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Abstract

In this report, we use three-point and five-point formula to compute f ′(1) where f(x) =
ln(x2 + ex) and compare them. Similarly, we use Composite Simpson’s Rule and Romberg
Integration to compute

∫ 1

0
exdx and compare them.
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1 INTRODUCTIONS

In this report, we use three-point and five-point formula to compute f ′(1) where f(x) = ln(x2+

ex) and compare them. Similarly, we use Composite Simpson’s Rule and Romberg Integration
to compute

∫ 1

0
exdx and compare them.

2 ALGORITHM DESCRIPTION & MATHEMATICAL DERIVATION

2.1 NUMERICAL DIFFERENTIATION
Theorem 2.1.1. Actually, for {x0, ..., xn} ⊂ I and f ∈ Cn+1(I), we have

f ′(xj) =

n∑
k=0

f(xk)L
′
k(xj) +

f (n+1)(ξ(xj))

(n+ 1)!

n∏
k=0,k≠j

(xj − xk),

which is called an (n+ 1)-point formula
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Actually, we often choose three-point formulas or five-point formulas. As follows (We now
only use midpoint case):
Corollary 2.1.2 (XX-Point Midpoint Formula). (1)(Three-Point) There exists ξ ∈ (x0−h, x0+
h), we have

f ′(x0) =
1

2h
(f(x0 + h)− f(x0 − h))− h2

6
f (3)(ξ);

(2)(Five-Point) There exists ξ ∈ (x0 − 2h, x0 + 2h), we have

f ′(x0) =
1

12h
(f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)) +

h4

30
f (5)(ξ).

2.2 COMPOSITE SIMPSON’S RULE ON NUMERICAL INTEGRATION
Theorem 2.2.1 (Composite Simpson’s rule). Let f ∈ C4[a, b] and n be even. Let h = b−a

n and
xj = a+ jh for j = 0, 1, ..., n. There exists a µ ∈ (a, b) for which the Composite Simpson’s rule
for n subintervals can be written with its error term as

∫ b

a

f(x)dx =
h

3

f(a) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(b)

− b− a

180
h4f (4)(µ).

2.3 ROMBERG INTEGRATION ON NUMERICAL INTEGRATION
Theorem 2.3.1 (Composite Trapezoidal rule). Let f ∈ C2[a, b] and h = b−a

n . Let xj =
a + jh, j = 0, 1, ..., n. There exists a µ ∈ (a, b) for which the Composite Trapezoidal rule for n
subintervals can be written with its error term as∫ b

a

f(x)dx =
h

2

f(a) + 2

n−1∑
j=1

f(xj) + f(b)

− b− a

12
h2f ′′(µ).

Theorem 2.3.2 (Romberg Integration). Let hk = b−a
2k−1 and we let R1,1, R2,1, ... as the Composite

Trapezoidal rule when n = 1, 2, 4, 8, 16, .... Or we can write as

Rk,1 =
1

2

Rk−1,1 + hk−1

2k−2∑
i=1

f(a+ (2i− 1)hk)

 , k = 2, 3, ..., n,

Then we have

Rk,j = Rk,j−1 +
1

4j−1 − 1
(Rk,j−1 −Rk−1,j−1), k = j, j + 1, ....

2



3 CODES AND NUMERICAL EXPERIMENTS

3.1 NUMERICAL DIFFERENTIATION
Problem 3.1.1. Given a function f(x) = ln(x2 + ex), we want to use three-midpoint and
five-midpoint methods to calculate f ′(1) and compare their errors. (We let h = 0.1)
Solution. Consider the following code:

1 >> format long
2 >> syms x
3 >> f=@(x) log(x^2+exp(x));
4 >> f_d1=5*(f(1.1)-f(0.9))
5

6 f_d1 =
7

8 1.268915539908338
9

10 >> f_d2=(1/1.2)*(f(0.8)-8*f(0.9)+8*f(1.1)-f(1.2))
11

12 f_d2 =
13

14 1.268958142011042
15

16 >> syms g(x)
17 >>g(x) = log(x^2+exp(x));
18 >> Dg=diff(g,x)
19

20 Dg(x) =
21

22 (2*x + exp(x))/(exp(x) + x^2)
23

24 >> DG = double(Dg(1))
25

26 DG =
27

28 1.268941421369995
29

30 >> abs(f_d1-DG)
31

32 ans =
33

34 2.588146165671823e-05
35

36 >> abs(f_d2-DG)
37

38 ans =
39

40 1.672064104685234e-05

Then we the errors of Three-midpoint are bigger than Five-midpoint.
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3.2 NUMERICAL INTEGRATION

Problem 3.2.1. Suppose that f(x) = ex, x ∈ [1, 2]. And we will compute
∫ 2

1
exdx by using

composite Simpson’s Rule and Romberg integration.
Solution. We first using composite Simpson’s Rule to compute it as follows

1 >> n = input('Input a number:\n');
2 x=1:1/n:2;
3 h=1/n;I_11=0;I_12=0;
4 for j1 = 1 : 1 : n/2-1
5 I_11 = I_11+exp(x(1,2*j1));
6 end
7 for j2 = 1 : 1 : n/2
8 I_12 = I_12+exp(x(1,2*j2-1));
9 end
10 I_1=(h/3)*(exp(1)+exp(2)+2*I_11+4*I_12);
11

12 Input a number:
13 4
14 >> I_1
15

16 I_1 =
17

18 3.823992286458485
19

20 Input a number:
21 100
22 >> I_1
23

24 I_1 =
25

26 4.624634522526311

We next using Romberg integration. We first we construct a function about Composite
Trapezoidal rule:

1 function I_2=CTR(n)
2 x=1:1/n:2;
3 h=1/n;I_21=0;
4 for j1 = 1 : 1 : n-1
5 I_21 = I_21+exp(x(1,j1));
6 end
7 I_2=(h/2)*(exp(1)+exp(2)+2*I_21);
8 end

Then we have
1 >> n = input('Input a number:\n');
2 R=zeros(n);
3 for i = 1 : n
4 R(i,1) = CTR(2^(i-1));
5 end
6 for i = 2 : n
7 for j = 2 : n
8 R(i,j)=R(i,j-1)+1/(4^(j-1)-1)*(R(i,j-1)-R(i-1,j-1));
9 end
10 end
11

12 Input a number:
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13 4
14 >> R(n,n)
15

16 ans =
17

18 4.317773074621213
19

20 Input a number:
21 10
22 >> R(n,n)
23

24 ans =
25

26 4.665217247366002

The precise solution is:
1 >> syms x
2 >> int(exp(x),x,1,2)
3

4 ans =
5

6 exp(2) - exp(1)
7

8 >> double(ans)
9

10 ans =
11

12 4.670774270471605

Then we find that Romberg integration is much precise than composite Simpson’s Rule.

4 DISCUSSIONS AND CONCLUSIONS

Actually, the errors of Three-midpoint are bigger than Five-midpoint in numerical differentiation.
Romberg integration is much precise than composite Simpson’s Rule in numerical integration.
(Probably because I just finished the MATLAB exam (reviewed for a long time), this time

I wrote the code very smoothly.)
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