The Mid-term Examination of Abstract Algebra

- 1. (10) Assume that F is a field, G is a finite subgroup of $(F^*, *)$, prove that G is cyclic.
- 2. (10) Assume that R is a commutative ring, I_1 , I_2 are two ideals of R which satisfy $I_1 + I_2 = R$, prove that $I_1^2 + I_2^2 = R$.
- 3. (10) Assume that G is a group of order n, p is the minimal prime number dividing n, H is a subgroup of G and (G:H)=p, prove that H is a normal subgroup of G.
- 4. (10) Assume K/F is a finite normal extension, E is an intermediate field. Prove that E/F is normal iff for all automorphisms σ of K over F, $\sigma(E) = E$.
- 5. (1) (10) Prove that all groups of order 99 are abelian.
 - (2) (10) Prove that all groups of order 56 are not simple.
- 6. (10) Let E be a finite separable extension of F, $[E:F]=n, \alpha \in F$, calculate $Tr_F^E(\alpha)$ and $N_F^E(\alpha)$.
- 7. (10) Assume that \underline{A} is a commutative ring, $\mathfrak{N} = \{x \in A \mid \exists n \in \mathbb{N} \text{ s.t. } x^n = 0\}$ is its nilradical, SpecA is the set of all prime ideals of A, prove that

$$\mathfrak{N} = \bigcap_{p \in Spec A} p.$$

(Hint: To prove $\mathfrak{N} \supseteq \bigcap_{p \in SpecA} p$, you may take $f \in A$ which is not nilpotent and let Σ be the set of all ideals I of A satisfying $\forall n \in \mathbb{N}$, $f^n \notin I$. Then use the Zorn's lemma and prove the maximal element of Σ is prime. Of course, you can also use other methods.)

- 8. (20) Let $\xi_n = e^{\frac{2\pi i}{n}}$, prove that
 - (1) $Gal(\mathbb{Q}(\xi_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^*$,
 - (2) $\mathbb{Q}(\xi_n) \cap \mathbb{R} = \mathbb{Q}(\xi_n + \frac{1}{\xi_n}).$
 - (3) Determine all the intermediate fields of $\mathbb{Q}(\xi_9)/\mathbb{Q}$.