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Chapter 1

Center of Mass and Linear

Momentum (No problems)

1.1 The Center of Mass
▶ The center of mass of a system of particles is the point that moves as though (1) all of the system’s

mass were concentrated there and (2) all external forces were applied there.

1.1.1 System of particles
Look at this picture:

Hence we have
xcom =

m1x1 +m2x2

m1 +m2

.

Now we have three dimensions case:

xcom =
1

M

n∑
i=1

mixi, ycom =
1

M

n∑
i=1

miyi, zcom =
1

M

n∑
i=1

mizi.

And vector form:
r = 1

M

∑
cyc

n∑
i=1

mixii =
1

M

n∑
i=1

miri

where ri = xii+ yij+ zik.
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8 CHAPTER 1. CENTER OF MASS AND LINEAR MOMENTUM (NO PROBLEMS)

1.1.2 General solid bodies case

We have:
xcom =

1

M

ˆ
M

xdm, ycom =
1

M

ˆ
M

ydm, zcom =
1

M

ˆ
M

zdm.

And vector form:
rcom =

1

M

ˆ
M

rdm.

If ρ is a constant, then we have:

xcom =
1

V

ˆ
Ω

xdV, ycom =
1

V

ˆ
Ω

ydV, zcom =
1

V

ˆ
Ω

zdV.

1.2 Newton’s Second Law for a System of Particles

Since Mrcom =
∑n

k=1 mkrk and v =
dr
dt
, we have:

Mvcom =
n∑

k=1

mkvk.

And since a =
dv
dt
, we have internal forces = 0 and external forces:

Fnet := Macom =
n∑

k=1

mkak =
n∑

k=1

Fk.

And
Fnet,x = Macom,x,Fnet,y = Macom,y,Fnet,z = Macom,z.

1.3 Linear Momentum

1.3.1 Linear Momentum

We have p = mv and Fnet =
dp
dt
.

1.3.2 The Linear Momentum of a System of Particles

We have p = Mvcom and Fnet =
dp
dt

= Macom.

1.4 Collision and Impulse

We have F =
dp
dt
, hence dp = Fdt, then

∆p =

ˆ t1

t0

Fdt.

We define Favg =
∆p
∆t

and impulse J =
´ t1
t0
Fdt = Favg∆t.
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1.5. CONSERVATION OF LINEAR MOMENTUM 9

1.5 Conservation of Linear Momentum
In a closed, isolated system, we have Fnet = 0, hence p = Ce, where |e| = 1.
If the component of the net external force on a closed system is zero along an axis, then the component

of the linear momentum of the system along that axis cannot change.

1.6 Momentum and Kinetic Energy in Collisions
▶Here, momentum is constant in all collisions:
1.elastic collision: kinetic energy of the system is conserved.
2.inelastic collision: kinetic energy of the system is not conserved.
3.completely inelastic collision: greatest loss of kinetic energy, i.e., particles stick together.
COM: center of mass of the system cannot be changed by a collision because, with the system isolated,

there is no net external force to change it.

1.6.1 completely inelastic collision in one dimension
We have

n∑
k=1

mkvk = Mv

hence
v =

1

M

n∑
k=1

mkvk.

1.7 Elastic Collisions in One Dimension
Two balls case:

m1v1i +m2v2i = m1v1f +m2v2f ,
1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
m1v

2
1f +

1

2
m2v

2
2f

hence we have:

v1f =
(m1 −m2)v1i + 2m2v2i

m1 +m2

, v2f =
2m1v1i + (m2 −m1)v2i

m1 +m2

.

1.8 Collisions in Two Dimensions
Elastic collision:
1.total kinetic energy is also conserved
2.linear momentum must still be conserved
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10 CHAPTER 1. CENTER OF MASS AND LINEAR MOMENTUM (NO PROBLEMS)

Then we have m1v1i = m1v1f cos θ1 +m2v2f cos θ2 and m1v1f sin θ1 = m2v2f sin θ2.

1.9 Systems with Varying Mass: A Rocket
Look at this picture: We have Mv = −UdM + (M + dM)(v + dv).

Use relative speed, we have U = v + dv − vrel, hence −vreldM = Mdv, then −vrel
dM

dt
= M

dv

dt
. So

we have Rvrel = Ma which we call first rocket equation.
Note the left side of the first rocket equation has the dimensions of force and depends only on design

characteristics of the rocket engine-namely, the rate R at which it consumes fuel mass and the speed vrel

with which that mass is ejected relative to the rocket. We call this term Rvrel the thrust of the rocket
engine and represent it with T . Newton’s second law emerges if we write the first rocket equation as
T = Ma, in which a is the acceleration of the rocket at the time that its mass is M .

Use conserve momentum or relative speed, we have dv = −vrel
dM

M
, then vf − vi = vrel ln

Mi

Mf

.
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Chapter 2

Rotation

2.1 Rotational Variables
▶A rigid body is a body that can rotate with all its parts locked together and without any change in

its shape.
▶A fixed axis means that the rotation occurs about an axis that does not move.

This figure shows a rigid body of arbitrary shape in rotation about a fixed axis, called the axis of
rotation or the rotation axis.

The angular position:
θ =

s

r
.

The angular displacement:
∆θ = θ2 − θ1.

The angular velocity:
ωavg =

∆θ

∆t
, ω =

dθ

dt
.

The angular acceleration:
αavg =

∆ω

∆t
, α =

dω

dt
.

It’s necessary to know that angular velocity is a vector which follows right-hand rule.
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12 CHAPTER 2. ROTATION

2.2 Rotation with Constant Angular Acceleration
When α is a constant, we know that

α =
dω

dt
⇒ ωf = ωi + αt ⇒ θf = θi + ωit+

1

2
αt2

Then
ω2
f − ω2

i + 2α(θf − θi).

Beyond that, we have
θf − θi =

1

2
(ωi + ωf )t = ωf t−

1

2
αt2.

2.3 Relating the Linear and Angular Variables
▶The position:

s = θr.

▶The speed:
ds

dt
= r

dθ

dt
⇒ v = ωr.

and
T =

2πr

v
=

2π

ω
.

▶The acceleration:
a =

dv

dt
= r

dω

dt
= αr =

v2

r
= ω2r.

2.4 Kinetic Energy of Rotation
▶Rotational inertia: (i) Particles:

I =
∑
i

mir
2
i .

(ii) Commutative rigid body:

I =

˚
V

r2dm =

˚
V

r2ρdV.

And we have
K =

1

2
Iω2.

2.5 Calculating the Rotational Inertia
We have

I =

˚
V

r2dm =

˚
V

r2ρdV.

And some useful cases:

⋆ Theorem 2.5.1

(Parallel-Axis Theorem) Suppose we want to find the rotational inertia I of a body of mass M about

a given axis. In principle, we can always find I with the integration of
˝

V
r2dm =

˝
V
r2ρdV .

However,there is a neat shortcut if we happen to already know the rotational inertia Icom of the body

about a parallel axis that extends through the body’s center of mass. Let h be the perpendicular
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2.5. CALCULATING THE ROTATIONAL INERTIA 13

distance between the given axis and the axis through the center of mass (remember these two axes

must be parallel). Then the rotational inertia I about the given axis is

I = Icom +Mh2

Think of the distance h as being the distance we have shifted the rotation axis from being through

the com.

Proof. Let O be the center of mass of the arbitrarily shaped body shown in cross section in Figure. Place
the origin of the coordinates at O. Consider an axis through O perpendicular to the plane of the figure,
and another axis through point P parallel to the first axis. Let the x and y coordinates of P be a and b.

Let dm be a mass element with the general coordinates x and y. The rotational inertia of the body
about the axis through P is then,

I =

ˆ
V

r2dm =

ˆ
V

((x− a)2 + (y − b)2)dm

=

ˆ
V

(x2 + y2)dV − 2a

ˆ
V

xdm− 2b

ˆ
V

ydm+

ˆ
V

(a2 + b2)dm

=

ˆ
V

r2dV − 2axcom

M
− 2bycom

M
+Mh2 = Icom +Mh2.
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14 CHAPTER 2. ROTATION

2.6 Torque

We define the torque by τ = rF sinϕ and τ = r× F. And more information is in the picture.
Clocks Are Negative. If a torque would cause counterclockwise rotation, it is positive. If it would

cause clockwise rotation,it is negative.
Net Torque. We have that

τnet =
n∑

k=1

τk.

2.7 Newton’s Second Law for Rotation

⋆ Theorem 2.7.1

(Newton’s Second Law for Rotation) A torque can cause rotation of a rigid body, as when you use a

torque to rotate a door. Then we have

τnet = Iα.

Proof. Use the picture

We have
τ = Ftr = matr = mr2α = Iα.

If more than one force is applied to the particle, it becomes

τnet = Iα.
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2.8. WORK AND ROTATIONAL KINETIC ENERGY 15

2.8 Work and Rotational Kinetic Energy
Actually, we can calculate the work:

W = ∆K =
1

2
Iω2

f − 1

2
Iω2

i ,

In the other hand, we can calculate the work:

W =

ˆ θf

θi

τdθ.

When τ is constant, we have
W = τ(θf − θi).

The rate at which the work is done is the power,which we can find that

P =
dW

dt
= τω.
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Chapter 3

Rolling, Torque, and Angular

Momentum

3.1 Rolling as Translation and Rotation Combined

⋆ Theorem 3.1.1

For a wheel of radius R rolling smoothly,

vcom = ωR

where vcom is the linear speed of the wheel’s center of mass and ω is the angular speed of the wheel

about its center.

Proof. Look at the picture

Then we have s = θR and vcom =
ds

dt
= R

dθ

dt
= ωR.

▶ Actually, we have

vrel + vvom = v.

And we have this interesting thing:
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18 CHAPTER 3. ROLLING, TORQUE, AND ANGULAR MOMENTUM

3.2 Forces and Kinetic Energy of Rolling

3.2.1 The Kinetic Energy of Rolling

⋆ Theorem 3.2.1

A smoothly rolling wheel has kinetic energy

K =
1

2
Icomω2 +

1

2
Mv2vom

where Icom is the rotational inertia of the wheel about its center of mass and M is the mass of the

wheel.

Proof. We know that
K =

1

2
IPω

2

in which ω is the angular speed of the wheel and IP is the rotational inertia of the wheel about the axis
through P . From the parallel-axis theorem, we have

K =
1

2
IPω

2 =
1

2
Icomω2 +

1

2
MR2ω2 =

1

2
Icomω2 +

1

2
Mv2vom.

3.2.2 The Forces of Rolling
For smooth rolling we have

acom = αR.

▶ Here we have an example:

So we have fs −Mg sin θ = Macom,x and Rfs = Icomα, then

acom,x = − g sin θ
1 + Icom/(MR2)

.
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3.3. THE YO-YO 19

▶ For the solid sphere shown in the picture, calculate the linear speed of the center of mass at the
bottom of the incline and the magnitude of the linear acceleration of the center of mass.

And we have

K =
1

2

(
ICM

R2
+M

)
v2CM = Mgh ⇒ vCM =

(
2gh

1 + ICM/(MR2)

)1/2

=

√
10

7
gh ⇒ aCM =

5

7
g sin θ.

3.3 The Yo-Yo
Like this:

We will just let θ = 90◦ in the last section. So we have

acom,x = − g

1 + Icom/(MR2)
.

3.4 Torque Revisited
We have τ = r × F where F is a force applied to a particle and r is a position vector locating the

particle relative to the fixed point.
And actually, we have |τ | = |r||F| sin⟨r,F⟩ = r⊥F = rF⊥ where F⊥ is the component of F perpen-

dicular to r, and r⊥ is the moment arm of F.
And the direction of is given by the right-hand rule for cross products. And:
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3.5 Angular Momentum
The angular momentum ℓ of a particle with linear momentum p, mass m, and linear velocity v is a

vector quantity defined relative to a fixed point (usually an origin) as ℓ = r× p = m(r× v) where is the
position vector of the particle with respect to O.

3.6 Newton’s Second Law in Angular Form

⋆ Theorem 3.6.1

(Newton’s Second Law in Angular Form) In single particle, we have

τnet =
dℓ

dt
.

Proof. Since v× v = 0, we have
dℓ

dt
= m(r× a) = r×ma = r× Fnet = τnet.

3.7 Angular Momentum of a Rigid Body

3.7.1 The Angular Momentum of a System of Particles

In a system of particles, we have L =
∑
i

ℓi and τnet =
dL
dt
.

3.7.2 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis
Look at this picture:

We are interested in the component of ℓi that is parallel to the rotation axis, here the z axis.That z
component is

ℓiz = ℓ sin θ = r⊥i∆mivi.

Thus
Lz =

∑
i

ℓiz =
∑
i

r⊥i∆mivi =
∑
i

r2⊥i∆miωi = Iω.
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So we have
L = Iω.

3.8 Conservation of Angular Momentum
The angular momentum L of a system remains constant if the net external torque acting on the

system is zero:
L = Constant ⇒ Li = Lf .

Also, we can have this:
Iiωi = Ifωf .

3.9 Precession of a Gyroscope

We have dL = τdt = Mgrdt and dϕ =
dL

L
=

Mgrdt

Iω
, hence Ω =

dϕ

dt
=

Mgr

Iω
.
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Chapter 4

Equilibrium and Elasticity

4.1 Equilibrium

⋆ Theorem 4.1.1

A rigid body at rest is said to be in static equilibrium. For such a body, the vector sum of the external

forces acting on it is zero:

Fnet = 0.

Notation 4.1.1. If all the forces lie in the x, y plane, this vector equation is equivalent to two component
equations:

Fnet,x = 0, Fnet,y = 0.

⋆ Theorem 4.1.2

Static equilibrium also implies that the vector sum of the external torques acting on the body about

any point is zero, or

τnet = 0.

Notation 4.1.2. If the forces lie in the x, y plane, all torque vectors are parallel to the z axis, and the
balance-of-torques equation is equivalent to the single component equation:

τnet,z = 0.

▶ The gravitational force acts individually on each element of a body. The net effect of all individual
actions may be found by imagining an equivalent total gravitational force acting at the center of gravity.
If the gravitational acceleration is the same for all the elements of the body, the center of gravity is at the
center of mass.

4.2 Elasticity
Three elastic moduli are used to describe the elastic behavior (deformations) of objects as they

respond to forces that act on them. The strain (fractional change in length) is linearly related to the
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24 CHAPTER 4. EQUILIBRIUM AND ELASTICITY

applied stress (force per unit area) by the proper modulus, according to the general stress–strain relation
stress = modulus× strain.

1. Young’s modulus: When an object is under tension or compression, the stress–strain relation is
written as

E =
F/A

∆L/Li

,

where ∆L/Li is the tensile or compressive strain of the object, F is the magnitude of the applied force F
causing the strain, A is the cross-sectional area over which F is applied (perpendicular to A), and E is
the Young’s modulus for the object. The stress is F/A.

2. Shear modulus: When an object is under a shearing stress, the stress–strain relation is written as

S =
F/A

∆x/L
,

where ∆x/L is the shearing strain of the object, ∆x is the displacement of one end of the object in the
direction of the applied force F , and G is the shear modulus of the object. The stress is F/A.

3. Bulk modulus: When an object undergoes hydraulic compression due to a stress exerted by a
surrounding fluid, the stress–strain relation is written as

B =
p

∆V /V
,

where p is the pressure (hydraulic stress) on the object due to the fluid, ∆V /V (the strain) is the absolute
value of the fractional change in the object’s volume due to that pressure, and B is the bulk modulus of
the object.
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Chapter 5

Gravitation

5.1 Newton’s Law of Gravitation

⋆ Theorem 5.1.1

(Newton’s law of gravitation) Any particle in the universe attracts any other particle with a gravita-

tional force whose magnitude is

F = G
m1m2

r2

where m1 and m2 are the masses of the particles, r is their separation, and G = 6.67×10−11N ·m2/kg2

is the gravitational constant.

Notation 5.1.1. 1. Actually, we can write the law in vector form: F = −G
m1m2

r2
· r

|r|
.

2. A uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell’s
mass were concentrated at its center.

5.2 Gravitation and the Principle of Superposition

5.2.1 Particles

Gravitational forces obey the principle of superposition; that is, if n particles interact, the net force
F1,net on a particle labeled particle 1 is the sum of the forces on it from all the other particles taken one
at a time:

F1,net =
n∑

k=2

F1,i.

5.2.2 Body

The gravitational force F1 on a particle from an extended body is found by first dividing the body
into units of differential mass dm, each of which produces a differential force dF on the particle, and then
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integrating over all those units to find the sum of those forces:

F1 =

ˆ
dF .

5.3 Gravitation Near Earth’s Surface
Let us assume that Earth is a uniform sphere of mass M . The magnitude of the gravitational force

from Earth on a particle of mass m, located outside Earth a distance r from Earth’s center, is then given
by F = G

Mm

r2
. Then ag =

GM

r2
.

If something on the surface with m, then we have mag = mg +mω2r and ag = g + ω2r.

5.4 Gravitation Inside Earth
▶ A uniform shell of matter exerts no net gravitational force on a particle located inside it.
▶ The gravitational force F on a particle inside a uniform solid sphere, at a distance r from the

center, is due only to mass M ins in an “inside sphere”with that radius r:

Mins =
4

3
πr3ρ =

M

R3
r3

where ρ is the solid sphere’s density, R is its radius, and M is its mass. We can assign this inside mass
to be that of a particle at the center of the solid sphere and then apply Newton’s law of gravitation for
particles. We find that the magnitude of the force acting on mass m is

F =
GMm

R3
r.

5.5 Gravitational Potential Energy
▶ The gravitational potential energy U(r) of a system of two particles, with masses M and m and

separated by a distance r, is the negative of the work that would be done by the gravitational force of
either particle acting on the other if the separation between the particles were changed from infinite (very
large) to r. This energy is

U = −GMm

r
.

▶ If a system contains more than two particles, its total gravitational potential energy U is the sum
of the terms representing the potential energies of all the pairs. For n particles, of masses mi,

U = −
∑

1≤i<j≤n

Gmimj

r2ij
.

▶ An object will escape the gravitational pull of an astronomical body of mass M and radius R (that
is, it will reach an infinite distance) if the object’s speed near the body’s surface is at least equal to the
escape speed, given by

v =

√
2GM

R
.

5.6 Planets and Satellites: Kepler’s Laws
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⋆ Theorem 5.6.1

(Kepler’s Laws) The motion of satellites, both natural and artificial, is governed by Kepler’s laws:

1. The law of orbits. All planets move in elliptical orbits with the Sun at one focus.

2. The law of areas. A line joining any planet to the Sun sweeps out equal areas in equal time

intervals. (This statement is equivalent to conservation of angular momentum.)

3. The law of periods. The square of the period T of any planet is proportional to the cube of

the semimajor axis a of its orbit. For circular orbits with radius r,

T 2 =
4πr3

GM
,

where M is the mass of the attracting body—the Sun in the case of the solar system. For elliptical

planetary orbits, the semimajor axis a is substituted for r.

5.7 Satellites: Orbits and Energy
▶When a planet or satellite with mass m moves in a circular orbit with radius r, its potential energy

U and kinetic energy K are given by

U = −GMm

r
and K =

GMm

2r
.

The mechanical energy E = K + U is then

E = −GMm

2r
.

5.8 Einstein and Gravitation
Einstein pointed out that gravitation and acceleration are equivalent. This principle of equivalence

led him to a theory of gravitation (the general theory of relativity) that explains gravitational effects in
terms of a curvature of space.

Einstein Field Equation:
Gµν = Rµν −

1

2
gµνR =

8πG

c4
Tµν

where Rµν is ricci tensor, Tµν is energy momentum tensor and gµν is metric.
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Chapter 6

Fluids

6.1 Fluids, Density, and Pressure

The density ρ of any material is defined as the material’s mass per unit volume ρ =
∆m

∆V
. Usually,

where a material sample is much larger than atomic dimensions, we can write this as ρ =
m

V
.

A fluid is a substance that can flow; it conforms to the boundaries of its container because it cannot
withstand shearing stress. It can, however, exert a force perpendicular to its surface. That force is
described in terms of pressure p: p =

∆F

∆A
in which ∆F is the force acting on a surface element of area

∆A. If the force is uniform over a flat area, this can be written as p =
F

A
.

The force resulting from fluid pressure at a particular point in a fluid has the same magnitude in all
directions.

6.2 Fluids at Rest
▶ Pressure in a fluid at rest varies with vertical position y. For y measured positive upward,

p2 = p1 + ρg(y2 − y1).

If h is the depth of a fluid sample below some reference level at which the pressure is p0 , this equation
becomes

p = p0 + ρgh.

▶ Gauge pressure is the difference between the actual pressure (or absolute pressure) at a point and
the atmospheric pressure.

6.3 Measuring Pressure
▶ A mercury barometer can be used to measure atmospheric pressure.
▶ An open-tube manometer can be used to measure the gauge pressure of a confined gas.
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6.4 Pascal’s Principle
▶ Pascal’s principle states that a change in the pressure applied to an enclosed fluid is transmitted

undiminished to every portion of the fluid and to the walls of the containing vessel.

6.5 Archimedes’ Principle
▶ Archimedes’ principle states that when a body is fully or partially submerged in a fluid, the fluid

pushes upward with a buoyant force with magnitude Fb = mfg where mf is the mass of the fluid that has
been pushed out of the way by the body.

▶ When a body floats in a fluid, the magnitude Fb of the (upward) buoyant force on the body is
equal to the magnitude Fg of the (downward) gravitational force on the body.

▶ The apparent weight of a body on which a buoyant force acts is related to its actual weight by
weightapp = weight− Fb.

6.6 The Equation of Continuity
▶ An ideal fluid is incompressible and lacks viscosity, and its flow is steady and irrotational.
▶ A streamline is the path followed by an individual fluid particle.
▶ A tube of flow is a bundle of streamlines.
▶ The flow within any tube of flow obeys the equation of continuity RV = Av = constant, in which

RV is the volume flow rate, A is the cross-sectional area of the tube of flow at any point, and v is the
speed of the fluid at that point.

▶ The mass flow rate Rm is Rm = ρRV = ρAv = constant.

6.7 Bernoulli’s Equation

⋆ Theorem 6.7.1

Applying the principle of conservation of mechanical energy to the flow of an ideal fluid leads to

Bernoulli’s equation:

p+
1

2
ρv2 + ρgy = constant

along any tube of flow.
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Chapter 7

Oscillations

7.1 Simple Harmonic Motion
▶ The frequency f of periodic, or oscillatory, motion is the number of oscillations per second. In the

SI system, it is measured in hertz: 1Hz = 1s−1.
▶ The period T is the time required for one complete oscillation, or cycle. It is related to the frequency

by T = 1
f
.

▶ In simple harmonic motion (SHM), the displacement x(t) of a particle from its equilibrium position
is described by the equation x = xm cos(ωt+ϕ), in which xm is the amplitude of the displacement, ωt+ϕ

is the phase of the motion, and f is the phase constant. The angular frequency ω is related to the period
and frequency of the motion by ω = 2πf = 2π/T .

▶ Differentiating x(t) leads to equations for the particle’s SHM velocity and acceleration as functions
of time: v = −ωxm sin(ωt + ϕ) and a = −ω2xm cos(ωt + ϕ). In the velocity function, the positive
quantity ωxm is the velocity amplitude vm. In the acceleration function, the positive quantity ω2xm is the
acceleration amplitude am.

▶ A particle with mass m that moves under the influence of a Hooke’s law restoring force given by

F = kx is a linear simple harmonic oscillator with ω =

√
k

m
and T = 2π

√
m
k
.

Actually, we have ODE: d
2x

dt2
= ẍ = −ω2

0x.

7.2 Energy in Simple Harmonic Motion
▶ A particle in simple harmonic motion has, at any time, kinetic energy K = 1

2
mv2 = 1

2
kx2

m sin2(ωt+
ϕ) and potential energy U = 1

2
kx2 = 1

2
kx2

m cos2(ωt+ ϕ).
▶ If no friction is present, the mechanical energy E = K + U = 1

2
kx2

m remains constant even though
K and U change.

7.3 An Angular Simple Harmonic Oscillator

▶ Torsion pendulum: Angular simple harmonic motion, we have τ = −κθ = I
d2θ

dt2
with τ = Iα. So

we have T = 2π

√
I

κ
.
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7.4 Pendulums, circular motion
▶ A simple pendulum consists of a rod of negligible mass that pivots about its upper end, with a

particle (the bob) attached at its lower end. If the rod swings through only small angles, its motion is

approximately simple harmonic motion with a period given by T = 2π

√
I

mgL
since sin θ ≈ θ when θ is

small enough where I is the particle’s rotational inertia about the pivot, m is the particle’s mass, and L
is the rod’s length.

▶ A physical pendulum has a more complicated distribution of mass. For small angles of swinging,
its motion is simple harmonic motion with a period given by T = 2π

√
I

mgh
where I is the pendulum’s

rotational inertia about the pivot, m is the pendulum’s mass, and h is the distance between the pivot and
the pendulum’s center of mass.

▶ Simple harmonic motion corresponds to the projection of uniform circular motion onto a diameter
of the circle.

7.5 Damped Simple Harmonic Motion
▶ The mechanical energy E in a real oscillating system decreases during the oscillations because

external forces, such as a drag force, inhibit the oscillations and transfer mechanical energy to thermal
energy. The real oscillator and its motion are then said to be damped.

▶ If the damping force is given by Fd = −bv, where vis the velocity of the oscillator and b

is a damping constant, then the displacement of the oscillator is given by mẍ + bẋ + kx = 0 then
x(t) = xme−bt/2m cos(ω′t + ϕ) where ω′, the angular frequency of the damped oscillator, is given by

ω′ =

√
k

m
− b2

4m2
.

▶ If the damping constant is small (b ≪
√
km), then ω′ = ω, where ω is the angular frequency of the

undamped oscillator. For small b, the mechanical energy E of the oscillator is given by E(t) = 1
2
kx2

me−bt/m.

7.6 Forced Oscillations and Resonance
▶ If an external driving force with angular frequency ωd acts on an oscillating system with natural

angular frequency ω, the system oscillates with angular frequency ωd.
▶ The velocity amplitude vm of the system is greatest when ωd = ω, a condition called resonance.

The amplitude xm of the system is (approximately) greatest under the same condition.
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Chapter 8

Waves I

8.1 Transverse Waves

▶ Key Ideas 8.1.1

Mechanical waves can exist only in material media and are governed by Newton’s laws. Transverse

mechanical waves, like those on a stretched string, are waves in which the particles of the medium

oscillate perpendicular to the wave’s direction of travel. Waves in which the particles of the medium

oscillate parallel to the wave’s direction of travel are longitudinal waves.

▶ Key Ideas 8.1.2

A sinusoidal wave moving in the positive direction of an x axis has the mathematical form

y(x, t) = ym sin(kx− ωt),

where ym is the amplitude (magnitude of the maximum displacement) of the wave, k is the angular

wave number, ω is the angular frequency, and kx− ωt is the phase. The wavelength λ is related to k

by k = 2π
λ
.

▶ Key Ideas 8.1.3

The period T and frequency f of the wave are related to ω by ω
2π

= f = 1
T
.

▶ Key Ideas 8.1.4

The wave speed v (the speed of the wave along the string) is related to these other parameters by

v = ω
k
= λ

T
= λf .
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▶ Key Ideas 8.1.5

Any function of the form y(x, t) = h(kx ± ωt) can represent a traveling wave with a wave speed as

given above and a wave shape given by the mathematical form of h. The plus sign denotes a wave

traveling in the negative direction of the x axis, and the minus sign a wave traveling in the positive

direction.

8.2 Wave Speed on a Stretched String
By Newton’s law, we have F = ma, hence 2τ sin θ = m v2

R
. We let µ be linear density, and θ ≈ sin θ

since θ is small enough. Then v =
√

τ
µ
.

▶ Key Ideas 8.2.1

The speed of a wave on a stretched string is set by properties of the string, not properties of the wave

such as frequency or amplitude. The speed of a wave on a string with tension τ and linear density µ

is

v =

√
τ

µ
.

8.3 Energy and Power of a Wave Traveling Along a String

▶ Key Ideas 8.3.1

The average kinetic energy of a sinusoidal wave on a stretched string is given by 1
4
µvω2y2m.

Proof. The kinetic energy dK associated with a string element of mass dm is given by dK = 1
2
dmu2 where

u is the transverse speed of the oscillating string element. To find u, we have u = ∂y
∂t

= −ωym cos(kx−ωt).
Since dm = µdx, hence dK

dt
= 1

2
µvω2y2m cos(kx− ωt), thus

(
dK
dt

)
avg

= 1
4
µvω2y2m.

▶ Key Ideas 8.3.2

The average elastic potential energy of a sinusoidal wave on a stretched string is given by 1
4
µvω2y2m.

Proof. Since U = 1
2
k′y2 and k′ = mω2, we have U = 1

2
mω2y2. Then dU = 1

2
µω2y2m sin2(kx − ωt)dx. Let

t = 0, we have Uλ =
´ λ

0
1
2
µω2y2m sin2(kx)dx = 1

4
µω2y2mλ, thus Uλ

T
= 1

4
µvω2y2m.
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Notation 8.3.1. Actually, the average elastic potential energy of a sinusoidal wave on a stretched string
is equal to the average kinetic energy of a sinusoidal wave on a stretched string.

▶ Key Ideas 8.3.3

The average power, which is the average rate at which energy of both kinds is transmitted by the

wave, is then

Pavg = 2

(
dK

dt

)
avg

=
2Uλ

T
=

1

2
µvω2y2m.

8.4 The Wave Equation

⋆ Theorem 8.4.1

The general differential equation that governs the travel of waves of all types is

∂2y

∂x2
=

1

v2
∂2y

∂t2
.

Here the waves travel along an x axis and oscillate parallel to the y axis, and they move with speed

v, in either the positive x direction or the negative x direction.

Proof. Look at this picture:

By Newton’s second law, we have F2y − F1y = aydm, and dm = µdx, ay =
∂2y

∂t2
. And F2y

F2x

= S2

and since F2y ≪ F2x, thus F2 := τ =
√
F 2
2x + F 2

2y ≈ F2x. Hence F2y = τS2 and F1y = τS1. So we have

τS2 − τS1 = (µdx)
∂2y

∂t2
, hence ∂S

∂x
=

µ

τ

∂2y

∂t2
and ∂2y

∂x2
=

µ

τ

∂2y

∂t2
=

1

v2
∂2y

∂t2
.

8.5 Interference of Waves
Let one wave traveling along a stretched string be given by y1(x, t) = ym sin(kx − ωt), and an-

other,shifted from the first, by y1(x, t) = ym sin(kx − ωt + ϕ). So y′(x, t) = y1(x, t) + y2(x, t) =

2ym cos 1
2
ϕ sin(kx− ωt+ 1

2
ϕ).

Some special situations:

8.6 Phasors
A wave y(x, t) can be represented with a phasor. This is a vector that has a magnitude equal to the

amplitude ym of the wave and that rotates about an origin with an angular speed equal to the angular
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frequency ω of the wave. The projection of the rotating phasor on a vertical axis gives the displacement
y of a point along the wave’s travel.

Use this we can add like this:

8.7 Standing Waves and Resonance
If two sinusoidal waves of the same amplitude and wavelength travel in opposite directions along a

stretched string, their interference with each other produces a standing wave.
Let y1 = ym sin(kx− ωt) and y2 = ym cos(kx− ωt), then y′ = y1 + y2 = 2ym sin kx cosωt.
Standing waves on a string can be set up by reflection of traveling waves from the ends of the string. If

an end is fixed, it must be the position of a node. This limits the frequencies at which standing waves will
occur on a given string. Each possible frequency is a resonant frequency, and the corresponding standing
wave pattern is an oscillation mode. For a stretched string of length L with fixed ends, the resonant
frequencies are f =

v

λ
= n

v

2L
.

The oscillation mode corresponding to n = 1 is called the fundamental mode or the first harmonic;
the mode corresponding to n = 2 is the second harmonic; and so on.
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Chapter 9

Waves II

9.1 Speed of Sound

▶ Key Ideas 9.1.1

Sound waves are longitudinal mechanical waves that can travel through solids, liquids, or gases. The

speed v of a sound wave in a medium having bulk modulus B and density ρ is v =

√
B

ρ
, where

B = − ∆p

∆V /V
.

9.2 Traveling Sound Waves

▶ Key Ideas 9.2.1

A sound wave causes a longitudinal displacement s of a mass element in a medium as given by s =

sm cos(kx− ωt) where sm is the displacement amplitude (maximum displacement) from equilibrium,

k =
2π

λ
, and v = 2πf , λ and f being the wavelength and frequency, respectively, of the sound wave.

▶ Key Ideas 9.2.2

The sound wave also causes a pressure change of the medium from the equilibrium pressure ∆p =

Bksm sin(kx− ωt) where the pressure amplitude is ∆pm = vρωsm.

Since ∆p = −B
∆V

V
and V = A∆x,∆V = A∆s, so ∆p = −B

∂s

∂x
= Bksm sin(kx− ωt). So we have

∆pm = vρωsm since v =

√
B

ρ
.
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9.3 Interference
Let s1 = sm cos(kx − ωt) and s2 = sm cos(kx − ωt + ϕ), thus s′ = 2sm cos 1

2
ϕsm cos(kx − ωt + 1

2
ϕ).

▶ Key Ideas 9.3.1

The interference of two sound waves with identical wavelengths passing through a common point

depends on their phase difference ϕ there. If the sound waves were emitted in phase and are traveling

in approximately the same direction, ϕ is given by ϕ =
∆L

λ
2π where ∆L is their path length difference.

▶ Key Ideas 9.3.2

Fully constructive interference occurs when ϕ is an integer multiple of 2π, ϕ = 2nπ, n = 0, 1, 2, ..., and,

equivalently, when ∆L is related to wavelength λ by ∆L

λ
= 0, 1, 2, ...

▶ Key Ideas 9.3.3

Fully destructive interference occurs when ϕ is an odd multiple of π, ϕ = (2n+1)π, n = 0, 1, 2, ..., and
∆L

λ
= 0.5, 1.5, 2.5, ...

9.4 Intensity and Sound Level

▶ Key Ideas 9.4.1

The intensity I of a sound wave at a surface is the average rate per unit area at which energy is

transferred by the wave through or onto the surface: I =
P

A
, where P is the time rate of energy

transfer (power) of the sound wave and A is the area of the surface intercepting the sound. The

intensity I is related to the displacement amplitude sm of the sound wave by I =
1

2
ρvω2s2m.

▶ Key Ideas 9.4.2

The intensity at a distance r from a point source that emits sound waves of power Ps equally in all

directions (isotropically) is I =
Ps

4πr2
.

▶ Key Ideas 9.4.3

The sound level β in decibels (dB) is defined as β = (10dB) log I

I0
where I0(= 10−12W/m2) is a

reference intensity level to which all intensities are compared. For every factor-of-10 increase in

intensity, 10 dB is added to the sound level.
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9.5 Sources of Musical Sound

▶ Key Ideas 9.5.1

Standing sound wave patterns can be set up in pipes (that is, resonance can be set up) if sound of the

proper wavelength is introduced in the pipe.

▶ Key Ideas 9.5.2

A pipe open at both ends will resonate at frequencies f =
v

λ
=

nv

2L
, n = 1, 2, 3, ... where v is the speed

of sound in the air in the pipe.

▶ Key Ideas 9.5.3

For a pipe closed at one end and open at the other, the resonant frequencies are f =
v

λ
=

nv

4L
, n =

1, 3, 5, ...

9.6 Beats

▶ Example 9.6.1

If we listen, a few minutes apart, to two sounds whose frequencies are, say, 552 and 564 Hz,most of

us cannot tell one from the other because the frequencies are so close to each other. However, if the

sounds reach our ears simultaneously, what we hear is a sound whose frequency is 558 Hz, the average

of the two combining frequencies. We also hear a striking variation in the intensity of this sound—

it increases and decreases in slow, wavering beats that repeat at a frequency of 12 Hz, the difference

between the two combining frequencies.

Let s1 = sm cosω1t and s2 = sm cosω2t, we have s = s1+s2 = 2sm cosω′t cosωt where ω = 1
2
(ω1+ω2)

and ω′ = 1
2
(ω1 − ω2). We have ωbeat = 2ω′ = ω1 − ω2, hence fbeat = f1 − f2.
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9.7 The Doppler Effect

▶ Key Ideas 9.7.1

The Doppler effect is a change in the observed frequency of a wave when the source or the detector

moves relative to the transmitting medium (such as air). For sound the observed frequency f ′ is given

in terms of the source frequency f by

f ′ = f
v ± vD
v ∓ vS

,

where vD is the speed of the detector relative to the medium (If it is close to the emission source,

the front operation symbol is + sign, otherwise − sign), vS is that of the source (If it is close to the

detector, the operation symbol in front is − sign, otherwise it is + sign), and v is the speed of sound

in the medium.

9.8 Supersonic Speeds, Shock Waves

▶ Key Ideas 9.8.1

If the speed of a source relative to the medium exceeds the speed of sound in the medium, the Doppler

equation no longer applies. In such a case, shock waves result. The half-angle θ of the Mach cone is

given by sin θ = v
vS
.
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Chapter 10

Temperature, Heat, and the First

Law of Thermodynamics

10.1 Temperature

▶ Key Ideas 10.1.1

Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a

thermometer, which contains a working substance with a measurable property, such as length or

pressure, that changes in a regular way as the substance becomes hotter or colder.

▶ Key Ideas 10.1.2

When a thermometer and some other object are placed in contact with each other, they eventually

reach thermal equilibrium. The reading of the thermometer is then taken to be the temperature of

the other object. The process provides consistent and useful temperature measurements because of

the zeroth law of thermodynamics: If bodies A and B are each in thermal equilibrium with a third

body C (the thermometer), then A and B are in thermal equilibrium with each other.

▶ Key Ideas 10.1.3

In the SI system, temperature is measured on the Kelvin scale, which is based on the triple point of

water (273.16 K). Other temperatures are then defined by use of a constant-volume gas thermometer,

in which a sample of gas is maintained at constant volume so its pressure is proportional to its
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temperature. We define the temperature T as measured with a gas thermometer to be

T = (273.16K) lim
gas→0

p

p3
.

Here T is in kelvins, and p3 and p are the pressures of the gas at 273.16K and the measured temper-

ature, respectively.

⋆ Theorem 10.1.1

(The Zeroth law of Thermodynamics) If bodies A and B are each in thermal equilibrium with a

third body T , then A and B are in thermal equilibrium with each other.

(Two bodies are in thermal equilibrium with each other if they have the same temperature.)

10.2 The Celsius and Fahrenheit Scales

▶ Key Ideas 10.2.1

The Celsius temperature scale is defined by TC = T − 273.15◦, with T in kelvins. The Fahrenheit

temperature scale is defined by TF = 9
5
TC + 32◦.

Notation 10.2.1. Actually, the triple point of water is 273.16K and 0.01◦C and 32.02◦F .

Notation 10.2.2. Temperature difference denoted by C◦ or F ◦. But in China, this is banned.

10.3 Thermal Expansion

▶ Key Ideas 10.3.1

All objects change size with changes in temperature. For a temperature change ∆T , a change ∆L in

any linear dimension L is given by

∆L = Lα∆T,

in which α is the coefficient of linear expansion.

▶ Key Ideas 10.3.2

The change ∆V in the volume V of a solid or liquid is

∆V = V β∆T.

Here β = 3α is the material’s coefficient of volume expansion.

By LATEX, by DVL. Keep Learning!



10.4. ABSORPTION OF HEAT 43

10.4 Absorption of Heat

▶ Key Ideas 10.4.1

Heat Q is energy that is transferred between a system and its environment because of a temperature

difference between them. It can be measured in joules (J), calories (cal), kilocalories (Cal or kcal), or

British thermal units (Btu), with

1cal = 3.968× 10−3Btu = 4.1868J.

▶ Key Ideas 10.4.2

If heat Q is absorbed by an object, the object’s temperature change Tf − Ti is related to Q by

Q = C(Tf − Ti),

in which C is the heat capacity of the object. If the object has mass m, then

Q = cm(Tf − Ti),

where c is the specific heat of the material making up the object.

▶ Key Ideas 10.4.3

The molar specific heat of a material is the heat capacity per mole, which means per 6.02 × 1023

elementary units of the material.

▶ Key Ideas 10.4.4

Heat absorbed by a material may change the material’s physical state—for example, from solid to

liquid or from liquid to gas. The amount of energy required per unit mass to change the state (but

not the temperature) of a particular material is its heat of transformation L. Thus,

Q = Lm.

▶ Key Ideas 10.4.5

The heat of vaporization LV is the amount of energy per unit mass that must be added to vaporize a

liquid or that must be removed to condense a gas.

▶ Key Ideas 10.4.6

The heat of fusion LF is the amount of energy per unit mass that must be added to melt a solid or
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that must be removed to freeze a liquid.

10.5 The First Law of Thermodynamics

▶ Key Ideas 10.5.1

A gas may exchange energy with its surroundings through work. The amount of work W done by a

gas as it expands or contracts from an initial volume Vi to a final volume Vf is given by

W =

ˆ
∆W

dW =

ˆ Vf

Vi

pdV.

The integration is necessary because the pressure p may vary during the volume change.

▶ Key Ideas 10.5.2

The principle of conservation of energy for a thermodynamic process is expressed in the first law

of thermodynamics, which may assume either of the forms ∆Eint = Eint,f − Eint,i = Q − W or

dEint = dQ − dW . Eint represents the internal energy of the material, which depends only on the

material’s state (temperature, pressure, and volume). Q represents the energy exchanged as heat

between the system and its surroundings; Q is positive if the system absorbs heat and negative if the

system loses heat. W is the work done by the system; W is positive if the system expands against an

external force from the surroundings and negative if the system contracts because of an external force.

Notation 10.5.1. Q and W are path dependent; ∆Eint is path independent.

▶ Key Ideas 10.5.3

The first law of thermodynamics finds application in several special cases:

(i)adiabatic processes: Q = 0,∆Eint = −W ;

(ii)constant-volume processes: W = 0,∆Eint = Q;

(iii)cyclical processes: ∆Eint = 0, Q = W ;

(iv)free expansions: Q = W = ∆Eint = 0.

10.6 Heat Transfer Mechanisms

▶ Key Ideas 10.6.1

The rate Pcond at which energy is conducted through a slab for which one face is maintained at the
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higher temperature TH and the other face is maintained at the lower temperature TC is

Pcong =
Q

t
= kA

TH − TC

L
.

Here each face of the slab has area A, the length of the slab (the distance between the faces) is L, and

k is the thermal conductivity of the material.

▶ Key Ideas 10.6.2

The concept of thermal resistance R has been introduced into engineering practice.The R-value of a

slab of thickness L is defined as

R =
L

k
.

▶ Key Ideas 10.6.3

Any number n of materials making up a slab:

Pcong =
A(TH − TC)∑

(L/k)
.

▶ Key Ideas 10.6.4

Radiation is an energy transfer via the emission of electromagnetic energy. The rate Prad at which an

object emits energy via thermal radiation is

Prad = σεAT 4,

where σ (= 5.6704 × 10−8W/m2 · K4) is the Stefan–Boltzmann constant, ε is the emissivity of the

object’s surface, A is its surface area, and T is its surface temperature (in kelvins). The rate Pabs at

which an object absorbs energy via thermal radiation from its environment, which is at the uniform

temperature Tenv (in kelvins), is

Pabs = σεAT 4
env.
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Chapter 11

The Kinetic Theory of Gases

11.1 Avogadro’s Number

▶ Key Ideas 11.1.1

The kinetic theory of gases relates the macroscopic properties of gases (for example, pressure and

temperature) to the microscopic properties of gas molecules (for example, speed and kinetic energy).

▶ Key Ideas 11.1.2

One mole of a substance contains NA (Avogadro’s number) elementary units (usually atoms or

molecules), where NA is found experimentally to be

NA = 6.02× 1023mol−1.

One molar mass M of any substance is the mass of one mole of the substance.

▶ Key Ideas 11.1.3

A mole is related to the mass m of the individual molecules of the substance by

M = mNA.

▶ Key Ideas 11.1.4

The number of moles n contained in a sample of mass Msam, consisting of N molecules, is related to

the molar mass M of the molecules and to Avogadro’s number NA as given by

n =
N

NA

=
Msam

M
=

Msam

mNA

.
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11.2 Ideal Gases

▶ Key Ideas 11.2.1

An ideal gas is one for which the pressure p, volume V , and temperature T are related by

PV = nRT.

Here n is the number of moles of the gas present and R is a constant (8.31J/mol ·K) called the gas

constant.

▶ Key Ideas 11.2.2

The ideal gas law can also be written as PV = κNT where the Boltzmann constant κ is

κ =
R

NA

= 1.38× 10−23J/K.

▶ Key Ideas 11.2.3

The work done by an ideal gas during an isothermal (constant-temperature) change from volume Vi

to volume Vf is

W = nRT ln Vf

Vi

.

11.3 Pressure, Temperature, and RMS Speed

▶ Key Ideas 11.3.1

In terms of the speed of the gas molecules, the pressure exerted by n moles of an ideal gas is

p =
nMv2rms

3V

where vrms =
√∑

(v2i /n) is the root-mean-square speed of the molecules, M is the molar mass, and

V is the volume.

Proof. At x component, we have ∆p = −2mvx and then ∆p
∆t

= 2mvx

2L/vx
= mv2

x

L
. And F = dp

dt
and

px =
F

L2
=

nMv2x
V

⇒ p =
nMv2

3V
since v2 =

∑
x,y,z

v2i .

And well done!

▶ Key Ideas 11.3.2
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The rms speed can be written in terms of the temperature as

vrms =

√
3RT

M
.

11.4 Translational Kinetic Energy

▶ Key Ideas 11.4.1

The average translational kinetic energy per molecule in an ideal gas is

Kavg =
1

2
mv2rms.

▶ Key Ideas 11.4.2

The average translational kinetic energy is related to the temperature of the gas:

Kavg =
3

2
κT.

11.5 Mean Free Path

▶ Key Ideas 11.5.1

The mean free path λ of a gas molecule is its average path length between collisions and is given by

λ =
1√

2πd2(N/V )
=

κT√
2πd2p

,

where N/V is the number of molecules per unit volume, d is the molecular diameter and p is pressure.

11.6 The Distribution of Molecular Speeds

▶ Key Ideas 11.6.1

The Maxwell speed distribution P (v) is a function such that P (v)dv gives the fraction of molecules

with speeds in the interval dv at speed v:

P (v) = 4π

(
M

2πRT

)3/2

v2e−Mv2/2RT .

▶ Key Ideas 11.6.2
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Three measures of the distribution of speeds among the molecules of a gas are

vavg =

ˆ ∞

0

vP (v)dv =

√
8RT

πM
, (v2)avg =

ˆ ∞

0

v2P (v)dv =
3RT

M
,

and
dP

dv
= 0 ⇒ vP =

2RT

M
.

11.7 The Molar Specific Heats of an Ideal Gas

▶ Key Ideas 11.7.1

The molar specific heat CV of a gas at constant volume is defined as

CV =
Q

n∆T
=

∆Ein

n∆T
,

in which Q is the energy transferred as heat to or from a sample of n moles of the gas, ∆T is the

resulting temperature change of the gas, and ∆Eint is the resulting change in the internal energy of

the gas.

▶ Key Ideas 11.7.2

For an ideal monatomic gas, CV = 3
2
R = 12.5J/mol ·K.

▶ Key Ideas 11.7.3

The molar specific heat Cp of a gas at constant pressure is defined to be

Cp =
Q

n∆T
,

in which Q, n, and ∆T are defined as above. Cp is also given by Cp = CV +R.

▶ Key Ideas 11.7.4
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For n moles of an ideal gas,

Eint = nCV T.

▶ Key Ideas 11.7.5

If n moles of a confined ideal gas undergo a temperature change ∆T due to any process, the change

in the internal energy of the gas is

∆Eint = nCV ∆T.

11.8 Degrees of Freedom and Molar Specific Heats

▶ Key Ideas 11.8.1

We find CV by using the equipartition of energy theorem, which states that every degree of freedom

of a molecule (that is, every independent way it can store energy) has associated with it—on average

—an energy 1
2
κT per molecule ( 1

2
RT per mole).

▶ Key Ideas 11.8.2

If f is the number of degrees of freedom, then

Eint =
f

2
nRT,CV =

f

2
R = 4.16fJ/mol ·K.

▶ Key Ideas 11.8.3

For monatomic gases f = 3 (three translational degrees); for diatomic gases f = 5 (three translational

and two rotational degrees).

11.9 The Adiabatic Expansion of an Ideal Gas

▶ Key Ideas 11.9.1

When an ideal gas undergoes a slow adiabatic volume change (a change for which Q = 0),

PV γ = constant,

in which γ(= Cp/CV ) is the ratio of molar specific heats for the gas.

( For a free expansion, PV = constant or T = constant.)

Notation 11.9.1. With pV = nRT , we have TV γ−1 = constant.
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Chapter 12

Entropy and the Second Law of

Thermodynamics (No problems)

12.1 Entropy

▶ Key Ideas 12.1.1

An irreversible process is one that cannot be reversed by means of small changes in the environment.

The direction in which an irreversible process proceeds is set by the change in entropy ∆S of the

system undergoing the process. Entropy S is a state property (or state function) of the system; that

is, it depends only on the state of the system and not on the way in which the system reached that

state. The entropy postulate states (in part): If an irreversible process occurs in a closed system, the

entropy of the system always increases.

▶ Key Ideas 12.1.2

The entropy change ∆S for an irreversible process that takes a system from an initial state i to a final

state f is exactly equal to the entropy change ∆S for any reversible process that takes the system

between those same two states. We can compute the latter (but not the former) with

∆S = Sf − Si =

ˆ f

i

dQ

T
.

Here Q is the energy transferred as heat to or from the system during the process, and T is the

temperature of the system in kelvins during the process.
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▶ Key Ideas 12.1.3

For a reversible isothermal process, the expression for an entropy change reduces to

∆S = Sf − Si =
Q

T
.

▶ Key Ideas 12.1.4

When the temperature change ∆T of a system is small relative to the temperature (in kelvins) before

and after the process, the entropy change can be approximated as

∆S = Sf − Si ≈
Q

Tavg

.

▶ Key Ideas 12.1.5

When an ideal gas changes reversibly from an initial state with temperature Ti and volume Vi to a

final state with temperature Tf and volume Vf , the change ∆S in the entropy of the gas is

∆S = Sf − Si = nR ln Vf

Vi

+ nCV ln
Tf

Ti

.

▶ Key Ideas 12.1.6

The second law of thermodynamics, which is an extension of the entropy postulate, states: If a process

occurs in a closed system, the entropy of the system increases for irreversible processes and remains

constant for reversible processes. It never decreases. In equation form,

∆S ≥ 0.

12.2 Entropy in the Real World: Engines

▶ Key Ideas 12.2.1

An engine is a device that, operating in a cycle, extracts energy as heat |QH | from a high-temperature

reservoir and does a certain amount of work |W |. The efficiency ε of any engine is defined as

ε =
energy we get

energy we pay for =
|W |
|QH |

.

▶ Key Ideas 12.2.2

In an ideal engine, all processes are reversible and no wasteful energy transfers occur due to, say,
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friction and turbulence.

▶ Key Ideas 12.2.3

A Carnot engine is an ideal engine that follows the cycle of Carnot. Its efficiency is

εC = 1− |QL|
|QH |

= 1− TL

TH

,

in which TH and TL are the temperatures of the high- and low-temperature reservoirs, respectively.

Real engines always have an efficiency lower than that of a Carnot engine. Ideal engines that are not

Carnot engines also have efficiencies lower than that of a Carnot engine.

▶ Key Ideas 12.2.4

A perfect engine is an imaginary engine in which energy extracted as heat from the high-temperature

reservoir is converted completely to work. Such an engine would violate the second law of thermo-

dynamics, which can be restated as follows: No series of processes is possible whose sole result is the

absorption of energy as heat from a thermal reservoir and the complete conversion of this energy to

work.

12.3 Refrigerators and Real Engines

▶ Key Ideas 12.3.1

A refrigerator is a device that, operating in a cycle, has work W done on it as it extracts energy QL

as heat from a low-temperature reservoir. The coefficient of performance K of a refrigerator is defined

as

K =
what we want
what we pay for =

|QL|
|W |

.

▶ Key Ideas 12.3.2

A Carnot refrigerator is a Carnot engine operating in reverse. Its coefficient of performance is

KC =
|QL|

|QH | − |QL|
=

TL

TH − TL

.

▶ Key Ideas 12.3.3

A perfect refrigerator is an entirely imaginary refrigerator in which energy extracted as heat from the

low-temperature reservoir is somehow converted completely to heat discharged to the high-temperature
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reservoir without any need for work.

▶ Key Ideas 12.3.4

A perfect refrigerator would violate the second law of thermodynamics, which can be restated as

follows: No series of processes is possible whose sole result is the transfer of energy as heat from a

reservoir at a given temperature to a reservoir at a higher temperature (without work being involved).

12.4 A Statistical View of Entropy

▶ Key Ideas 12.4.1

The entropy of a system can be defined in terms of the possible distributions of its molecules. For

identical molecules, each possible distribution of molecules is called a microstate of the system. All

equivalent microstates are grouped into a configuration of the system. The number of microstates in

a configuration is the multiplicity W of the configuration.

▶ Key Ideas 12.4.2

For a system of N molecules that may be distributed between the two halves of a box, the multiplicity

is given by

W =
N !

n1!n2!
,

in which n1 is the number of molecules in one half of the box and n2 is the number in the other

half. A basic assumption of statistical mechanics is that all the microstates are equally probable.

Thus, configurations with a large multiplicity occur most often. When N is very large (say, N =

1022molecules or more), the molecules are nearly always in the configuration in which n1 = n2.

▶ Key Ideas 12.4.3

The multiplicityW of a configuration of a system and the entropy S of the system in that configuration

are related by Boltzmann’s entropy equation:

S = κ lnW,

where κ = 1.38× 10−23J/K is the Boltzmann constant.

▶ Key Ideas 12.4.4
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More strong Stirling’s approximation, let θn ∈ (0, 1) and we have

n! =
√
2πn

(n
e

)n

e
θn
12n .

▶ Key Ideas 12.4.5

When N is very large (the usual case), we can approximate lnN ! with Stirling’s approximation:

lnN ! ≈ N lnN −N.
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