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Abstract

In this report, we use three-point and five-point formula to compute f’(1) where f(z) =
In(z? + ¢”) and compare them. Similarly, we use Composite Simpson’s Rule and Romberg

Integration to compute fol e”dx and compare them.
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1 INTRODUCTIONS

In this report, we use three-point and five-point formula to compute f’(1) where f(z) = In(22 +
€®) and compare them. Similarly, we use Composite Simpson’s Rule and Romberg Integration

to compute fol e*dr and compare them.

2 ALGORITHM DESCRIPTION & MATHEMATICAL DERIVATION

2.1 NUMERICAL DIFFERENTIATION
Theorem 2.1.1. Actually, for {zg,...,xn} C I and f € C" (1), we have

/ . / f(n+1)(§(mj)) -
Fl@) =" flan)Ly(x;) + BCESVE

k=0

(xj - xk)’
k=0,k#j

which is called an (n + 1)-point formula



Actually, we often choose three-point formulas or five-point formulas. As follows (We now
only use midpoint case):

Corollary 2.1.2 (XX-Point Midpoint Formula). (1)(Three-Point) There exists & € (xg—h, zo+
h), we have

h2
/(w0) = 5 (Flawo+ h) — flao — ) — = 1 (6);
(2)(Five-Point) There exists & € (zo — 2h, xo + 2h), we have

(0 — 2h) = 8f (20 — h) + 8f (0 + h) — f(zo +2h)) + o FI€).

[ (o) = on

2.2 COMPOSITE SIMPSON’S RULE ON NUMERICAL INTEGRATION

Theorem 2.2.1 (Composite Simpson’s rule). Let f € C*[a,b] and n be even. Let h = b*T“ and
zj =a+jh for j=0,1,...,n. There exists a € (a,b) for which the Composite Simpson’s rule
for n subintervals can be written with its error term as

b h n/2—1 n/2 b—a
[ t@do =5 [ f@)+2 32 floa) 44 Slaaa) + 10) | - Tt b O ),
a j=1

j=1

2.3 ROMBERG INTEGRATION ON NUMERICAL INTEGRATION

Theorem 2.3.1 (Composite Trapezoidal rule). Let f € C2%a,b] and h = =%, Let z; =

a+jh,j=0,1,....,n. There exists a u € (a,b) for which the Composite Trapezoidal rule for n
subintervals can be written with its error term as

b n—1
h b—a
[ e =5 | fla)+ 23 5l + £0) | = 25001 )

a J:1
Theorem 2.3.2 (Romberg Integration). Let hy, = 5’,:—_‘11 and we let Ry 1, Ra 1, ... as the Composite
Trapezoidal rule when n =1,2,4,8,16,.... Or we can write as

1 2k—2
Ry =5 | Rioia+ e z_; fla+(2i—Dhg) |, k=2,3,...,n,

Then we have

1 .
Rij = Rij1+ g (Brj-1 = Berj1) k=5, + 1, ..
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3 CoODES AND NUMERICAL EXPERIMENTS

3.1 NUMERICAL DIFFERENTIATION

Problem 3.1.1. Given a function f(z) = In(z? + e*), we want to use three-midpoint and
five-midpoint methods to calculate f'(1) and compare their errors. (We let h = 0.1)

Solution. Consider the following code:

>> format long
>> syms x
>> £=0(x) log(x~2+exp(x));
>> £_d1=5%(£(1.1)-£(0.9))
f dl =

1.268915539908338
>> £.d2=(1/1.2)*(£(0.8)-8*£(0.9)+8*f(1.1)-£(1.2))
f d2 =

1.268958142011042
>> syms g(x)
>>g(x) = log(x~2+exp(x));
>> Dg=diff(g,x)
Dg(x) =
(2*x + exp(x))/(exp(x) + x72)
>> DG = double(Dg(1))
DG =

1.268941421369995
>> abs(f_d1-DG)
ans =

2.588146165671823e-05

>> abs (f_d2-DG)

ans =

1.672064104685234e-05

Then we the errors of Three-midpoint are bigger than Five-midpoint.
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3.2 NUMERICAL INTEGRATION

Problem 3.2.1. Suppose that f(z) = e*,x € [1,2]. And we will compute ff e*dx by using
composite Simpson’s Rule and Romberg integration.

Solution. We first using composite Simpson’s Rule to compute it as follows

>> n = input('Input a number:\n');
x=1:1/n:2;
h=1/n;I_11=0;1_12=0;
for ji1 =1 : 1 : n/2-1
I_11 = I_11+exp(x(1,2%xj1));

end
for j2 =1 : 1 : n/2

I_12 = I_12+exp(x(1,2%j2-1));
end

I_1=(h/3)*(exp(1)+exp(2)+2*I_11+4xI_12);
Input a number:
4
>> I_1
I.1 =
3.823992286458485
Input a number:
100
>> 1.1
I.1 =

4.624634522526311

We next using Romberg integration. We first we construct a function about Composite
Trapezoidal rule:

function I_2=CTR(n)

x=1:1/n:2;
h=1/n;1_21=0;
for j1 =1 :1 : n-1

I_21 = I_21+exp(x(1,j1));
end
I_2=(h/2)*(exp(1)+exp(2)+2*I_21);
end

Then we have

>> n = input('Input a number:\n');
R=zeros(n);

for i =1 : n

R(i,1) = CTR(27(i-1));
end
for i =2 : n

for j =2 : n
R(i,j)=R(i,j-1)+1/(4~(§-1)-1)*(R(i,j-1)-R(i-1,j-1));
end
end

Input a number:




4
>> R(n,n)

ans =
4.317773074621213

Input a number:

10

>> R(n,n)

ans =

4.665217247366002

The precise solution is:

>> syms x
>> int(exp(x),x,1,2)

ans =
exp(2) - exp(1)
>> double (ans)
ans =

4.670774270471605

Then we find that Romberg integration is much precise than composite Simpson’s Rule. O

4 DiscussioNs AND CONCLUSIONS

Actually, the errors of Three-midpoint are bigger than Five-midpoint in numerical differentiation.
Romberg integration is much precise than composite Simpson’s Rule in numerical integration.
(Probably because I just finished the MATLAB exam (reviewed for a long time), this time

I wrote the code very smoothly.)
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