u)

(C, p) (SpecK[x, y]/(xy), 0)

F G

Let D = SpecK[x, y]/(xy) and normalization D̃ ∼= A1
K t A1

K . Then Γ(D̃,ΩD̃) = Γ(A1
K , ωA1

K
) ×

Γ(A1
K , ωA1

K
) and (dxx ,−

dy
y ) be a section of ωD. As any section is of form (f(x)dxx ,−g(y)

dy
y ) where

f(0) = g(0), which is precisely the condition for (f, g) ∈ Γ(D̃,OD̃) to descend to a global function on
D. In other words, ωD ∼= OD with generator (dxx ,−

dy
y ). By (a), we get ωU = G∗ωD, hence ωU is a

line bundle. As F ∗ωC = ωU be a line bundle, we use the descent theory and we win.

https://stacks.math.columbia.edu/tag/03GE
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Proposition 7.3.3. Let C be a proper nodal curve C over k, then ωC be the dualizing line bundle of
C.

Proof. (See [8]) We may assume that k is algebraic closed. Choose a divisor D = r1+ ···+rh consisting
of distinct smooth points of C, with the property that any component of C contains at least one of
the ri’s. We first claim that H1(ωC(D)) = 0. Indeed, we get an exact sequence

0→ (f∗ωC̃)⊗ OC(D) = f∗(ωC̃(D))→ ωC(D)→
⊕
nodes

k → 0.

Hence deduce a surjection

H1(C, f∗(ωC̃(D))) = H1(C̃, ωC̃(D)) � H1(C,ωC(D)).

As C̃ is smooth, we get for any irreducible components and Serre duality in smooth case, we get
H1(C̃, ωC̃(D)) = 0 as D meets every irreducible components. Hence H1(ωC(D)) = 0.

Next we deduce an exact sequence by using the claim as

H0(C,ωC(D))→ H0(C,ωC(D)/ωC)→ H1(C,ωC)→ H1(C,ωC(D)) = 0.

For any φ ∈ H1(C,ωC) we have some lifts φ′ ∈ H0(C,ωC(D)/ωC). We define the trace map as

trC : H1(C,ωC(D))→ k, φ 7→ 2π
√
−1

l∑
i=1

resriφ′

and this is well defined by using residue theorem (of definition). Perfect pairing is omitted.

Proposition 7.3.4. Let C be a nodal curve C over k and T ⊂ C be an irreducible component and DT

be the union of the intersections of T and another irreducible components, then ωC |T = ωT (DT ).

Proof. Trivial by definition of the dualizing sheaves.

7.4 Local structure of nodes
Theorem 7.4.1 (Local structure of nodes). Let π : C → S be a flat and finitely presented morphism
such that every geometric fiber is a curve. Let p ∈ C be a node in Cs. Thenwe have a following diagram

(C, p) (U, u) (SpecA[x, y]/(xy − f), 0)

(S, s) (SpecA, s′)

ét

ét

ét

where each horizontal arrow is a residually-trivial pointed étale morphism and f ∈ A is a function
vanishing at s′.

Sketch. See [1] 5.2.12 or St 0CBY for more details.
Step 1. Reduce to S of finite type over Z. Using noetherian approximation.
Step 2. Reduce to the case where ÔCs,p

∼= κ(s)[[x, y]]/(xy). Just need to use Proposition 7.1.4
and since separable, we can find a étale neighborhood (S′, s′) such that κ(s′) = K.
Step 3. Show that ÔC,p ∼= ÔS,s[[x, y]]/(xy− f) where f ∈ m̂s. Using the Schlessinger’s theorem in
formal deformation theory to deduce a diagram similar as what we want at the completion level.
Step 4. Apply Artin approximation (Theorem A.2.2). Using Artin approximation to deduce
our diagram from the completion level.

Corollary 7.4.2. Let π : C → S be a flat and finitely presented morphism such that every geometric
fiber is a curve, then the locus C≤nod = {p ∈ C : p ∈ Cπ(p) either smooth or node} ⊂ C is open.

https://stacks.math.columbia.edu/tag/0CBY
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Proof. First we know the smooth locus is open. If p ∈ Cπ(p) is a node, then by Theorem 7.4.1 we get
an étale morphism g : (U, u)→ (C, p). Then p ∈ g(U) ⊂ C≤nod is open.

Corollary 7.4.3. Let π : C → S be a proper flat and finitely presented morphism such that every
geometric fiber is a curve, then the locus S≤nod = {s ∈ S : Cs is nodal} ⊂ S is open.

Proof. As we find that
S≤nod = S\π(C\C≤nod).

By the previous Corollary and π is proper, then S≤nod is open.

Remark 7.4.4. Actually later we can prove that the stack M≤nod
g is a algebraic stack. But the main

problem of M≤nod
g is that it is not separated and not of finite type. We can see the figure below for

intuitive understanding:

Blowing up Blowing up Blowing up

0

0

0

Corollary 7.4.5 (Comparison). Let’s compare ωC/Y and Ω1
C/Y where φ : C → Y are a family of

complex nodal curves. We will follows [8] X.2 and more general we can see [70] 6.4.2. Also, we will
work on the complex topology.

Pick a node p in some fiber, then by Theorem 7.4.1 we get near p we have the composition
φ|U : U ↪→ C2 × Y → Y where U defined by F := xy − f . By adjunction formula we get the local
generator of ωC/Y is F−1dx ∧ dy (mod F ). Using [70] Lemma 6.4.12, we get a homomorphism

ρ : Ω1
C/Y → ωC/Y

given by id if it near smooth points and ρ(α) = F−1α′ ∧ dF (mod F ) if near the nodes where α′ is
on C2 × Y → Y restriction is α. Actually near nodes we have ρ(dx) = xF−1dx ∧ dy and ρ(dy) =
−yF−1dx ∧ dy. Now we consider

0→ ker ρ→ Ω1
C/Y

ρ−→ ωC/Y → cokerρ→ 0.

• Claim 1. ρ(Ω1
C/Y ) = I ωC/Y where I be the ideal locally generated by x, y (locally ideal

of that node).
Let S be the subspace correspond to I , then for now cokerρ = ωC/Y ⊗ OS. As locally near nodes

we get xy = f and ρ(Ω1
C/Y ) generated by xF−1dx ∧ dy and yF−1dx ∧ dy, then I be the ideal locally

generated by x, y.
• Claim 2. When Y be a single point, then ker ρ is the one-dimensional complex vector
space generated by the class of xdy = −ydx.

This is trivial by this construction.
• Claim 3. When Y is integral sand generic fiber of φ is smooth, then ρ is injective.
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Chapter 8

Stable curves

8.1 Basic facts of stable curves
An n-pointed curve is a curve C over a field k together with an ordered collection of k-rational points
p1, ..., pn ∈ C which we call the marked points. A point q ∈ C of an n-pointed curve is called special
if q is a node or a marked point.

Stable Curves

0 0

0

0

1
0 Not Stable Curves

Definition 8.1.1. A n-pointed curve (C, p1, ..., pn) over k is prestable if it is a geometrically connected,
nodal and projective curve, and p1, ..., pn ∈ C(k) are distinct smooth points.

A n-pointed curve (C, p1, ..., pn) over k is semistable if
(a) it is prestable;
(b) every smooth rational subcurve P1 ⊂ C contains at least 2 special points;
(c) C is not of genus 1 without marked points.
A n-pointed curve (C, p1, ..., pn) over k is stable if
(a) it is semistable;
(b) every smooth rational subcurve P1 ⊂ C contains at least 3 special points.

Remark 8.1.2. (1) Note that there are no n-pointed stable curve of genus g if 2g − 2 + n ≤ 0 by
Proposition 8.1.4. We will often impose the condition that 2g − 2 + n > 0 in order to exclude these
special cases;

(2) An automorphism of a stable curve (C, p1, ..., pn) is an automorphism α : C → C such that
α(pi) = pi. We denote by Aut(C, p1, ..., pn) the group of automorphisms;

(3) For some general Riemann Roch theorem (such as 0BS6) and the fact that the prestable curves
are proper geometrically connected and geometrically reduced, then deg(ωC) = 2g − 2.
Proposition 8.1.3. Let (C, p1, ..., pn) be an n-pointed nodal projective curve such that the points pi
are distinct and smooth. Let π : C̃ → C be the normalization and p̃i ∈ C̃ be the unique preimage of pi
and q̃1, ..., q̃m ∈ C̃ be an ordering of the preimages of nodes. Then

(a) (C, p1, ..., pn) is stable if and only if every connected component of (C̃, {p̃i}, {q̃j}) is stable.
(b) The group scheme Aut(C, {pi}) is an algebraic group.
(c) Aut(C, {pi}) is naturally a closed scheme of Aut(C̃, {p̃i}, {q̃j}) with the same connected com-

ponent of identity.
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Proof. (a) Easy to see that we just need to verify that every smooth rational subcurve P1 ⊂ C

contains at least 3 special points if and only if every connected component of (C̃, {p̃i}, {q̃j}) have the
same property. This is also trivial as we just need to consider the rational component of (C̃, {p̃i}, {q̃j})
and using the genus formula.

(b)
(c)

Proposition 8.1.4. Let (C, p1, ..., pn) be an n-pointed prestable curve. The following are equivalent
(i) (C, p1, ..., pn) is stable;
(ii) Aut(C, p1, ..., pn) is finite; and
(iii) ωC(p1 + ...+ pn) is ample.

Proof. (i)⇔(ii). By the results in Section 1.2 we get for smooth connected projective curve, its auto-
morphism group if finite if and only if ⇔ 2g − 2 + n > 0 for (g, n). Now consider the normalization
f : (C̃, {p̃i}ni=1, {q̃j}2sj=1) → (C, p1, ..., pn) with C̃ =

∐t
j=1 C̃j . By Proposition 8.1.3 (a), we have (i)⇔

for all j, (C̃j , {p̃i ∈ C̃j}ni=1, {q̃k ∈ C̃j}2sk=1) is stable. As all C̃j have marked points and use Proposition
8.1.3 (c), (ii)⇔ for all j, Aut(C̃j , {p̃i ∈ C̃j}ni=1, {q̃k ∈ C̃j}2sk=1) are finite. Hence by the case of smooth
case, we win.

(i)⇔(iii). By Proposition A.3.4, 7.3.4 and consider the normalization π : C̃ → C, we get ωC(p1 +
...+pn) is ample if and only if π∗ωC(p1+ ...+pn) is ample if and only if for any irreducible components
T ⊂ C̃, ωC(p1 + ... + pn)|T = ωT (

∑
pi∈T pi + DT ) is ample. This latter condition holds precisely if

each P1 ⊂ C̃ contains at least three points that lie over nodes or marked points (using Theorem 1.1.2)
and we win.

8.2 Positivity of the dualizing sheaf
Theorem 8.2.1. For any n-pointed stable curve (C, p1, ..., pn), the bundle (ωC(p1+ ...+pn))

⊗k is very
ample for k ≥ 3.

Proof. We just prove the case of k is algebraically closed and no marked points. In this case we just
need to show that its sections separates points and tangent vectors. We just need to show

(i) for all closed points x 6= y, we have surjection

H0(C,ω⊗k
C ) � H0(C, (ω⊗k

C ⊗ κ(x))⊕ (ω⊗k
C ⊗ κ(y)));

(ii) for all closed point x, we have surjection

H0(C,ω⊗k
C ) � H0(C,ω⊗k

C ⊗ OC/I
2
x).

Hence for x, y ∈ C(k) (maybe the same points) and their ideal Ix, Iy, we have

0→ ω⊗k
C ⊗ IxIy → ω⊗k

C → ω⊗k
C ⊗ OC/IxIy → 0.

So we just need to show that H1(C,ω⊗k
C ⊗ IxIy) = 0. By Serre duality, we need to show

H1(C,ω⊗k
C ⊗ IxIy) = H0(C, (ω⊗k

C ⊗ IxIy)
∨ ⊗ ωC)

= H0(C,H om(ω⊗k
C ⊗ IxIy, ωC)) = Hom(IxIy, ω

⊗(1−k)
C ) = 0.

We need a case analysis on whether x, y are smooth or nodal.
If x ∈ C is smooth, then Ix = OC(−x) is invertible. If x ∈ C is a node, consider the blowing up

π : C ′ → C along x with π−1(x) = {x1, x2}. Then for any line bundle L on C we claim that

Hom(Ix, L) ∼= H0(C ′, π∗L),Hom(I2x, L)
∼= H0(C ′, π∗L(x1 + x2)).
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We just prove the first statement, the second is similar. First we have

0→ OC → π∗OC′ → κ(x)→ 0,

tensoring L we get
0→ L→ π∗OC′ ⊗ L = π∗π

∗L→ L(x)→ 0.

Hence we have

0→ Hom(Ix, L)→ Hom(π∗Ix, π
∗L)

f−→ Hom(Ix, L(x)) = Hom(Ix/I
2
x, L(x)).

On the other hand, we have a short exact sequence

0→ π∗L→ π∗L(x1 + x2)→ π∗L(x1)⊕ π∗L(x2)→ 0

inducing
0→ H0(C ′, π∗L)→ H0(C ′, π∗L(x1 + x2))

g−→ π∗L(x1)⊕ π∗L(x2).

Let J = OC′(−x1 − x2) ⊂ OC′ , we get

0→ K → π∗Ix → J → 0

where supp(K) = {x1, x2} by checking locally. Since π∗L is torsion free at x1, x2, we have Hom(K,π∗L) =
0, so this defines an isomorphism

Hom(π∗Ix, π
∗L) ∼= Hom(J, π∗L) ∼= H0(C ′, π∗L(x1 + x2)).

We also have isomorphisms Ix/I2x ∼= π∗(J/J
2) with Hom(Ix/I

2
x, L(x))

∼= Hom(π∗(J/J
2), L(x)). Actu-

ally Hom(π∗(J/J
2), L(x)) ∼= π∗L(x1)⊕ π∗L(x2) (Why?). Hence conclude these, we get

0 Hom(Ix, L) Hom(π∗Ix, π
∗L) Hom(Ix/I

2
x, L(x))

0 H0(C ′, π∗L) H0(C ′, π∗L(x1 + x2)) π∗L(x1)⊕ π∗L(x2)

∼= ∼=

Hence the claim is right.
Case (I). If x, y are all smooth points, then deg(ω⊗(1−k)

C (x+ y)) = (1− k)(2g − 2) + 2 < 0 for k ≥ 3.
Hence

Hom(IxIy, ω
⊗(1−k)
C ) = H0(C,ω

⊗(1−k)
C (x+ y)) = 0.

Case (II). If x is a node and y is a smooth point, then by the claim, we win.
Case (III.1). If x = y is a node, then by the claim we get

Hom(I2x, ω
⊗(1−k)
C ) ∼= H0(C ′, π∗ω

⊗(1−k)
C (x1 + x2)).

Consider the normalization C̃ of C (and C ′, also), we consider an irreducible component E ⊂ C̃. Then
π∗ω

⊗(1−k)
C (x1 + x2) restrict to E has degree

(1− k)(2gE − 2 +#{E ∩ Σ̃}) +#({x1, x2} ∩ E)

is negative unless k = 3, {x1, x2} ⊂ E, E is a rational curve meeting the other components of C in
exactly one other point. In this case the degree on E is zero. So this global section is determined by
its value at the point of E meeting the other components of C. Since not every component of C̃, we
win.
Case (III.2). If x 6= y are all nodes, the blowing up $ : C ′′ → C along {x, y}. We can get similar
conclusion

Hom(IxIy, ω
⊗(1−k)
C ) ∼= H0(C ′, $∗ω

⊗(1−k)
C ).

This is zero since in any irreducible of normalization has negative degree.
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8.3 Families of stable curves
Definition 8.3.1. (1) A family of n-pointed nodal curves is a flat, proper and finitely presented
morphism C → S of schemes with n sections σ1, ..., σn : S → C such that every geometric fiber Cs is
a (reduced) connected nodal curve.

(2) A family of n-pointed stable curves (resp. semistable curves, prestable curves) is a family
C → S of n-pointed nodal curves such that every geometric fiber (Cs, σ1(s), ..., σn(s)) is stable (resp.
semistable, prestable).

Remark 8.3.2. (1) We can define the fibered category of groupoid M g,n as for any scheme S, define
M g,n(S) = {(C, σ1, ..., σn) → S : is a family of stable curves of genus g}. Note also that since the
geometric fibers are stable curves, the image of each σi is a divisor contained in the smooth locus and
we can form the line bundle ωC/S(

∑
i σi).

(2) We can define relative dualizing line bundle ωC/S as C → S is l.c.i. By [57], we can get the
following properties: (2.a) ωC/S |Cs

= ωCs
; (2.b) for any f : T → S we have f∗ωC/S = ωC×ST/T .

Proposition 8.3.3. Let π : (C, σ1, ..., σn)→ S be a family of n-pointed stable curves of genus g. Let
L = ωC/S(

∑
i σi). If k ≥ 3, then L⊗k is relatively very ample and π∗L⊗k is a vector bundle of rank

(2k − 1)(g − 1) + kn.

Proof. Similar as the smooth case by using Riemann Roch and cohomology and base change. Omitted
here.

Proposition 8.3.4 (Openness of stability). Let π : (C, σ1, ..., σn)→ S be a family of n-pointed nodal
curves. The locus of S such that (Cs, σi(s)) is stable is open.

Proof. As the locus such that σi(s) is smooth is open, we just need to let this family is prestable.
Using 8.1.4, we have two arguments:
Argument 1. Group scheme Aut(C/S, σi) → S has upper semicontinuous dimension of fibers, then
as stable locus is the locus such that it is dimension 0 locus. Hence open.
Argument 2. Using the openness of ample locus.

Proposition 8.3.5 (Openness of being nodal). Let f : X → S be a flat proper morphism of C-schemes.
Then the set of all s ∈ S such that Xs = f−1(s) is not a connected nodal curve is closed in S. If, in
addition, n sections σi of f are given, then the set of all s ∈ S such that (Xs;σi(s)) is not a connected
n-pointed nodal curve is closed in S.

Sketch. We will give a sketch and for the detailed proof see [8] Proposition XI.5.1. First we need to
let the fibers of f has dimension 1 by flatness and properness.
• Step 1. Reduce to the case that fibers are connected and have no embedded components.
Easy to see that dimH0(Xs,OXs) = 1 for all s ∈ S if Xs is connected and reduced. As this is the
stalks of f∗OX , we consdier the free resolution K0 α−→ K1 → · · · at some open subset. Hence the
locus of dimH0(Xs,OXs) > 1 is the locus of rank(α) ≤ rank(K0)− 2. Hence is closed.
• Step 2. Show that being neither nodal nor smooth is closed. Here we need to represent
nodes by some functions. Then we use some equivalent conditions (see [8] Lemma X.2.3) that if f be
a function over 0 and f(0) = 0, then f defines the smooth point 0 if and only if the first-order partials
of f not vanish at the origin; f defines the node 0 if and only if the first-order partials of f vanish and
the Hessian not vanish.

8.4 Rational tails and bridges
Definition 8.4.1. Let (C, p1, ..., pn) be a n-pointed prestable curve. We say a smooth rational subcurve
E ∼= P1 ⊂ C is

(i) a rational tail if E meets other irreducible components at exactly 1 time, and E contains no
marked points;

(ii) a rational bridge if either E meets other irreducible components at exactly 2 time and contains
no marked points, or E meets other irreducible components at exactly 1 time and contains exactly 1
marked point.
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E

E

E

P

Rational Tail Rational bridges

Remark 8.4.2. (1) C is stable if and only if it is prestable and has no rational tails and bridges;
(2) C is semistable if and only if it is prestable and has no rational tails.

Or we can also have chain of rational tails and bridges like:

8.5 The stable model
8.5.1 The stable model of a single curve
Let (C, p1, ..., pn) be a n-pointed prestable curve. Let Ei ⊂ C are its rational tails and bridges. We let
Cst := C\

⋃
iEi and let π : C → Cst be the induced map. Let p′i = π(pi), then (Cst, {p′i}) is a stable

curve, which we call the stable model of (C, {pi}) and π : C → Cst the stabilization morphism. Like
this:

C

Cstπ

For the serious argument of contraction to the stable curves, we refer [11]: contracting rational
tails (St 0E3G), contracting rational bridges (St 0E7M), contracting to a stable curve (St 0E7N). We
omitted here.

8.5.2 The stable model of a family of curves
For a family of nodal curves, we also have the following conclusion.
Proposition 8.5.1. Let (C → S, σi) be a family of n-pointed prestable curves. Then there exists a
unique (up to isomorphism) morphism π : C → Cst such that

(a) (Cst → S, {σ′
i}) is a n-pointed family of stable curves where σ′

i = π ◦ σi;
(b) for each s ∈ S, (Cs, {σi(s)})→ (Csts , {σ′

i(s)}) is the stable model;
(c) OCst = π∗OC and R1π∗OC = 0 and this remains true after base change by a morphism S′ → S

of schemes;
(d) If C → S is a family of semistable curves, then ωC/S(

∑
i σi) is the pullback of the relatively

ample line bundle ωCst/S(
∑
i σ

′
i).

https://stacks.math.columbia.edu/tag/0E3G
https://stacks.math.columbia.edu/tag/0E7M
https://stacks.math.columbia.edu/tag/0E7N
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Proof. See St 0E7B.

https://stacks.math.columbia.edu/tag/0E7B


Chapter 9

Deformation theory of nodal and
stable curves

After some basic results over arbitrary fields, we will focus on the curves over C. We mainly follows [8]
chapter XI (all results over C) and some results over arbitrary fields we follows [1]. Some basic result
and proofs we follows [78]. Here we let k[ε] := k[x]/(x2).

9.1 Elementary deformation theory and smooth objects
Definition 9.1.1. Let X be a scheme over k. A first order deformation of X is a scheme X flat over
k[ε] = k[ε]/(ε2) with X ∼= X ×k[ε] k.

We say X is trivial if X is isomorphic as first deformations to X ×k k[ε], and locally trivial if
there exists a Zariski-cover X =

⋃
i Ui such that X|Ui

is a trivial first order deformation of Ui, that
is, Ui ×k k[ε] ∼= X|Ui where X|Ui ⊂ X be a open subscheme with the same topology of Ui.

We let Def(X) be the isomorphism classes of first order deformations of X and Deflt(X) be the
isomorphism classes of locally trivial first order deformations of X.
Proposition 9.1.2 (See [1] D.1.11). For a scheme X of finite type over k with affine diagonal, there
is a bijection

Deflt(X)↔ H1(X,TX).

In particular, if X0 is smooth, then we have bijection

Def(X)↔ H1(X,TX),

as every first order deformations of smooth affine schemes is trivial.
Sketch. For a locally trivial first order deformation

X X

Speck Speck[ε]

let affine covering {Ui} of X such that X|Ui be a trivial first order deformation. Hence we get iso-
morphisms φi : Ui ×k k[ε] ∼= X|Ui . Let φij := φ−1

j |Uij×kk[ε] ◦ φi|Uij×kk[ε] are automorphisms of first
order defs, hence we get φij ∈ HomOUij

(ΩUij/k,OUij ). As they satiefies cocycle condition, we get
{φij} ∈ H1(X,TX) by Čech theory (this is independent on the choice of covering, see [78] Proposition
1.2.9). Converse is trivial.
Remark 9.1.3. For a locally trivial first order deformations ξ of X, we gives a class κ(ξ) ∈ H1(X,TX)
is called the Kodaira-Spencer class of ξ.

43
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Definition 9.1.4. Consider a family of deformation of a smooth algebraic variety X over k

X X Xf

Speck S Speck[ε]fs

hence we get
κX/S,s : TS,s → H1(X,TX),

we called it Kodaira-Spencer map.

Definition 9.1.5. Let A′ � A has square-free kernel and X → Spec(A) is flat. A deformation of
X → Spec(A) over A′ is X ′ → Spec(A′) with X ′ ×A′ A ∼= X. A morphism of deformations over A′ is
a morphism of schemes over A′ restricting to the identity on X.

Proposition 9.1.6. Let A′ � A has square-free kernel J . If X → Spec(A) is a smooth morphism of
schemes where X has affine diagonal, then

(a) the group of automorphisms of a deformation X ′ → Spec(A′) of X → Spec(A) over A′ is
bijective to H0(X,TX/A ⊗A J);

(b) If there exists a deformation of X → Spec(A) over A′, then the set of isomorphism classes of
all such deformations is a torsor under H1(X,TX/A ⊗A J);

(c) There is an element obX ∈ H2(X,TX/A⊗A J) with the property that there exists a deformation
of X → Spec(A) over A′ if and only if obX = 0.

Proof. See [1] Proposition D.2.6. To add.

Back to smooth curves over C pf genus g.

Theorem 9.1.7. Let (C; q1, ..., qn) be a n-pointed smooth n-pointed genus g curve over C.
(i) We have

Def(C; q1, ..., qn)↔ H1(C, TC(−
n∑
i=1

qi));

(ii) There exists a deformation

φ : C → (B, b0), σi : B → C such that χ : (C; q1, ..., qn) ∼= (φ−1(b0), σi(b0))

of (C; q1, ..., qn) such that the Kodaira-Spencer map

κ : Tb0B → H1(C, TC(−
n∑
i=1

qi))

is an isomorphism and B is a polydisc of dimension 3g − 3 + n+ h0(C, TC(−
∑n
i=1 qi)).

Proof. See [8] Theorem XI.2.12. To add.

9.2 Elementary deformations of nodal and stable curves
Lemma 9.2.1. Let (C, p1, ..., pn) be an n-pointed nodal, connected and projective curve over k with
each pi ∈ C smooth. Let {q1, ..., qs} be the nodes of C. Let (C̃, pi, q′j , q′′j ) be the pointed normalization
π : C̃ → C and π−1(qj) = {q′j , q′′j }. Then we have the spectral sequence

Ep,q2 = Hp(C, E xtqOC
(ΩC(p1 + ...+ pn),OC))⇒ Extp+qOC

(ΩC(p1 + ...+ pn),OC)
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such that induce the following exact sequence

0 H1(C,H omOC
(ΩC(p1 + ...+ pn),OC))

0
⊕

j Ext1ÔC,qj

(ΩÔC,qj
, ÔC,qj ) Ext1OC

(ΩC(p1 + ...+ pn),OC)

Moreover, ∀j we have Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = k and Ext2OC

(ΩC(p1 + ...+ pn),OC) = 0.

Proof. By Grothendieck spectral sequence, we have

Ep,q2 = Hp(C,E xtqOC
(ΩC(p1 + ...+ pn),OC))⇒ Extp+qOC

(ΩC(p1 + ...+ pn),OC).

As C is a curve, Ep,q2 = 0 for p ≥ 2.
By [40] Propostion 2.3, we get an exact sequence

0→ E1,0
2 → Ext1OC

(ΩC(p1 + ...+ pn),OC)→ E0,1
2 → E2,0

2 → 0.

As ΩC is locally free away from nodes, E xt1OC
(ΩC(p1+...+pn),OC) is zero-dimensional sheaf supported

only at nodes. Hence E1,1
2 = 0 and

E0,1
2 = H0(C, E xt1OC

(ΩC(p1 + ...+ pn),OC))

=
⊕
j

Ext1OC,qj
(ΩC,qj ,OC,qj ) =

⊕
j

Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ).

where Ω̂C,qj = ΩÔC,qj
. Hence we get that exact sequence.

Similarly E xt2OC
(ΩC(p1 + ...+ pn),OC) is zero-dimensional sheaf supported only at nodes, then

E0,2
2 = H0(C,E xt2OC

(ΩC(p1 + ...+ pn),OC)) =
⊕
j

Ext2
ÔC,qj

(ΩÔC,qj
, ÔC,qj ).

Write ÔC,qj = k[[x, y]]/(xy) and consider the locally free resolution

0 ÔC,qj Ô⊕2
C,qj

ΩÔC,qj
0

(yx) (dx,dy)

Hence we get Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = k and Ext2

ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = 0. Hence E0,2

2 = E1,1
2 =

E2,0
2 = 0 and Ext2OC

(ΩC(p1 + ...+ pn),OC) = 0.

Proposition 9.2.2. Let (C, p1, ..., pn) be an n-pointed nodal, connected and projective curve over k with
each pi ∈ C smooth. Let {q1, ..., qs} be the nodes of C. Let (C̃, pi, q′j , q′′j ) be the pointed normalization
π : C̃ → C and π−1(qj) = {q′j , q′′j }. Then we have the following exact sequence

0→ Deflt(C)→ Def(C)→
⊕
j

Def(ÔC,qj )→ 0

and
Deflt(C) ∼= Def(C̃, pi, q′j , q′′j ) ∼= H1(C̃, TC̃(−

∑
i

pi −
∑
j

(q′j + q′′j ))),

Def(C) ∼= Ext1OC
(ΩC(p1 + ...+ pn),OC),

Def(ÔC,qj ) ∼= Ext1
ÔC,qj

(Ω1
ÔC,qj

, ÔC,qj )
∼= k.

Under these identifications, this exact sequence corresponds to the exact sequence in the Lemma.
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Sketch. WLOG again we let n = 0. If C → Speck[ε] is a locally trivial first order deformation of C,
each node qj extend to a section q̃j : Speck[ε]→ C. The pointed normalization of C along the sections
q̃j is a first order deformation of the (possible disconnected) pointed normalization (C̃, pi, q

′
j , q

′′
j ). This

gives a map Deflt(C)→ Def(C̃, pi, q′j , q′′j ). The inverse is provided by gluing the sections of a first order
deformation of (C̃, pi, q′j , q′′j ) along nodes.

If C → Speck[ε] is a first order deformation of C, then ideal sheaf I of C → C is I = I/I2 ∼= OC .
The right exact sequence

I/I2 → ΩC/k → ΩC/k → 0

is left exact at every smooth point of C. As C → Speck is generically smooth and it follows that
OC ∼= I/I2 → ΩC/k is generically injective, hence injective. Hence this defines Ext1OC

(ΩC ,OC). This
is bijective (one can see [8] section XI.3).

Remark 9.2.3. Hence we also have the Kodaira-Spencer map for some C → (S, s) as

κS,s : TS,s → Ext1OC
(ΩC(p1 + ...+ pn),OC).

Remark 9.2.4. Let C be a nodal curve over C and let p ∈ C be a node with normalization N and
preimages {p1, p2}.
•Claim 1. Ext1(ΩC,p,OC,p) ∼=

∧2
(mp/m

2
p)⊗µ2

τ where µ2 = {±1} and τ be the set consisting of the
two possible orderings of the branches of C at p.

I omit this, see [8] page 180.
•Claim 2. Ext1(ΩC,p,OC,p) ∼= TN,p1 ⊗ TN,p2 .

Trivial by Claim 1 and mp/m
2
p = TC,p = TN,p1 ⊕ TN,p2 and

∧2
TN,p1 ⊕ TN,p2 identify with TN,p1 ⊗

TN,p2 depends on the choice of an ordering of the two summands, we win.

Remark 9.2.5. Let (C; p1, ..., pn) be an n-pointed nodal curve over C for simplicity, and let W =
{w1, ..., wl} be some set of nodes of C. Let f : N → C be the partial normalization at these nodes with
f−1(wi) = {ri, qi}. Let D =

∑
i pi with inverse D̃ and E =

∑
(ri + qi).

•Claim 1. H om(Ω1
C ,OC(−D)) ∼= f∗H om(Ω1

N ,ON (−D̃ − E)).
This is trivially true at points away form W , so we just need to consider the points in W . Pick

any wi ∈W , we get Hom(Ω1
C,wi

,OC,wi
) = Hom(Iwi

ωC,wi
,OC,wi

) by Corollary 7.4.5. As Iwi
ωC,wi

=

ωN,ri ⊕ ωN,qi and Iwi
= ON,ri(−ri)⊕ ON,qi(−qi) (Why?), we get

Hom(Ω1
C,wi

,OC,wi
) =

⊕
p=ri,qi

Hom(ωN,p,ON,p(−p)),

hence H om(Ω1
C ,OC(−D)) ∼= f∗H om(Ω1

N ,ON (−D̃ − E)).
•Claim 2. We have

0→Ext1(Ω1
N ,ON (−D̃ − E))→ Ext1(Ω1

C ,OC(−D))→⊕
wi∈W

Ext1(Ω1
C,wi

,OC,wi
)→ 0.

By Claim 1, we get H1(N,H om(Ω1
C ,OC(−D))) ∼= H1(N,H om(Ω1

N ,ON (−D̃ − E))). Hence by
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Lemma 9.2.1, we get

0 H1(N,H om(Ω1
N ,ON (−D̃ − E))) Ext1(Ω1

N ,ON (−D̃ − E))

0 H1(N,H om(Ω1
C ,OC(−D))) Ext1(Ω1

C ,OC(−D))

⊕
w∈Sing(C),w/∈W Ext1(Ω1

C,w,OC,w) 0

⊕
w∈Sing(C) Ext1(Ω1

C,w,OC,w) 0

hence we get

0→Ext1(Ω1
N ,ON (−D̃ − E))→ Ext1(Ω1

C ,OC(−D))→⊕
wi∈W

Ext1(Ω1
C,wi

,OC,wi
)→ 0.

Note that the term on the left classifies first-order deformations which are locally trivial at the nodes
belonging to W , and the one on the right classifies first-order smoothings of these nodes.
•Claim 3. ⊕wi∈W Ext1(Ω1

C,wi
,OC,wi) =

⊕l
i=1 TN,ri ⊗ TN,qi .

By claims in Remark 9.2.4, this is trivial.

Here is a similar result as before over C via analytic GAGA.
Theorem 9.2.6. Let (C; p1, ..., pn) be an n-pointed nodal curve of genus g over C. There exists a
deformation

φ : C → (B, b0), σi : B → C such that χ : (C; p1, ..., pn) ∼= (φ−1(b0), σi(b0))

of (C; p1, ..., pn) such that the Kodaira-Spencer map

κ : Tb0B → Ext1OC
(ΩC(p1 + ...+ pn),OC)

is an isomorphism and B is a polydisc of dimension 3g − 3 + n+ dimHom(ΩC ,OC).
Finally, if s is the number of nodes of C, one can choose coordinates t1, ..., ts, ... on B, vanishing at

b0, in such a way that the locus parameterizing deformations which are locally trivial at the i-th node
is ti = 0; in particular, the locus parameterizing singular curves is t1 · · · ts = 0.

Proof. See [8] Theorem XI.3.17. To add.

Back to the general case.
Proposition 9.2.7. Let (C, p1, ..., pn) be an n-pointed nodal, connected and projective curve over k
with each pi ∈ C smooth. Let A′ � A be a surjection of artinian local k-algebras with residue field k
such that J = ker(A′ → A) satiefies mA′J = 0. If CA → Spec(A) be a family of nodal curves such that
C ∼= CA ×A k, then

(a) The group of automorphisms of a deformation CA′ → Spec(A′) of CA → Spec(A) over A′ is
bijective to Ext0OC

(ΩC(p1 + ...+ pn),OC ⊗k J);
(b) If there exists a deformation of CA → Spec(A) over A′, then the set of isomorphism classes of

all such deformations is a torsor under Ext1OC
(ΩC(p1 + ...+ pn),OC ⊗k J);

(c) There is an element obCA
∈ Ext2OC

(ΩC(p1 + ... + pn),OC ⊗k J) with the property that there
exists a deformation of CA → Spec(A) over A′ if and only if obCA

= 0.

Proof. To add.
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Lemma 9.2.8 (St 0E68). Let k be an algebraically closed field. Let X be an at-worst-nodal, proper,
connected 1-dimensional scheme over k. Let f : X̃ → X be the normalization. Let S ⊂ X̃ be the set
of points where f is not an isomorphism.

Derk(OX ,OX) = {D′ ∈ Derk(OX̃ ,OX̃) : D′ fixed every x′ ∈ S}.

Proof. Let x ∈ X be a node with the preimage x′, x′′ ∈ X̃. Pick two uniformizers u, v in OX̃,x′ and
OX̃,x′′ , respectively. Hence we have

0→ OX,x → OX̃,x′ × OX̃,x′′ → k → 0,

thus we can view u, v as elements of OX,x with uv = 0.
Since (u) is annihilator of v in OC,x and vice versa, we see that D(u) ∈ (u) and D(v) ∈ (v). As

OC̃,x′ = k+ (u) we conclude that we can extend D to OC̃,x′ and moreover the extension fixes x′. This
produces a D′ in the right hand side of the equality. Conversely, given a D′ fixing x′ and x′′ we find
that D′ preserves the subring OC,x ⊂ OC̃,x′ × OC̃,x′′ and this is how we go from right to left in the
equality.

Proposition 9.2.9. Let (C, p1, ..., pn) be an n-pointed stable curve of genus g over k. Then

dimk ExtiOC

(
ΩC

(∑
i

pi

)
,OC

)
=

{
0, i = 0, 2;

3g − 3 + n, i = 1.

Proof. We let k is algebraically closed and has no marked point. Let π : C̃ → C be a normalization
and let Σ ⊂ C be the set of nodes. Let Σ̃ = π−1(Σ) ⊂ C̃.

By Lemma 9.2.1, we get dimk Ext2OC
(ΩC ,OC) = 0. For Ext0, we first claim that

HomOC̃
(ΩC̃(Σ̃),OC̃)

∼= HomOC
(ΩC ,OC).

This is equivalent to show

Derk(OC ,OC) ∼= {D′ ∈ Derk(OC̃ ,OC̃) : D
′ fixes every points in Σ̃}.

Actually this is just Lemma 9.2.8. This finish the claim. Hence we get

HomOC
(ΩC ,OC) ∼= HomOC̃

(ΩC̃(Σ̃),OC̃)
∼= H0(C̃, TC̃(−Σ̃)) = 0.

For Ext1, by Lemma 9.2.1 we have

0 H1(C,H omOC
(ΩC ,OC)) Ext1OC

(ΩC ,OC)
⊕

j Ext1ÔC,qj

(ΩÔC,qj
, ÔC,qj )

H1(C̃, TC̃(−Σ̃)) 0

and Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj ) = k. This equality in this exact sequence is because

H1(C,H omOC
(ΩC ,OC))

be the set of locally trivial first order deformation of C preserving nodes and this is equivalent to the
set of locally trivial first order deformation of C̃ fixed Σ̃, which is H1(C̃, TC̃(−Σ̃)).

Now let C̃ =
∐t
i=1 C̃i are connected components and Σ̃i = C̃i ∩ Σ̃. First we have

h1(C̃i, TC̃i
(−Σ̃i)) = h0(C̃i,Ω

⊗2

C̃i
(Σ̃i)) = 3g(C̃i)− 3 +#(Σ̃i),

https://stacks.math.columbia.edu/tag/0E68
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hence

dimk Ext1OC
(ΩC ,OC) = h1(C̃i, TC̃i

(−Σ̃i)) +#(Σ)

=

t∑
i=1

(3g(C̃i)− 3 +#(Σ̃i)) +#(Σ) = 3

t∑
i=1

g(C̃i)− 3t+ 3#(Σ) = 3g − 3

by the genus formula, we win.

9.3 Basic concept of Kuranishi family
We will work on analytic category over C via Serre’s GAGA.

Definition 9.3.1. Let (C; p1, ..., pn) be an n-pointed connected nodal curve of genus g over C. A
deformation φ : C → (B, b0), σi : B → C such that χ : (C; p1, ..., pn) ∼= (φ−1(b0), σi(b0)) of (C; p1, ..., pn)
is said to be a Kuranishi family for (C; p1, ..., pn) if it satisfies the following condition:
(Condition K). For any deformation ψ : D → (E, e0) of (C; p1, ..., pn) and for any sufficiently small
connected neighborhood U of e0, there is a unique morphism of deformations of n-pointed curves

D|U C

(U, e0) (B, b0)

ϕ

F

f

ψ|U

Remark 9.3.2. In the algebraic case, the neighborhood U of e0 taken étale locally. Actually this is
the same as all analytic local and étale local here.

Remark 9.3.3 (Versal). If we just let the deformation satisfies (condition K) except for uniqueness and
the Kodaira-Spencer map at the central fiber be an isomorphism, then we call it a versal deformation.

We will show, the Kuranishi family for (C; p1, ..., pn) exists if and only if (C; p1, ..., pn) is stable, at
next two sections.

Corollary 9.3.4. The Kodaira-Spencer map of a Kuranishi family at the base point is an isomorphism.

Proof. This is trivial as the family Cε → SpecC[ε] just has and has unique map to φ : C → (B, b0).
This defines a bijection between TB,b0 and Def(C) = Ext1OC

(ΩC(p1 + ...+ pn),OC) via κB,b0 .

Corollary 9.3.5. Let there be given a deformation of a stable n-pointed curve (C; p1, ..., pn) over the
pointed analytic space (E, e0). Suppose that its Kodaira-Spencer map at e0 is an isomorphism and that
E is smooth at e0. Then the deformation is a Kuranishi family for (C; p1, ..., pn).

Proof. To add.

Corollary 9.3.6. The base of the Kuranishi family of a stable n-pointed curve (C; p1, ..., pn) of genus
g is smooth of dimension 3g − 3 + n.

Proof. By the previous corollary and Theorem 9.2.6 and the uniqueness of the Kuranishi family by the
universal property.

Corollary 9.3.7. Let X → S be a family of stable n-pointed curves, and s0 a point of S. If X → S
is a Kuranishi family for Xs0 , then it is a Kuranishi family for Xs, for all s in an open neighborhood
U of s0.

Proof. From the previous results that X → S is Kuranishi for Xs if and only if s is a smooth point of
S and the Kodaira-Spencer map at s is an isomorphism. The first of these conditions is clearly open.

Since the dimension of Ext1(Ω1
Xs
,OXs

(−
∑
σi(s))) is independent of s, the second condition trans-

lates into a rank condition for a map between vector bundles and hence is open and We win.
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9.4 The Hilbert scheme of ν-canonical curves
For any stable n-pointed genus g curve (C; pi), if we let D =

∑
i pi, then by Proposition 8.3.3 that

for all ν ≥ 3, the ν-log-canonical bundle ωC(D)⊗ν is very ample and embeds C into PN−1 where
N = (2ν−1)(g−1)+νn. Let Pν(t) = (2νt−1)(g−1)+νnt, we consider the Hilbert scheme HilbPν

PN−1 .
By Proposition 8.3.5, we get the nonempty subset U ⊂ HilbPν

PN−1 parameterizing connected n-
pointed nodal curves is open. Let the (π : Y → U, σi) be the restriction of the universal family. As the
general points of U does not correspond to an n-pointed curve embedded by the ν-fold log-canonical
sheaf, we need to define a new subscheme.

Definition 9.4.1. Let F = (π∗OPN−1(1))−1 ⊗ ωπ(
∑
i σi)

⊗ν . We define Hν,g,n ⊂ U ⊂ HilbPν

PN−1 as a
subscheme by

Hν,g,n(X) :=


α : X → U

∣∣∣∣∣∣∣∣∣∣∣
correspond to

Y ×U X Y

X Uα

πη

β

such

that β∗F ∼= η∗G for some G ∈ Pic(X)


.

We call Hν,g,n as the Hilbert scheme of ν-log-canonically embedded, stable, n-pointed, genus g curves.

Lemma 9.4.2. Let h = (C ⊂ Pm; p1, ..., pn) be a nodal curve where p1, ..., pn be distinct smooth points
of C and D =

∑
i pi. Let H be the Hilbert scheme parameterizing the (n + 1)-tuples (Y ; q1, ..., qn),

where Y is a subscheme of C ⊂ Pm and q1, ..., qn points on it, then we have the exact sequence

0→HomOC
(Ω1

C ,OC(−D))→ HomOPm (Ω1
Pm ,OC)

→ ThH
β−→ Ext1OC

(Ω1
C ,OC(−D))

where β is just the Kodaira-Spencer map at h associated to the universal family over H.

Proof. Consider

D∗ C∗ B∗ A∗

OC 0 IC/I 2
C Ω1

Pm ⊗ OC Ω1
C 0

OD 0 ID/I 2
D Ω1

Pm ⊗ OD 0

Hence we get

0→ HomOC
(A∗,D∗)→ HomOC

(B∗,D∗)→ HomOC
(C∗,D∗)→ ExtOC

(A∗,D∗).

As A∗ → D∗ is equivalent to Ω1
C → ker(OC → OD) = OC(−D), hence HomOC

(A∗,D∗) =
Hom(Ω1

C ,OC(−D)). As B∗ → D∗ determined by B0 → D0, we get

HomOC
(B∗,D∗) = HomOC

(Ω1
Pm ⊗ OC ,OC) = HomOPm (Ω1

Pm ,OC).

It is trivial that HomOC
(C∗,D∗) ∼= ThH. The final term is actually the isomorphism classes of first-

order deformations of h, hence is Ext1OC
(Ω1

C ,OC(−D)) (see [8] XI.(3.11)). Hence we win.

Theorem 9.4.3. Let 2g − 2 + n > 0 and ν ≥ 3 and N = (2ν − 1)(g − 1) + νn. Then Hν,g,n defined
as above satisfied the following statements.
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(i) Let h = (C; p1, ..., pn) be a stable curve in PN−1 embedded by the ν-fold log-canonical system
and D =

∑
i pi. Then we have the exact sequence

0→ H0(C,OC(1))
⊕N/H0(C,OC)→ Th(Hν,g,n)

λ−→ Ext1(Ω1
C ,OC(−D))→ 0

where λ is the Kodaira-Spencer map at h of the universal family on Hν,g,n. In particular,

dimThHν,g,n = 3g − 3 + n+N2 − 1;

(ii) Hν,g,n is smooth and quasi-projective of dimension 3g − 3 + n+N2 − 1.
Sketch. (i) By Euler sequence and Lemma 9.4.2, we have

0 Hom(Ω1
C ,OC(−D))

0 H0(C,OC) H0(C,OC(1))⊕N Hom(Ω1
PN−1 ,OC) H1(C,OC)

ThH Ext1(Ω1
C ,OC(−D))

δ

γ

β

Now we will analyze several groups and morphisms above.
•The map β associates to every first-order embedded deformation of h. (Trivial)
•The elements of Hom(Ω1

PN−1 ,OC) correspond to fiber space maps j : C × SpecC[ε]→ PN−1×
SpecC[ε]. (Omitted, see [8] page 200)
•The map δ associates to any such object the infinitesimal deformation of line bundles
on C given by j∗(O1

PN−1(1)⊗ OSpecC[ε])⊗ (O1
C(1)⊗ OSpecC[ε])

−1. (Omitted, see [8] page 201)
•The elements of H0(C,OC(1))⊕N/H0(C,OC) is the tangent space to PGL(N). (Omitted)

Let v = Γ(α) ∈ ThH tangent to Hν,g,n where α ∈ Hom(Ω1
PN−1 ,OC). Hence v from a fiber space

map j : C × SpecC[ε]→ PN−1 × SpecC[ε] such that

j∗(O1
PN−1(1)⊗ OSpecC[ε]) = ωC(D)⊗ν ⊗ OSpecC[ε].

Then δ(α) = 0 and hence α ∈ H0(C,OC(1))⊕N/H0(C,OC). Conversely we find that the im-
age of H0(C,OC(1))⊕N/H0(C,OC) in ThH contained in ThHν,g,n. By Proposition 9.2.9 we get
Hom(Ω1

C ,OC(−D)) = 0, hence we have

0→ H0(C,OC(1))
⊕N/H0(C,OC)→ Th(Hν,g,n)

λ−→ Ext1(Ω1
C ,OC(−D)).

Actually λ is surjective since any infinitesimal deformations of h can be embedded via the ν-fold
log-canonical system. Hence we win.

(ii) By the basic theory of Hilbert schemes, Hν,g,n is quasi-projective by the trivial reason. We now
will show thatHν,g,n is smooth of dimension 3g−3+n+N2−1. By (i) we get dimThHν,g,n = 3g−3+n+
N2−1, hence dimHν,g,n ≤ 3g−3+n+N2−1. If we have showed that dimHν,g,n ≥ 3g−3+n+N2−1,
then well done.

Here we just give a sketch, details see [8] Proposition XI.5.12. By Theorem 9.2.6, we get a (3g−3+
n)-dimensional deformation φ : C → (B, b0). Let Cb = φ−1(b) and Db =

∑
i σi(b). Consider a principle

PGL(N)-bundle over B as

B :=

{
(b, F )

∣∣∣∣b ∈ B and F a basis of H0(Cb, ωCb
(Db)

⊗ν),

modulo homotheties

}
.

Take F0 correspond to C ⊂ PN−1 and consider the family

X := B ×B C
ψ−→ B, τi : B → X .
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Via some projective frame of ψ∗(ωX/B(
∑
τi)

⊗ν), we have X → PN−1×B, which induce ξ : B → Hν,g,n.
Hence we have

0 Te(G) T(b0,F0)B Tb0B 0

0 H0(C,OC(1))⊕N/H0(C,OC) Th(Hν,g,n) Ext1(Ω1
C ,OC(−D)) 0

ρdξ

where ρ is Kodaira-Spencer map. As ρ is an isomorphism, we have dξ is also an isomorphism. Hence
locally ξ is a local isomorphism at (b0, F0). As dimB = 3g − 3 + n+N2 − 1, well done.

9.5 Construction of Kuranishi families
Let ν ≥ 3 and (C; p1, ..., pn) ⊂ PN−1 be a stable n-pointed genus g curve where N = (2ν−1)(g−1)+νn,
via ν-fold log-canonical system. We consider it as x0 ∈ Hν,g,n. Fix the universal family Y → Hν,g,n

with sections σi : H → Y. Let

Hν,g,n ⊂ HilbPν

PN−1 × (PN−1)n ⊂ PM × (PN−1)n ⊂ PK

acted by G = PGL(N) ⊂ PGL(K + 1) and let Aut(C; pi) = Gx0
⊂ G = PGL(N) be the stabilizer of

x0.
Let the orbit O(x0) ⊂ Hν,g,n of x0 under G, which is a smooth subvariety of dimension N2 − 1.

(Here is not important. But we need to read here, and to add.)

Lemma 9.5.1.

Proof.

Theorem 9.5.2. There is a locally closed (3g − 3 + n)-dimensional smooth subscheme X ⊂ Hν,g,n

including x0 such that the restriction of the universal family of Hν,g,n over X is a Kuranishi family
for all of its fibers.

In addition, one can choose an X with the following properties:
(i) X is affine and Gx0-invariant;
(ii) For any y ∈ X, we have Gy ⊂ Gx0

;
(iii) For any y ∈ X, there is a Gy-invariant neighborhood U ⊂ X of y such that Gy = {γ ∈ G :

γ(U) ∩ U 6= ∅} in the analytic topology.

Proof. See [8] Theorem XI.6.5. To add.

Hence we get a Kuranishi family (π : C → (X,x0), σi).

Definition 9.5.3 (Standard algebraic Kuranishi family). Let (C; p1, ..., pn) be a stable n-pointed genus
g curve with G = Aut(C; pi). Let (π : C → (X,x0), σi) be the Kuranishi family in Theorem 9.5.2 and
it is called a standard algebraic Kuranishi family if the following conditions are satisfied.

(a) X is affine and the family is a Kuranishi family for all of its fibers;
(b) The action of Gx0

on the central fiber extends to compatible actions on C and X;
(c) For any y ∈ X we have Gy := Aut(Cy;σi(y)) ∼= stabGx0

(y);
(d) For any y ∈ X, there is a Gy-invariant analytic neighborhood U of y in X such that any

isomorphism (of n-pointed curves) between fibers over U is induced by an element of Gy.

Definition 9.5.4 (Standard Kuranishi family). Let (C; p1, ..., pn) be a stable n-pointed genus g curve
with G = Aut(C; pi). We will say a Kuranishi family X → (B, b0), τi : B → X of (C; p1, ..., pn) is
called a standard Kuranishi family if the following conditions are satisfied.

(a) B is a connected complex manifold and the family is a Kuranishi family at every points of B;
(b) The action of G on the central fiber extends to compatible actions on X and B;
(C) Any isomorphism (of n-pointed curves) between fibers is induced by an element of G.
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Remark 9.5.5. In fact, given any Kuranishi family, there is a neighborhood of the base point such
that the restriction is standard. By the uniqueness of the Kuranishi family, it suffices to notice that
this is true for a standard algebraic Kuranishi family. By Theorem 9.5.2 and we win.

Corollary 9.5.6. Any (maybe not stable) nodal curves (C; p1, ..., pn) has a versal deformation (is
unique up to an isomorphism, which however need not be unique).

Proof. Adding some smooth marked points such that it becomes a stabel curve. Then taking the
Kuranishi family of it and ignore the added marked points.

Corollary 9.5.7. Any family of nodal curves can be locally embedded in a family of nodal curves with
a reduced, or even smooth, base.

Proof. For any family of nodal curves η : X → S and let s0 ∈ S. By the previous corollary we can get
a versal deformation π : X → (B, b0) of η−1(s0). After shrinking S (étale locally), we have a closed
immersion S ↪→ T where T is smooth and a cartesian

X X

S B

η

α

π

β

with b0 = α(s0). Hence we get cartesians

X S ×X T ×X

S S ×B T ×B

η (idS ,π) (idT ,π)
(idS ,α)

(η,β)

Clearly, T ×B is smooth, and S → T ×B is a closed immersion.



54 CHAPTER 9. DEFORMATION THEORY OF NODAL AND STABLE CURVES



Chapter 10

The stack of all curves

10.1 Families of all arbitrary curves
Definition 10.1.1. Here we redefine a curve over k is a scheme C of finite type over k of dimension
1 (rather than pure dimension 1). The genus of C is defined as g(C) = 1− χ(C,OC).
Remark 10.1.2. Why we not allow pure dimension 1? Since they may arise as deformations of
connected pure one-dimensional curves; without this relaxation, the stack of all curves would fail to be
algebraic. For example in [58] Example III.9.8.4, a flat family of rational curves defined by P1 → P3

via [x : y] 7→ [x3 : x2y : xy2 : ty3] for any t 6= 0. As t→ 0, we may get a singular non-reduced curve C0

with an embedded point at that node, but C0 can deforms to the disjoint union of a plane nodal cuvre
and a point in P3.

C1 C0 C0

P

Q

⊃
deformation

Definition 10.1.3. (i) A family of curves over a scheme S is a flat, proper and finitely presented
morphism C → S of algebraic spaces such that every fiber is a curve.

(ii) A family of n-pointed curves is a family of curves C → S together with n sections σ1, ..., σn :
S → C (with no condition on whether they are distinct or land in the relative smooth locus of C over
S).
Remark 10.1.4. (i) When we consider a family of stable curve, since the relative dualizing sheaf is
ample, we can get it is projective, hence must be a scheme;

(ii) There are some examples such that C are not a scheme.
Proposition 10.1.5. If C → S is a family of curves over S, there exists an étale cover S′ → S such
that CS′ → S′ is projective.
Sketch-Local to global. Consider cartesians

C0 := Cs C1 · · · Ĉ C

S0 := Specκ(s) S1 := SpecOS,s/m2
s · · · Ŝ := SpecÔS,s S

Step 1. C0 → Specκ(s). By St 0ADD, every separated algebraic space of dimension one is a scheme.
Any one-dimensional proper κ(s)-scheme is projective by St 0A26. In particular we get a ample line
bundle L0 on C0.

55
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Step 2. Cn → Sn. The obstruction to deforming a line bundle Ln on Cn to Ln+1 on Cn+1 lives in
H2(C0,OC0) and thus vanishes as dimC0 = 1. Thus there exists a compatible sequence of line bundles
Ln on Cn. Since ampleness is an open condition in families and L0 is ample, Ln is also ample.
Step 3. Ĉ → Ŝ with Ŝ noetherian. Use Grothendieck’s Existence Theorem we get an equivalence
Coh(Ĉ) → lim←−Coh(Cn). As Ĉ → Ŝ is proper, then by Chow’s lemma there exists a projective
birational morphism C ′ → Ĉ of algebraic spaces such that C ′ → S is projective. This allows one to
reduce Grothendieck’s Existence Theorem for Ĉ → Ŝ to C ′ → Ŝ using devissage. As a result, using
again that ampleness is an open condition in families we can extend the sequence of line bundle Ln to
a line bundle L̂ on Ĉ which is ample.
Step 4. S is of finite type over Z. For every closed point s ∈ S, apply Artin Approximation to
the functor

(Sch/S)→ (Sets), (T → S) 7→ Pic(CT )
to obtain an étale neighborhood (S′, s′) → (S, s) of s and a line bundle L′ on CS′ extending L0. By
openness of ampleness, we can replace S′ with an open neighborhood of s′ such that L′ is relatively
ample over S′.
Step 5. General S. Use noetherian approximation.

10.2 Algebraicity of the stack of all curves
Definition 10.2.1. Let M all

g,n denote the category over Schet whose objects over S consists of families
of curves C → S and n sections σi : S → C. A morphism (C ′ → S′, σ′

i)→ (C → S, σi) is the data of
the cartesian

C ′ C

S′ S

g

f

σi

σ′
i

with g ◦ σ′
i → σi ◦ f .

Lemma 10.2.2. M all
g,n is a stack over Schet.

Proof. Handle n = 0. Let S′ → S be an étale cover with C ′ → S′. And α : p∗1C
′ → p∗2C

′ is an
isomorphism over S′ ×S S′ satisfying the cocycle condition. The quotient of the étale equivalence
relation

R := p∗1C
′ C ′ C := C ′/R

S′ ×S S′ S′ S

p1

p2◦α

p1

p2

Well done.

Lemma 10.2.3. ∆ : M all
g,n →M all

g,n ×M all
g,n is representable.

Proof. Handle n = 0. Consider the cartesian

IsomT (C1, C2) T

M all
g,n M all

g,n ×M all
g,n

∆

(C1,C2)

We need to show IsomT (C1, C2) is an algebraic space. By Proposition 10.1.5, there exists an étale
cover T ′ → T such that Ci,T ′ → T ′ is projective. Hence we may let C1, C2 are projective over T .
Indeed, as

IsomT (C1, C2)×T T ′ = IsomT ′(C1,T ′ , C2,T ′),
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we get IsomT ′(C1,T ′ , C2,T ′)→ IsomT (C1, C2) is representable, surjective and étale. Hence if IsomT ′(C1,T ′ , C2,T ′)
is an algebraic space, so is IsomT (C1, C2).
Fact. (St 05XD) If f : X → Y are T -morphism such that X,Y are proper, flat and locally of finite
presention over T , then for any U → T such that XU

∼= YU if and only if U → T factor through an
open subscheme T0 ⊂ T .

Now we get the inclutions

IsomT (C1, C2) ⊂ MorT (C1, C2) ⊂ Hilb(C1 ×T C2/T )

where the second inclusion is (g : C1 → C2) 7→ (Γg : C1 → C1 ×T C2). The first inclusion is
representable open immersion by the above fact. The second inclusion, we find that a subspace
[Z ⊂ C1×T C2] ∈ Hilb(C1×T C2/T ) is in the image of the inclusion if and only if Z → C1×T C2 → C1

is an isomorphism (and similarly for other valued points). Therefore by the above fact we win.

Theorem 10.2.4. M all
g,n is an algebraic stack locally of finite type over Z.

Sketch. Step 1. Reduce to n = 0. Since M all
g,n+1 is the universal family over M all

g,n, we can prove
the conclusion at the case M all

g . (Why?)
Step 2. Look for possible smooth cover H ′ of M all

g . Let C0 be any projective curves C0 over
k. Choosing an embedding C0 ⊂ PNk such that h1(C0,O(1)) = 0 by Serre’s vanishing theorem. Let
P (t) be its Hilbert polynomial. Let H := HilbPPN

Z /Z be the Hilbert scheme which is projective over Z.
Consider the universal family

C PNH

H

there is a point h0 ∈ H(k) such that Ch0
= C0. By Review A.1.1 we can find an open neighborhood

H ′ ⊂ H of h0 such that for any s ∈ H ′ we have h1(Cs,OCs(1)) = 0. Now consider

H ′ →M all
g , [C ↪→ PN ] 7→ [C],

and by the representability of the diagonal, this map is representable as H ′ is a scheme.
Step 3. Show that H ′ → M all

g is smooth. Using Infinitesimal Lifting Criterion such that for all
surjections A→ A0 of artinian local rings with residue field k such that k = ker(A→ A0) and for all
diagrams

Speck

SpecA0 H ′

SpecA M all
g

[C0⊂PN
A0

]

C

[C⊂PN
k ]

[C⊂PN
A ]

We need to find that dotted arrow. This diagram is equivalent to

PNk PNA0
PNA

C C0 C

Speck SpecA0 SpecA

https://stacks.math.columbia.edu/tag/05XD
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For simplifying, we let C is of locally complete intersection (general case see [51] and [50]). Let J be
the ideal sheaf of C → PNk generated by regular sequence locally and that J /J 2 is a vector bundle on
C with

0→ J /J 2 → ΩPN
k
|C → ΩC → 0.

By long exact sequence we get

HomOC
(J /J 2,OC)→ Ext1OC

(ΩC ,OC)→ Ext1OC
(ΩPN

k
|C ,OC) = H1(C, TPN

k
|C).

Consider the canonical sequence

0→ OC → OC(1)
⊕N+1 → TPN |C → 0.

Since H2(C,OC) = 0 and H1(C,OC(1)) = 0 by [C] ∈ H ′ we get H1(C, TPN
k
|C) = 0. Hence we get a

surjection
HomOC

(J /J 2,OC) � Ext1OC
(ΩC ,OC).

Use some deformation theory (But I don’t know! May be use something about cotangent complex
which is the reason we let C is of locally complete intersection!) we get HomOC

(J /J 2,OC) classifies
embedded deformations of C0 → PNA0

to C′ → PNA and Ext1OC
(ΩC ,OC) classifies deformations of C0

over A0 to C′ over A. As the map is [C′ → PNA ] 7→ C′ and is surjective, we win.

10.3 Algebraicity of several stacks and boundedness of stable
curves

Proposition 10.3.1 (Several stacks). We have inclusions

Mg,n ⊂M g,n ⊂M ss
g,n ⊂M pre

g,n ⊂M≤nodal
g,n ⊂M all

g,n

of prestacks. Then all of these are open substacks, hence all of these are algebraic stacks locally of
finite type over Z.
Proof. • By Theorem 10.2.4, M all

g,n is an algebraic stack locally of finite type over Z.
• M≤nodal

g,n ⊂ M all
g,n is an open substack. Actually by Corollary 7.4.3 we get the nodal locus is open

when C is a scheme. In general for an étale cover g : C ′ → C by a scheme, we find that a point p ∈ C ′

is a node in its fiber if and only if g(p) is a node in its fiber. We win.
• M pre

g,n ⊂M≤nodal
g,n is an open substack. This is because for a family (C → S, {σi}) of nodal curves,

the locus {s ∈ S : σi(s) are disjoint and smooth} is open.
• M ss

g,n ⊂ M pre
g,n is an open substack. This is because the nef locus is open (But I don’t know the

relation between nefness and semistable!).
• M g,n ⊂M ss

g,n is an open substack. Indeed the stable locus is open by Proposition 8.3.4.
• Mg,n ⊂M g,n is an open substack. Indeed this is by the fact that smooth locus is open.

Proposition 10.3.2. M g,n is a quasi-compact smooth Deligne-Mumford stack of dimension 3g−3+n
over Z.
Proof. • M g,n is quasi-compact. Let (C, p1, ..., pn) be a n-pointed stable curve. By Theorem 8.2.1,
we get (ωC(p1 + ... + pn))

⊗3 is very ample, we get C ↪→ PN with Hilbert polynomial P (t). This is
independent of C. Hence consider closed subscheme H ⊂ HilbPPN

Z /Z × (PN )n of embedded curve and n
points (C ↪→ PN , pi ∈ C). Consider a forgetful functor

H →M all
g,n, (C ↪→ PN , pi ∈ C) 7→ (C, {pi}).

Then the image of |H| → |M all
g,n| contains M g,n. As HilbPPN

Z /Z is projective, then H is quasi-compact.
Hence M g,n is quasi-compact.
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• M g,n is Deligne-Mumford stack. By Proposition 9.2.9 for i = 0 and Proposition 9.2.7 (a), we get
a n-pointed stable curve (C, p1, ..., pn) has no infinitesimal automorphisms, i.e. that the Lie algebra
TeAut(C, p1, ..., pn) is trivial. Since the automorphism group scheme Aut(C, p1, ..., pn) is of finite
type, this implies that Aut(C, p1, ..., pn) is finite and discrete, hence M g,n is a quasi-compact Deligne-
Mumford stack.
•M g,n is smooth over SpecZ. Proposition 9.2.9 for i = 2 and Proposition 9.2.7 (c) implies that there
are no obstructions to deforming C. As the algebraicity of M g,n, this will allow us to invoke the
Infinitesimal Lifting Criterion to establish that M g,n is smooth over SpecZ.
•M g,n has relative dimension 3g−3+n over SpecZ. Proposition 9.2.9 for i = 1 and Proposition 9.2.7
(b) implies that isomorphism classes of deformations of (C, p1, ..., pn), it is identified with the Zariski
tangent space of M g,n at the point corresponding to (C, p1, ..., pn). This will allow us to conclude that
M g,n has relative dimension 3g − 3 + n over Z.

10.4 The family of elliptic curves M1,1

Proposition 10.4.1. M1 is not a stack.

Proof. See [75] Remark 8.4.15 for the References.

Remark 10.4.2. If we let M ′
1 as morphisms of algebraic spaces, then this will be a stack. This follows

the Picard functor and the stack M1,1. In fact if we consider the universal elliptic curve E →M1,1,
then Picard functor gives M ′

1 →M1,1 which induce M ′
1
∼= BE . We omitted here.

Proposition 10.4.3. M1,1 is a smooth Deligne-Mumford stack.

Proof. By Proposition 10.3.1 we get that M1,1 is an open substack of M 1,1. Hence it is a smooth
Deligne-Mumford stack.

Proposition 10.4.4. M1,1 has a coarse moduli space M1,1
∼= A1.

Proof.
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Chapter 11

Stable reduction: why M g,n is
proper?

In this section we will using the Valuative Criterion (Theorem C.1.3 (1)) to show that M g,n is proper.
The existence of extention is called stable reduction, which is our main theorem:

Lemma 11.0.1. The diagonal of the stack M all
g,n is separated. In particular, M all

g,n → Spec(Z) is
quasi-separated.

Proof. Omitted. See St 0DSQ.

Theorem 11.0.2 (Stable reduction). Let R be a DVR with fraction field K and ∆ = Spec(R),∆∗ =
Spec(K). If (C∗ → ∆∗, s∗1, ..., s

∗
n) is a family of n-pointed stable curves of genus g, then there exists a

finite cover ∆′ → ∆ of spectrums of DVRs and a family (C′ → ∆′, s′1, ..., s
′
n) of stable curves extending

C∗ ×∆∗ ∆′∗ → ∆′∗. As
C∗

C∗ ×∆∗ ∆′∗ C′

∆∗ ∆

∆′∗ ∆′

s′i

s∗i

given by
∆′∗ ∆∗ M g,n

∆′ ∆

(C∗→∆∗,{s∗i })

(C′→∆′,{s′1})

After proving this and the uniqueness, we can get the following conclusion:

Theorem 11.0.3. If 2g−2+n > 0, then M g,n is a proper smooth Deligne-Mumford stack of dimension
3g − 3 + n over Z.

By using the Keel-Mori Theorem, we get

Corollary 11.0.4. If 2g− 2+ n > 0, there exists a coarse moduli space M g,n →Mg,n where Mg,n is
a proper algebraic space over Z.

Example 11.0.5. Let ∆ = Spec(R) where R be a DVR with uniformizer t. Let C be a smooth curve
and consider C = C ×∆ with sections (σ1, σ2, σ3) = (t2,−t2, 4t) as following diagram. The first two
arrows are blowing up and the third is contracting E1.
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σ1

σ2

σ3 C

E1

E1

E2

C
C

E2

Remark 11.0.6. Actually there are several methods to prove this. The first proof due to the original
paper [30] by consider the Jacobians of curves and reduce the case into the semistable reduction of
abelian varieties. Our method follows [55] by using some birational geometry of surfaces to prove the
case of characteristic 0. There is another method can deal the positive or mixed characteristic case by
[10], for this we refer St 0E8C.

11.1 Proof of stable reduction in characteristic 0
Lemma 11.1.1. Let R be a DVR with uniforming t and 0 := (t). Let C → ∆ = Spec(R) be a flat,
proper and finitely presented morphisms such that each geometric fiber is a curve. Assume that C is
regular. Let p ∈ C0.

(a) If p is a smooth point in the reduced fiber (C0)red. Show that after possibly an extension of
DVRs, there exists an étale neighborhood of p (defined over R)

SpecR[x, y]/(xa − t)→ C.

(b) If p is a node in the reduced fiber (C0)red. Show that there exists an étale neighborhood of p
(defined over R)

SpecR[x, y]/(xayb − t)→ C.

Proof.

Lemma 11.1.2. Let a, b,m be positive integers such that both a and b divide m.
(a) Let X = Speck[x, t]/(tm− xa) and normalization X̃ → X. Then each preimage of the origin is

locally defined by x = tk for some k.
(b) Let X = Speck[x, y, t]/(tm − xayb) and normalization X̃ → X. Then each preimage of the

origin is locally defined by tk = xy. In particular is a reduced and nodal point in the fiber over t = 0.

Proof. (a) We have xa − tm =
∏a−1
i=0 (x− ζitm/a) where ζ be a primitive a-th root of unity. Hence the

origin has a preimages in X̃ locally defined by x− ζitm/a, respectively.
(b)

Lemma 11.1.3. Let C → ∆ = Spec(R) be a family of nodal curves where R be a DVR such that the
general fiber C∗ is smooth. Then if E is a rational tail (rational bridge with out marked points) of C0,
then E2 = −1 (E2 = −2). As

0 0

E E

E
2
= −1 E

2
= −2

Proof. For any E ∼= P1 ⊂ C0, then 0 = E · C0 = E2 + E · Ec. We win.

https://stacks.math.columbia.edu/tag/0E8C
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For simplicity of notation, we assume that there are no marked points, i.e. n = 0. Fix a spectrum
of DVR ∆ = Spec(R),∆∗ = Spec(K) and t ∈ R is the uniformizer, and 0 = (t) ∈ SpecR the unique
closed point. Consider C∗ → ∆∗ be a family of stable curve.
STEP 1. Reduce to the case where C∗ → ∆∗ is smooth. If C∗ has k nodes, then after a finite
extension of K we can arrange that each node is given by K-points pi ∈ C∗(K). Let the pointed
normalization (C̃∗, q1, ..., q2k) of it. By induction on the genus g, we perform stable reduction on each
connected component and then take the nodal union along sections. After possibly an extension of K
(and R), this produces a family of curves C → ∆ extending C∗ → ∆∗.
STEP 2. Find some flat extension C → ∆. As ω⊗3

C∗/∆∗ is very ample, we can get an embedding as
follows

P5g−6 ×∆∗ P5g−6 ×∆

C∗ C := C∗

∆∗ ∆

f

|ω⊗3
C∗/∆∗ |

where C := C be the scheme-theoretic image of C∗ ↪→ P5g−6 × ∆. Now we focus on f . Actually the
scheme-theoretic closure does not bring more embedded points. Hence by Proposition 2.1.3 we get f
is flat.
STEP 3. Use embedded resolutions to find a resolution of singularities C̃ → C so that
the reduced central fiber (C̃0)red is nodal. By Theorem B.0.2, there exists a finite sequence of
blow-ups at closed points of C0 yielding a projective birational morphism

C̃0 ⊂ C̃ · · · C ⊃ C0

∆

such that C̃ is regular flat family of curves and such that the reduced central fiber (C̃0)red is nodal.
Now replace C by C̃.
STEP 4. Perform a base change ∆′ → ∆ such that the normalization of the total family
C ×∆ ∆′ has a reduced nodal central fiber with many rational tails and bridges. By Lemma
11.1.1, we choose local coordinates x, y around p ∈ C0 (étale locally and formally locally) such that
C → ∆ can be described as follows:

(i) If p ∈ (C0)red is a smooth point, then (x, y) 7→ xa and the multiplicity of the irreducible
component of C0 containing p is a;

(ii) If p ∈ (C0)red is a (separated) node, then (x, y) 7→ xayb and the two components of C0 containing
p have multiplicities a and b.

Let m be the least common multiple of the multiplicities of the irreducible components of C0. Let
the ramified morphism ∆′ = Spec(R)→ ∆ given by t 7→ tm. Hence we get

C̃′ C′ C

∆′ ∆

where C′ = C ×∆ ∆′ and C̃′ → C′ be the normalization. Consider p ∈ (C0)red.
(a) If p is a smooth point, then the unique preimage of p in C′ defined locally by xa − tm. By

Lemma 11.1.2 (a), we get each preimage of p in C̃′ is locally defined by x = tk which are the smooth
points in C̃′0;

(b) If p is a node, then the unique preimage of p in C′ defined locally by xayb − tm. By Lemma
11.1.2 (a), we get each preimage of p in C̃′ is locally defined by xy = tk which are reduced and nodal
points in C̃′0. If k > 1, C̃′ have Ak−1-singularity.
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Hence now we replace C by C̃′, which has a reduced central fiber with many rational tails and
bridges.
STEP 5. After taking the minimal model, contract all rational tails and bridges in the
central fiber. Using Theorem B.0.1 we get a minimal resolution C′ → C and we get a family of
prestable curves C′ → ∆ where C′ is regular. By Lemma 11.1.3 and Corollary B.0.4, we can get a
projective birational map C′ → C′min where C′min is semistable. So we replace C by C′min. (This is the
semistable reduction!) Using Proposition 8.5.1, we can get a relative canonical stabel model C′ → Cst.

11.2 Explicit stable reduction
Proposition 11.2.1. Let C → ∆ be a generically smooth, proper and flat family such that (C0)red is
nodal. Let C0 =

∑
i aiDi where ai is the multiplicity of Di. Let ∆′ → ∆ defined by t 7→ tp where p

prime and set C′ = C ×∆ ∆′. Then after taking normalization C̃′ → C is branched cover ramified over∑
i(ai (mod p))Di.

Example 11.2.2 (Stable reduction of A2k+1-singularity). Let C → ∆ = Spec(R) be a generically
smooth family degenerating to a A2k+1-singularity in the central fiber where have local equation around
the singular point is y2 = x2k+1+t. Now we will work through the steps in the proof of stable reduction.
The first two steps have already finished, now we start at step 3.
ISTEP 3. Use embedded resolutions to find a resolution of singularities C̃ → C so that
the reduced central fiber (C̃0)red is nodal. We consider two charts in blowing up with coordinates
x′, y′ where the original coordinates are x, y, as:

E|U1
= V (x′) U1 C̃ = BlpC (x′, y′) E|U2

= V (y′) U2 C̃ = BlpC (x′, y′)

C (x′, x′y′) C (x′y′, y′)

•The first blowing up. In the first chart, the preimage of y2 − x2k+1 is x′2y′2 − x′2k+1 = x′2(y′2 −
x′2k−1); in the second chart it is y′2− (x′y′)2k+1 = y′2(1−x′2k+1y′2k−1). Hence the exceptional divisor
E1 has multiplicity 2.
•The second blowing up. In the first chart, the preimage of x2(y2 − x2k−1) is x′4(y′2 − x′2k−3); in
the second chart it is x′2y′4(1− x′2k−1y′2k−3). Hence the exceptional divisor E2 has multiplicity 4.
•After k blowing ups. We get x2k(y2 − x) with the exceptional divisors Ei has multiplicity 2i.
•One more blowing up. We get the preimage of x2k(y2 − x) in the second chart is

x′2ky′2k+1(y′ − x′)

with the exceptional divisor F has multiplicity 2k + 1.
•The final blowing up. We get the preimage of x2ky2k+1(y − x) in the first chart is

x′4k+2y′2k+1(y′ − 1)

with the exceptional divisor G has multiplicity 4k + 2.
The process as follows:

ISTEP 4. Perform a base change ∆′ → ∆ such that the normalization of the total family
C ×∆ ∆′ has a reduced nodal central fiber with many rational tails and bridges.
•The first base change. First consider ∆′ → ∆, t 7→ t2k+1 and normalizing. After inductively apply
to the prime factorization 2k+1 and normalization, we will use the proposition to analyze the preimage
of these irreducible component. Actually we get this 2k+ 1-degree cover ramified over C ′

0 +
∑
iEi and

we just need to consider F,G. For G, its preimage G′ ramified at two points (intersects Ek, C ′
0) with

index 2k. By Riemann-Hurwitz Theorem, we get 2g(G′)− 2 = (2k + 1)(2g(G)− 2) + 4k = −2. Hence
g(G′) = 0 and G′ ∼= P1. For F , its preimage F ′ is unramified at all points, hence F ′ =

∐2k+1
j=1 Fj are

copies of F . Hence replace ∆ by ∆′, we get the central fiber as C0 = C ′
0 + 2G′ +

∑
j Fj +

∑
i 2iEi.
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2
4

2

E2E1
E1

Ek

2k

2k − 2

Ek−1 24

E1

E2

F

2k + 1

2k

Ek

2k − 2

Ek−1

4

2

E1 E2

G

4k + 2

Ek

2k

2k − 2

Ek−1

E1

E2

4 2

Blowing Up Blowing Up

Blowing UpBlowing Up

Blowing Up

F 2k + 1

C
′

0

C
′

0

C
′

0

C
′

0

C
′

0

C
′

0

•The second base change. Consider ∆′ → ∆, t 7→ t2 and normalizing. Actually we get this 2-degree
cover ramified over C ′

0 +
∑
j Fj and we just need to consider G′, Ei. For G′, the preimage H ramified

at 2k + 2 points (C ′
0, Fj). Hence we get g(H) = k by Riemann-Hurwitz Theorem. For Ei, the things

become more complicated as follows:

G

2

Ek

2k

E2 E1

2
4

But we can easy to see that after this process, these things are just plenty of rational bridges and
rational tails.
•The final base changes. Here we just need to consider Ei and these have multiplicity i. Consider
t 7→ tk, then (many) Ek has two ramified points, hence by Riemann-Hurwitz Theorem g(E′

k) = 0,
hence rational. Then consider t 7→ tk−1,...,t 7→ t2, we have the same results. Hence we also get plenty
of rational tails and bridges, which are all multiplicity 1.

The whole process as follows:

G

4k + 2

Ek

2k

2k − 2

Ek−1

E1

E2

4 2

F 2k + 1

C
′

0

Ek

2k
E1

E2

4 2

C
′

0

G
′

2

2k − 2

Ek−1

F1

F2k+1

t
2k+1

← t

C
′

0

F1

F2k+1

Many rational tails

and bridges.

H

Ek

k

k − 1

Ei

i

C
′

0

F1

F2k+1

Many rational tails
and bridges.

H

Ek

Ei

t
2
← t

t
k
← t
.
.
.

t
2
← t

ISTEP 5. Contract all rational tails and bridges in the central fiber. Now we kill all
−1-curves (many E1 and all Fj), and then (every) E2 become −1-curves. Inductively, we kill all Ei
and Fj and get a stable central fiber as follows and we win.
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C
′

0

F1

F2k+1

Many rational tails
and bridges.

H

Ek

Ei

C
′

0

H

Contract

11.3 Separatedness of M g,n

Proposition 11.3.1. Let R be a DVR with fraction field K with ∆ = Spec(R),∆∗ = Spec(K). Let
(C → ∆, σ∗

1 , ..., σ
∗
n) and (D → ∆, τ∗1 , ..., τ

∗
n) are n-pointed stable curves, then for any α∗ : C∗ → D∗

with τ∗i = α∗ ◦ σ∗
i over generic fiber can extends to a unique isomorphism α : C → D with τi = α ◦ σi.

C∗ D∗ C D

∆∗ ∆

α∗ α

Proof. We only prove the case of n = 0 generically smooth curves. Let C′ → C,D′ → D be the minimal
resolutions and let Γ ⊂ C′ ×∆ D′ be the clpsure of the graph of id× α∗ : C∗ → C∗ ×∆∗ D∗. Let Γ′ → Γ
be the minimal resolution. Hence we get birational projective maps Γ′ → C′ and Γ′ → D′. By the
same proof of [58] Theorem II.8.19, we get

Γ(C′, ω⊗k
C′/∆)

∼= Γ(Γ′, ω⊗k
Γ′/∆)

∼= Γ(D′, ω⊗k
D′/∆)

for all k ≥ 0. As the canonical bundle are ample, we get

C′ ∼= Proj
⊕
k

Γ(C′, ω⊗k
C′/∆)

∼= Proj
⊕
k

Γ(D′, ω⊗k
D′/∆)

∼= D′.

Furthermore, we know that C,D are stable models of C′,D′, respectively. By the uniqueness of stable
models, we get α : C ∼= D extending α∗.



Chapter 12

Gluing and forgetful morphisms

We follows [35].

12.1 Gluing morphisms
Proposition 12.1.1. There are finite morphisms of algebraic stacks

F : M i,n ×M g−i,m →M g,n+m−2

((C, p1, ..., pn), (C
′, p′1, ..., p

′
m)) 7→ (C ∩ C ′, p1, ..., pn−1, p

′
1, ..., p

′
m),

and
G : M g−1,n →M g,n−2

(C, p1, ..., pn) 7→ (C/(pn−1 ∼ pn), p1, ..., pn−2).

As follows:

pn

p
′

m

pn

pn−1

Sketch-using pushout. By the stable reduction, these maps are of course representable and proper. As
they have the finite fibers, these maps are now finite. Now for F we let n = m = 1 and for G we let
n = 2.
For F : Let (π : C → S, σ), (π′ : C′ → S, σ′) are stable curves. As σ, σ′ are closed immersions, we get
the pushout exists by the theory of Ferrand (St 0ECH) and as we have the finite cover C t C′ → C, we
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get this pushout is proper and flat (omitted):

Spec(A) SpecA[y]

SpecA[x] SpecA[x, y]/(xy)

S C

C′ C̃
σ′

σ

where SpecA[x] is an étale neighborhood of σ(s) which is the pulback of étale neighborhood Spec(A)
of any s ∈ S. Since an étale morphism from an affine scheme extend over closed immersions, there is
an étale neighborhood SpecA[y] is an étale neighborhood of σ′(s). Then the pushout can be easy to
compute as Spec(A[x]×A A[x]) ∼= SpecA[x, y]/(xy). By some results of pushout (in St 0D2G), we get
SpecA[x, y]/(xy) → C̃ is an étale neighborhood of s. Hence C̃ → S is nodal along S. Checking fibers
we get C̃s is stable.
For G: Let (C → S, σ1, σ2) are stable curve. Here we consider the pushout:

S t S C

S C̃

σ1⊔σ2

which is étale locally like

Spec(A×A) SpecA[t]

SpecA SpecA[x, y]/(y2 − x2(x+ 1))

(0,1)

where we find that x := t2 − 1, y = t3 − t generate A×A×A A[t], then well done.

12.2 Boundary divisors of M g

Consider the closed substacks
δ0 = Im(M g−1,2 →M g)

δi = Im(M i,1 ×M g−i,1 →M g)

where i = 1, ..., bg/2c.
As these maps are finite, we get dim δ0 = dimM g−1,2 = 3(g − 1) − 3 + 2 = 3g − 4 and similar

dim δi = 3g − 4. Hence these are divisors of M g.
(By analyzing the formal deformation space of a stable curve, one can show that δ =

⋃⌊g/2⌋
j=0 δj is a

normal crossings divisor.)

12.3 Forgetful morphisms
Proposition 12.3.1. By Proposition 8.5.1, there is a morphism of algebraic stacks

M g,n →M g,n−1, (C, p1, ..., pn) 7→ (Cst, p1, ..., pn−1).

As

https://stacks.math.columbia.edu/tag/0D2G
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pn

pn

12.4 Universal family M g,n+1 →M g,n

This section we follows [35] and [36]. We consider the universal family Ug,n →M g,n of M g,n. Actually
the definition of universal family as for any family of stable curves (C → S, {σi}), we have the following
universal property of cartesian

C Ug,n

S M g,n
∃!

The existence given by 2-Yoneda’s Lemma and some descent theory (omitted). Here we express this
family as follows:

Lemma 12.4.1 (See [36]). Ug,n(S) to be the set of families of curves (C → S, σ1, ..., σn, σ) where
(C → S, σ1, ..., σn) ∈M g,n(S) and σ is an extra section without smooth condition.

Proof. Fix π : C → S. We first let Σ(S) : Ug,n(S)→M g,n(S) as (π, σi, σ) 7→ (π, σi) be the canonical
map and Σi(S) : M g,n(S) → Ug,n(S) as (π, σ1, ..., σn) 7→ (π, σ1, ..., σn;σi). Finally we need to define
C → Ug,n as (pr2 : C ×S C → C, si,∆) where si = (σi ◦ π, idC) and ∆ = (idC , idC). Hence we get the
following cartesian diagram of fibered categories

C Ug,n

S M g,n

π Σ Σ1,...,Σnσ1,...,σn

Well done.

Now we consider
M g,n+1 → Ug,n, (C → S) 7→ (Cst → S, σ′

1, ..., σ
′
n, σ

′)

where this stabilization aiming to make (Cst → S, σ′
1, ..., σ

′
n) in M g,n(S).

M g,n+1 Ug,n

M g,n

Remark 12.4.2 (More explicit construction). Fix f : X → S in M g,n+1(S) and hence we get

X = Proj
S

⊕
m≥0

f∗ωX/S

(
n+1∑
i=1

σi

)⊗m .
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Now we let

c(X) := Proj
S

⊕
m≥0

f∗ωX/S

(
n∑
i=1

σi

)⊗m
 .

with σ′
i : S

σi−→ X → c(X). Hence (c(X);σ′
1, ..., σ

′
n) be a family of n-pointed stable curves. Hence we

get M g,n+1 → Ug,n. Here we follows the proof before chapter 8 in [23].

Proposition 12.4.3. The morphism M g,n+1 → Ug,n is an isomorphism over M g,n.

Sketch. Now we construct an inverse map Ug,n →M g,n+1.
Step 1. Construct that family of curves. Let (C → S, σ1, ..., σn, σ) be an element in Ug,n(S). As
σ is a closed immersion, it defined by an ideal sheaf i : Jσ ↪→ OC . Define the coherent sheaf K by the
exact sequence

0→ OC
δ−→J ∨

σ ⊕ OC(σ1 + ...+ σn)→ K → 0

where δ = (i∨, j) where j is also an embedding. Now consider C′ = ProjSym(K)
p−→ C → S.

Step 2. Construct the section. In [35], Knudsen introduce a notion called stably reflexive module.
Knudsen separate the two cases of σ as this is local on S: (I) σ meets a non-smooth point in the fiber;
(II) σ is a divisor meets one of these sections σi.

In both cases we find the surjections form as σ∗K → σ∗(−) or σ∗
iK → σ∗

i (−) to getting lifts
where showed that all σ∗(−) are line bundles (may using stably reflexive module). The picture when
S = Spec(k) as follows:

σ
′

σ

p

p

σ = σi

σ
′

σ
′

i

(I) (II)

Hence we omitted all details and get (C′ → S, σ′
1, ..., σ

′
n, σ

′) ∈M g,n+1(S). For this detailed proof,
we refer the original paper [35] Theorem 2.4 or the new paper [36]. One can also see [8] X.8 for more
detailed proof over C.



Chapter 13

Irreducibility

As M g,n is a smooth Deligne-Mumford stack, its irreducibility if and only if connectedness. As
M g,n+1 → M g,n be a universal family, it has connected fibers. Hence by induction, we can reduce
the case of M g. Moreover, by Keel-Mori theorem we get the coarse moduli space M g → Mg which
induce the homeomorphism |M g| ∼= |Mg|. Hence we can reduce the case of Mg. Hence we have the
following relations:

M g,n irreducible⇔M g,n connected⇔M g connected (or irreducible)
(⇔Mg connected and dense inM g)⇔Mg connected.

Here the denceness of Mg in the proper Deligne-Mumford stack M g is called Deligne-Mumford
compactification.

Remark 13.0.1 (Some historical remarks). (i) In 19th century, Clebsch and Hurwitz establishing
irreducibility of Mg in characteristic 0 by using the classical topological argument;

(ii) In the appendix of the paper [56] by Fulton in [42] gives a completely algebraic proof for this in
characteristic 0 in 1982;

(iii) In the paper [30], Deligne and Mumford give two arguments of irreducibility of Mg,n in
characteristic p (by reduction to characteristic 0) in 1969;

(iv) In paper [41], Fulton established the irreducibility of Mg,n in characteristic p where p > g + 1
in 1969.

13.1 Preliminaries–Branched coverings
Definition 13.1.1. Let C be a connected smooth curve on k. A branched covering of P1

k is a separable
finite morphism f : C → P1

k. We say f is simply branched if for any branched point x ∈ P1
k, there is

at most one ramification point in the fiber f−1(x) and such a point has index 2.

Here (A) is simply branched but (B),(C) are not.

Lemma 13.1.2. Let C be a smooth, connected and projective curve of genus g over an algebraically
closed field k of characteristic 0. If L is a line bundle of degree d ≥ g + 1 (I think we may let d� 0),
then for a subspace V ⊂ H0(C,L) of dimension 2 we get C → P1 a simply branched.

71
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Proof. (This proof need to re-think.) As h0(C,L) = d+1−g, we get dimGr(2,H0(C,L)) = 2(d−g−1).
Here char(k) = 0, the map C → P1 is finite separable. So C → P1 is not a simply branched covering
if and only if one of the following conditions holds

(a) V has a base point;
(b) there exists a ramification point with index > 2;
(c) there exists 2 ramification points in the same fiber.

For (a), then there exists p ∈ C such that for all s ∈ V vanishing at p, that is, s ∈ H0(C,L(−p)).
The dimension of V ∈ Gr(2,H0(C,L)) have this property is

dimGr(2,H0(C,L(−p))) = 2d− 2g − 4.

For (b), then there exists s ∈ V vanishing to order 3 at a point p, that is, s ∈ H0(C,L(−3p)). The
dimension of V ∈ Gr(2,H0(C,L)) have this property is

dimPH0(C,L(−3p)) + dimP(H0(C,L)/(s)) = 2d− 2g − 4.

Hence varying p ∈ C, the locus of Gr(2,H0(C,L)) failing (b) has dimension dimGr(2,H0(C,L))− 1;
For (c), then there exists independent s1, s2 ∈ V vanishing to order 2 at a point p, that is, s1, s2 ∈
H0(C,L(−2p)). The dimension of V ∈ Gr(2,H0(C,L)) have this property is

dimGr(2,H0(C,L(−2p))) = 2d− 2g − 6.

Hence varying p ∈ C, the locus of Gr(2,H0(C,L)) failing (b) has dimension −−−

Lemma 13.1.3. If C → P1 is a simply branched cover of degree d > 2 in characteristic 0, then
Aut(C/P1) is trivial.

Proof. Any α ∈ Aut(C/P1) must fix the 2g + 2d − 2 branched points by Riemann-Hurwtiz Theorem
and simplyness. By Proposition 1.2.7, there are no non-trivial automorphisms of a smooth curve fixing
more than 2g + 2 points. Hence as d > 2, Aut(C/P1) is trivial.

Remark 13.1.4. Here we give some notes for the proof of Clebsch and Hurwitz in 19th to show that
Mg is connected over C. We define

Hd,b = {C → P1 simply branched covering of degree d over b points}

where b = 2g + 2d − 2. By the previous lemma, Hd,b is an algebraic space or a topological space (if
k = C, why?). Let SymbP1\∆ as the variety of b unordered distinct points in P1 (which can also be
written as the complement Pb\∆ of the discriminant hypersurface), we have a diagram

Hd,b

Mg SymbP1\∆

with the canonical maps. Then they showed that Hd,b → SymbP1\∆ is finite étale (actually this can
be showed by using deformation theory pure algebraically, see[1] Lemma 5.7.9. We omitted here).
By Lemma 13.1.2, we get Hd,b → Mg is surjective. Hence we need to show that Hd,b is connected.
Combining these and some properties of monodromy theory, they proved this. For more detail, see [1]
subsection 5.7.2.

13.2 Irreducibility over characteristic 0 using admissible cov-
ers

In this section we will use the method of admissible covers to gives a completely algebraic proof for
the irreducibility in characteristic 0, which appears in the appendix of the paper [56] by Fulton in [42].
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Proposition 13.2.1. Let C be a smooth, connected and projective curve of genus g over an algebraically
closed field k of characteristic 0. There exists a connected curve T with points t1, t2 ∈ T and a family
C → T of stable curves such that Ct1 ∼= C and Ct2 is a singular stable curve.

Proof. By Lemma 13.1.2 we get for d � 0 there exists a finite cover C → P1 of degree d simply
branched over b = 2g + 2d − 2 distinct points p1, ..., pb in P1. This gives a b-pointed stable curve
G = [P1, {pi}] ∈ M0,b. By Remark 13.1.4 (Hd,b → SymbP1\∆ is finite étale), we get G ∈ M0,b in
general (WTF?). Then G can degenerates to (D0, q1, ..., qb) as the following picture

q1

q2 q3 qb−1 qb

In the other words, there is a DVR R and fraction field K with ∆ = Spec(R)→M0,n be a stable
curve (D → ∆, σi) with generic fiber (P1, pi) and special fiber (D0, q1, ..., qb). Hence we have a simply
branched covering C∗ → ∆∗ and extend to C → D by taking C as the integral closure of OD in K(C∗)
as

C D ∆

C∗ D∗ ∆∗

Hence we get this diagram:

∆

Now we just need to make C be a singular stable curve. Purity of the branch locus (What’s this?)
implies the central fiber C0 → D0 is ramified at σi(0). By ∆′ → ∆, t 7→ tm we can replace C such
that C0 → D0 is ramified only over σi(0) and possibly over nodes of D0. By an analysis of possible
extensions C → D, one can show that C0 is a nodal curve (missing details). Therefore C → ∆ is a
family of nodal curves.

Now we take C → Cst and just need to check Cst0 is singular. For any irreducible component T ⊂ Cst0 ,
apply Riemann-Hurwitz to T → P1 ⊂ D0 we get 2g(T )− 2 = −2d+R. If P1 is the middle one, we get
R ≤ 2 + d − 1; if P1 is the boundary one, we get R ≤ 1 + 2d − 2. Hence R ≤ 2d − 1 and g(T ) = 0.
Hence T is rational. Hence Cst0 is singular.

Proposition 13.2.2. If M g′,n′ is irreducible for all g′ < g, then δ = M g,2\Mg,2 is connected.

Proof. Let δ = δ ∪ δ1 ∪ · · · ∪ δ⌊g/2⌋ where

δ0 = Im(M g−1,2 →M g)

δi = Im(M i,1 ×M g−i,1 →M g)

where i = 1, ..., bg/2c. Hence δ0, δi are connected by hypotheses. Easy to see that these divisors
intersect as the points of |M g|:

Theorem 13.2.3. M g,n is irreducible.
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i j

g − i− j

i

g − i− 1

∈ δi ∩ δj ∈ δ0 ∩ δi

Proof. By the argument at begining, we just need to show M g is connected. By Proposition 13.2.1
every smooth curve degenerates to a stable singular curve in the boundary δ = M g\Mg. By induction
on g and Proposition 13.2.2 we get δ is connected, so is M g.

Remark 13.2.4. For the irreducibility in positive characteristic, we omitted and we refer the original
[30], [41]. For the sketch, we refer subsection 5.7.4 in [1].



Chapter 14

Projectivity

We will prove the coarse moduli space Mg,n is projective follows [65] and [81].

Remark 14.0.1. Some generalizations of the projectivities:
(a) In [64] shows the moduli of stable varieties in any dimension is projective;
(b) In [22] and [83] shows the moduli of K-polystable Fano varieties is projective.

Let the universal family π : Ug → M g and we define k-th pluri-canonical bundle as the vector
bundle π∗(ω⊗k

Ug/Mg
). Indeed, π∗(ω⊗k

Ug/Mg
) is a coherent sheaf on the stack M g by the coherence

theorem. We need to check that it is a vector bundle. By definition of the vector bundle over Deligne-
Mumford stack, we need to show for any S →M g the sheaf (π∗(ω⊗k

Ug/Mg
))|S is a vector bundle over

S. As S →M g correspond to πS : C → S, we get

(π∗(ω
⊗k
Ug/Mg

))|S ∼= πS,∗(ω
⊗k
C/S).

By some argument with Review A.1.1 we can show that πS,∗(ω⊗k
C/S) is a vector bundle.

Moreover, we get use the Riemann-Roch Theorem to deduce that

rank(π∗(ω⊗k
Ug/Mg

)) =

{
g, k = 1;

(2k − 1)(g − 1), k > 1.

Now we consider the line bundle over M g

λk := detπ∗(ω⊗k
Ug/Mg

).

We will show that for k � 0, the line bundle λk descends to an ample line bundle on Mg, then we get
Mg is a projective scheme.

14.1 Kollár’s Criteria
Lemma 14.1.1. Let X be a proper Deligne-Mumford stack with coarse moduli space X → X. Suppose
L line bundle over X with

(a) L is semiample (i.e. LN is basepoint-free for some N > 0);
(b) for every proper integral curve T and map f : T → X such that f(T ) ⊂ |X | is not a single

point, degL|T > 0.
Then for some N > 0, L⊗N descends to an ample line bundle over X.
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Proof. This is the stack-version of the Corollary 1.2.15 in [69]. Actually we consider the following
diagram which come from (a) and the universal property of coarse moduli space:

X

X P(H0(X , L⊗N ))

π
f

g

By (b), f doesn’t contract curves, so is g. Hence g is quasi-finite and proper, hence finite by Zariski
main theorem. Hence M := g∗O(1) is ample; moreover, π∗M = L⊗N , we win.

Theorem 14.1.2 (Nakai-Moishezon Criterion). If X is a proper algebraic space, a line bundle L is
ample if and only if for all irreducible closed subvarieties Z ⊂ X,

LdimZ · Z > 0.

Proof. This is the algebraic space-version of the Theorem 1.21 in [28]. By Le Lemme de Gabber
(Theorem C.2.1), there exists a finite surjection f : X ′ → X and by the algebraic space version St
0GFB we get L is ample if and only if f∗L is ample. Hence by the scheme-version of Nakai-Moishezon
Criterion ([28] Theorem 1.21), we win.

Let X be a proper algebraic space over k. Let W → Q be a surjection of vector bundles of rank w
and q. Suppose that W has structure group G→ GLw. There is a classifying map

X → [Gr(q, w)/G], x 7→ [W ⊗ κ(x) � Q⊗ κ(x)]

which is well defined because these killed by G.
Here we state our main theorem in this section. For simplicity, we only state it in characteristic 0.

The criteria first appears in [65] and more general case we refer [64].

Theorem 14.1.3 (Kollár’s Criterion). Let X be a proper algebraic space over a field k of characteristic
0. Let W � Q be a surjection of vector bundles of rank w and q, where W has structure group
G→ GLw. Suppose that

(a) The classifying map X(k)→ Gr(q, w)(k)/G(k) has finite fibers;
(b) W is nef.

Then detQ is ample.

Proof. By Nakai-Moishezon criterion, for any irreducible subvariety Z ⊂ X we need to verify det(Q)|Z
is big. As (a),(b) can restrict to Z, we can let X is an integral scheme and show that detQ is big.

By Le Lemme de Gabber (Theorem C.2.1), there exists a finite projective surjection f : Y → X of
schemes. Hence we have det(f∗Q)dimY = deg(f) det(Q)dimX and detQ is big if and only if det(f∗Q)
is big. By taking the normalization, we can assume Y is normal and integral. So by Lemma 14.1.4 we
win.

Lemma 14.1.4. Let Y be a normal projective integral scheme over a field k of characteristic 0. Let
W � Q be a surjection of vector bundles of rank w and q, where W has structure group G → GLw.
Suppose that

(a) The classifying map Y (k)→ Gr(q, w)(k)/G(k) generically has finite fibers;
(b) W is nef.

Then detQ is big.

Sketch. To add. See Proposition 5.8.9 in [1].

https://stacks.math.columbia.edu/tag/0GFB
https://stacks.math.columbia.edu/tag/0GFB
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14.2 Nefness of pluri-canonical bundles
Theorem 14.2.1. Let π : C → T be a family of stable curves over a smooth curve T over k, then
π∗(ω

⊗k
C/T ) is nef for k ≥ 2.

Proof. We following several steps:
•Step 1. Reduction to characteristic p. Now we let k is of characteristic 0. Since C and T are
finite type over k, their defining equations only involve finitely many coefficients of k. Thus there exists
a finitely generated Z-subalgebra A ⊂ k and a cartesian diagram

C C̃

T T̃

Speck SpecA

where C̃, T̃ are schemes of finite type over A. By possibly enlarging A, we can arrange that T̃ → Spec(A)
is smooth and projective family and C̃ → T̃ is a family of stable curves.

(Need to re-think, omitted here.)
•Step 2. Second reductions. We reduce to the case that

(a) C is a smooth and minimal surface;
(b) C → T is generically smooth;
(c) The genus of T is at least 2.

(To add.) These implies C is of general type.
•Step 3. Positive characteristic case. Let p = char(k). If π∗(ω⊗k

C/T ) is not nef, then there exists a
quotient line bundle π∗(ω⊗k

C/T ) �M∨ where d = deg(M) > 0. Consider the absolute Frobenius

C C

T T
FrobT

FrobC

By the property of the dualizing sheaf, we get Frob∗
Tπ∗(ω

⊗k
C/T )

∼= π∗(ω
⊗k
C/T ). And degFrob∗

TM = pd,
we can let d� 0. Hence we can let M = ω⊗k

T ⊗ L where L is very ample.
The surjection π∗(ω⊗k

C/T ) � (ω⊗k
T ⊗ L)∨ induce

π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L� OT .

As h1(T,OT ) ≥ 2, we have h1(T, π∗(ω⊗k
C/T )⊗ ω

⊗k
T ⊗ L) ≥ 2. Use the Leray spectral sequence

H1(T, π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L)⇒ H1(C, ω⊗k

C ⊗ π∗L),

hence h1(C, ω⊗k
C ⊗ π∗L) ≥ 2 by some calculation. By Lemma 14.2.2, we win.

Lemma 14.2.2 (Bombieri-Ekedahl). Let S be a smooth projective surface over an algebraically closed
field k which is minimal and of general type. Let D be an effective divisor with D2 = 0. If char(k) 6= 2,
then H1(S, ω⊗n

S (D)) = 0 for all n ≥ 2. If char(k) = 2, then h1(S, ω⊗n
S (D)) ≤ 1 for all n ≥ 2.
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14.3 Positivity via positivity theory
For a morphism S →M g correspond to C → S. Consider an integral d, we have

Symdπ∗(ω
⊗k
C/S)→ π∗(ω

⊗dk
C/S ).

When S = Spec(K), C = C, we get

SymdH0(C,ω⊗k
C )→ H0(C,ω⊗dk

C )

with kernel consists of degree d equations cutting out the image of |ω⊗k
C | : C → Pr(k)−1. If k ≥ 3, ω⊗k

C/S
is very ample and thus C → S can be recovered from the kernel of the multiplication map.

Proposition 14.3.1. For k � 0 and N sufficiently divisible, then λk = detπ∗(ω⊗k
Ug/Mg

) descends to
an ample line bundle on M g.

Proof. Consider C = Ug, S =Mg. Choose k, d such that
(a) ω⊗k

C/S is relatively very ample and R1π∗ω
⊗k
C/S = 0;

(b) Every curve |ω⊗k
C | : C ↪→ Pr(k)−1 is cut out by equations degree d;

(c) π∗(ω⊗k
C/S) is nef (by Theorem 14.2.1).

These implies surjection
W := Symdπ∗(ω

⊗k
C/S) � π∗(ω

⊗dk
C/S ) =: Q.

Let w, q be the rank of W,Q, respectively. Let W has structure group G → GLw. Consider the
classifying map

M g → [Gr(q, w)/G], x 7→ [SymdH0(C,ω⊗k
C )︸ ︷︷ ︸

Γ(Pr(k)−1,O(d))

� H0(C,ω⊗dk
C )︸ ︷︷ ︸

Γ(C,O(d))

]

is injective as the conditions on d and k imply that the kernel of the multiplication map uniquely
determines C.

By Le Lemme de Gabber we get a finite cover X →M g. By Kollár’s Criterion (Theorem 14.1.3),
we get the pullback of λk to X is ample for k � 0. By Proposition C.2.2, we get for N sufficiently
divisible, λ⊗Nk descends to a line bundle L on Mg. Since the pullback of L under the finite morphism
X →M g →Mg, by St 0GFB we get the conclusion that L is ample.

Theorem 14.3.2. If 2g − 2 + n > 0, then Mg,n is projective.

Proof. The universal family M g,n+1 →M g,n is projective by Proposition 8.3.3. Hence we just consider
n = 0. This is right directly by the previous proposition.

Remark 14.3.3. If we consider ω⊗k
Ug,n/Mg,n

(Σ1+ ...+Σn) from begining, we can prove the projectivity
of Mg,n directly.

14.4 Projectivity via GIT, a sketch
By our old way, we have M g

∼= [H ′/PGLr(k)] for some locally closed PGLr(k)-invariant subscheme of
HilbPPr(k)−1 where P (t) = χ(C,ω⊗kt

C ) and r(k) = (2k − 1)(g − 1).

Remark 14.4.1. In fact we have M g,n
∼= [Hν,g,n/PGL(N)] where N = (2ν − 1)(g − 1) + νn and

Hν,g,n ⊂ HilbPν

PN−1 be the Hilbert scheme of ν-log-canonically embedded n-pointed stable curves of genus
g where Pν(t) = (2νt− 1)(g − 1) + νnt for ν ≥ 3. See [8] Theorem XII.5.6 for the proof.

https://stacks.math.columbia.edu/tag/0GFB
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Let H be the closure of H ′ in HilbPPr(k)−1 , By the proof of the representability of the quotient
scheme, we get a closed immersion for d� 0:

H HilbPPr(k)−1 Gr(P (d),Γ(Pr(k)−1,O(d)))

[C ↪→ Pr(k)−1] [Γ(Pr(k)−1,O(d)) � Γ(C,O(d))]

Next consider the Plücker embedding

Gr(P (d),Γ(Pr(k)−1,O(d))) P
(∧P (d)

Γ(Pr(k)−1,O(d))
)

[Γ(Pr(k)−1,O(d)) � Γ(C,O(d))] [
∧P (d)

Γ(Pr(k)−1,O(d)) �
∧P (d)

Γ(C,O(d))]

we can get Ld := OGr(P (d),Γ(Pr(k)−1,O(d)))(1)|H be the very ample line bundle over H. All these mor-
phisms are PGLr(k)-equivariant, hence Ld inherits a PGLr(k)-linearization. Hence Ld can defined on
[H/PGLr(k)].

Using the theory of Hilbert-Mumford criteria, we can prove the following difficult result.

Theorem 14.4.2. Let k ≥ 5 and d � 0. For h = [C ↪→ Pr(k)−1] ∈ H, the curve C is stable if
and only if h ∈ H is GIT semistable with respect to Ld, that is, there exists an equivariant section
s ∈ Γ(H,L⊗N

d )PGLr(k) with N > 0 such that s(h) 6= 0. Moreover, we have

Mg
∼= Proj

(
Γ(H,L⊗N

d )PGLr(k)
)
,

hence projective.
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Chapter 15

Preliminaries

We now consider Mg,n and M g,n as the groupoid over the category (Sch/SpecC). Then by the same
arguments in the previous part, we can get M g,n is also a proper smooth Deligne-Mumford stack of
dimension 3g − 3 + n over C with a coarse moduli space Mg,n which is a projective variety over C.
Similarly for Mg,n and Mg,n. We will refer [8].

15.1 Boundary geometry I. Graphs and dual graphs
We can associate a graph to a nodal curve with marked points.
Definition 15.1.1. A graph Γ is the datum of:

(a) a finite nonempty set V = V (Γ) (the set of vertices);
(b) a finite set L = L(Γ) (the set of half-edges);
(c) an involution ι of L;
(d) a partition of L indexed by V , that is, the assignment to each v ∈ V of a (possibly empty) subset

Lv of L such that L =
⋃
v∈V Lv with Lv ∩ Lw = ∅ when v 6= w.

A pair of distinct elements of L interchanged by the involution is called an edge of the graph. A
fixed point of the involution is called a leg of the graph. The set of edges of Γ is denoted by E(Γ). A
dual graph is the datum of a graph together with the assignment of a nonnegative integer weight gv to
each vertex v. The genus of a dual graph Γ is defined to be

gΓ =
∑

v∈V (Γ)

gv + 1− χ(Γ).

A graph (or a dual graph) endowed with a one-to-one correspondence between a finite set P and the set
of its legs will be said to be P -marked, or numbered if P is of the form {1, ..., n} for some nonnegative
integer n.

Let C be a nodal curve with a finite set D of smooth points of C. Let the vertex be each component
of the normalization of C, and its weight is the genus of the component. The half-edges from a vertex
are the points of the corresponding component which are nodes of C or marked points. Easy to see
that the edges of the graph are node sof C; the legs are the marked points. This graph we denote it
Graph(C;D). (Easy to see by Theorem 7.2.1, we get the genus of the dual graph associated to (C;D)
is equal to the genus of C!) For example:

2

3

1

p1

p2

p3

2 1

3

2

1

3

↔

83
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Definition 15.1.2. A curve is tree-like if, after deleting edges leading from a node to itself, the dual
graph becomes a tree; it is of compact type if the dual graph actually is a tree.
Remark 15.1.3. Moreover, we also have some kind of localization. For (C;D) we fixed a set S of
nodes of C. We let a graph GraphS(C;D): The vertices are the connected components of the partial
normalization CS of C at S, the weight gv is the genus of corresponding component of CS, the edges
correspond to the nodes in S, and the half-edges are the marked points or the points of CS mapping to
nodes in S.
Definition 15.1.4. Let Γ be a P -marked dual graph and let I be a subgraph without legs and having
all the vertices of Γ. Let ΓI be the graph that contracting each connected component of I to a point
(one can speak this seriously, see [8] page 313). Hence we have a continuous map cI : Γ→ ΓI . There
is a bijecton between vertices of ΓI and the connected components of I, we can let gw(ΓI) = g(Iw)
where w be a vertice of ΓI and Iw be its connected component.

A P -marked dual graph Γ′ is said to be a specialization of Γ if Γ is isomorphic to Γ′
I for some

I ⊂ Γ′. We call c : Γ′ → Γ ∼= Γ′
I an I-contraction or simply a contraction. For example:

a

b
1 4

c
dα

β

γ

θ

δ

e

f

2

3

0
6

2

3

a

b

c

d

γ

e

f

θ

c

15.2 Boundary geometry II. More on gluing morphisms
15.2.1 Gluing via graphs
I Gluing of curves.

Fix a P -marked dual graph Γ and for any v ∈ V we give a Lv-pointed nodal curve Cv of genus gv.
Let C ′ =

∐
v∈V Cv and let C = C ′/ ∼ where ∼ means two points need to gluing together if and only if

they are marked points labeled by the two halves of an edge of Γ. Hence C ′ → C is actually a partial
normalization. For example:

1

2

1

2

3

a

b

1

2

3
3

2

1

a1

a2

a

b1

b2

b
⇐⇒

→

Here we need to note that this graph here is kind of partial diagram.
I Gluing of families of curves.

Fix a P -marked dual graph Γ and for any v ∈ V we give a family of stable Lv-pointed genus gv
curves Fv = (fv : Xv → S, σl where l ∈ Lv). Let X ′ =

∐
vXv and we get F ′ = (f ′ : X → S, σi) a

family of L-pointed nodal curves.
For any m ∈ L, by taking residue along σm we get a surjection

ωkf ′(k
∑

σl)→ Oσm(S).

Hence we get
R

(k)
l : f∗

(
ωkf ′(k

∑
σl)
)
→ OS

by some kind of positivity (see [8] Lemma X.6.1(i)) it is surjective for all k > 1. Consider

R(k) : f∗

(
ωkf ′(k

∑
σl)
)
→ OE

S
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indexed by pairs of edges {l, l′} with components R(k)
l + (−1)k−1R

(k)
l′ . The kernel of its fiber at s ∈ S

is H0(Xs, ω
k
f ′(k

∑
p∈P σlp(s))) where Xs be the gluing of X ′

s via Γ, hence its dimension is independent
of s. Hence the kernel of R(k), which we denote by Sk, is locally free. It is locally finitely generated
(see [8] Corollary X.6.4). Let

X = Proj
S

⊕
k≥0

Sk

and hence the fibers of X → S is gluing via Γ. Let σ′
p : S → X is the composition of σlp and X ′ → X.

Hence we get F = (X → S, σ′
p)p∈P .

15.2.2 Gluing functors
Fix a P -pointed dual genus g dual graph Γ and consider a Deligne-Mumford stack

M Γ =
∏
v∈V

M gv,Lv .

Fixed S and we let η = (ηv)v∈V ∈ M Γ(S) where ηv : Xv → S be a family of stable Lv-pointed
curves of genus gv. The morphisms are isomorphisms between these families Hence we get a gluing
map via Γ to get ξΓ(η) : X → S, a family of stable P -pointed genus g curves. Hence we get the gluing
morphism of stacks

ξΓ : M Γ →M g,P .

Let DΓ ⊂M g,P be a closed substack as

DΓ(S) =

{
σ : X → S families of P -pointed stable curves of genus g :

fibers have dual graphs which are specializations of Γ

}
(as the image of ξΓ). It is also a Deligne-Mumford stack with a coarse moduli space ∆Γ ⊂Mg,P as a
closed subvariety. We often refer to the DΓ (or the ∆Γ) as the boundary strata of M g,P (or of Mg,P ).

The simplest boundary strata are those of codimension 1 (as a divisor as before), which correspond
to the stable graphs with a single edge. If we consider the following graphs:

P

g − 1

a

g − a

A
B

then for the first we let Γirr and the second Γa,A (or ΓP if P = {(a,A), (b = g − a,B)} be a stable
bipartition). Hence we can also define Dirr := DΓirr

and Da,A := DΓa,A
(or DP). The coarse case are

the same ∆irr,∆a,A,∆P . Moreover, in the case we get the old gluing way:

ξirr : M g−1,P∪{x,y} →M g,P , ξa,A : M a,A∪{x} ×M g−a,Ac∪{y} →M g,P .

Definition 15.2.1 (Weak Γ-marking). Consider a family of stable P -pointed genus g curves (π : C →
S, τp). Let subvariety Σ ⊂ Sing(C) proper and étale over S, then for any s ∈ S, the fiber Σs be a finite
set of nodes. Hence we can consider GraphΣs(Cs).

Fix a P -marked graph Γ of genus g, if GraphΣs(Cs) ∼= Γ for any s, then we call Σ is a weak
Γ-marking. Hence we can define a stack EΓ as

EΓ(S) =

{
π : C → S families of P -pointed stable curves
of genus g : endowed with a weak Γ-marking

}
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Definition 15.2.2 (Γ-marking). If C → S coming form (X → S) ∈ M Γ(S) by gluing via Γ with Σ
the locus of nodes produced by gluing. As Σ be a union of sections on C, so is the preimage over X
(partial normalization). Hence we can get GraphΣ(C) with a family. Moreover Γ ∼= GraphΣ(C). If
these data exist for C → S, we called it endowed a Γ-marking.

Hence we can see that in this case we can do it conversely, hence we have M
′
Γ as

M Γ(S)⇔
{
π : C → S families of P -pointed stable curves
of genus g : endowed with a Γ-marking

}
:= M

′
Γ(S)

Hence we can find that the gluing map can be composited as

M Γ

M
′
Γ EΓ DΓ M g,P

∼=

F F ′

ξΓ

where F, F ′ are forgetful maps.

Proposition 15.2.3. (i) EΓ be the normalization of substack DΓ ⊂M g,P ;
(ii) The morphism M Γ → EΓ can be identified with M Γ → [M Γ/Aut(Γ)].

Proof. See [8] Proposition XII.10.11.

Corollary 15.2.4. We can seen Im(ξΓ) = DΓ as before.

Proof. Trivial by the Proposition.

Corollary 15.2.5. Let Γ be a stable P-marked dual graph of genus g. Assume that Aut(Γ) = {idΓ}.
Furthermore, assume that, for every graph Γ′ which is a specialization of Γ, all the elements in Aut(Γ′)

are specializations of idΓ. Then ξΓ : M Γ →M g,P is a closed immersion.

Proof. See [8] Corollary XII.10.22.

Theorem 15.2.6. The map ξΓ : M Γ →M g,P is representable.

Proof. I Step 1. Construct a new graph Γ̂ from Γ.
Fix an edge ` = {l, l′} ∈ E(Γ), consider the following graph Γl,Γl′ and spliting ` into l, l′ and joint

Γl,Γl′ :

Γl
Γl′

l l
′l∞ l0

l1

l
′

0

l
′

∞

l
′

1

vl vl′

Repeat this operation for all edge of Γ, we get Γ̂. Hence Γ̂ is P ∪ H-marked where H the set of
half-edges of Γ which are not legs.
I Step 2. Decomposite ξΓ into closed immersion and projection.

Consider maps

ιΓ : M Γ =
∏
v∈V

M gv,Lv
→

M Γ̂ =
∏
v∈V

M gv,Lv ×
∏

{l,l′}∈E

(
M 0,{l0,l1,l∞} ×M 0,{l′0,l′1,l′∞}

)
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and

ξΓ̂ : M Γ̂ =
∏
v∈V

M gv,Lv
×

∏
{l,l′}∈E

(
M 0,{l0,l1,l∞} ×M 0,{l′0,l′1,l′∞}

)
→M g,P∪H

and πH : M g,P∪H →M g,P be the natural projection. Then

ξΓ = πH ◦ ξΓ̂ ◦ ιΓ.

As ιΓ is isomorphism (Why?) and πH is representable (as a universal family) and ξΓ̂ is a closed
immersion by Corollary 15.2.5 and Aut(Γ̂) = {idΓ̂} (Why?).

It is important to describe how the various boundary strata intersect. Let Γ,Γ′ are two P -marked
dual graph of genus g. Consider

GΓΓ′ =


(Λ, c, c′)/ ∼=: Λ be a P -marked dual graph of genus g,
c : Λ→ Γ, c′ : Λ→ Γ′ are contractions with the
property that E(Λ) = c−1(E(Γ)) ∪ c′−1(E(Γ′))

 .

For example:

Γ

Γ
′

GΓΓ′

a b

g − 1

a− 1

b

a b− 1

(a+ b = g)

Proposition 15.2.7. If we let M ΓΓ′ := M Γ ×Mg,P
M Γ′ , then

M ΓΓ′ =
∐

Λ∈GΓΓ′

MΛ.

Proof. Fix a scheme T .
First we let ξ : C → T in MΛ = M

′
Λ, then we are given a subvariety Σ ⊂ Sing(C), proper and

étale over T , whose inverse image in the partial normalization along Σ itself is a union of sections, plus
an isomorphism γ : GraphΣ(C) ∼= Λ. Let contractions c : Λ→ Γ, c′ : Λ→ Γ′ and

Σ1 = (c ◦ γ)−1(E(Γ)),Σ2 = (c′ ◦ γ)−1(E(Γ′))

such that Σ = Σ1 ∪ Σ2 with isomorphisms γ1 : GraphΣ1(C) ∼= Γ and γ2 : GraphΣ2(C) ∼= Γ′. Hence ξ is
both in M Γ(T ) and M Γ′(T ). Hence in M ΓΓ′(T )

Conversely, as we have

M ΓΓ′(T ) =


(ξ, ξ′, φ) : ξ, ξ′ are families of Γ,Γ′-marking stable
P -pointed genus g curves over T with φ : ξ → ξ′

a T -isomorphism

 .

Then let (ξ, ξ′, φ) ∈ M ΓΓ′(T ), hence we have γ : GraphΣ1(C) ∼= Γ and γ′ : GraphΣ2(C) ∼= Γ′. Hence
we get contractions c, c′ : GraphΣ1∪Σ2(C) → Γ,Γ′. Hence we get (GraphΣ1∪Σ2(C), c, c′) ∈ GΓΓ′ , hence
we win.
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15.3 Local structure of M g,n and M g,n

We also consider the case over C. We will using the Kuranishi family and ν-log canonical Hilbert
scheme to describe the local structure of the moduli stack and (coarse) space of the stable curves.

Recall that we have the local structure of the Deligne-Mumford stack and its coarse moduli space,
that is, the Theorem C.1.6 and Theorem C.1.5 as follows.
Theorem A. Let X be a Deligne-Mumford stack separated and of finite type over a noetherian
algebraic space S. Let π : X → X be its coarse moduli space. For any closed point x ∈ |X | with
geometric stabilizer Gx, we have an étale neighborhood SpecAGx → X of π(x) ∈ |X|.
Theorem B. Let X be a separated Deligne-Mumford stack and x ∈X (k) be a geometric point with
stabilizer Gx. Then exists an affine and étale map

f : ([SpecA/Gx], w)→ (X , x)

where w ∈ (SpecA)(k) such that f induces an isomorphism of the stabilizer groups at w. Moreover, it
can be arranged that f−1(BGx) ∼= BGw.

But now we will get a more coarse (but useful) local structure by using the Kuranishi family as
follows. Actually as a set, Mg,n is a set of isomorphism class of the n-pointed stable curves. Hence by
Definition 9.5.3, for a n-pointed stable curve we have a standard Kuranishi family ξ : C → (X0, x0) ⊂
Hν,g,n. Hence we have a natural map

ψ : X0/Gx0
→Mg,n.

Recall some properties of X0 in Definition 9.5.3:
• For any y ∈ X0 we have Gy := Aut(Cy;σi(y)) ∼= stabGx0

(y);
•• For any y ∈ X0, there is aGy-invariant analytic neighborhood U of y inX such that any isomorphism
(of n-pointed curves) between fibers over U is induced by an element of Gy.

Theorem 15.3.1. The map ψ : X0/Gx0
→ Mg,n is étale. Moreover there are finite many such Xi

and Gi covers Hν,g,n such that the map

φ : Y :=
∐
i

Xi/Gi →Mg,n

is étale and surjective.

Proof. See [8] Proposition XII.3.5. To add.

Theorem 15.3.2. The canonical map

α : X :=
∐
i

Xi →M g,n

is étale and surjective where Xi are Kuranishi families as before covers Hν,g,n.

Proof. See [8] Theorem XII.8.3. To add.
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Line bundles and Picard groups of
the moduli of curves

We will refer [8] chapter XIII and [5].

16.1 Line bundles on the moduli stack of stable curves
Example 16.1.1 (Hodge bundle). For any S → M g,n which correspond to ξ = (π : C → S), we let
Eξ := π∗ωπ. Hence induce a sheaf E over M g,n called the Hodge bundle. As the relative dualizing sheaf
is functorial with respect to morphisms of families, this is a quasi-coherent sheaf. By the cohomology
and base change, it is actually a vertor bundle of rank g as before. Let detE =

∧g E and we call it the
Hodge line bundle. Usually we denote λ := [

∧g E] ∈ Pic(M g,n).

Remark 16.1.2. For the canonical map M g,n →Mg,n there are plenty of quasi-coherent sheaves on
M g,n which do not come by pullback from the quasi-coherent sheaves on Mg,n. For example, Hodge
bundle as follows (see Remark 16.6.8 for more about Hodge bundle).

Proposition 16.1.3. The Hodge bundle and its determinant do not descend to coherent sheaves on
the moduli space Mg,n except in genus zero.

Proof. Consider a point ξ = (C; pi), then Eξ = H0(C,ωC). If detE comes from Mg,n, then any
automorphism of ξ will act trivially on

∧g
H0(C,ωC) by the basic theory of the coarse moduli space

(Keel-Mori theory). Now we will find a curve and an automorphism of it which acts nontrivially.
For g odd, we let C be any hyperelliptic curve and consider hyperelliptic involution which acts as

multiplication by −1 on H0(C,ωC), hence nontrivial over
∧g

H0(C,ωC);
For g even, we let C be a ramified double covering of an elliptic curve and as {pi} any set of n

points which is invariant under the covering involution. The eigenvalues of the covering involution
acting on H0(C,ωC) are 1 with multiplicity 1 and −1 with multiplicity g − 1 (Why?), hence the
covering involution acts as −1 on

∧g
H0(C,ωC).

Example 16.1.4 (Generalization of the Hodge line bundle). For any S →M g,n which correspond to
ξ = (π : C → S) and any ν ∈ Z, we let

Λ(ν)ξ :=

(max∧
R1π∗ω

⊗ν
π

)−1

⊗
max∧

π∗ω
⊗ν
π .

Hence induce a line bundle Λ(ν) over M g,n. Usually we denote λ(ν) := [Λ(ν)] ∈ Pic(M g,n).
Actually when ν = 1, by the same arguments in Lemma 2.1.1 we can show that R1π∗ωπ ∼= OS. So

we have Λ(1)ξ ∼=
∧g Eξ canonically, hence Λ(1) ∼=

∧g E.
89
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Example 16.1.5 (Point bundles). For n > 0 and for any S → M g,n which correspond to ξ = (π :

C → S;σi), we let (Li)ξ := σ∗
i ωπ. Hence we get Li be the line bundles over M g,n. We usually Set

ψi = [Li] ∈ Pic(M g,n), ψ =
∑
i

ψi.

Remark 16.1.6. As the Hodge bundle, in general, Li can’t descend to a line bundle on Mg,n.
Example 16.1.7 (Boundary divisors and bundles). As before, we have

∂M g,n =: D = Dirr +
∑
P

DP ,

where the sum runs through all stable bipartitions of (g, {1, ..., n}). We denote

δirr = [O(Dirr)] ∈ Pic(M g,n), δP = [DP ] ∈ Pic(M g,n).

16.2 Tangent bundle, cotangent bundle and normal bundle
Proposition 16.2.1. Consider the moduli stack M g,P , then tangent bundle T = TMg,P

can be
described as: for any F = (f : X → S, {σp}p∈P ) ∈M g,P (S), we have

TF = f∗(Ω
1
f ⊗ ωf (D))∨

where D =
∑
σp(S).

Proof. By Theorem 15.3.2, the Kuranishi families formed an étale covering. Hence consider a stable
P -pointed curve {C;xp} and its Kuranishi family (see Theorem 9.2.6) X → (U, u0), then we have

Tu0U
∼= Ext1OC

(Ω1
C ,OC(−

∑
p

xp)) ∼= H0(C,Ω1
C ⊗ ωC(

∑
p

xp))
∨.

Hence we get the conclusion.
Example 16.2.2 (Canonical bundle). Hence the cotangent bundle T ∨ given by T ∨

F = f∗(Ω
1
f⊗ωf (D)).

Hence we get the class of the canonical line bundle

KMg,P
:=

[max∧
T ∨

]
∈ Pic(M g,P ).

Now we consider the normal bundle of ξΓ : M Γ →M g,P where Γ be a stable graph (For a map of
smooth schemes f : X → Y , we let Nf = f∗TY /TX).

Example 16.2.3 (Single curves). Let N be a point of M Γ with image C in M g,P . One can consider
N as a partial normalization of C at some ye. By Claim 2 in Remark 9.2.5 we get

0→Ext1(Ω1
N ,ON (−D̃ −R))→ Ext1(Ω1

C ,OC(−D))→⊕
e∈E(Γ)

Ext1(Ω1
C,ye ,OC,ye)→ 0.

where D =
∑
xp with preimage D̃ and R be the preimage of these ye.

Easy to see that Ext1(Ω1
N ,ON (−D̃−R)) be the tangent space of M Γ at N and Ext1(Ω1

C ,OC(−D))

be the tangent space of M g,P at C, hence the normal space to ξΓ at N is⊕
e∈E(Γ)

Ext1(Ω1
C,ye ,OC,ye) =

⊕
e∈E(Γ)

TN,y′e ⊗ TN,y′′e

by Claim 2 in Remark 9.2.4 (or Claim 3 in Remark 9.2.5).
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Proposition 16.2.4. The normal bundle of ξΓ : M Γ →M g,P can be expreessed as

NξΓ =
⊕

{l,l′}∈E(Γ)

η∗v(l)L
∨
l ⊗ η∗v(l′)L

∨
l′

where ηv : M Γ →M gv,Lv
be the projections.

Proof. Let F in M Γ is the datum of a family Xv → S of stable Lv-pointed curves of genus gv for each
vertex v of Γ. We let X =

∐
vXv. For each l ∈ L(E), we denote by σl the corresponding section of

X → S. The gluing construction yields a family X ′ → S of stable P -pointed genus g curves. Then
the normal

NξΓ,F =
⊕

{l,l′}∈E(Γ)

σ∗
l TX/S ⊗ σ∗

l′TX/S =
⊕

{l,l′}∈E(Γ)

L ∨
l,F ⊗L ∨

l′,F

where Li are point bundles. Hence we win.

Remark 16.2.5 (Excess intersection bundle). By Proposition 15.2.7, we consider

M ΓΓ′ =
∐

Λ∈GΓΓ′ MΛ M Γ

M Γ′ M g,P
ξΓ′

ξΓ

∐
ξΛΓ

Then the excess intersection bundle is

FΓΓ′ =
⊕

Λ∈GΓΓ′

FΛΓΓ′ :=
⊕

Λ∈GΓΓ′

ξ∗Γ(NξΓ′ )/NξΛΓ .

We can show that (as [8] XIII.(3.8))

FΓΓ′ =
⊕

Λ∈GΓΓ′

⊕
{l,l′}∈c−1(E(Γ))∩c′−1(E(Γ′))

η∗v(l)L
∨
l ⊗ η∗v(l′)L

∨
l′ .

Corollary 16.2.6. We have [max∧
NξΓ

]
= −

∑
l∈H(Γ)

η∗v(l)ψl

where H(Γ) be the set of those half-edges of Γ which are not legs.

16.3 Determinant
16.3.1 Basic linear algebra
Definition 16.3.1. A Z/2-graded line bundle is a pair (L, r) where L be a line bundle over a scheme
X and r ∈ {0, 1}. We define the determinant of a finite vector bundle F over X is a Z/2-graded line
bundle

detF :=

(max∧
F, rankF (mod 2)

)
.

We say (L, r) is even/odd if r is even/odd. We define the tensor product of Z/2-graded line bundles
as (L, r)⊗ (T, s) := (L⊗ T, r + s). Let A := (L, r), B := (T, s) and define the canonical isomorphism

τA,B : A⊗B → B ⊗A, l ⊗m 7→ (−1)rsm⊗ l.
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Proposition 16.3.2. (i) For Z/2-graded line bundles A,B,C we have

τA⊗B,C = (τA,C ⊗ id) ◦ (id⊗ τB,C);

(ii) For an exact sequence E : 0 → E → F → G → 0 of vector bundles, we have a canonical
isomorphism φE : detE ⊗ detG→ detF ;

(iii) Define 1X := (OX , 0) and A−1 = (L∨, a) for a Z/2-graded line bundle A = (L, a). Then
A⊗A−1 ∼= 1X , α, φ 7→ φ(α) and

SA,B : B−1 ⊗A−1 ∼= (A⊗B)−1, φ⊗ ψ 7→ (χ : α⊗ β 7→ φ(α)ψ(β));

(iv) We have τ∨B,A ◦ SA,B = SB,A ◦ τA−1,B−1 .

Proof. Trivial by some easy linear algebra and calculation.

Definition 16.3.3. Let a finite complexes F ∗ of vector bundles on X, we define

detF ∗ :=
⊗
q∈Z

(detF q)(−1)q .

Proposition 16.3.4. (i) For a exact sequence of complexes E : 0 → E∗ → F ∗ → G∗ → 0, we also
have isomorphism

φE : detE∗ ⊗ detG∗ ∼= detF ∗;

(ii) The determinant and φE are functorial in the base space X;
(iii) Consider

E1 E2 E3

0 0 0

R1 : 0 A∗ B∗ C∗ 0

R2 : 0 A′∗ B′∗ C ′∗ 0

R3 : 0 A′′∗ B′′∗ C ′′∗ 0

0 0 0

then we have φE2 ◦ (φR1 ⊗ φR3) = φR2 ◦ (φE1 ⊗ φE3) ◦ (id⊗ τC∗,A′′∗ ⊗ id);
(iv) If A∗ be a finite acyclic complex of vector bundles on X, there is a canonical isomorphism

detA∗ ∼= 1X . More generally, if f : A∗ → B∗ be a quasi-isomorphism of finite complexes of vector
bundles, then there is an isomorphism det f : detA∗ → detB∗ which depends only on the homotopy
class of f ;

(v) Consider
E : 0 A∗

1 A∗ A∗
2 0

E ′ : 0 B∗
1 B∗ B∗

2 0

f1 f f2

then det f ◦ φE = φE′ ◦ (det f1 ⊗ det f2);
(vi) Consider the exact sequences E : 0→ A∗ α−→ B∗ → 0→ 0 and E ′ : 0→ 0→ B∗ β−→ C∗ → 0,

then
detα = φE ◦ (a 7→ a⊗ 1), detβ = φE′ ◦ (b 7→ 1⊗ b).

Proof. These are more complicated linear algebra, we omit these here. We refer [8] XIII.4.
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16.3.2 Constructions and properties
Proposition 16.3.5 (Determinant of the cohomology of coherent sheaves). Aiming to construct the
relative determinant of the cohomology here.
•Claim. Let f : X → S be a flat morphism and let F be a coherent sheaf on X which is
flat over S. Let Z be the subset of X where F is not locally free, then Z does not contain
any component of any fiber of f .

As F locally is Om
U

α−→ On
U → F |U = cokerα → 0, If an entire component of the fiber of f over a

point s were contained in Z, the rank of α would drop along the whole component. This could already
be detected on a sufficiently thick infinitesimal neighborhood of s. Hence we may let S = SpecA where
A be an artinian local ring. Let U = SpecB and F |U = M̃ and we need to show U ⊈ Z. (Need to
re-read. To add.)
•Construction. Consider a family of nodal curves π : X → S. Let F is flat over S. Let S covered by
U such that there is an effective Cartier divisor D in π−1(U) which meets all the irreducible components
of every fiber and does not contain any of them; in particular, D is relatively ample. We may replacing
D with a multiple, then let R1π∗F (D) = 0. By the Claim, we may also suppose that F is locally free
at every point of D. We say such divisor admissible.

Hence F ⊂ F (D) and let F (D)|D := F (D)/F . By some cohomology and base change, we get
π∗F (D), π∗F (D)|D are all locally free. We have

0→ π∗F → π∗F (D)→ π∗F (D)|D → R1π∗F → 0,

hence the complex E∗
D := (π∗F (D) → π∗F (D)|D) computes the higher direct image of F . Hence we

let locally dπF = detE∗
D.

The independence on D and the gluing map are not hard to construct and we omitted them, see [8]
page 356. Hence we get the determinant dπF of the cohomology of F (relative to π).
Remark 16.3.6. The flatness of F over S is unnecessary but simplifies the construction.
Proposition 16.3.7 (Determinant of the (hyper)cohomology of complexes). Consider a family of
nodal curves π : X → S. Similarly, Let F ∗ be a finite complex of coherent sheaves, flat over S. Let U
be a sufficiently small open subset of S, and let D be a divisor in π−1(U) which is admissible for each
one of the F i and that F i → F i+1 is a morphism of vector bundles at each point of D for each i (this
is called admissible for F ∗). Hence we let Ei,0D = π∗(F

i(D)) and Ei,1D = π∗(F
i(D)|D), then we get a

double complex E∗,∗
D . Regard it as a single complex graded by total degree, and we locally define dπF ∗

to be its determinant.
Proposition 16.3.8. Consider a family of nodal curves π : X → S.

(i) For a coherent F with π∗F,R1π∗F are locally free, then we have

dπF ∼= det(R1π∗F )
−1 ⊗ det(π∗F );

(ii) For a finite complex F ∗ with Riπ∗F ∗ := HiRπ∗F
∗ are locally free, then we have

dπF
∗ =

⊗
i∈Z

det(Riπ∗F ∗)(−1)i .

Proof. I just prove (i) since (ii) is similar.
We split

0→ π∗F → π∗F (D)→ π∗F (D)|D → R1π∗F → 0

into two sequences

0→ π∗F → E0
D → Q→ 0, 0→ Q→ E1

D → R1π∗F → 0.

Then we have det(π∗F )⊗ detQ ∼= detE0
D and det(R1π∗F )⊗ detQ ∼= detE0

1 . Hence we have locally

dπ(F ) = det(E1
D)

−1 ⊗ det(E0
D) = det(R1π∗F )

−1 ⊗ det(π∗F )

and well done.
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Remark 16.3.9. These constructions are compatible with base change, hence for s ∈ S we have

dπF
∗ ⊗ κ(s) ∼=

⊗
q∈Z

(detHq(Xs, F
∗
s ))

(−1)q .

Theorem 16.3.10. Let 0→ E∗ → F ∗ → G∗ → 0 be an exact sequence of finite complexes of coherent
sheaves on X, all flat over S, then we have

φ : dπ(E
∗)⊗ dπ(G∗) ∼= dπ(F

∗).

Proof. Not hard but it’s hard to type and I omit it here. We refer [8] XIII.(4.17).

16.3.3 Determinant, relative duality and applications
Theorem 16.3.11. Consider a family of nodal curves π : X → S and a coherent sheaf F , we have

dπ(ωπ ⊗ F∨) ∼= dπ(F ).

In particular, the Hodge bundle is dπ(ωπ) = dπ(OX).
Proof. This is also not hard to prove by checking the construction of the determinant of cohomology.
Using some canonical exact sequences and diagrams this is almost trivial. I omit these here and we
refer [8] page 360.

Proposition 16.3.12 (Determinant and boundary of moduli). We will describe O(D) by using the
determinant of cohomology.
Proof. Let π : X → S be a family of connected nodal curves of genus g.
•Claim 1. Ω1

π is S-flat.
WLOG we let S is smooth as these are pullbacked from a Kuranishi family. Shrinking S, we may

assume that there exists an effective divisor D in X which cuts an ample divisor Ds on each fiber Xs

and does not contain nodes of the fibers. We just need to show χ(Xs,Ω
1
π(nD)⊗ κ(s)) is independent

of s ∈ S for n� 0. By Corollary 7.4.5, we have

0→ K → Ω1
Xs

ρs−→ ωXs → Q→ 0

where supp(K), supp(Q) ⊂ {nodes}. As they both have one-dimensional stalks by Claim 1,2 in Corol-
lary 7.4.5, hence we have χ(Xs,Ω

1
π(nD)⊗ κ(s)) = χ(Xs, ωXs(nDs)) = 2g − 2 + n deg(D).

•Claim 2. Let Lπ := dπ(Ω
1
π

ρπ−→ ωπ), then Lπ = dπ(ωπ)dπ(Ω
1
π)

−1 and induce det(ρπ) : dπ(Ω1
π)→

dπ(ωπ) which is a canonical section of Lπ.
As we have an exact sequence of complexes 0 → ωπ[0] → (Ω1

π
ρπ−→ ωπ) → Ω1

π[1] → 0, we get
Lπ = dπ(ωπ)dπ(Ω

1
π)

−1. The map det(ρπ) : dπ(Ω1
π)→ dπ(ωπ) can be easily constructed step by step as

the construction of dπ.
•Claim 3. Various Lπ and det(ρπ) defines a line bundle L on M g,n with a canonical section
det(ρ). As ρπ is an isomorphism on smooth fibers, we get L ∼= O(

∑
i niDi) where Di are

components of D with nonnegative integers ni. We claim that all ni = 1 and hence
L ∼= O(D).

We consider the case when S is a disk (étale locally) centered at s and all the fibers of π are smooth
except for Xs, which has a single node p. All we need is to calculate ni, the order of vanishing of det ρπ
at s. I omit it here and refer [8] page 363.

Proposition 16.3.13. Let Γ be a connected P -pointed genus g graph. Let H(Γ) for the set of the
half-edges of Γ which are not legs. Suppose that for each v, we are given a family πv : Xv → S of
connected nodal Lv-pointed genus gv curves. Let σl the corresponding section of πv and Ll are point
bundles on S where l ∈ Lv. Let Dl = σl(S) and let π : X → S be the family gluing via Γ by Xv. Then

O(D)π ∼=

 ⊗
v∈V (Γ)

O(D)πv

⊗
 ⊗
h∈H(Γ)

L −1
h

 .
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In particular, taking Chern classes we get

ξ∗Γδ =
∑

v∈V (Γ)

η∗vδ −
∑

h∈H(Γ)

η∗v(h)ψh

where ηΓ : M Γ →M g,P and ηv : M Γ →M gv,Lv .

Proof. Let N =
∐
vXv

π′

−→ S with normalization ν : N → X. For e = {h, h′} ∈ E(Γ) and let
Σe = ν(Dh) = ν(Dh′), we have

0 ωπ′ ωπ′

(∑
h∈H(Γ)Dh

) ⊕
{h,h′}∈E(Γ)(ODh

⊕ ODh′ ) 0

0 ωπ ν∗

(
ωπ′

(∑
h∈H(Γ)Dh

)) ⊕
e∈E(Γ) OΣe 0

Res

Taking cohomology we get

dπ′(ωπ′) ∼= dπ(ν∗ωπ′) ∼= dπ

ν∗ωπ′

 ∑
h∈H(Γ)

Dh


dπ(ωπ) ∼= dπ

ν∗ωπ′

 ∑
h∈H(Γ)

Dh

 .

Hence
dπ(ωπ) ∼= dπ′(ωπ′) ∼=

⊗
v∈V (Γ)

dπv
(ωπv

).

On the other hand, we have
0→ K → Ω1

π → ν∗Ω
1
π′ → 0

which deduce

dπ(Ω
1
π)
∼=

 ⊗
e∈E(Γ)

π∗Ke

⊗ dπ′Ω1
π′ .

•Claim. We have π∗K{h,h′} ∼= Lh ⊗Lh′ .
Here we give a sketch of the claim. Consider e = {h, h′} with local coordinates x, y, then Ke locally

generated by ydx(= −xdy), then we define it mapping to section σ∗
h(dx) ⊗ σ∗

h′(dy) of Lh ⊗Lh′ . We
omitted the verifing.

Finally, by the Claim 2,3 in Proposition 16.3.12 we get

O(D)π = Lπ = dπ(ωπ)⊗ dπ(Ω1
π)

−1

=

 ⊗
v∈V (Γ)

dπv (ωπv )

⊗
 ⊗

e∈E(Γ)

π∗Ke

⊗ dπ′Ω1
π′

−1

=

 ⊗
v∈V (Γ)

O(D)πv

⊗
 ⊗
h∈H(Γ)

L −1
h

⊗ (dπ′Ω1
π′)−1.

(How to destroy (dπ′Ω1
π′)−1? Need to think this more.)

Remark 16.3.14. We also get ξ∗Γλ =
∑
v∈V (Γ) η

∗
vλ.
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16.4 Deligne pairing, a quick tour
Definition 16.4.1. (a) Let C be a complete curve (need not be connected) and D =

∑
p npp a divisor

on C. If f is a rational function on C whose divisor (f) is disjoint from D, we set f(D) :=
∏
p f(p)

np ;
(b) Let π : X → S be a family of nodal curves and D is an effective relative Cartier divisor not

containing nodes of fibers, π∗O(D) is locally free, and there is a norm map NormD/S : π∗O(D)→ OS
(as D → S is proper and quasi-finite, hence finite). We also induce NormD/S : π∗O(D)× → O×

S .
Hence for an divisor D = D1 −D2 where Di are effective, then we define

f(D) = NormD1/S(f)NormD2/S(f)
−1

which is well defined as if E1, E2 are all effective, then f(E1 + E2) = f(E1)f(E2).
Proposition 16.4.2 (Weil reciprocity). (i)[Smooth case] Let C be a smooth proper curve (need not
be connected) and f, g are rational functions which are nonzero on every component of C and with
disjoint divisors. Then f((g)) = g((f));

(ii)[Nodal case] Let C be a possibly disconnected nodal curve, and let f and g be rational functions
on C which do not vanish identically on any irreducible component of C and are regular and nonzero
at all the nodes. Then, if the divisors of f and g are disjoint, we have f((g)) = g((f));

(iii)[Relative case] Let π : X → S be a family of nodal curves and f and g are two meromorphic
functions on X not vanish identically on any component of any fiber and be regular and nonzero at all
the nodes, and their divisors be disjoint, then f((g)) = g((f)).
Proof. For (i) we refer [9] VI.B.2. For (ii), notice that what must be proved can reduces to the Weil
reciprocity formula for the pullbacks of f and g to the normalization of C. For (iii), when S is reduced,
we can do the same thing as single one. Otherwise, one can use the Kuranishi family and pullback.
Definition 16.4.3 (Deligne pairing for single case). Let L,M are two line bundles over a nodal
curve C. Let V be a vertor space generated by pairs (l,m) where l,m are rational sections of L,M ,
respectively, such that

(a) l,m are nonzero on any component of C, and regular and nonzero at the nodes of C;
(b) the divisors (l) and (m) are disjoint.

Let 〈L,M〉 be the quotient of V modulo the equivalence relation generated by

(fl,m) ∼ f((m))(l,m), (l, gm) ∼ g((l))(l,m)

where f and g are rational functions on C. This space is the Deligne pairing of L and M . The class
of (l,m) denoted by 〈l,m〉.
Remark 16.4.4. (i) Actually the meromorphic section l of L defined by a data (li, Ui) where li ∈
KC(Ui) of covering X =

⋃
i Ui such that li = ψij · lj where ψij = ψi ◦ψ−1

j are cocycles of trivializations
φi : L|Ui

∼= OUi
. In other words, l is a section of L ⊗OX

KX . Hence we have canonically divisor (l)
associated to l and we have trivially OX((l)) ∼= L (see [62] and [48]);

(ii) Two equivalence relations are called L-move and M -move, respectively.
Proposition 16.4.5. For any L,M on C, then dim 〈L,M〉 = 1 be a line.
sketch. •Claim 1. We have dim 〈L,M〉 ≤ 1.

For any (l,m), (l′,m′), let µ be a meromorphic divisor ofM disjoint of l, l′. Hence let µ = gm,m′ =
g′µ, l′ = fl where f, g, g′ are rational functions, then

(l′,m′) ∼ g′((l′))f((µ))g((l))(l,m),

hence dim 〈L,M〉 ≤ 1.
•Claim 2. A pair (l,m) cannot be equivalent to a strict multiple of itself (a cycle).

This is a very intersting proof by induction on the length of the cycle. After prove the case of 4
and 6 directly, we can let n ≥ 8 and using Weil reciprocity.

This method break a n-move cycle into two cycles of length n− 2, then one can use the induction.
This proof is not so hard and much intersting, but I omit this and the detailed proof see [8] page 368.
The main idea is the following diagram:
which tell us the cycle of 8 moves broken up in two cycles of 6.
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L M

L

M

L

M

L

M

M

L

L

Definition 16.4.6 (Deligne pairing for the families). A family π : X → S of nodal curves and L and
M are line bundles on X. For any s ∈ S we have a rank 1 free OS,s-module 〈L,M〉s by Proposition
16.4.5. For any open U ⊂ S, we define a sheaf

Γ(U, 〈L,M〉π) :=

{us ∈ 〈L,M〉s : s ∈ U}
∣∣∣∣∣∣∣
for every s ∈ U, there are a neighborhood U ′

and meromorphic sections l,m of L,M over
π−1(U ′) such that ut = 〈l,m〉 for every t ∈ U ′.

 .

This is a line bundle on S, called the Deligne pairing of L and M , denoted by 〈L,M〉π.

Proposition 16.4.7. Consider a family π : X → S of nodal curves and L,L1, L2, L3,M,M1,M2 are
line bundles on X.

(i) We have canonical isomorphisms

〈L1,M〉π ⊗ 〈L2,M〉π ∼= 〈L1 ⊗ L2,M〉π
〈L,M1〉π ⊗ 〈L,M2〉π ∼= 〈L,M1 ⊗M2〉π ;

(ii) We have canonical isomorphisms 〈L,OX〉π ∼= OS and 〈OX ,M〉π ∼= OS;
(iii) Of course, we have the canonical isomorphism τ : 〈L,M〉π ∼= 〈M,L〉π given by 〈l,m〉 7→ 〈m, l〉.

In particular when L =M , we have τ(−) = (−1)degL · (−).

Proof. See [8] XIII (5.4),(5.5) and Propisition 5.7.

Theorem 16.4.8. Consider a family π : X → S of nodal curves and L,M are line bundles on X.
Then we have a canonical isomorphism

〈L,M〉π ∼= dπ(L⊗M)⊗ dπ(L)−1 ⊗ dπ(M)−1 ⊗ dπ(OX)

compatible with base change.

Proof. See [8] XIII Theorem 5.8.

Corollary 16.4.9. (i) Let D be any relative divisor not passing through nodes of fibers of π : X → S.
The sheaves π∗(OD) and π∗M |D are both locally free of rank equal to the degree of D over S. We may
then define a line bundle on S as by setting

NormD/S(M |D) := H om(det(π∗OD), det(π∗M |D)),

then we have
〈OX(D),M〉π ∼= NormD/S(M |D).

(ii) In particular, if we have a section σ with D = σ(S), then for any M ∈ Pic(X), we have

〈OX(D),M〉π ∼= σ∗M.

Taking M = ωπ(D), we get
〈OX(D), ωπ〉π ∼= 〈OX(D),OX(D)〉−1

π .

(iii) We have
c1(〈L,M〉π) = π∗(c1(L) · c1(M)).
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Proof. (i) This is easy if we define a norm map NormD/S : π∗(M |D) → NormD/S(M |D) as h 7→
det(×h : π∗OD → π∗(M |D)), then we get

〈OX(D),M〉π ∼= NormD/S(M |D), 〈1,m〉π 7→ NormD/S(m|D).

(ii) Special case of (i).
(iii) This is a hard but difficult result, we refer [8] page 376, XIII.(5.20).

Corollary 16.4.10 (Some kind of Riemann-Roch). Let π : X → S be a family of nodal curves, and
let L be a line bundle on X. There is a canonical isomorphism of line bundles, compatible with base
change:

dπ(L)
2 ∼=

〈
L,L⊗ ω−1

π

〉
π
⊗ dπ(OX)2.

Proof. As
〈
L,L⊗ ω−1

π

〉
π
∼=
〈
L,L−1 ⊗ ωπ

〉−1

π
by Proposition 16.4.7 (i)(ii), we then use Theorem 16.4.8

to
〈
L,L−1 ⊗ ωπ

〉
π
and we win.

Example 16.4.11. Consider a family of curves π : X → S plus sections σi, corresponding to divisors
Di = σi(S). We denote ω̂π := ωπ(

∑
iDi) and we get 〈ω̂π, ω̂π〉π ∈ Pic(S). As the Deligne pairing is

well behaved under base change, this defines 〈ω̂, ω̂〉 on M g,n and we denote

κ1 = [〈ω̂, ω̂〉] ∈ Pic(M g,n).

(For κa, the codimension a, can also be constructed)
Moreover, by Corollary 16.4.9, we get [〈ω̂π,OX(Di)〉] = ψi. More generally, we get[〈

ω̂hπ

(∑
i

aiDi

)
, ω̂lπ

(∑
i

biDi

)〉
π

]
= hlκ1 −

∑
i

aibiψi.

After this, if we let κ̃1 = [〈ω, ω〉] ∈ Pic(M g,n), we have
κ̃1 = κ1 − ψ.

Finally, like Remark 16.3.14 we have ξ∗Γκ1 =
∑
v∈V (Γ) η

∗
vκ1. The proof we refer [8] page 378.

16.5 The Picard group of moduli space of curves I
Theorem 16.5.1. Consider Hν,g,n ⊂ HilbPν

PN−1 be the Hilbert scheme of ν-log-canonically embedded
n-pointed stable curves of genus g where N = (2ν − 1)(g − 1) + νn and Pν(t) = (2νt− 1)(g − 1) + νnt

for ν ≥ 3. Let H ′
ν,g,n ⊂ Hν,g,n be the smooth locus. Hence we have M g,n

∼= [Hν,g,n/PGL(N)] and
Mg,n

∼= [H ′
ν,g,n/PGL(N)]. Then we have group isomorphisms:

Pic(M g,n) ∼= Pic(Hν,g,n,PGL(N)) ∼= Pic(Hν,g,n)
PGL(N),

Pic(Mg,n) ∼= Pic(H ′
ν,g,n,PGL(N)) ∼= Pic(H ′

ν,g,n)
PGL(N).

Proof. The first isomorphisms of these two statements are trivial. The second isomorphism need some
GIT. We refer [74] for surjectivity and [8] Proposition XIII.6.1 for injectivity.

Proposition 16.5.2. For π : M g,n →Mg,n and ϑ : Mg,n →Mg,n we have exact sequences:

0→ Pic(Mg,n)
π∗

−→ Pic(M g,n)→ Q→ 0,

0→ Pic(Mg,n)
ϑ∗

−→ Pic(Mg,n)→ R→ 0

where Q,R are torsion groups. More precisely, there is a positive integer k such that

k · Pic(M g,n) ⊂ Pic(Mg,n) and k · Pic(Mg,n) ⊂ Pic(Mg,n).

In particular, one has

Pic(M g,n)⊗Q ∼= Pic(Mg,n)⊗Q, Pic(Mg,n)⊗Q ∼= Pic(Mg,n)⊗Q.
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Proof. As the proof is the same at both cases, we just consider the case of Pic(M g,n) and Pic(Mg,n).
As Mg,n covered by Ui = Bi/Gi where Xi → Bi are (standard algebraic) Kuranishi families with
the automorphism groups of central fiber Gi. Let L ∈ Pic(Mg,n) pullback to M g,n is trivial hence
has a nowhere vanishing global section. Hence gives a nowhere vanishing Gi-invariant section of the
pullback of L to Bi by étale descent. Hence a nowhere vanishing section of L pullback to M g,n, hence
Pic(Mg,n)→ Pic(M g,n) is injective.

Next we need to find a integer k such that for any L ∈ Pic(M g,n) we have L k descents to a line
bundle M on Mg,n. Let X =

∐
Xi, B =

∐
Bi where Xi → Bi are (standard algebraic) Kuranishi

families with the automorphism groups of central fiber Gi, then B → M g,n and
∐
Bi/Gi → Mg,n

are étale covers. Hence by étale descent we may let L as line bundle L over B with descent data
to B → M g,n. Now take b ∈ B and consider Lb, then Aut(Xb) act on Lb linearly. As Lb is just a
one-dimensional vector space, hence this action is just multiplication by kb-th roots of unity where
kb := |Aut(Xb)|. Hence now we let k =

∏
i |Gi| and then for any b, we have kb|k by the property of the

standard Kuranishi family. Hence these groups act trivially over Lk and hence L k descend to Mg,n

by basic étale descent.

16.6 The Picard group of moduli space of curves II
In this section we will mainly refer Enrico Arbarello and Maurizio Cornalba’s classical paper [5] in
the base field C. But in the positive characteristic algebraically closed field k, we have the similar
result, see [73]. Actually he prove more, that is, Pic(Mg,n)⊗Qℓ ∼= H2

ét(Mg,n,Qℓ) when ` is prime and
invertible in k. But we do not care about these here.

16.6.1 Some preliminaries
Here we follows [82].
Definition 16.6.1 (Pencil). A pencil of hypersurfaces on a variety X is a projective line P1 ⊂ |L|,
where L is a line bundle on X.

Hence a pencil of hypersurfaces on a variety X gives us σt ∈ H0(X,L) for all t ∈ P1, up to a
coefficient in C×. These (well-)defines the hypersurfaces Xt ⊂ X correspond to σt. So we denote
(Xt)t∈P1 as this pencil. Actually we can denote σt = σ0 + tσ∞ for t ∈ A1 ⊂ P1. Hence the base locus
of the pencil is B =

⋂
t∈P1 Xt ⊂ X defined by σ0, σ∞. Let X ′ = BlB(X) ∼= {(x, t) ∈ X × P1 : x ∈ Xt},

hence if we let f : X ′ → P1, then f−1(t) ∼= Xt.
Definition 16.6.2 (Lefschetz pencil). A Lefschetz pencil (Xt)t∈P1 is a pencil of hypersurfaces satisfies:

(i) B is smooth with codimX(B) = 2;
(ii) Xt has at most one ordinary double point as singularity.

Remark 16.6.3 (Ordinary double point). Let X be an algebraic scheme over k with a closed x ∈ X.
(i) If k = k̄, then x is called an ordinary double point if

ÔX,x ∼= k[[x1, ..., xn]]/(f)

where f ∈ m2 such that f = Q+ R where Q be a nondegenerate quadratic form and R ∈ m3 where m
be the maximal ideal of k[[x1, ..., xn]];

(ii) For general k, x ∈ X is called an ordinary double point if all points in X ⊗k k̄ lying over x are
ordinary double points.

Next we will introduce something about K3 surfaces. We refer [12] chapter VIII or more general
book [63] for more detailed arguments.
Definition 16.6.4. A K3 surface over k is a proper nonsingular variety X of dimension two such
that

2∧
ΩX/k

∼= OX ,H
1(X,OX) = 0.
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Proposition 16.6.5 (see [12] Proposition VIII.13 or [63] Lemma II.2.1). Let X be a K3 surface and
C ⊂ S be a smooth curve of genus g, then C2 = 2g − 2 and h0(X,OX(C)) = g + 1.

Proof. The statement C2 = 2g − 2 follows from adjunction formula. Again by adjunction formula we
get

ωC = ωX ⊗ OX(C)⊗ OC = OX(C)⊗ OC = OX(C)|C .
Hence H0(C,OX(C)|C) = H0(C,ωC). As H1(X,OX) = 0 and the exact sequence 0 → OX →
OX(C)→ OX(C)|C → 0 we get h0(X,OX(C)) = 1+h0(C,ωC) = g+1. By Riemann-Roch formula, we
get χ(X,OX(C)) = g+1. As h2(X,OX(C)) = h0(X,OX(−C)) = 0, we get h0(X,OX(C)) ≥ g+1.

Theorem 16.6.6 (Existence of K3 surfaces). For any g ≥ 3, there exists K3 surfaces S of degree
2g − 2 embedded in Pg.

Proof. See [12] Theorem VIII.15. They construct K3 surfaces containing a very ample divisor D with
D2 = 2g − 2.

16.6.2 J. Harer’s theorem and its corollaries
Here we follows the paper [77] and the Appendix of the Enrico Arbarello and Maurizio Cornalba’s
paper [5]. We just summary the several results here and we refer the original papers [53] and [54] due
to J. Harer by using the Teichmüller space (the construction one can see [49] and [8] chapter XV).

Theorem 16.6.7 (Harer’s theorem). (i) The group Pic(Mg)⊗Q is freely generated by the λ;
(ii) The group Pic(Mg)⊗Q is freely generated by the λ,∆irr,∆i;
(iii) The group Pic(Mg,n)⊗Q is freely generated by the λ, ψi;
(iv) The group Pic(Mg,n)⊗Q is freely generated by the λ, ψi,∆irr,∆i.

Remark 16.6.8. Note that we have showed in Proposition 16.1.3 that the Hodge class λ defined over
M g,n can not descend to Mg,n, so the Hodge class here we defined at the meaning of Proposition
16.5.2.

Proposition 16.6.9 (See appendix in [5]). The group Pic(M g,n) and Pic(Mg,n) has no torsion.

Corollary 16.6.10. We have Pic(M g,n) generated by rational coefficients classes λ, ψi, δirr, δi and
Pic(Mg,n) generated by rational coefficients classes λ, ψi.

Proof. Follows from the Harer’s theorem 16.6.7 and Proposition 16.6.9.

16.6.3 The groups Pic(M g,n) and Pic(Mg,n) for g ≥ 3

First we deal with the case of n = 0, as follows.

Theorem 16.6.11. For g ≥ 3 we have Pic(M g) is freely generated by λ, δirr, δi; the group Pic(Mg)
is freely generated by λ.

The most important thing is that we need to construct some special families of curves.
♣ Construct four kinds of familes.
I Families of type I. Λn for 2 ≤ n ≤ g.

Pick a smooth K3 surface Y ′ of degree 2n − 2 in Pn by Theorem 16.6.6 and consider a Lefschetz
pencil of hyperplane sections. As Y ′ is smooth, one might choose generic pencil of hyperplane sections
by Bertini’s theorem (see [82] corollary 2.10).

Let Bs be the base locus of the pencil and let Y = BlBs(Y ′). Let φ : Y → B := P1. The curves of
the pencil appear in Y as fibers of φ and the exceptional curves appear as sections Ei of φ.

Fix a smooth curve Γ of genus g − n and a point γ on it. Construct a new surface X = (Y t Γ×
P1)/(E1 ∼ {γ} × P1). Hence we get a family Λn = (f : X → B = P1). As we consider the Lefschetz
pencil, we find that the fibers of φ : Y → B, hence the fibers of f : X → B, are all nodal curves.
• Describe λΛn

.
First we claim that

f∗ωf ∼= φ∗ωϕ ⊕ (OB)
g−n.
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(why?) Second we claim that rank(φ∗ωϕ) = n. As Y ′ be a K3 surface and the fiber of φ are the smooth
curves C ⊂ Y ′ correspond to the sections of Lefschetz pencil, hence g(C) = pa(C) =

C2

2 + 1 = n by
adjunction formula as the existence of K3 surface by Proposition 16.6.5 and Theorem 16.6.6 (hence flat
by checking Hilbert polynomial. actually by our choice of Lefschetz pencil, all fibers of φ are smooth,
hence so is φ). Hence rank(φ∗ωϕ) = n. Hence we get

λΛn
=

g∧
f∗ωf =

n∧
φ∗ωϕ.

• Compute degλΛn .
First, by the Riemann-Roch of vector bundles over curves (see St 0BS6) we get

χ(B,φ∗ωϕ) = degλΛn + n(1− g(B)) = degλΛn + n.

Second, since R1φ∗ωϕ = OB we get
χ(φ!ωϕ) = χ(φ∗ωϕ)− χ(OB).

Finally, by Leray spectral sequence Ep,q2 = Hp(B,Rqφ∗ωϕ)⇒ Hp+q(Y, ωϕ) we get the E2 = E∞ page:

H0(B,R1φ∗ωϕ) 0 0

H0(B,φ∗ωϕ) H1(B,φ∗ωϕ) 0

hence by the definition of φ! we get χ(φ!ωϕ) = χ(ωϕ). By Riemann-Roch of surfaces, we get

χ(ωϕ) = χ(OY ) +
K2
ϕ −Kϕ ·KY

2
.

As φ is smooth, we get ωY ∼= φ∗ωB ⊗ ωϕ, hence Kϕ ≡lin KY − φ∗KB . Hence

χ(ωϕ) = χ(OY )−
φ∗K2

B −KY · φ∗KB

2
.

By the construction of φ : Y → B, we get φ∗ωB ∼= O((2g(B)− 2)F ) for a fiber F by the construction.
Use the adjunction formula to F , we get 2g(F )− 2 = F 2 − F ·KY = −F ·KY . Hence we get

χ(ωϕ) = χ(OY )−
φ∗K2

B −KY · φ∗KB

2
= χ(OY )− (g(B)− 1)(2g(F )− 2)

= χ(OY ) + 2n− 2 = 2n

since Y is the blowing up of a K3 surface (hence birational to that K3 surface) which deduce χ(OY ) =
χ(OY ′) = 2 as in this case it is O-connected with vanishing higher direct image (this is a conclusion
due to Hironaka in characteristic zero, more general, see [21]). Combining these, we get

degλΛn = χ(B,φ∗ωϕ)− n = χ(φ!ωϕ) + χ(OB)− n
χ(ωϕ) + χ(OB)− n = n+ 1.

We win!
I Families of type II. Fn for g ≥ 3, 2 ≤ 2n ≤ g − 1.

Let smooth curves C1, C2,Γ of genus n, g − n, 1 and fix points x1 ∈ C1, x2 ∈ C2, γ ∈ Γ. Let
Y1 = C1×Γ, Y2 = Bl{(γ,γ)}(Γ×Γ) with exceptional divisor E and Y3 = C2×Γ. Let A = {x1}×Γ, B =
{x2}× Γ and ∆ be the strict transform of the diagonal in Y2 and S be the strict transform of {γ}× Γ
in Y2. Let

X =
Y1 t Y2 t Y3
S ∼ A,∆ ∼ B

with f : X → Γ be the family, called Fn. The graphs of Fn and its fibers at γ′ ∈ Γ are as follows:
• Compute degλFn

.
First we have f∗ωf ∼= (H0(ωC1

)⊕H0(ωC2
)⊕H0(ωΓ))⊗ OΓ. (why?) Hence degλFn

= 0.
• Compute deg(δi)Fn

.
By the arguments in [56] page 81, we have the following general principle:

https://stacks.math.columbia.edu/tag/0BS6
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A

C1

Γ Γ

Γ

∆

E

S

C2

Γ

B

Y1 Y2 Y3

C1

Γ
C2

x1 = γ
′

x2 = γ
′

E

C1 C2
Γ

x1

x2
γ

γ
′ �= γ

γ
′
= γ

Lemma 16.6.12. Let π : C → B be a family of stable curves over a smooth curve B which is obtained
from a family φ : D → B of (not necessarily connected) nodal curves by identifying sections Si, Ti
pairwise. For each j, let Σj denote the image of Sj in C. Suppose the locus of singular points of type
i in the fibers of π is

[p1, ..., pm] ∪
⋃
j

Σj

where the pi are distinct points not belonging to
⋃
j Σj. Then

(δi)π =
⊗
j

(φ∗(NSj
)⊗ φ∗(NTj

))

(∑
l

nlπ(pl)

)

where NS be the normal bundle and C is of form xy = tnl near pl.

Now we will use this to compute deg(δi)Fn
. Actually by adjunction formula we get

A2 = 2g(A)− 2−A ·KY1
= −A · (p∗KC1

+ q∗KΓ) = 0,

B2 = 2g(B)− 2−B ·KY2
= −B · (p∗KC2

+ q∗KΓ) = 0.

By Proposition A.3.5, we have

∆2 = 2g(∆)− 2−∆ ·KY2
= −∆ · (p∗KΓ + q∗KΓ + E) = −1,

S2 = 2g(S)− 2− S ·KY2
= −S · (p∗KΓ + q∗KΓ + E) = −1.

Hence we have
degNA = degNB = 0, degNS = degN∆ = −1.

Hence by the Lemma we get

deg(δirr)Fn = 0, deg(δ1)Fn =

{
1, n > 1;
0, g − n− 1 > n = 1;
−1, g − n− 1 = n = 1(g = 3).

deg(δn)Fn
=


−1, g − n− 1 > n > 1;
0, g − n− 1 > n = 1;
−2, g − n− 1 = n > 1;
−1, g − n− 1 = n = 1(g = 3),

deg(δn+1)Fn
= −1(if g − n− 1 > n).

And other cases are all 0.
I Families of type III. The family F .
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Consider a general pencil of conics in P2 with four base points. Blowing up these points in the
plane we get ψ : X → P2 with exceptional lines E1, ..., E4. Moreover we consider the resulting conic
bundle φ : X → P1. Hence we have

ωϕ = ωX ⊗ φ∗OP1(−2)−1 = ψ∗ωP2 ⊗ OX
(∑

Ei

)
⊗ φ∗OP1(2)

= ψ∗ωP2 ⊗ OX
(∑

Ei

)
⊗ ψ∗OP2(4)⊗ OX

(
−2
∑

Ei

)
= ψ∗OP2(1)⊗ OX

(
−
∑

Ei

)
.

Now we let C be a fixed smooth curve of genus g − 3 with four fixed points p1, ..., p4 on it, let

Y =
X t (C × P1)

Ei ∼ {pi} × P1(i = 1, ..., 4)

and consider f : Y → P1 a family of curves of genus g. We call this family F .
We consider the fibers of F . First we draw the picture of the family F , then we find that there are

exactly three special points such that the conics are not smooth, hence we have two different types of
fibers. The following picture is the family f : Y → P1:

C

p1

p2

p3

p4

P 1

E1

E2

E4 E3

X

P 2

∪

P 1

f

S1

S2

S3

Hence we have two kinds of fibers as follows:

Normal case Three special case (Si)

C

C

Conic

Conic

• Compute degλF .
In fact f∗ωf → H0(ωC(

∑
pi))⊗ OP1 is injective, hence an isomorphism. Hence degλF = 0.

• Compute deg(δi)F .
As that three special points, hence we get deg(δirr)F = 3+

∑
degNEi

= 3+
∑
E2
i = −1. Moreover,

it’s easy to see that deg(δi)F = 0 for i > 0.
I Families of type IV. The family F ′.

Let C1 be an smooth elliptic curve and C2 be a smooth curves of genus g − 3. Let p1 ∈ C1 and
p2, p3, p4 ∈ C2. We consider the similar X in the construction of F , we let

Y =
X t (C1 × P1) t (C2 × P1)

Ei ∼ {pi} × P1, i = 1, ..., 4
,

to get a family of stable curves f : Y → P1. We call this family F ′, as follows:
There are two kinds of fibers as before.
• Compute degλF ′ .

Similar as F , we get f∗ωf is trivial. Hence degλF ′ = 0.
• Compute deg(δi)F ′ .

As that three special points, hence we get deg(δirr)F ′ = 3 +
∑
i≥2E

2
i = 0. Moreover, we have

deg(δ1)F ′ = degNE1
= E2

1 = −1. Finally we get deg(δi)F ′ = 0 for all i > 1.
♣ Back to the proof of the theorem.
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C1

p1 p2

p3

p4

C2

P 1 P 1

P 1

E1 E2

E3

E4

f

C1

C2

Conic

Conic
C2

C1

(1) General fibers: (2) Special fibers:

Let k = bg/2c and let Gi = (Ci → Si) are k + 2 families of stable curves. We denote the matrix

η(G1, ..., Gk+2) =


degλG1 deg(δirr)G1 · · · deg(δk)G1

degλG2
deg(δirr)G2

· · · deg(δk)G2

...
...

...
degλGk+2

deg(δirr)Gk+2
· · · deg(δk)Gk+2

 .

Proof of the theorem. For our familes of curves we find that λ, δi are linearly independent. By Harer’s
result (Corollary 16.6.10) we have that Pic(M g) is gemnerated by the rational coefficients of the linear
combinations of λ, δi. So we let ξ ∈ Pic(M g) with ξ = aλ + b0δirr +

∑
biδi where a, bi ∈ Q. Now we

first let that we have constructed two different sets of k + 2 families of stable curves Gi such that two
det ηs are relative prime. Let di = deg ξGi , then

 d1
...

dk+2

 = η


a
b0
...
dk

 .

As di ∈ Z, then so are a det η, b0 det η, ..., bk det η. As two det ηs are relative prime, then a, bi ∈ Z and
we win! Now we just need to construct these two different sets of k + 2 families.
•When g is odd and g = 2m+ 1.

We consider ηn := η(Λn, F, F1..., Fm) where n is an integer between 2 and k = bg/2c. When have

det ηn = det



n+ 1 · · ·
0 −1 · · ·
0 0 1 −1 0 0 · · ·
0 0 1 −1 −1 0 · · ·

1 0 −1 −1 · · ·
...

...
1 0 · · · 0 −1 −1

0 0 1 0 · · · 0 −2


= (−1)m+1(n+ 1).

Taking n = 2, 3 and well done.
•When g is even and g = 2m+ 2.

We consider ηn := η(Λn, F, F
′, F1..., Fm) where n is an integer between 2 and k = bg/2c. When
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have

det ηn = det



n+ 1 · · ·
0 −1 · · ·
0 0 1 0 0 0 · · ·
0 0 0 −1 0 0 · · ·
0 0 1 −1 0 0 · · ·

1 0 −1 −1 0 · · ·
...

...
1 0 · · · 0 −1 −1

0 0 1 0 · · · 0 −2


= (−1)m(n+ 1).

Taking n = 2, 3 and well done.

Now we come to the general case. Here we just give a sketch and the detailed proof we refer the
section 3 in the original paper [5].

Theorem 16.6.13. For every g ≥ 3, the group Pic(M g,n) is freely generated by λ, ψi, δj and Pic(Mg,n)
is freely generated by λ, ψi.

Remark 16.6.14. As the marked points here are in order (instead of the case M g,P ), we now need
to make the boundary divisor more explicitly. The class δirr is the locus that the partial normalization
is connected. The class δα;i1,...,ia are the locus that the partial normalization have two connected
components, one of them is of genus α with marked points pi1 , ..., pia and another one is of genus g−α
with remaining marked points. Of course we will let 0 ≤ α ≤ bg/2c, 0 ≤ a ≤ n, i1 < · · · < ia and
a ≥ 2 when α = 0.
♣ Step 1. Define the forgatting map ϑ : Pic(M g,n)→ Pic(M g,n+1).

Actually this of course induced by the forgetful map (is some kind of blow down). Moreover along
this map, we have the following fundamental relations.

ϑ(λ) = λ,
ϑ(ψi) = ψi − δ0;i,n+1, i = 1, ..., n,

ϑ(δirr) = δirr,
ϑ(δα) = δα, if α = g/2, n = 0,

ϑ(δα;i1,...,ia) = δα;i1,...,ia + δα;i1,...,ia,n+1, otherwise.

♣ Step 2. Preparation I.
Pick a smooth family F = (f : C → S, σi) ∈Mg,n(S) and consider the pullback of σi in C×S C → C

as σ′
i. Let

X = Bl⋃
i(∆∩σ′

i(C))(C ×S C)

and consider the diagram

X = Bl⋃
i(∆∩σ′

i(C))(C ×S C) C ×S C C

C S
f

f σiσ′
iϕ

τi,∆̂

where ∆̂, τi are strict transform of ∆, σ′
i. We let F ′ = (φ : X → C, τi, ∆̂).

Definition 16.6.15. Let L ∈ Pic(Mg,n+1). We shall say that L is trivial on smooth curves if L|F ′ is
trivial whenever S consists of a single point.

Lemma 16.6.16. Let L be a line bundle on M g,n+1 If L is trivial on smooth curves there exists a
line bundle L on M g,n such that L ≡ ϑ(L )mod boundary classes. Conversely, if there is L on M g,n

such that L− ϑ(L ) is an integral linear combination of boundary classes other than the δ0;i,n+1, then
L is trivial on smooth curves.
Proof. See [5] Lemma 2.
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♣ Step 3. Preparation II.
Let X be a smooth K3 surface of degree d = 2g − 2 in Pg such that Pic(X) ∼= Z · L where L be

a hyperplane section, by [63] Example II.3.9. Pick a Lefschetz pencil of hyperplane sections on X.
Blowing up the base locus to get Y ′ with exceptional curves E1, ..., Ed as sections of Y ′ → P1. Hence
Pic(Y ′) freely generated by a fiber and the Ei by Proposition A.3.6.

Notice that as one varies the Lefschetz pencil the monodromy action on the base points of the
pencil, and hence on the E, is given by the full symmetric group.

Let Y = Y ′ −
⋃
{Singular fibers} and P be the projection of Y over P1. Let ψ : Y → P. We write

Ei instead of Ei ∩ Y . Hence we get the Ei freely generate Pic(Y ) as we have the exact sequence

Zk → Pic(Y ′)→ Pic(Y )→ 0

where k be the numbers components of singular fibers.
♣ Step 4. Proof for n ≤ 2g − 2 by induction on n.

As n = 0 is proved we let so is n when n ≤ 2g − 3. We just need to show that Pic(M g,n+1)

is generated, over Z, by ϑ(Pic(M g,n)), ψn+1 and the boundary classes. Let µ ∈ Pic(M g,n+1). As
n ≤ 2g − 2 = d, we let

f : Y := Bl⋃n
i=1(∆∩Ei)(Y ×P Y )→ Y, ∆̂, Ê1, ..., Ên

as the construction in Preparation I.
As µf is an integral linear combination of E1, ..., Ed, ny monodromy, the coefficients of En+1, ..., Ed

are all equal, that is,
µf =

∑
i≤n

aiEi + an+1

∑
i>n

Ei.

On the other hand we can express (ψi)f , (ψn+1)f , (δ0;j,n+1)f as the combinations of Ei. So if we let

µ =
∑

αjψj + βλ+
∑

γjδ0;j,n+1 + · · ·

where αj , β, γj ∈ Q by Harer’s theorem, then we can get some relations (we will omit it here). In
particular, we get αn+1, αj + γj ∈ Z for j ≤ n.

Set
µ′ = µ− αn+1ψn+1 −

∑
(αj + γj)δ0;j,n+1,

then by these relations, we get (µ′)f = 0, and similarly, on any fibers of f . On the other hand, since
we have

µ = αn+1ψn+1 +
∑

αjϑ(ψj) + βϑ(λ) +
∑

(αj + γj)δ0;j,n+1 + · · ·

by several relations in Step 1. Hence µ′ a Q-coefficients linear combination of classes in ϑ(Pic(M g,n))

and boundary classes not of the form δ0;j,n+1. By Lemma 16.6.16 there exists ξ ∈ Pic(M g,n) such
that µ′ ≡ ϑ(ξ)(mod boundary classes), hence

µ ≡ αn+1ψn+1 + ϑ(ξ)(mod boundary classes)

and we win!
♣ Step 5. Proof for n > 2g − 2 by induction on n.

We assume that this is proved for some n ≥ 2g− 2 and we consider n+1. The main idea is similar
as the previous case and we just give a construction of the family of curves we considered here and
omit all details.

Consider the same ψ : Y → P, E1, ..., Ed and let Q = P1 × P→ P with sections D2g−4, ..., Dn. Let

φ : Z :=
Y tQ

E2g−3 ∼ D2g−4
, E1, ..., E2g−4 → P, D2g−3, ..., Dn.

Consider ζ : Z → Z, σ1, ..., σn+1 constructed via Z ×P Z as follows
Like the previous case, we can have some relations and then, we will use the Lemma 16.6.16.
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16.7 The tautological & canonical class
Here we will follow the section XIII.7 in [8].
• Situation A. Let j : Y → Z be a codimension r closed immersion of smooth schemes with G be a
coherent sheaf on Y . By Grothendieck-Riemann-Roch theorem we get

ch(j∗G ) = ch(j!G ) = j∗(ch(G )td(Y ))td(Z)−1.

Hence we get ci(j∗G ) = 0 when i < r and cr(j∗G ) = (−1)r−1(r − 1)!rank(G )[Y ] by the codimension
reasons.
• Situation B. For any (f : X → H, τ1, ..., τn) ∈M g,n(H) where X,H are smooth and any coherent
sheaf F on X, by Grothendieck-Riemann-Roch theorem we get

ch(f!F ) = f∗(ch(F ) · td(Ω∨
X/H)).

Consider the degree 1 terms, we get

c1(f!F ) = f∗

(
c1(F )2

2
− c2(F )−

c1(F )c1(Ω
1
f )

2
+
c1(Ω

1
f )

2 + c2(Ω
1
f )

12

)
.

Next let Σ be the locus of nodes with ideal sheaf I , then by Corollary 7.4.5 we have

0→ Ω1
f → ωf → ωf ⊗ OΣ → 0

as X is smooth. Now consider j : Σ→ X and G = ωf ⊗OΣ in Situation A and Whitney formula we
get c1(Ω1

f ) = c1(ωf ) and c2(Ω1
f ) = [Σ]. (Why the locus Σ is smooth?)

Theorem 16.7.1 (Mumford). For 2g − 2 + n > 0 we have κ1 = 12λ+ ψ − δ in Pic(M g,n).

Proof. By the previous situations, let F = ωf we get

c1(f!ωf ) = f∗

(
c1(ωf )

2

2
−
c1(ωf )c1(ω

1
f )

2
+
c1(ωf )

2 + [Σ]

12

)
= f∗

(
c1(ωf )

2 + [Σ]

12

)
.

By Corollay 16.4.9(iii) and the definition of κ1 (Example 16.4.11) we get

λ =
κ1 − ψ + δ

12
⇒ κ1 = 12λ+ ψ − δ

in Pic(M g,n).

Theorem 16.7.2 (Mumford). For 2g − 2 + n > 0 we have KMg,n
= 13λ+ ψ − 2δ in Pic(M g,n).
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Proof. In the case of Situation B we let f : X → H with divisor of sections D and F = Ω1
f ⊗ωf (D).

By Proposition 9.2.9 and Serre duality we get f!F = f∗F . Hence again by Example 16.2.2 we get

KMg,n
= c1(f∗(Ω

1
f ⊗ ωf (D))) = c1(f∗F ) = c1(f!F ).

By the same work in Situation B we have c1(Ω1
f ⊗ ωf (D)) = c1(ω

2
f (D)) and c2(Ω1

f ⊗ ωf (D)) = [Σ].
Hence again we have

KMg,n
= 13λ+ ψ − 2δ

in Pic(M g,n).

Corollary 16.7.3. For g ≥ 1 and g + n ≥ 4, we have KMg,n
= 13λ+ ψ − 2δ − δ1,∅ in Pic(Mg,n).

Proof. We need to following results due to [8] Proposition XII.2.5:
• Fact. If g ≥ 1 and g+n ≥ 4, consider the locus parameterizing curves with nontrivial automorphism
group Ξ, then the only divisor components of Ξ is ∆1,∅.

Back to the problem, then this follows KMg,n
= 13λ+ψ−2δ in Pic(M g,n), this fact and Riemann-

Hurwitz Theorem!

Remark 16.7.4. Note that when we talking about δ instead of ∆ over coarse moduli space Mg,n, we
means that δ1 = 1

2∆1 and δ = ∆irr +
1
2∆1 +∆2 + · · · . Hence here KMg

= 13λ− 2∆ + 1
2∆1.

16.8 A glimpse of ample & nef divisors and F -conjecture
Here we will summary (without proofs) some results about ample divisors over the coarse moduli space
Mg,n. We will follows the idea in [46] here.

Theorem 16.8.1 (Cornalba-Harris [24], 1988). The class aλ − bδ ∈ Pic(Mg) ⊗ Q has non-negative
degree on every curve in Mg not contained in the boundary ∆ = Mg\Mg if and only if a ≥ (8 + 4

g )b

and is ample if and only if a > 11b > 0.

Remark 16.8.2. By Lemma 6.1 in [25], the Hodge class λ is big and nef. Note that by this result, λ
itself is not ample, but since it is big it is a sum of an ample and an effective divisor.

Definition 16.8.3. (i) The strata consisting of curves with 3g − 4 + n nodes form curves in Mg,n

called F -curves (in honor of Faber and Fulton);
(ii) The locus of flag curves is the image F g,n of the morphism

M0,g+n/Sg →Mg,n

obtained by attaching g copies of the pointed rational elliptic curve at the g-unordered points.

Remark 16.8.4. For (i), since the locus of curves with k nodes has codimension k in Mg,n and
dim(Mg,n) = 3g − 3 + n, so we just consider the 1-dimensional locus.

Actually by classical Nakai-Moishezon criterion we know that a divisor D on Mg,n is ample if and
only if DdimK · K > 0 for all integral subscheme K ⊂ Mg,n. But Fulton’s Conjecture asserts more
remarkable thing:

Conjecture 1 (F -Conjecture). A divisor D on Mg,n is ample if and only if D · C > 0 for every
F -curve on Mg,n.

In the paper [46] they showed that we just need to consider the case n = 0:

Theorem 16.8.5 (Gibney-Keel-Morrison, 2001). A divisor D on Mg,n is nef if and only if D has
non-negative intersection with all the F -curves and the restriction D|F g,n

is nef. In particular, the
F -conjecture for g = 0 implies the F -conjecture for all g.
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(But although n = 0, this problem is also open and difficult) In particuler, this result can deduce
many ad hoc examples. We may call the divisor which has non-negative intersection number with
F -curves are called F -nef. Hence the F -conjecture asserts that the F -nef cone of divisors is the same
as the nef cone of divisors of Mg,n.

Corollary 16.8.6. Let D be an F -nef divisor aλ−
∑
biδi on Mg. Assume further for each coefficient

bi, 1 ≤ i ≤ bg/2c, that either bi = 0 or bi ≥ birr. Then D is nef.

Proof. See [46] Proposition 6.1.

Corollary 16.8.7. (i) The ray 10λ− 2δ + δirr is nef on Mg for all g ≥ 2;
(ii) (Cornalba-Harris). The class 11λ− δ is nef on Mg for all g ≥ 2.

Proof. See [46] Corollary 6.2, 6.3.

We should also remark that the F -conjecture is known for small genus and small numbers of points
thanks to the work of Keel, McKernan, Farkas and Gibney:

Theorem 16.8.8 (Keel-McKernan with Gibney-Keel-Morrison and Farkas). The F -conjecture holds
for Mg,n when the pair (g, n) is of form:

(i) (g, n) for g + n ≤ 7;
(ii) (g, 0) for g ≤ 24;
(iii) (g, 1) for g ≤ 8 or (6, 2).

Proof. See Corollary (0.4) in [46], Theorem 1 in [38] and the results in [45]. In fact, Gibney has
reduced the conjecture on a given Mg to an entirely combinatorial question which can be checked by
computer.
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Chapter 17

The Kodaira dimension of moduli
space of curves

17.1 Summary of the results of kodaira dimension
Here as an introduction we will summary some results of the types of Mg,n where we will prove and
we may not prove.

First, Mg,n is uniruled or even unirational for some small values of g and n:

Theorem 17.1.1 (Summaried in [14]). Here we have a table about these. Let Mg,n is rational if
0 ≤ n ≤ a(g); is unirational if 0 ≤ n ≤ b(g) and uniruled if 0 ≤ n ≤ c(g):

g 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a(g) 12 14 15 12 8
b(g) 12 14 15 12 15 11 8 9 3 10 1 0 2
c(g) 12 14 15 14 15 13 12 10 9 10 5 3 2 2 0

Remark 17.1.2. Hence the Kodaira dimension of Mg is negative for g ≤ 15.

Let’s back to consider the Kodaira dimension and general typeness of Mg,n.

Theorem 17.1.3 (Belorousski [13], 1998; Bini-Fontanari [16], 2004). We have

κ(M1,n) =

{ −∞, 1 ≤ n ≤ 10;
0, n = 11;
1, n ≥ 12.

Corollary 17.1.4 (Bini-Fontanari [16], 2004). For n ≥ 1, M1,n is never of general type.

Theorem 17.1.5 (Summaried in [77]). Let Mg,n is of general type for all n ≥ m(g) given in the
following table:

g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
m(g) 16 15 16 15 14 13 11 12 11 11 10 10 9 9 9 7 6 4 4 1

Now we consider the case when n = 0, that is, the space Mg.

Theorem 17.1.6 (Mumford-Eisenbud-Harris [56][34], 1987; Farkas-Jensen-Payne [39], 2020). The
space Mg is of general type when g ≥ 22.

111
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Remark 17.1.7. (i) The Mumford-Eisenbud-Harris theorem proved that Mg is of general type when
g ≥ 24 and has positive Kodaira dimension when g = 23. Further more, Farkas-Jensen-Payne proved
that Mg is of general type when g = 22, 23;

(ii) The remaining cases are 16 ≤ g ≤ 21. Actually the Kodaira dimension of Mg are still open
for 16 ≤ g ≤ 21 (Chang and Ran also argued that M16 is uniruled, but Tseng recently found a fatal
computational error in this argument arXiv:1905.00449, and this case is again open).

The first main aim of the chapter is to show the Mumford-Eisenbud-Harris theorem, that is, Mg is
of general type when g ≥ 24. We will refer [33] and [34] by using limit linear series instead of admissible
covers in [56].

17.2 The theorem of Harris-Mumford-Eisenbud
We omitted the theory of limite linear series and focus on the whole structure of the proof.

Theorem 17.2.1 (Mumford-Eisenbud-Harris [56][34], 1987). The space Mg is of general type when
g ≥ 24.

Remark 17.2.2. In papers [56][34] they show that Mg is of general type when g ≥ 24. But their
criterion also can derived that Mg is of general type.

To prove this, just need to show that KMg
is big (see Definition A.3.7). Recall that by Corollary

16.7.3, we get

KMg
= 13λ− 2δ − δ1 = 13λ− 2δirr − 3δ1 − 2

⌊g/2⌋∑
i=2

δi.

We also know that big if and only if it is numerically equivalent to the sum of an ample and an effective
divisor.

Theorem 17.2.3 (Criterion in [34]). The spaceMg is of general type if there exists an effective divisor
D over it with class

D = aλ− b0δirr −
⌊g/2⌋∑
i=1

biδi

such that
a

b1
<

13

3
,

a

bi
<

13

2
for all i.

Proof. By Theorem 16.8.1 we know that (11 + ε)λ − δ is ample, then hence λ is big. Now we let we
have such an effective divisor D on Mg. Let c = p

q be a rational number such that

max
{

2

b0
,
3

b1
,
2

bi

}
< c <

13

a
,

and we find that

qKMg
− pD = (13q − ap)λ+ (pb0 − 2q)δirr + (pb1 − 3q)δ1 +

⌊g/2⌋∑
i=2

(pbi − 2q)δi.

As λ is big and D is effective, then KMg
is big. Hence Mg is of general type.

So we need to find such effective divisor D for any g ≥ 24.
♣ Construction A. Brill-Noether divisors Dr

s.
If g + 1 is composite, we can write g = (r + 1)(s − 1) − 1 for s ≥ 3, r > 0 and let d = rs − 1.

Let S = {[C] ∈ Mg : [C] admits grd}. Consider Dr
s be the union of the codimension 1 components

https://arxiv.org/pdf/1905.00449.pdf
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of S ⊂ Mg. This divisor called Brill-Noether divisor since in this case the Brill-Noether number
ρ = g − (r + 1)(g − d+ r) = −1.
Theorem A.(Brill-Noetherian Ray Theorem) In this situation, there exists some rational number
c > 0 such that

Dr
s = c

(g + 3)λ− g + 1

6
δirr −

⌊g/2⌋∑
i=1

i(g − i)δi

 .

♣ Construction B. Petri divisors Ers .
If g + 1 > 2 is not composite (in particular g is even), then we let g = (r + 1)(s − 1) and d = rs.

Let

T =

{
[C] ∈Mg

∣∣∣∣∣[C] admits L = (L , V ) be a grd such that the map
V ⊗H0(C,KC ⊗ L−1)→ H0(C,KC) is not injective

}
.

Then consider Ers be the union of the codimension 1 components of T ⊂ Mg. In this case the Brill-
Noether number ρ = 0.
Theorem B. If g = 2(d− 1) then we have

E1
d = c

eλ− f0δirr − g/2∑
i=1

fiδi


where c = 2 (2d−4)!

d!(d−2)! , e = 6d2 + d− 6 and f0 = d(d− 1), f1 = (2d− 3)(3d− 2), f2 = 3(d− 2)(4d− 3) and
for e ≤ i ≤ g/2 we have fi > fi−1.
♣ The proof of the main theorem.

Assume that we have proved the Theorem A and B, then we give an easy proof of the main
theorem 17.2.1 by using the Theorem 17.2.3.

Proof of Theorem 17.2.1. First, for g ≥ 28 and even, consider E1
(g/2)+1 and one can easy to calculate

that it satisfied the Theorem 17.2.3; Second, for g ≥ 24 and odd, then D1
(g+1)/2 satisfied the Theorem

17.2.3; For g = 24, then D4
6 satisfied the Theorem 17.2.3 and for g = 26, then D2

10 satisfied the
Theorem 17.2.3. Hence for any g ≥ 24, there exists such divisor. Hence for any g ≥ 24 the space Mg

is of general type.

♣ Preparation for the proof of Theorem A and B.
We just prove Theorem A and give a sketch of Theorem B since it is so complicated. Consider

i :M0,g →Mg be the map by attaching g copies of a fixed pointed elliptic curve at each of the marked
points; And i : M2,1 → Mg be the map by attaching a fixed general smooth pointed curve of genus
g − 2 at the marked point:

i
j

Let W ⊂ M2,1 be the closure of the locus for which the marked point is Weierstrass point of the
underlying curves in M2,1.

Theorem 17.2.4. Let D ⊂Mg be an effective divisor as

D = aλ− b0δirr −
⌊g/2⌋∑
i=1

biδi.
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(i) If supp(j∗D) ⊂ W , then a = 5b1 − 2b2 and b0 = b1
2 −

b2
6 . Further, if we write j∗D = qW for

some rational number q, then b2 = 3q.
(ii) If i∗D = 0, then

bi =
i(g − i)
g − 1

b1 for i = 2, ...,
⌊g
2

⌋
.

Proof. See [34] Theorem 2.1 and Theorem 3.1 or the final several parts of the section 6.F in [55].
♣ Proof of Theorem A.
Corollary 17.2.5. Let D ⊂Mg be an effective divisor as D = aλ− b0δirr −

∑⌊g/2⌋
i=1 biδi satisfies both

(i)(ii) in the Theorem 17.2.4, then there exists some rational c such that

D = c

(g + 3)λ− g + 1

6
δirr −

⌊g/2⌋∑
i=1

i(g − i)δi

 .

Proof. Almost trivial. Use the second relation to write b2 in terms of b1. Then use the first to show
that a/b0 = 6+12/(g+1). Then show that if a = g+3, then b0 = (g+1)/6 and b1 = 1. The remaining
coefficients are then immediate from the second set of relations.
Proposition 17.2.6. Let g = (r+ 1)(s− 1)− 1 for s ≥ 3, r > 0, then Dr

s doesn’t meet either i(M0,g)

or j(M2,1\W ). Moreover, j∗(Dr
s) is a positive multiple of the class of W .

Proof. See [34] Proposition 4.1. and [55] Proposition 6.68.
Proof of Theorem A. By the first statement in Proposition 17.2.6 and Corollary 17.2.5, we get

Dr
s = c

(g + 3)λ− g + 1

6
δirr −

⌊g/2⌋∑
i=1

i(g − i)δi


for some rational c. To show c > 0, we use the second statement in Proposition 17.2.6. This statement
shows that the coefficient cb2 of δ2 in the Theorem is positive. As Dr

s is effective, hence c > 0. Well
done.
♣ Sketch of Theorem B.

Let g = 2d−2 = 2k and let E1
d = aλ− b0δirr−

∑d−1
i=1 biδi. Since when g ≤ 2 is trivial, we let g ≥ 4.

• Step A. First show that j∗E1
d ⊂W . By Theorem 17.2.4 we get

RA : a = 5b1 − 2b2 and b0 =
b1
2
− b2

6
.

• Step B. Choose some kind of family of curves Cj ⊂ M0,g and restricting to them. Then we get
some relations:

RB0 : bj − 2bj+1 + bj+2 = −2b1 + b2 + 2
(2k − 2)!

k!(k − 1)!
−
{

2 (2l)!(2k−2−2l)!
(l+1)!l!(k−l)!(k+l−1)! , j = 2l even;

0, j odd.

(Where bk+1 is interpreted as = bk−1) These give the following formulas for b2, ..., bk in terms of b1:

RB1 : b2 =
4k − 4

2k − 1
b1 − 2

(2k − 1)!

(k − 2)!(k + 1)!
;

for 3 ≤ i ≤ k we have

RB2 :

bi = −i(i− 2)b1 +
i(i− 1)

2
b2 + (i− 2)(i− 1)

(2k − 2)!

k!(k − 1)!

−
⌊(i−2)/2⌋∑

l−1

2(i− 1− 2l)
(2l)!(2k − 2− 2l)!

(l + 1)!l!(k − l)!(k + l − 1)!
.
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Hence the relations RA, RB1, RB2 express all the coefficients in terms of b1. But since RB1, RB2 are
inhomogeneous, this is not enough to check the criterion given in the introduction.
• Step C. We consider another 1-dimensional family of curves and restrict E1

d into that family, then
we can get

RC : (4k − 2)b0 − b1 = (4k + 2)
(2k − 1)!

(k − 2)!(k + 1)!
.

• The final proof of the Theorem B.
Proof of Theorem B. Combining RA, RB1, RC we can get

a = c(6k2 + 13k + 1), b0 = ck(k + 1), b1 = c(2k − 1)(3k + 1), b2 = 3c(k − 1)(4k + 1)

where c = 2 (2k−2)!
(k+1)!(k−1)! . Moreover, by RB0 we get

bj − 2bj+1 + bj+2 ≤ −2b1 + b2 + 2
(2k − 2)!

k!(k − 1)!

≤ −12k (2k − 2)!

(k + 1)!(k − 1)!
< 0,

so the sequence of bi is convex. But since bk+1 = bk−1 and taking j = k− 1 gives bk > bk−1, hence we
get Theorem B.
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Chapter 18

About Hassett-Keel program

We will work over algebraically closed field of characteristic zero.

18.1 A glimpse of Hassett-Keel program of M g

Here we follows the survey [37] and the introduction of the paper [60][61] and [4][2][3]. These are called
Hassett-Keel program aiming to give modular interpretations of the log canonical models of Mg, with
the ultimate goal of giving a modular interpretation of the canonical model for the case g � 0.

By the Theorem of Mumford-Eisenbud-Harris, we get Mg is of general type when g � 0. Fixed
this kind of g. By the paper BCHM[18] we get the canonical ring

R(Mg) =
⊕
n≥0

H0(Mg, nKMg
)

is finitely generated. Hence we can consider its canonical model, more generally, its log canonical
models

Mg(α) = Proj

⊕
n≥0

H0
(
M g,

⌊
n(KMg

+ αδ)
⌋)

for α ∈ Q ∩ [0, 1].
Before consider these, we first introduce some more stability of curves other than Deligne-Mumford’s.

Definition 18.1.1 (Some types of elliptic chains). (i) Elliptic tail be a connected subcurve of genus 1
which meets the rest curves at only one node;

(ii) Elliptic bridge be a connected subcurve of genus 1 which meets the rest curves at only two nodes;
(iii) Open elliptic chain of length l is a 2-pointed subcurve (C ′, p, q) such that C = E1∪a1∪ · · ·∪al−1

El
where Ei are connected genus one curves such that Ei ∩Ei+1 is a node and Ei ∩Ej −∅ for |i− j| > 1
and p ∈ E1, q ∈ El are smooth points;

(iv) Open tacnoded elliptic chain of length l is a 2-pointed subcurve (C ′, p, q) such that C =
E1 ∪a1 ∪ · · · ∪al−1

El where Ei are connected genus one curves with nodes, cusps, or tacnodes as
singularities such that Ei ∩ Ei+1 is a tacnode and Ei ∩ Ej − ∅ for |i − j| > 1 and p ∈ E1, q ∈ El are
smooth points with ωC′(p+ q) is ample.

Definition 18.1.2. Let C be a projective connected curve of arithmetic genus g ≥ 3, with nodes, cusps,
and tacnodes as singularities. We say C admits an open (tacnodal) elliptic chain if there is an open
(tacnodal) elliptic chain (C ′, p, q) and a morphism i : C ′ → C such that

(i) i is an isomorphism over C ′\{p, q} onto its image;
(ii) i(p), i(q) are nodes of C; we allow the case i(p) = i(q), in which case C is said to be a closed

(tacnodal) elliptic chain.
C admits a weak tacnodal elliptic chain if there exists i : C ′ → C as above with the second condition
replaced by

117
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(ii’) i(p) is a tacnode and i(q) is a node of C;
(ii”) i(p) = i(q) is a tacnode of C, in which case C is said to be a closed weak tacnodal elliptic

chain.

Definition 18.1.3 (pseudo-stable). A complete curve is pseudo-stable if
(1) it is connected, reduced, and has only nodes and ordinary cusps as singularities;
(2) admits no elliptic tails and its the canonical sheaf of the curve is ample.

Definition 18.1.4 (c-stable). A complete curve is c-semistable if
(1) C has nodes, cusps, and tacnodes as singularities and ωC is ample;
(2) a connected genus one subcurve meets the rest of the curve in at least two points (not counting

multiplicity).
It is said to be c-stable if it is c-semistable and has no tacnodes or elliptic bridges.

Remark 18.1.5. A curve is c-stable if and only if it is pseudo-stable and has no elliptic bridges.

Definition 18.1.6 (h-stable). A complete curve is h-semistable if it is c-semistable and admits no
tacnodal elliptic chains. It is said to be h-stable if it is h-semistable and admits no weak tacnodal
elliptic chains.

Actually in [60][61], Hassett and Hyeon showing that:

Theorem 18.1.7 (Hassett-Hyeon).

Mg(α) ∼=


Mg, if α ∈ (9/11, 1]

M
ps

g , if α ∈ (7/10, 9/11]

M
c

g, if α = 7/10

M
h

g , if α ∈ (2/3− ε, 7/10)

where M
ps

g ,M
c

g,M
h

g are the moduli spaces of pseudostable, c-semistable, and h-semistable curves,
respectively.

In these works, new projective moduli spaces of curves are constructed using GIT. Actually one
of the most appealing features of the Hassett-Keel program is the way that it ties together different
compactifications of Mg obtained by varying the parameters in the GIT constructions of Mumford’s.

In the series of papers [4][2][3], recall that in Part II, the theory of Deligne-Mumford stabilization
has three steps:

(a) Prove that the functor of stable curves is a proper Deligne-Mumford stack M g,n;
(b) Use the Keel-Mori theorem to show that M g,n has a coarse moduli space Mg,n;
(c) Find some line bundle on M g,n descends to an ample line bundle on Mg,n.

In these papers, they proved a general existence theorem for good moduli spaces of non-separated
algebraic stacks that can be viewed as a generalization of the Keel-Mori theorem. Hence we can run
the modified version of the previous standard three-step procedure to construct moduli interpretations
for the log canonical models:

Mg,n(α) = Proj

⊕
n≥0

H0
(
M g,

⌊
n(KMg

+ αδ + (1− α)ψ)
⌋)

Actually, for all α > 2/3 + ε, where 0 < ε� 1, we have
(a) Construct an algebraic stack M g,n(α) of α-stable curves (see [4]);
(b) Construct a good moduli space M g,n(α)→Mg,n(α);
(c) Show that KMg

+ αδ + (1 − α)ψ on M g,n(α) descends to an ample line bundle on Mg,n(α),
and conclude that Mg,n(α) ∼=Mg,n(α).
Here in the intervals (9/11, 1), (7/10, 9/11), (2/3, 7/10) and (2/3− ε, 2/3), the definition of α-stability
does not change, hence so are M g,n(α) and Mg,n(α).
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18.2 Log canonical models of Deligne-Mumford stacks
This section taken from the appendix of paper [60]. In this section, a scheme means a separated scheme
of finite type over k and a stack means a separated Deligne-Mumford stack of finite type over k.

Definition 18.2.1. A birational morphism of stacks is a morphism f : X1 →X2 such that there exist
dense open substacks Ui ⊂Xi with U2 = f−1(U1) and f : U1 → U2 an isomorphism.

There is a largest open substack U ⊂X1 such that f an isomorphism, and we let the complement
is exceptional locus Exc(f). For any closed substack D ⊂ X2 such that f(U ) ∩ D dense in D , the
birational transform f−1

∗ D is the closure of f−1(f(U ) ∩D) in X1.
We say that X1 and X2 are properly birational if there exists a stack Y and birational proper

morphisms gi : Y →Xi.

Theorem 18.2.2 (Resolution of singularities). For a reduced stack X , there exists a smooth stack
X ′ and a birational proper map f : X ′ →X such that

(i) locus Exc(f) can be taken to be a normal crossings divisor;
(ii)If Z ↪→X is a closed substack with ideal sheaf IZ ⊂ OX , then there exists an divisor D ′ ⊂X ′

such that f∗IZ
∼= OX ′(−D ′) and Exc(f) ∪D ′ is simple normal crossings.

Proof. This need the functorial resolving singularities and such procedures commute with étale maps
(see Page 329 in [59]), here we give an idea. One have an étale presentation R ⇒ U . After resolving
R,U to be R′, U ′, we can get R′ ⇒ U ′ for a smooth stack X ′.

Proposition 18.2.3. Let X be a connected normal separated scheme of finite type over k. Let
D =

∑
j ajDj be a Q-divisor on X, with the Dj distinct and reduced and aj ∈ [0, 1]. Then the

following properties of pair (X,D) are local on the étale topology:
(i) X is normal;
(ii) Dj are codimension one reduced closed subschemes;
(ii) for some m > 0 the divisor m(KX +D) is Cartier.

We will call (X,D) admissible if it satisfying (i)(ii)(iii).
Pick a coherent sheaf F over X, then following properties are local on the étale topology:

(a) F is locally free;
(b) F with Sk condition for k > 0.

If X integral with a integral Weil divisor, then OX(D) be a reflexive S2 of rank 1 and the formation of
OX(D) commutes with étale maps.
Let (X,D) admissible, then being terminal, canonical, klt, plt, lc are local on the étale topology.

Proof. These are the results of descent theory, we refer St 0238 and [66] 5.20.

Definition 18.2.4. Let (X ,D) is proper and admissible, then define its log canonical ring is

R(X ,D) =
⊕
m≥0

Γ(X ,OX (mKX + bmDc)).

We define (X ,D) is terminal, canonical, klt, plt, lc if it admits an étale presentation with this
property. We say it is strictly lc if it is lc and X \

⋃
j Dj is canonical.

Similar as the normal birational geometry as in [66], we have:

Proposition 18.2.5. The admissible pair (X ,D) is terminal, canonical, klt, and lc if and only if
there exists a log resolution f : X ′ →X such that

(i) Exc(f) =
⋃

Ej is a divisor, Exc(f)∪f−1D is simple normal crossings and
∑
j f

−1
∗ Dj is smooth;

(ii) we have
KX ′ +

∑
j

ajf
−1
∗ Dj ∼Q f

∗(KX + D) +
∑
i

diEi

such that (aj < 1 and di > 0), (aj ≤ 1 and di ≥ 0), (aj < 1 and di > −1) and (aj ≤ 1 and di ≥ −1).

Proof. See [66] Corollary 2.32.

https://stacks.math.columbia.edu/tag/0238
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Remark 18.2.6. These di =: d(Ei;X ,D) is called discrepancy if replaced by any proper birational
Y →X . We will define d(Dj ;X ,D) = −aj and d(D0;X ,D) = 0 for divisors in X and not in D .

Definition 18.2.7. Two admissible pairs (X ,D) and (X ′,D ′) are properly birational if there exists
an admissible pair (Y ,B) and proper birational morphisms f : Y → X and f ′ : Y → X ′ such that
KY + B − f∗(KX + D) is f -exceptional and effective, similar as KX ′ + D ′.

Proposition 18.2.8. If two admissible pairs (X ,D) and (X ′,D ′) are properly birational, then the
natural morphism is an isomorphism of graded rings:

R(X ,D) ∼= R(X ′,D ′).

Proof. This is directly, see [60] Proposition A.12.

Proposition 18.2.9. Let (X ,D) be a proper lc (or klt) pair with coarse moduli space π : X → X.
Then there exists an effective Q-divisor D′ =

∑
ℓ c

′
ℓD

′
ℓ, 0 ≤ cℓ ≤ 1 of X such that

(i) pair (X,D′) is lc (or klt);
(ii) for each m > 0 such that m(KX +D′) is integral and Cartier, we have

m(KX + D) = π∗m(KX +D′);

(iii) for any m ≥ 0 we have

Γ(X,mKX + bmD′c) ∼= Γ(X ,mKX + bmDc).

Together these we have
π∗ : R(X,D′) ∼= R(X ,D).

Proof. Omitted, see [60] Proposition A.13.

Corollary 18.2.10 (Basepoint-freeness for stacks). Let (X ,D) be a proper klt pair and KX + D is
nef and big (i.e., KX +D′ is nef and big). Consider the stack and coarse moduli space

Y := [(SpecR(X ,D)\0)/Gm], Y := ProjR(X ,D) = ProjR(X,D′),

where the action of Gm arises from the grading, then there is a morphism of stacks ψ : X → Y
inducing on coarse moduli spaces the contraction from X to the log canonical model of (X,D′).

Proof. Use [66] Theorem 3.3.

18.3 The first result for 9/11 < α ≤ 1

Here we just consider g ≥ 4. First we need to point out the following well-known result:

Lemma 18.3.1. For g ≥ 4 we consider the canonical map f : M g →Mg, then we have

f∗
(
KMg

+ α(∆irr +∆2 + · · ·+∆⌊g/2⌋) +
1 + α

2
∆1

)
= KMg

+ αδ.

Proof. Similar as Corollary 16.7.3, the only divisor components of the locus parameterizing curves with
nontrivial automorphism group is ∆1. Hence by Riemann-Hurwitz theorem we have

f∗
(
KMg

+ α(∆irr +∆2 + · · ·+∆⌊g/2⌋) +
1 + α

2
∆1

)
= KMg

− δ1 + α(δirr + δ2 + · · ·+ δ⌊g/2⌋) +
1 + α

2
f∗∆1

= KMg
− δ1 + α(δirr + δ2 + · · ·+ δ⌊g/2⌋) + (1 + α)δ1 = KMg

+ αδ,

so we get the conclusion.
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Fact. By Lemma 18.3.1, the universal property of the coarse moduli space implies that sections of
invertible sheaves on M g are all pullbacks of sections of the corresponding reflexive sheaves on Mg.
Hence by Proposition 18.2.9 we get the log canonical model of M g with respect to KMg

+αδ can thus
be identified with the log canonical model of Mg with respect to (we will use both of them)

K(Mg;∆, α) := KMg
+ α(∆irr +∆2 + · · ·+∆⌊g/2⌋) +

1 + α

2
∆1.

Theorem 18.3.2 (Mumford-Cornalba-Harris). If 9/11 < α ≤ 1, then Mg(α) ∼=Mg.
Proof. By Remark 16.7.4 and Theorem 16.8.1, we know that the divisor

aλ−∆+
1

2
∆1 =

a

13

(
KMg

+

(
2− 13

a

)
(∆irr +∆2 + · · · ) +

(
3

2
− 13

2a

)
∆1

)
=

a

13
K

(
Mg;∆,

(
2− 13

a

))
is ample if and only if a > 11. Hence K(Mg;∆, α) is ample if and only if 9/11 < α ≤ 1. As Mg is
proper, we get Mg(α) ∼=Mg by [47] Proposition 13.48.

Remark 18.3.3. As (M g, αδ) is lc and proper, the log canonical model (in sense of [66] Definition
3.50) is unique and is Mg here by [66] Theorem 3.52.

18.4 The main results for 7/10 < α ≤ 9/11

We will focus on the paper [60] and work out this paper. Here we just consider g ≥ 4.
When α = 9/11, the divisor K(Mg;∆, α) is not ample and pair (M g, αδ) is a klt pair. Hence using

the log MMP argument, we need to find some extremal ray to obain a contraction!
By Theorem 16.8.1, when α = 9/11, then K(Mg;∆, α) = 11λ − δ is nef and big (when g ≥ 22 as

then it’s log general type). By the base-point free theorem we get it is semi-ample.
Fix a (C2, p) in Mg−1,1 and consider

M1,1 ×Mg−1,1 →Mg.

Consider C = C1 ∩p C2 be curves with elliptic tails and (C1, p) in M1,1
∼= P1. Hence these curves

parameterizing by a rational curve R(C2, p) ⊂Mg.

Lemma 18.4.1. In Mg, the class R = [R(C2, p)] is independent of (C2, p) and we have λ ·R = 1/12,
δirr ·R = 1, δ1 ·R = −1/12 and δi ·R = 0 for all i ≥ 2. In particular we have (KMg

+9/11δ) ·R = 0.

Proof.

In fact, in [46] (Proposition 6.4) they find that:

Proposition 18.4.2. When g ≥ 5, the only divisorial contraction γ : Mg → X with ρ(Mg/X) = 1
with X projective is the blowdown of the elliptic tails, contraction of R.

Now what is X? Actually the construction of γ as follows. As D := K(Mg;∆, α) is semi-ample,
replacing a multiple we get a morphism f : Mg → P := P(Γ(Mg, D)). By taking Stein factorization,
we get

Mg → Spec
P
f∗OMg

→ P = P(Γ(Mg, D)).

The morphism Mg → Spec
P
f∗OMg

is the contraction map. We claim that

Spec
P
f∗OMg

∼= Proj
⊕
n

Γ(Mg, nD).
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First we need to find a canonical morphism r : Mg → Proj
⊕

n Γ(Mg, nD) and analyze its
properties. This is a standard scheme theory. For simplicity, we denote Ad = Γ(Mg, dD) and
A =

⊕
n Γ(Mg, nD). Then the map OMg

A→
⊕

d O(dD) = Sym(O(D)) induce the morphism

r :Mg
∼= ProjSym(O(D))→ ProjOMg

A = ProjA×Mg → ProjA

which induce r−1(D+(f)) = (Mg)f and the restriction map rf : (Mg)f → D+(f) yield A(f)
∼=

Γ((Mg)f ,OMg
) where f ∈ A+ and (Mg)f means the non-vanishing locus of f (for more details of the

general case of this, we refer the previous part of the Proposition 13.48 in[47]).
Next, we have the canonical map π : Proj

⊕
n Γ(Mg, nD) → P(Γ(Mg, D)) induced by surjection

SymΓ(Mg, D)→
⊕

n Γ(Mg, nD). Easy to see that we have the following commutative diagram:

Spec
P
f∗OMg

Mg Proj
⊕

n Γ(Mg, nD)

P = P(Γ(Mg, D))

f

r

π

g

h

Let f induced by the sections fi, then pick the standard coordinates xi of P we have h−1(D′
+(xi)) =

D+(fi) = SpecA(fi)
∼= SpecΓ((Mg)fi ,OMg

). One the other hand, since f−1(D′
+(xi)) = (Mg)fi , we

also have h−1(D′
+(xi)) = SpecΓ((Mg)fi ,OMg

). As the intersection parts are automatically coincident,
we get the claim. Hence we can restate the result:
Proposition 18.4.3. When g ≥ 5, the only divisorial contraction of Mg is γ :Mg →Mg(9/11) with
Mg(9/11) projective is the blowdown of the elliptic tails ∆1.

As γ is a divisorial contraction and Mg is a quotient of smooth variety by a finite group (by E.
Looijenda, see [71]), the space Mg(9/11) is Q-factorial. Then we may ask that is Mg(9/11) the coarse
moduli space of moduli stack of some kind of curves which is the compactification of moduli space of
smooth curves? Actually this is one of our main theorems. Here we state the main theorems we will
prove.
Theorem 18.4.4. Let M

ps

g be the stack of pseudostable curves. Then there is a morphism of stacks

T : M g →M
ps

g

which is an isomorphism in the complement of δ1. And for a stable curve C ∈ δ1(Speck), the curve
T (Speck)(C) is obtained by replacing each elliptic tail of C with a cusp:

E1

E2

Er−1

Er

p1

p2

pr−1

pr

q1

q2

qr−1

qr

T

The coarse moduli space Mps

g
∼=Mg(9/11) and the induced map

T :Mg →M
ps

g

coincides with the extremal contraction γ :Mg →Mg(9/11).
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Theorem 18.4.5. For 7/10 < α ≤ 9/11, then Mg(α) ∼=M
ps

g as projective varieties.

18.4.1 Results about the moduli stack of pseudostable curves
Define the moduli stack of pseudostable curves M

ps

g as

M
ps

g (S) :=

{
f : C → S

∣∣∣∣f is proper and flat and the geometric fibers
of f are pseudostable of genus g.

}
.

The main reference we use about the moduli stack of pseudostable curves is paper [76].

Theorem 18.4.6 (D. Schubert, 1991). The stack M
ps

g is a separated Deligne-Mumford stack of finite
typre over k. By Keel-Mori’s theorem, they have a coarse moduli space M

ps

g . Actually we have
M

ps

g
∼= [chows

3/PGL5g−5] and M
ps

g
∼= chow3 // SL5g−5 where chow3 be the Chow variety and chows

3

be the GIT-stable locus.
Remark 18.4.7. We may use the Hilbert scheme instead of Chow variety, we refer [61].

18.4.2 Constructing the morphism of moduli stacks
Lemma 18.4.8 (Single case). Let C be a genus g > 2 stable curve of with elliptic tails E1, ..., Er and
let D be the union of the components of C pi the node where Ei meets D, away from the elliptic tails
an. Then there exists a unique curve T (C) characterized by the following properties:

(a) there is a birational morphism ν : D → T (C), which is an isomorphism away from p1, ..., pr;
(b) ν is bijective and maps each pi ∈ D to a cusp qi ∈ T (C).

There is a unique replacement morphism ξC : C → T (C) with ξC |D = ν and ξC |Ei are constant. Note
that T (C) has arithmetic genus g.
Proof. It suffices to determine the subrings OT (C),qi ⊂ OD,pi (some kind of anti-normalization). Let
mD,pi be the maximal ideal and let OT (C),qi generated by the constants and m2

D,pi
as an algebra. Then

the maximal ideal of it generated by two elements x, y such that x2 = y3 (let t be the uniformizer, then
m2
D,pi

generated by t2, t3). Conversely, any germ of a cuspidal curve normalized by (D, pi) is obtained
in this way. Hence ν is the normalization of the cusps q1, ..., qr.

(I) Reduce to the concrete case
Now we need to construct the (1-)morphism of stacks

T : M g →M
ps

g

assigns to each stable curve f : C → S a pseudostable curve T (f) : T (C)→ S.
The main tool is the (family-case) replacement S-morphism ξC : C → T (C) satiefies the following

properties:
(a) Over the open subset S0 ⊂ S mapping to the complement of δ1, the ξC |S0 is an isomorphism;
(b) for the s ∈ S mapping to δ1, the morphism ξCs

is the morphism as Lemma 18.4.8;
(c) ξC is compatible with base change and isomorphisms.
Pick a étale cover U of M g (as it is a Deligne-Mumford stack) with representation R⇒ U and the

universal family π : Z → U where R encodes the isomorphisms among the fibers of π.
Proposition 18.4.9. To construct T and ξ over M g, it suffices to construct T (π) : T (Z) → U and
ξZ compatibly with the isomorphism relation R.
Proof. For any family of stable curves f : C → S correspond to ρf : S →M g, consider the cartesian
of stacks:

S′ := S ×Mg
U U

S M g

prS
ρf

prU

ρπ⌜



124 CHAPTER 18. ABOUT HASSETT-KEEL PROGRAM

and we get the stable curves
pr∗SC pr∗UZ

S′
pr∗Sf pr∗Uπ

∼=

After base change, we get pr∗UT (π) : pr∗UT (Z) → S′ and pr∗UξZ : pr∗UZ → pr∗UT (Z). Hence they
correspond to pr∗Sf : pr∗SC → S′. As prS is the base change of ρπ, it is étale, hence faithfully flat. As
T is compatible with isomorphisms, by the descent theory we get

T (f) : T (C)→ S, ξC : C → T (C)

as desired.

(II) Setup step. Find a appropriate line bundle
Consider

Z Ug = M g,1 ⊃ δ1,{1}

U M g

univ

µπ

π

ρπ

⌜

with elliptic tail δ1,{1}. Let E := µ∗
πδ1,{1} (is Cartier, omitted) and W = ρ∗πδ1 and consider L :=

ωπ ⊗ O(E) = ωπ(E). Like Lemma 2.1.1, we find that over U\W we have

kn := rankπ∗L⊗n =

{
g n = 1,

(2n− 1)(g − 1) n ≥ 2.
, R1π∗L

⊗n ∼=
{

OU n = 1,
0 n ≥ 2.

Hence we need to discover that happens near W as we will use π∗L⊗n to define our maps.

(III) Locally freeness I. Some cohomology
Note that the locally freeness and cohomology can descend along the failthfully flat extension. Fix
u0 ∈W , then Zu0

:= C has r elliptic tails Ei and the remaining component we denote D. After some
failthfully flat extension, we may assume that π has sections s1, ..., sr : U → Z such that si(u0) ∈ Ei
are smooth points (Why?).

Now we have

0→ L⊗n → L⊗n(s1 + ...+ sr)→ L⊗n(s1 + ...+ sr)|{s1,...,sr} → 0

Over this fiber C, we have

0→ L⊗n|C → L⊗n(s1 + ...+ sr)|C → L⊗n(s1 + ...+ sr)|{s1(u0),...,sr(u0)} → 0

and the last term support over a finite sets {s1(u0), ..., sr(u0)}. On the other hand, we have (Why?)

H1(C,L⊗n(s1 + ...+ sr)|C)

= H1(D,L⊗n|D)⊕

(
r⊕
i=1

H1(Ei,OEi(si(u0)))

)
= 0.

Then we get an exact sequence

0→ π∗L
⊗n → F 0 → F 1 → R1π∗L

⊗n → 0

with F 0 := π∗(L
⊗n(s1 + ...+ sr)) and F 1 := π∗(L

⊗n(s1 + ...+ sr)|s1+...+sr ) locally free of rank r0, r1.
Let Q = coker(π∗L⊗n → F 0) is a subsheaf of a locally-free sheaf, hence is locally-free of rank r0 − kn
away from a subset Y ⊂ U of codimension≥ 2. Note that Y is contained in the locus where R1π∗L

⊗n

fails to be locally free, and thus is a subset of W .
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(IV) Locally freeness II. Some limit linear series
Let B be a spectrum of a DVR with closed point 0 and generic point b. Consider the map β : (B, 0)→
(U, u0) such that 0 7→ u0 and b /∈W . Consider the fiber product

ZB Z

B U

πB

β

β′

π
⌜

and let LB = (β′)∗L. As πB,∗L⊗n
B is locally free of rank kn as it is a subsheaf of β∗F0 and thus torsion

free and then flat (over Dedekind domain).
We need the follwoing result:

Proposition 18.4.10 ([26] 4.3iii). For n ≥ 1, let Vn := πB,∗L
⊗n
B |0 can be naturally identified with

Γ

D,ω⊗n
D

(2n− 2)

r∑
j=1

pj

+ span(σn1 , ..., σnr )

as a subspace of H0(C,L⊗n|C) where σj be a section of V1 such that σi(pi) 6= 0 and σj vanishes to
order two at pi for i 6= j.

Corollary 18.4.11. For n ≥ 2, the linear series Vn defines C → Pkn−1 with image T (C). The induced
C → T (C) is the morphism in Lemma 18.4.8.

Proof. For stable curve (D, p1, ..., pr), unless g(D) = 2, r = 0 (which can not occur here) the line
bundle (ωD(p1 + ... + pr))

2 is very ample. Hence Vn can induce an embedding of D\{p1, ..., pr} into
the projective space. By Proposition 18.4.10 we get that the vanishing sequence of Vn near pj are all
(0, 2, 3, ...) and then induce pj into cusps. As pj separated by σnj , these cusps are different ones. As
these sections are constant ( 6= 0) along the Ei, so each Ei is collapsed to the corresponding cusp.

(V) Locally freeness III. Finish the locally freeness
Proposition 18.4.12. For integer n ≥ 1, the sheaf π∗L⊗n is locally free of rank kn.

Proof. We denote Grass(m,F ) be the geometric Grassmannian represented the functor of rank m
subbundles of F . Recall the exact sequence

0→ π∗L
⊗n → F 0 φ−→ F 1 → R1π∗L

⊗n → 0

with F 0 and F 1 locally free of rank r0, r1. Let Q = coker(π∗L⊗n → F 0) is locally-free of rank r0 − kn
away from a subset Y ⊂ U of codimension≥ 2.

Then we induce the morphism

τ : U\Y → Grass(r0 − kn, (F 0)∨)×Grass(r0 − kn, F 1)

↪→ P

(
r0−kn∧

(F 0)∨

)
× P

(
r0−kn∧

F 1

)

↪→ P

(
H om

(
r0−kn∧

F 0,

r0−kn∧
F 1

))
.

Consider as a rational map

U 99K P

(
H om

(
r0−kn∧

F 0,

r0−kn∧
F 1

))
,
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it is given by the section
∧r0−kn ϕ and the indeterminacy locus of it is precisely the zero locus of∧r0−kn ϕ defined by (r0−kn)×(r0−kn)-minors of ϕ (which is one of the Fitting ideals I of R1π∗L

⊗n).
Blowing up the base locus as follows:

B U ′ := BlI (U)

U Grass(r0 − kn, (F 0)∨)×Grass(r0 − kn, F 1)

σ

τ

τ ′βi

β′
i

Now we claim that σ is an isomorphism.
As U normal (it is étale over smooth stack M g) and σ is proper birational, using the Zariski’s main

theorem, we just need to show that σ is quasi-finite. Let it is not quasi-finite and for two different
closed points X1, x2 ∈ U ′ such that τ is not defined at u := σ(x1) = σ(x2). Pick a DVR B = Spec∆
with closed point 0 and generic point η. Then let β′

i : B → U ′ such that 0 7→ xi and η is not in the
locus of δ1. Let βi = σ ◦ β′

i and using the functorial, we find that τ ′ ◦ β′
i correspond to

0→ Ki → β∗
i F

0 → Qi → 0,

where Ki is of rank kn. Consider the fiber product

ZB Z

B U

πi

βi

µi

π
⌜

then we get the exact sequence

0→ πi,∗µ
∗
iL

⊗n → β∗
i F

0 β∗
i φ−→ β∗

i F
1 → R1(πi)∗µ

∗
iL

⊗n → 0.

Note that β∗
i F

0/πi,∗µ
∗
iL

⊗n is locally free and πi,∗µ∗
iL

⊗n and Ki are agree over B\{0} as subbundles
of β∗

i F
0. Hence they are isomorphic over entire B. By Proposition 18.4.10, (πi,∗µ∗

iL
⊗n)0 are identified

in H0(Z|βi(0), L
⊗n|Z|βi(0)

), then τ ′ ◦β′
1(0) = τ ′ ◦β′

2(0) and hence there exists a subbundle K ⊂ F 0 over
U such that K|U\Y ∼= π∗L

⊗n|U\Y . Let j : U\Y ↪→ U , then j∗(π∗L⊗n|U\Y ) ∼= π∗L
⊗n as it is reflexive

and codimU (Y ) ≥ 2. Hence we have

K ∼= j∗(K|U\Y ) = (π∗L
⊗n|U\Y ) ∼= π∗L

⊗n

hence a vector bundle.

(VI) Finish the construction
Proposition 18.4.13. For n ≥ 2, the sections of L⊗n relative to π induced Z → P(π∗L⊗n) over U
which factors as

Z
ξZ−→ T (Z) ↪→ P(π∗L⊗n).

Proof. Now by Proposition 18.4.12, π∗L⊗n is locally free. By the argument in Proposition 18.4.10 and
Corollary 18.4.11, using the Stein factorization we get

Z
ξZ−→ T (Z) ↪→ P(π∗L⊗n).

By the functoriality of dualizing sheaf and δ1,{1} on the moduli stack M g,1, we find that this construc-
tion is compatible with isomorphism relation and commutes with base extension.
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18.4.3 Moduli of pseudostable curves as log canonical models
Proof of Theorem 18.4.4. By Proposition 18.4.13, we just need to identify Mps

g and Mg(9/11).
By Lemma 18.4.8, we know that T : M g →M

ps

g implies
(a) T is isomorphism over Mg\∆1;
(b) T takes locus of elliptic tails into cusps as in Lemma 18.4.8;
(c) T (C) = T (C ′) if and only if the number of elliptic tails are the same and the remaining pointed

stable curves (D; p1, ..., pr) ∼= (D′; p′1, ..., p
′
r).

Hence T is also an extremal contraction of the locus of elliptic tails. By Remark 1.26 in [66], we
know that γ :Mg →Mg(9/11) are the same as T . Well done.

Now we turn to prove Theorem 18.4.5. Let δps be the boundary divisor of M
ps

g , it is the image of
δ under T . We will write KMg

+ αδ instead of K(Mg;∆, α) over Mg since they are the same things,
after a pull-back.

Lemma 18.4.14 (Log Discrepancy Formula).

KMg
+ αδ = T ∗(KM

ps
g

+ αδps) + (9− 11α)δ1.

Proof. First, it’s easy to see that

KMg
+ αδ = T ∗(KM

ps
g

+ αδps) + cδ1.

Then by Lemma 18.4.1 we find that

(KMg
+ αδ) ·R = 13λ ·R+ (α− 2)R · δ

= 13/12 + (α− 2)(1− 1/12) =
11α− 9

12

and δ1 ·R = −1/12. Hence c = 9− 11α.

Hence if (M g, αδ − (9 − 11α)δ1) is lc pair and α ≤ 9/11, then so is (M
ps

g , αδ
ps). This is right as

reducing the coefficient of δ1 can only increase the discrepancies of divisors lying over δ1; this does not
affect whether the singularities are log canonical. Now we just need to analyze whether KM

ps
g

+ αδps

is ample for 7/10 < α < 9/11.
We have

T ∗NS(Mps

g ) = R⊥ ⊂ NS(Mg),

then Amp(Mps

g ) = Int(R⊥∩Nef(Mg)). Actually, if the Fulton’s Conjecture 1 holds, then we finish the
proof. Of course we can not use this for now and fortunately, we do not need the full strength of the
conjecture and we just need to use the following result (Corollary 16.8.6):

Proposition 18.4.15 ([46] Proposition 6.1). Let D = aλ−
∑⌊g/2⌋
i=0 biδi overMg such that if 1 ≤ i ≤ g/2

then either bi = 0 or bi > b0. If D has non-negative intersection with all F -curves, then D is nef.

Actually the intersection numbers of D = aλ −
∑⌊g/2⌋
i=0 biδi with the F -curves has the following

results (let bi = bg−i for i > g/2):

(a) a/12− b0 + b1/12 family of elliptic tails
(b) b0
(c) bi for g − 2 ≥ i
(d) 2b0 − bi+1 for g − 2 ≥ 2i
(e) bi + bj − bi+j for i, j ≥ 1, i+ j ≤ g − 1
(f) bi + bj + bk + bl − bi+j − bi+k − bi+l for i, j, k ≥ 1, i+ j + k + l = g
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Proof of Theorem 18.4.5. We just need to show that for 7/10 < α ≤ 9/11, the divisor

D := KMg
+ αδ − (9− 11α)δ1 = 13λ+ (α− 2)δ − (9− 11α)δ1

lies in Int(R⊥∩Nef(Mg)). Then we just need to check Proposition 18.4.15. In our case, we have a = 13

and bi =
{

2− α, i 6= 1;
11− 12α, i = 1

. Then our divisor satisfied the conditions in Proposition 18.4.15, and
we just need to check the table above!

(i) We do not consider (a) as it is elliptic tails;
(ii) for (b)(c)(f), if α ≤ 11/12 then they are positive;
(iii) for (d), if α > 7/10 it is positive;
(iv) for (e), if α > 7/10 it is positive.

Hence well done!



Chapter 19

More geometry of moduli space of
curves

19.1 A glimpse of some results using Teichmüller theory
Theorem 19.1.1 (Boggi-Pikaart, 2000, [19]). The stack M g,n has no non-trivial étale cover, hence
it is simply connected.

Corollary 19.1.2. The coarse moduli space Mg,n is simply connected.

Theorem 19.1.3 (Harer-Zagier 1986, [52]; Bini-Harer 2011, [17]). For non-negative integers g, n, n >
2− 2g, we have: (i) The orbifold Euler characteristic of Mg,n is

χ(Mg,n) = (−1)n (2g − 1)B2g

(2g)!
(2g + n− 3)!;

(ii) The orbifold Euler characteristic of M g,n is

χ(M g,n) =
∑

G of type (g,n)

∏
v χ(Mgv,Lv

)

]Aut(G) .

19.2 Intersection theory of moduli space of curves
We will refer [44] and [8] chapter XVII. We work over C.

19.2.1 Chow rings of moduli space of curves
In the classical book [43] section 8.3 (Example 8.3.12) we know that the intersection product in the
Chow ring only defined on the non-singular case and the rational coefficient Chow ring can defined
over the quotient variety X/G of a non-singular variety X by a finite group G of automorphisms with
p : X → X/G, that is,

V ·W :=
p∗(p

∗[V ] · p∗[W ])

]G
.

(In fact we have CH∗(X/G)⊗Q = (CH∗(X)⊗Q)G.)
Now we consider smooth quotient X/G and its stack [X/G] with canonical map p : [X/G]→ X/G.

We define CH∗([X/G])Q := CH∗(X/G) ⊗ Q. Concerning Chern classes of vector bundles on a stack
[X/G], recall that such a vector bundle can be viewed as a G-equivariant bundle E on X, meaning that
E is a vector bundle on X plus a lifting of the G-action on X. The Chern classes of E are naturally
G- invariant elements of CH∗(X) and therefore give well-defined Chern classes ci(E) ∈ CH∗([X/G])Q.

129
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Now back to the moduli of curves. Now Mg,n and Mg,n are all singular! Foundations of these due
to D. Mumford. But Mg,n can be written as a non-singular variety(the `-level structure, omit it here)
quotient by a finite group, hence we have define as above. But Mg,n is not that easy. Mumford use
that, Mg,n is étale locally as a non-singular variety (Kuranishi family) quotient by a finite group by
Theorem 15.3.1 and globally it is a quotient of Cohen-Macaulay variety by a finite group, to define the
rational Chow ring. However, E. Looijenda (cf. [71]) showed that Mg,n is also be a globally quotient
of a smooth variety Mg/G by a finite group (non abelian `-level structure)! Hence we can define
CH∗(Mg)⊗Q and CH∗(Mg)⊗Q now.

For moduli stacks, unfortunately, although this works for coarse moduli space, the moduli stack
in general not quotients of smooth varieties modulo finite groups! Let then M ∼= M/G be a moduli
space of (stable or smooth) curves, and M the corresponding moduli stack. We then have natural
morphisms

[M/G]
α−→M

β−→M = M/G

by the definition of coarse moduli space. Hence we define

CH∗(M )Q := CH∗([M/G])Q = CH∗(M)Q.

Noet that here we have

CH1(M )Q = CH1(M)Q = Pic(M )⊗Q = Pic(M)⊗Q.

19.2.2 Basic classes
Fixed the moduli stack M g,P with sections σp : M g,P → Ug,P

∼= M g,P∪{x}. Let Σp := Im(σp) and
Σ =

∑
p∈P Σp. Fix the dualizing sheaf ωπ with universal family π : Ug,P →M g,P .

Example 19.2.1 (Mumford-Morita-Miller classes). (1) Let ψp := σ∗
pc1(ωπ) ∈ CH1(M g,P )Q;

(2) Let κi := π∗(c1(ωπ(Σ))
i+1) ∈ CHi(M g,P )Q.

Remark 19.2.2. (i) We have κ0 = (2g − 2 + ]P )[M g,P ]
(ii) Also we let κ̃i = κi −

∑
ψip.

Example 19.2.3 (λ-classes). We let λi := ci(π∗ωπ) = ci(π!ωπ) ∈ CHi(M g,P )Q. More generally, we
let

λi(ν) := ci(π!ω
ν
π) ∈ CHi(M g,P )Q.

Hence we may define these over the coarse moduli space.

19.2.3 Tautological relations
Relations after forgetful maps
Proposition 19.2.4. Let π : M g,P∪{x} →M g,P and let at ∈ Z≥0 labelled by t ∈ P ∪ {x}.

(i) (String Equation)

π∗

∏
p∈P

ψapp

 =
∑
ap>0

ψap−1
p

∏
q ̸=p

ψaqq ;

(ii) (Generalized Dilaton Equation)

π∗

ψax+1
x

∏
p∈P

ψapp

 = κax
∏
p∈P

ψapp .

Proof. Omitted, see Proposition XVII.4.9 in [8].
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Remark 19.2.5. The standard dilaton equation is the special case of the generalized one in which
ax = 0, that is,

π∗

ψx ∏
p∈P

ψapp

 = (2g − 2 + ]P )
∏
p∈P

ψapp .

Corollary 19.2.6. Let π : M g,P∪{x} →M g,P , then
(i) π∗(κa) = κa − ψax;
(ii) πx,∗(κa) = κa−1;
(iii) π∗(ψpa) = ψp − δ0,{p,x};
(iv) If we let πn : M g,n →M g,n−1, then

(πk+1 · · ·πn)∗(ψa11 · · ·ψ
ak
k ψ

ak+1+1
k+1 · · ·ψan+1

n ) = ψa11 · · ·ψ
ak
k

∑
σ∈Sk

κσ

where κσ = κ♯γ1 · · ·κ♯γν(σ)
with σ as a product of ν(σ) disjoint cycles γi.

Proof. Omitted, (i)(ii) follows from string equation and see XVII.4.17,18 in [8]. (iii) follows from
XVII.4.6 in [8]. (iv) follows directly from dilaton equation.
Remark 19.2.7. Now combine (iv) and string equation, we find that the intersection numbers of the
classes ψi and κi on a fixed M g,n is completely determined by the intersection theory of the ψi alone
on all the M g,ν with ν ≥ n, and conversely. This is a generalization of E. Witten’s remark.

Proposition 19.2.8 (Some relations of boundaries). Let π : M g,P∪{x} → M g,P and Γ be a dual
graph with Γν is the P ∪ {x}-marked graph obtained from Γ by letting Pν ∪ {x} be the index set for the
vertex ν. Then

π∗δΓ =
∑
ν∈V

δΓν .

In particular, we have π∗δirr = δirr and π∗δa,A = δa,A + δa,A∪{x}.
Proof. Trivial.

Relations after general gluing maps
Proposition 19.2.9. Consider the morphisms

M Γ =
∏
v∈V (Γ) M gv,Lv M gv,Lv

M g,P

ξΓ

ηv

Then:
(i) ξ∗Γψp = ψp;
(ii) ξ∗Γκa =

∑
v∈V (Γ) η

∗
vκa;

(iii) by the notations as before, we have

M ΓΓ′ := M Γ ×Mg,P
M Γ′

∐
Λ∈GΓΓ′ MΛ M Γ

∐
ξΛΓ

then

ξ∗ΓδΓ′ = ΣΛ∈GΓΓ′ ξΛΓ,∗

 ∏
{l,l′}∈E(|Λ|)

(
−η∗v(l)ψl − η

∗
v(l′)ψl′

) .
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Remark 19.2.10. The special case of the relations of gluing maps we refer Lemma XVII.4.35,36 in
[8].

19.2.4 The tautological ring and relative theorems and conjectures
Here we refer [79] and chapter XVII and XX in [8].

Definition 19.2.11. The system of tautological rings (R∗(M g,n)) ⊂ (CH∗(M g,ν)Q)g,n is the smallest
system of Q-algebras satisfying

(i) ψ1, ..., ψn ∈ R∗(M g,n);
(ii) the system is closed under pushforwards by morphisms π, ξirr, ξa,A.

Define

Fg :=
∑
n≥0

1

n!

∑
♯k=3g−3+n

(∫
Mg,n

ψk11 · · ·ψknn

)
tk1 · · · tkn

and F :=
∑
g Fgλ

2g−2. This is Witten’s free energy. For convenience, we will set λ = 1.

Theorem 19.2.12 (Witten’s Conjecture (Kontsevich’s Theorem)). We have the following system of
PDEs:

(2n+ 1)
∂3F

∂tn∂t20
=

(
∂2F

∂tn−1∂t0

)(
∂3F

∂t30

)
+ 2

(
∂3F

∂tn−1∂t20

)(
∂2F

∂t20

)
+

1

4

(
∂5F

∂tn−1∂t40

)
.

Sketch of Kontsevich’s Proof. Kontsevich’s Proof consisted of two parts. The first part was to prove a
combinatorial formula for the gravitational descendents. Let Gg,n be the set of isomorphism classes of
trivalent ribbon graphs of genus g with n faces and together with a numbering Faces(G) ∼= [n]. Denote
by V (G) the set of vertices of a graph G ∈ Gg,n. Let us introduce formal variables λi, i ∈ [n]. For an
edge e ∈ Edges(G), let λ(e) = 1

λi+λj
where i and j are the numbers of faces adjacent to e. Then we

have (Kontsevich’s combinatorial formula):

∑
♯k=3g−3+n

∫
Mg,n

ψk11 · · ·ψknn
n∏
ℓ=1

(2kℓ − 1)!!

λ2kℓ+1
ℓ

=
∑

G∈Gg,n

2♯Edges(G)−♯V (G)

]Aut(G)
∏

e∈Edges(G)

λ(e).

The second step of Kontsevich’s proof was to translate the combinatorial formula into a matrix
integral. Then, by using non-trivial analytical tools and the theory of τ -functions of the KdV hierarchy,
he was able to prove that exp(F ) is a τ -function of the KdV hierarchy and, hence, the free energy F
satisfies our equation.

Remark 19.2.13. (i) Using these PDEs along with a straightforward geometric fact known as the
string equation and the initial condition

∫
M0,3

1 = 1, as M 0,3 is a point, all top intersections are
quickly recursively determined;

(ii) There was a later reformulation of Witten’s conjecture using Virasoro equations, see [8];
(iii) Okounkov and Pandharipande in 2001 showed the Witten’s conjecture using the ELSV formula

which relates intersection numbers with Hurwitz numbers (as a corollary, they get R3g−3+n(M g,n) ∼=
Q);

(iv) Mirzakhani in 2004 showed the Witten’s conjecture with a formula which relates intersection
numbers with volumes of moduli spaces.

There are several conjectures about Poincaré duality of moduli of curves:

Conjecture 2 (Poincaré duality conjecture for stable curves (Hain-Looijenga)). Let d = dimM g,n =
3g − 3 + n, then

(I) Ri(M g,n) = 0 for i > d (which is obvious);
(II) Rd(M g,n) ∼= Q (ture by ELSV formula);
(III) the natural pairing Ri(M g,n)×Rd−i(M g,n)→ Rd(M g,n) ∼= Q is perfect.
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This conjecture was motivated by an earlier conjecture by Faber:

Conjecture 3 (Faber’s conjecture for smooth curves). (I) R∗(Mg) is a dimension g − 2 Poincaré
ring;

(II) The bg/3c classes κ1, ..., κ⌊g/3⌋ generated the ring , with no relations in degree bg/3c (is true
in cohomology by Morita, Ionel; Ionel’s proof should extend to the Chow ring without difficulty);

(III) We have
ψd1+1
1 · · ·ψdk+1

k =
(2g − 3 + k)!(2g − 1)!!

(2g − 1)!
∏k
j=1(2dj + 1)!!

=
∑
σ∈Sk

κσ

which defined as before (proved by Getzler, Pandharipande, Givental).

Remark 19.2.14. E. Looijenga showed that Ri(Mg) = 0 for i > g − 2 and Rg−2(Mg) ∼= Q.

19.3 Cohomology of moduli space of curves
19.3.1 Collections of results about cohomology groups
We will consider about the rational (singular)-cohomology (or homology) groups of moduli space of
smooth or stable curves over C. We note that as in [31], we have Hi(M ) ⊗ Q ∼= Hi(M,Q) :=
Hi(M(C),Q), so we may just consider the coarse moduli space.

Theorem 19.3.1 (Harer 1986). For i > 4g − 5, we have Hi(Mg,n,Q) = 0 for i > c(g, n) where

c(g, n) =

{
n− 3, g = 0;
4g − 5, g > 0, n = 0;

4g − 4− n, g > 0, n > 0.

Proof. Using the construction of Teichmüller method, see chapter XIX Theorem 2.2 in [8].

Theorem 19.3.2. The following hold true:
(i) (Mumford, Harer) H1(Mg,n;Q) = 0 for any g ≥ 1 and any n such that 2g − 2 + n > 0;
(ii) (Harer) H2(Mg,n;Q) is freely generated by κ1, ψ1, ..., ψn for any g ≥ 3 and any n. H2(M2,n;Q)

is freely generated by ψ1, ..., ψn for any n, while H2(M1,n;Q)vanishes for all n.

Proof. For the modern proof using Deligne’s spectral sequence, we refer Theorem 10 in [7].

Theorem 19.3.3 (Arbarello-Cornalba [6], 1998; Bergström-Faber-Payne [15], 2022; Canning-Larson-
-Payne [20], 2022). (i) The cohomology groups Hk(Mg,n) = 0 for all odd k ≤ 9;

(ii) The cohomology groups H2(Mg,n) generated by κ1, ψi and δirr and δa,A for 0 ≤ a ≤ g and
2a− 2 + ]A ≥ 0 and 2(g − a)− 2 + ]Ac ≥ 0, with relations

(ii-a) If g > 2 all relations are generated by δa,A = δg−a,Ac ;
(ii-b) If g = 2 all relations are generated by δa,A = δg−a,Ac and

5κ1 = 5ψ + δirr − 5
∑
A

δ0,A + 7
∑
A

δ1,A;

(ii-c) If g = 1 all relations are generated by δa,A = δg−a,Ac and

κ1 = ψ − 5
∑
A

δ0,A, 12ψp = δirr + 12
∑

p∈S,♯S≥2

δ0,S , p ∈ {1, ..., n};

(ii-d) If g = 0 all relations are generated by δa,A = δg−a,Ac and

c(g, n) =


κ1 =

∑
x,y/∈A(]A− 1)δ0,A, x, y ∈ {1, ..., n}, x 6= y;

ψz =
∑
z∈A;x,y/∈A δ0,A, x, y, z ∈ {1, ..., n}, x, y, z distinct;
δirr = 0.
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(iii) The group H11(Mg,n) nonzero if and only if g = 1 and n ≥ 11, and in this case we have
H11(M1,n) ∼= (H11(M1,11))

⊕(n−1
10 );

(iv) Assume k ≤ 11. Let g1, ..., gk be distinct positive integers, and set g = 1 + g1 + ···+ gk. Then
H11+2k(Mg,n) 6= 0 for n ≥ 11− k.

Proof. (i)(ii) In paper [6], E. Arbarello and M. Cornalba showed when k = 1, 2, 3, 5 and in paper [15],
Jonas Bergström, Carel Faber and Sam Payne showed when k = 7, 9.

(iii)(iv) In paper [20], Samir Canning, Hannah Larson and Sam Payne showed these.

Remark 19.3.4. The funny point is that, in papers [15] and [20], they using some number-theoric
method, such as Hasse-Weil zeta functions.



Chapter 20

Alterations and the moduli space
of stable curves

20.1 Extensions of stable curves
In this chapter we will consider the stack we have used over Z-schemes. And for simplicity, we consider
the case without marked points.

Recall that we have proved the stable reduction of stabel curves over a spectrum of DVR:
Theorem 20.1.1 (Stable reduction). Let R be a DVR with fraction field K and ∆ = Spec(R),∆∗ =
Spec(K). If (C∗ → ∆∗) is a family of stable curves of genus g, then there exists a finite cover ∆′ → ∆
of spectrums of DVRs and a family (C′ → ∆′) of stable curves extending C∗ ×∆∗ ∆′∗ → ∆′∗. As

∆′∗ ∆∗ M g,n

∆′ ∆

(C∗→∆∗)

(C′→∆′)

Now how can we let the DVR to be an integral scheme S? We will use a technical lemma (le
lemme de Gabber) to show the case when S is a normal integral scheme directly. Then we will give a
canonical way to construct like in le lemme de Gabber. These are all have some same methods with
de Jong’s alteration.
Theorem 20.1.2. Let S be a normal integral scheme with a generic point η = SpecK and Cη be
a stable curve over η. Then there exists a generically étale, generically finite, proper and dominant
morphism of integral schemes S′ → S with generic point η′ = SpecK ′ such that the stable curve Cη×ηη′
extends to a stable curve over S′.

First we give some comments. Actually we find that C is already extended to the family of stable
curves in M g! So if we consider some compact neighborhood S′ of C in M g, then we have such S′

extended C.
η S′ M g

S

?

But now S′ → S need not be proper surjective and even S′ may not be a scheme! Hence we need to
find some finite cover of scheme over this stack to deal with this problem.

Proof. Consider η → M g induced by Cη. By Gabber’s Lemma C.2.1, we find a finite surjective
generically étale morphism from a scheme M → M g. Now M is proper as the stack M g is proper.
Hence we obtain a finite separable K-scheme η ×Mg

M and there exists a finite separable extension

135
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K ′/K such that η′ := SpecK ′ → η factor through η×Mg
M . Hence the curve C ′

η := Cη ×η η′ induced
from a family of curve C ′

M →M by M →M g.
Hence we claim that there exists an proper,dominant and generically finite morphism of integral

schemes S′ → S with generic point η′ such that the map η′ →M factor through S′ →M .
Now consider η → S1 = Normη′(S) → S be the normalization. Consider S′ be the closure of the

image of diaganol ∆ : η′ → S1 ×SpecZ M . Hence we have:

η′

S′ := Im(∆) M

S S1 = Normη′(S) M g

∆

Now we find that S′ → S is generically étale, generically finite and dominant. Hence we just need to
show S′ → S is proper. This comes from the fact that S1 → S is finite (this follows from St 032L) and
S′ → S1 is proper as the composition of the base change of M → SpecZ and a closed immersion. This
gives us the claim. Now let C ′ induced by C ′

M along S′ →M , then well done.

Remark 20.1.3. (i) In the original case the author said that this construction holds for any integral
scheme S, but here why S1 → S is of finite type?

(ii) Actually, de Jong’s alteration is defined as generically finite, proper and dominant. Hence we
find a generically étale alteration S′ → S now.

Now we construct that canonical construction of M . See He Tongmu’s Answer.
Here we will follows [29]. We all knew that the obstruction of M g to be a scheme (or algebraic

space) is that it has non-trivial automorphisms. So we need to get a `-level structure to kill these
automorphisms.

Let ` ≥ 3 is invertible on T , then we will call a family of genus g smooth curves X → T with
`-level structure if Pic0S(X)[`] ∼= (Z/`Z)⊕2g (when over some algebraically closed field, one can let
H1

ét(C,Z/`Z) ∼= (Z/`Z)⊕2g or R1
étf∗(Z/`Z) ∼= (Z/`Z)⊕2g for families). Then we consider the stack ℓMg

over SpecZ[1/`] parameterizing smooth curves of genus g with `-level structure. Hence we have:

ℓMg

Mg M g

By Lemma 3.5.1 in [29], we get ℓMg is an algebraic space. since Deligne proved that all automorphisms
are killed after adding the `-level structure.

Let ℓM g = NormMg
(ℓMg), Deligne also proved that ℓM g is a proper algebraic space in Corollary

3.6 in [29]. By the algebraic-space version of Chow’s lemma, one get a projective scheme M over Z as:

ℓMg ℓM g M

Mg M g

Hence we give a canonical construction of M now!

Remark 20.1.4. As the paper [29] is of French, so we will omit the proof for now and will add them
later!

https://stacks.math.columbia.edu/tag/032L
https://www.zhihu.com/question/51461027/answer/1247694083
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20.2 Alteration, the basic notions
We will mainly refer B. Conrad’s notes [23] about A. Johan de Jong’s alteration theory.

Definition 20.2.1. Let S be a regular scheme and D be a effective Cartier divisor (as a closed
subscheme) with (reduced) irreducible components {Di}i∈I .

(i) We called D is strict normal crossings divisor if D is reduced and for any finite subset J ⊂ I,
the subscheme DJ :=

⋂
i∈J Dj is regular and of codimension ](J);

(ii)We called D is normal crossings divisor if for all p ∈ D, there exists an étale neighborhood
S′ → S of p such that (S′, D′ := D ×S S′) is a strict normal crossings divisor.

Remark 20.2.2. (i) When we consider the (locally) noetherian case, we can also let DJ is regular
and for all p ∈ DJ we have dimODJ ,p = dimOS,p − ](J). This because OS,p is regular and hence
Cohen-Macaulay, so it is catenary;

(ii) By St 0BIA, we can replace this definition as for all p ∈ D the local ring OS,p is regular and
there exists a regular system of parameters x1, ..., xd ∈ mp and 1 ≤ r ≤ d such that D is cut out by
x1...xr in OS,p.

Definition 20.2.3 (Modification and Alteration). Let X be an integral scheme.
(i) An modification of X is a map f : X ′ → X such that X ′ is an integral scheme and f is proper

birational;
(ii) An alteration of X is a map g : X ′′ → X such that X ′′ is an integral scheme and g is proper

dominant and generically finite.

Remark 20.2.4. Hence for any alteration g : X ′′ → X of X, after the normalization, one get g can
factored as X ′′ f−→ X ′ h−→ X where f is a modification and g is finite.

Now we introduce the main theorem of de Jong’s first paper about alterations. ACtually this is
some kind of weakened form of Hironaka’s resolution of singularities in any characteristic.

Theorem 20.2.5 (A. Johan de Jong - 1996). Let X be a variety over a field k. For Z ⊂ X be any
proper closed subset, there exists and alteration f : X ′ → X and an open immersion j : X ′ ↪→ X

′ such
that

(i) X ′ is regular and projective;
(ii) The subscheme (

j(f−1(Z)) ∪ (X
′\j(X ′))

)
red
⊂ X ′

is a strict normal crossings divisor.

20.3 de Jong’s main theorem and moduli of curves
Actually to prove the de Jong’s main theorem, we need to use the general theory of moduli stack of
curves! There are many useful conclusion at the way proving this theorem and in this section we will
give a sketch of the proof, follows [23] and the orginal paper is [27]. First we recall the theorem.

Theorem 20.3.1 (A. Johan de Jong - 1996). Let X be a variety over a field k. For Z ⊂ X be any
proper closed subset, there exists and alteration f : X ′ → X and an open immersion j : X ′ ↪→ X

′ such
that

(i) X ′ is regular and projective;
(ii) The subscheme (

j(f−1(Z)) ∪ (X
′\j(X ′))

)
red
⊂ X ′

is a strict normal crossings divisor.

Remark 20.3.2 (Outline of the proof). First we use Chow’s lemma and some reduction one can let
X is quasi-projective and k = k; then the main method is induction of d = dimX.

https://stacks.math.columbia.edu/tag/0BIA
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When d ≤ 1, then using the normalization and we win. When d ≥ 2, we will blowing up X
appropriately to get a surjection f : X → Pd−1

k with all geometric fibers are connected of dimension 1
(but may have bad singularities and may non-reduced) and Xη is smooth for generic point η.

Hence using some properties of moduli stack M g,n and semistable reduction of curves, we can find
f ′ : X1 → Y with X1 � X and Y → Pd−1

k are alterations with commutative diagram

X ′ = X1 ×Y Y ′ X1 X

Y ′ Y Pd−1
k

alteration

f ′

alteration

f

alteration

⌜

where f ′ is flat with semistable geometrically connected fibers of dimension 1 (and smooth generic
fiber). By induction, we can find a regular alteration of Y ′ → Y , so X ′ := X ×Y Y ′ (which remains
integral) is an alteration of X that is semistable over a regular Y ′ (with smooth generic fiber). Then,
in this nice situation, we resolve X ′ by hand using some carefully-chosen blow-ups.
♣ Step 1. Some reductions.

We omit the reduction of the base field into algebraically closed (See [23] 3.2). Now we first go
through the reduction to the projective case.

By Chow’s lemma one get a modification π : X ′ → X with X ′ integral and quasi-projective. So
after replacing Z by π−1(Z) we may let X is quasi-projective. After taking Nagata compactification,
we get a dense open immersion X ↪→ X where X is projective and let Z := X\(X\Z), we will show
that we can replace (X,Z) into (X,Z).

If we have an alteration φ1 : X1 → X with X1 is smooth and φ−1
1 (Z) ⊂ X1 is a strict normal

crossings divisor. Consider X1 := φ−1
1 (X) ⊂ X1, we know that

X1 X1

X

ϕ1|X1

is an alteration and X1 is smooth. We just need to check the property of Z. As the construction of Z,
we get

∂X1
(X1\φ−1

1 (Z)) = ∂(X1\φ−1
1 (Z))

and it is a strict normal crossings divisor.
Next after blowing up X ′ = BlZ(X) and let Z ′ = E, we can reduce to the case that Z is a Cartier

divisor. Again after taking normalization X̃ → X (which is a finite birational map as X is a variety),
we can let X is normal (how about the sncd here?).
Lemma 20.3.3. If φ : X ′ → X be an alteration and Z ⊂ Z ′ ⊊ X such that φ−1(Z ′) ⊂ X ′ is a sncd,
then so is φ−1(Z) ⊂ X ′.
Proof. Trivial.

Hence by this lemma, under our running assumptions, we can increase Z without loss of generality.
Now after some reductions we now let X be a projective normal variety over some algebraically closed
field k with Z be a Cartier divisor which can be increased.
♣ Step 2. Construct good curve fibrations I.

The main result is:
Lemma 20.3.4 (de Jong [27], 4.11). Consider the pairs (X,Z) as in Step 1, except X normal. There
exists a finite subset S ⊂ Xsm(k)\Z(k) such that for the diagram

X ′ = BlS(X)

Pd−1 X

ϕf
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the fibers of f are pure dimension 1 and generically smooth, and F : φ−1(Z) → Pd−1 is generically
étale and finite.

Furthermore, if X is normal then we can arrange that there exists a dense open U ⊂ Pd−1 such
that f−1(U)→ U is smooth with geometrically connected fibers.

(Reader can first consider BlpPd = {(q, l) ∈ Pd × Pd−1 : q ∈ l} and see what happens) This is a
technical and difficult result. Here we just give a basic idea and the conclusions we used. One can see
paper [27] 4.11 or notes [23] Lemma 4.1.
• Projections from points

First we have the projection from point

X ↪→ PN\{p} πp−→ PN−1 = {l : p ∈ l}

as in the blowing up BlpPN → PN−1 with (πp|X)−1({l}) = l ∩X. Then we have:

Proposition 20.3.5 (de Jong [27], Prop.2.11). Let k be a field and a closed subscheme X ⊂ PNk such
that is generically smooth of pure dimension d ≤ N − 1. Then there exists a dense open U ⊂ PN\X
so that for all finite separable extensions k′/k and points p ∈ U(k′), the projection

π′
p : Xk′ → PN−1

k′

(i) is birational onto its image if d < N − 1;
(ii) is generically étale onto PN−1

k′ if d = N − 1.

Sketch of proof. We just give a sketch of (ii). First reduce to the case k is separably closed.
(ii) As the non-smooth locus Xsing = X\Xsm has codimension ≥ 2 in PN , most lines l ⊂ PN miss

Xsing. Let V = Xsm =
∐
Vj are open subsets where the smooth loci of irreducible components of X

avoid the other irreducible components of X. Hence for most lines l ⊂ PNk we have

l ∩X =
∐
j

(l ∩ Vj).

By some kind of Bertini theorem (see [23] Theorem 5.5) to the Grassmannian Gr(N − 1, N), one get
a line l0 ⊂ PNk such that l ∩ X =

∐
j(l ∩ Vj) with all l ∩ Vj 6= ∅ and étale over k (hence are finite

sets). Hence after choosing p ∈ l0\X, we get πp : X → PN−1 = {l : p ∈ l} such that π−1
p ({l0}) is étale

and meets X inside Xsm touching every irreducible component of X. By openness on the source for
the quasi-finite maps, we conclude that πp is generically quasi-finite and hence dominant (and even
surjective, due to properness).

Since πp is a dominant map, it is flat on some dense open W . Next after analyze Ω1
πp

using Bertini
theorem, one get the open locus where W meet the open complement of the support of the coherent
sheaf Ω1

πp
to touch each irreducible component of X. Hence πp is étale at these points.

Finally, consider

{(x, l) ∈ PN ×Gr(N − 1, N) : x ∈ l}

PN Gr(N − 1, N)

p1
p2

and using some kind of Bertini theorem, one get some open Ω ⊂ Gr(N − 1, N) such that p1(p−1
2 (Ω))∩

(PN\X) is the locus of points p we have been using sweeps out. Hence it is at least a dense open locus
in PN .

• Sketch of the Lemma de Jong 4.11
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p

X

πp

πp(X)

PN

H ∼= PN−1

Use N − d times Proposition 20.3.5, we get

Z π(Z)

X Pdπ

where the bottom map is finite and generically étale and the top map is birational.
Pick Ω ⊂ Pd\π(Z) be a dense open such that π−1(Ω) → Ω is étale. Choose ξ ∈ Ω(k) such that

πξ : π(Z) → Pd−1 = {l : ξ ∈ l} finite and generically étale. Hence the natural map BlξPd → Pd−1 is
generically étale when restrict it to π(Z).

Let S = π−1(ξ), we find that S ⊂ Xsm. Easy to see that BlS(X) is normal as it is a gluing X\S
and BlS(Xsm) (which is smooth when we see this étale locally) via Xsm\S.

As blowing up commute with flat base-change, we get the cartesian

X ′ := BlS(X) BlξPd

X Pd

⌜

and hence
X ′ = BlS(X) =

{
(x, l) ∈ X × Pd−1 : x ∈ π−1(l)

}
which is a similar description as BlξPd.

Next consider
X ′

X Pd−1

pr1 f

and hence f |Z is generically étale and finite.
Easy to see that π−1(l) is pure dimension 1. Second, we claim π−1(l) is generically smooth. This

because π−1(l) → l is finite, hence irreducible component of π−1(l) surjectively onto l for dimension
reasons. As it is also the base change of π : X → Pd, which is generically étale, hence the claim is
right. Finally, as f−1({l}) = π−1(l), we conclude the first part of the Lemma.

For the second part, we need to show that f : X ′ → Pd−1 is smooth over some dense open U ⊂ Pd−1

and f is its own Stein factorization (we will omit this).
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As the relative smooth locus of f is open and f is proper, we just need to show that this open set
contain some siber X ′

y. By some commutative algebra (see [27] Lemma 2.8) we just need to show that
X ′
y is smooth. Hence we need to find l ⊂ Pd through ξ such that π−1(l) is smooth.
As X is normal, we get dim(X\Xsm) ≥ d − 2. As π is constructed by projecting from N − d + 1

independent points in PN , and ξ corresponds to another point. Overall, this corresponds to (N−d+1)
planes in PN . Use Bertini’s theorem many times and well done.
♣ Step 3. Construct good curve fibrations II.

The main result are follows:

Lemma 20.3.6 (The three-point lemma, de Jong [27] Lemma 4.13). Suppose we have f : X → Y is
a map of projective varieties over k = k with d = dimX ≥ 2. Let all fibers of f are geometrically
connected of pure dimension 1 and the smooth locus sm(f) is fiberwise dense over Y . Then there exists
a Cartier divisor D ⊂ X such that

(i) D → Y is finite and generically étale;
(ii) for all geometrical points y ∈ Y , sm(f)∩D meets each irreducible component of Xy in at least

3 points.

Proof. This is very interesting but we will omit it, the details see [23] Lemma 6.2 or [27] Lemma
4.13.

Remark 20.3.7. Hence in our case we may replace Z by (Z ∪D)red.

Lemma 20.3.8. By passing to further alteration Y of Pd−1, one can let Z =
⋃r
i=1 σi(Y ) for sections

σi : Y → X such that {σi(ηY )} are pairwise distinct (which is preserved under further alterations of
Y ).

Proof. Omitted, see [23] Lemma 7.2.

Hence we have the folloing now:
I Situation. Now we get the following situation of the alteration theorem of de Jong:

(1) X is a projective normal variety over k = k̄ of dimension d ≥ 2 with Z ⊂ X a Cartier divisor;

(2) A surjective f : X → Y where Y is a projective variety of dimension d− 1 such that

* All fibers of f are geometrically connected of pure dimension 1;
* The smooth locus sm(f) is fiberwise dense over Y ;
* f is smooth over a dense open U ⊂ Y ;
* Z → Y is finite surjective and generically étale;
* sm(f) ∩ Z meets each Xy for geometrical points y ∈ Y in at least 3 points per irreducible

component of Xy;
* Z =

⋃r
i=1 σi(Y ) for sections σi : Y → X such that {σi(ηY )} are pairwise distinct (which is

preserved under further alterations of Y ).

♣ Step 4. Construct good curve fibrations III.
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Appendix A

Some basic result in scheme theory

A.1 Some corollaries of semi-continuity theorem
Review A.1.1 (Cohomology and Base Change, see [58] III.12.11). Let f : X → Y be a proper and
finitely presented morphism of schemes with a finitely presented sheaf on X which is flat over Y . Let
a point y ∈ Y and i ∈ Z, the comparison map φiy : Rif∗F ⊗ κ(y)→ Hi(Xy, Fy) is surjective. Then

(i) There is an open neighborhood V ⊂ Y of y such that for any morphism g : Y ′ → V of
schemes, the comparison map φiY ′ : g∗Rif∗F → Rif ′∗(g

′)∗F is an isomorphism. In particular φiy is an
isomorphism;

(ii) φi−1
y is surjective if and only if Rif∗F is locally free in some neighborhood of y.

Review A.1.2 (Grauert’s Corollary). (See [1] A.7.16) Let f : X → Y be a flat proper morphism
of noetherian schemes such that h0(Xy,Oy) = 1 for all y ∈ Y (⇔ OY = f∗OX and stable under
base-change) (resp. the geometric fibers are integral).

For a line bundle L on X, consider the functor (Sch/Y )→ (Sets) by sending T → Y to {∗} if LT
is the pullback of a line bundle on T and to ∅ otherwise. Then this functor is representable by a locally
closed (resp. closed) subscheme of Y .

A.2 Artin approximation and its corollaries
Definition A.2.1. Let A → B of noetherian rings is called geometrically regular if it is flat and for
every prime ideal p ⊂ A and any finite field extension K/κ(p), the fiber B ⊗A K is regular.

A noetherian local ring R is called a G-ring if A→ Â is geometrically regular.

Theorem A.2.2 (Artin approximation, see [1] A.10.9). Let S be a scheme and s ∈ S be a point
such that OS,s is G-ring. Let F : (Sch/S) → (Sets) be a colimit preserving contravariant functor
(commutes with systems of OS-algebras) and ξ̂ ∈ F (SpecÔS,s). For any integer N ≥ 0, there exists an
étale morphism (S′, s′)→ (S, s) and ξ′ ∈ F (S′) with κ(s) = κ(s)′ such that the restrictions of ξ̂ and ξ′
to Spec(OS,s/mN+1

s ) are equal.

Corollary A.2.3 (See [1] A.10.13). Let X1, X2 be schemes of finite type over S and let s ∈ S be a
point such that OS,s is a G-ring. If x1 ∈ X1, x2 ∈ X2 are points over s such that ÔX1,x1

and ÔX2,x2

are isomorphic as OS,s-algebras, then there exists a common residually-trivial étale neighborhood as

(X3, x3)

(X1, x1) (X2, x2)

147
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A.3 Miscellany
Review A.3.1. Let k be a field and X be a proper geometrically connected and geometrically reduced
k-scheme, then Γ(X,OX) = k.

Proof. This is almost trivial. See [47] Proposition 12.66 or St 0BUG in [11].

Review A.3.2 (Openness of ampleness). Let X → S be a proper morphism of schemes and L be a
line bundle over X. Let S is noetherian. If for some s ∈ S, the fiber Ls over Xs is ample (resp. very
ample), then exists an open neighborhood U of s such that LU is ample (resp. very ample) over XU .

Proposition A.3.3 (St 0C45). LetX be a locally Noetherian scheme of dimension 1 with normalization
f : X̃ → X. Then

(1) f is integral (finite if X is reduced locally finite type over a field), surjective, and induced a
bijection on irreducible components;

(2) there is a factorization X̃ → Xred → X and the morphism X̃ → Xred is the normalization of
Xred and birational;

(3) for every closed point x ∈ X, stalk (f∗OX̃)x is the integral closure of OX,x in total ring of
fractions of (OX,x)red = OXred,x;

(4) X̃ is a disjoint union of integral normal Noetherian schemes.

Proposition A.3.4 (0B5V). Let R be a Noetherian ring. Let f : X → Y be a morphism of schemes
proper over R. Let L be an invertible OY -module. Assume f is finite and surjective. Then L is ample
if and only if f∗L is ample.

Proposition A.3.5 (Canonical bundle and blowing ups). Let X be a regular variety and let Y be a
regular subvariety of codimension r ≥ 2. Let π : X ′ = BlYX → X be the blowing up with exceptional
divisor E, then

ωX′ ∼= π∗ωX ⊗ OX′((r − 1)E).

Proof. This is Exercise II.8.5 in [58].

Proposition A.3.6 (Picard groups and blowing ups). Let X be a regular variety and let Y be a regular
subvariety of codimX(Y ) = r ≥ 2. Let π : X ′ = BlYX → X be the blowing up of X along Y and let E
be the exceptional divisor. Then the map π∗ : Pic(X) → Pic(X ′) given by functorialtiy of the Picard
group and the map Z→ Pic(X ′) defined by n 7→ nE define an isomorphism Pic(X)⊕ Z ∼= Pic(X ′).

Proof. Let U = X − Y and we have Pic(X) ∼= Pic(U) is similar as Pic(X)
π∗

−→ Pic(X ′) → Pic(U).
Hence Pic(X)

π∗

−→ Pic(X ′) → Pic(X) is identity. Consider Z → Pic(X ′) → Pic(X) → 0 is exact, we
just need to find a splitting for Z→ Pic(X ′).

The closed immersion induce Pic(X ′)→ Pic(E). As E is a projective bundle over Y , then Pic(E) ∼=
Pic(Y )⊕ Z as regularness by [58] Exercise II.7.9(a). Hence we get

f : Z→ Pic(X ′)→ Pic(E) ∼= Pic(Y )⊕ Z→ Z

which sends 1 7→ OX′(E) ∼= OX′(−1) 7→ OE(−1) 7→ −1. Hence consider −f and we win!

Definition A.3.7. Fix a variety X over a field.
(i) Define the canonical ring R(X) =

⊕
m≥0H

0(X,mKX), we define the Kodaira dimension as

κ(X) :=

{
−∞, if R(X) = C,

trdegCFrac(R(X))− 1, otherwise;

(ii) Define X is of general type if κ(X) = dimX (This if and only if KX is big).

Definition A.3.8. About rational, unirational, uniruled. To add.

https://stacks.math.columbia.edu/tag/0BUG
https://stacks.math.columbia.edu/tag/0C45
https://stacks.math.columbia.edu/tag/0B5V
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Some results of resolution of
singularities for surfaces

Theorem B.0.1 (Minimal Resolutions). Let X be a surface. There exists a unique projective birational
morphism π : X̃ → X from a smooth surface such that every other resolution Y → X factors as
Y → X̃ → X (or equivalently such that KX · E ≥ 0 for every π-exceptional curve E).

Proof. See [67] Theorem 2.16.

Theorem B.0.2 (Embedded Resolutions of Curves in Surfaces). Let X be a surface and X0 ⊂ X be
a curve. There is a finite sequence of blow-ups at reduced points of X0 yielding a projective birational
morphism X̃ → X such that X̃ is smooth and such that the preimage X̃0 of X0 has set-theoretic normal
crossings, i.e. (X̃0)red is nodal.

Proof. See [67] Theorem 1.47.

Theorem B.0.3 (Castelnuovo’s Contraction Theorem). Let X be a smooth projective surface and E
a smooth rational (−1)-curve. Then there is a projective morphism X → Y to a smooth surface and a
point y ∈ Y such that f−1(y) = E and X\E → Y \{y} is an isomorphism.

Proof. See [67] Theorem 2.14.

Corollary B.0.4 (Existence of Relative Minimal Models). A smooth surface X admits a projective
birational morphism X → Xmin to a smooth surface such that every projective birational morphism
Xmin → Y to a smooth surface is an isomorphism. In particular Xmin has no smooth rational (−1)-
curves.
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Appendix C

Basic theory of algebraic spaces
and stacks

C.1 Some basic facts
Theorem C.1.1. (See [75] 8.3.3) Let X /S be an algebraic stack, then the following statement

(a) X is a Deligne-Mumford stack;
(b) the diagonal ∆ : X →X ×S X is formally unramified;
(c) for any algebraic closed field k and any point x ∈ X (k), the group scheme Autx is reduced

finite k-scheme.
Then (a)⇔(b), and if X noetherian, then (a)⇔(b)⇔(c).

Theorem C.1.2. Let X be a smooth northerian algebraic stack over k and x ∈X (k) be a point with
smooth stabilizer. Then

dimx X = dimTX ,x − dimGx.

Theorem C.1.3 (Valuative Criteria). Let f : X → Y be a morphism of noetherian algebraic stacks.
Assume f is of finite type and with separated diaganols. Then consider any DVR and its fraction field
K with a 2-commutative diagram

SpecK X

SpecR Y

Then
(1) f is proper if and only if there exists an extension of DVRs R → R′ and K → K ′ of fraction

fields having finite transcendence degree and a lifting unique up to unique isomorphism

SpecK ′ SpecK X

SpecR′ SpecR Y

(2) f is separated if and only if every two liftings of the first diagram are uniquely isomorphic.
(3) f is universally closed if for the first diagram, there exists an extension of DVRs R→ R′ and

K → K ′ of fraction fields having finite transcendence degree and a lifting as in the second diagram.

Proof. See [1] Theorem 3.8.5 or St 0CLY.

Proposition C.1.4. Let X be a Deligne-Mumford stack with an étale cover X →X .
(A) Let Qcoh(X ) be the category of the quasi-coherent sheaves over X , an object F of it defined as:

(A1) A quasi-coherent sheaf Ff on Szar for any f : S →X where S be a scheme;
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(A2) An isomorphism ρH : h∗Fg ∼= Ff for any 2-diagram

S T

X

f
g

h

of schemes;
(A3) For any pair of morphisms H1 : f1 → f2,H2 : f2 → f3 where fi : Si → X are schemes, the

diagram
h∗1(h

∗
2(Ff3)) (h2 ◦ h1)∗(Ff3)

h∗1(Ff2) Ff1

∼=

h∗
1(ρH2

)

ρH1

ρH2◦H1

of isomorphisms of sheaves over S1 commutes.
(B) Let Eqcoh(X ) be the category of the extended quasi-coherent sheaves over X , an object F of it
defined as:

(B1) A quasi-coherent sheaf Ff on Szar for any étale map f : S →X from a scheme;
(B2) An isomorphism ρH : h∗Fg ∼= Ff for any 2-diagram

S T

X

f
g

h

of étale maps of schemes;
(B3) For any pair of étale morphisms H1 : f1 → f2,H2 : f2 → f3 where fi : Si →X are schemes,

the diagram
h∗1(h

∗
2(Ff3)) (h2 ◦ h1)∗(Ff3)

h∗1(Ff2) Ff1

∼=

h∗
1(ρH2

)

ρH1

ρH2◦H1

of isomorphisms of sheaves over S1 commutes.
(C) Let QdX(X ) be the category of the quasi-coherent sheaves over X with descent data related to
X →X .
Conclusion. Then there are equivalence

Qcoh(X ) ∼= Eqcoh(X ) ∼= QdX(X )

and their composition, in any one of the three possible orders, is isomorphic to the appropriate identity
functor.

Proof. See [8] Proposition XIII.2.9.

Theorem C.1.5 (Local structure of DM-stacks). Let X be a separated Deligne-Mumford stack and
x ∈X (k) be a geometric point with stabilizer Gx. Then exists an affine and étale map

f : ([SpecA/Gx], w)→ (X , x)

where w ∈ (SpecA)(k) such that f induces an isomorphism of the stabilizer groups at w. Moreover, it
can be arranged that f−1(BGx) ∼= BGw.

Proof. See [1] Theorem 4.2.1.
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Theorem C.1.6 (Local structure of coarse moduli space). Let X be a Deligne-Mumford stack sep-
arated and of finite type over a noetherian algebraic space S. Let π : X → X be its coarse moduli
space. For any closed point x ∈ |X | with geometric stabilizer Gx, there exists a cartesian

[SpecA/Gx] X

SpecAGx Xs

π

such that s is an étale neighborhood of π(x) ∈ |X|.

Proof. Follows from the construction in the proof of the Keel-Mori theorem (see [1] Theorem 4.3.20).
See [1] Corollary 4.3.23.

C.2 Miscellany
Theorem C.2.1 (Le Lemme de Gabber). Let X be a Deligne-Mumford stack separated and of finite
type over a noetherian scheme S. Then there exists a finite, generically étale and surjective morphism
Z →X where Z be a scheme.

Proposition C.2.2. Let X be a Deligne-Mumford stack separated and of finite type over a noetherian
algebraic space S. Let π : X → X be the coarse moduli space. If L is a line bundle on X , then for
N sufficiently divisible L ⊗N descends to X.

Proof. See [1] Proposition 4.3.37.

Proposition C.2.3. Let G be an algebraic group acting on a scheme H, hence we get a quotient stack
[H/G]. Then we have Qcoh([H/G]) ∼= Qcoh(H,G) where the latter is the category of the G-equivariant
quasi-coherent sheaf over H.

Proof. See [8] Proposition XIII.2.19.

Corollary C.2.4. We have a group isomorphism Pic([H/G]) ∼= Pic(H,G).
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Appendix D

A glimpse of the Moduli of higher
dimensional varieties
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