
Project 1B:
Two-Dimensional Distributions,

Marginals and Covariance Structure

Liu Xiaolong ID: 201900170025
E-mail: 201900170025@mail.sdu.edu.cn

May 16, 2022

Abstract

In this Project, I will discuss some special properties about the two dimen-
sional distributions and their marginals, introduce moment generating func-
tions and characteristic functions which can be used to study distributions
more deeply. One particular can we consider is the bivariate Cauchy distribu-
tion. Moreover, we introduce how to construct a bivariate distribution from
two single, marginal, distributions.
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1 Introduction

The first part of the Project is to introduce the basic definitions and properties. This
part aiming to provide the preliminaries.

In the second part, I will write the moment generating functions (m.g.f.s) and
characteristic functions (ch.f.s) of bivariate distributions and some important prop-
erties and theorems about them. As an application, I discuss a special distribution:
bivariate Cauchy distribution.

In the final part, I will introduce the Farlie-Gumbel-Morgenstern (FGM) copula
and derive some properties about it. A copula is a function that makes marginals FX

and FY to some joint distribution F . It was first introduced by Sklar. Now copulas
and several parametric families of copulas have been widely used in statistics. One
of the most popular parametric families is the FGM copula, whose properties were
discussed by Farlie [1].
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2 Random Variables, Distributions and
Covariance

For now I will introduce some basic definitions of bivariate r.v.s and their distribu-
tions.

Definition 2.1. We denote Ω be the whole sample space and let F be the σ-algebra
of all events, i.e. F satisfies

(i) Ω ∈ F ;
(ii) If A ∈ F , then Ac = Ω\A ∈ F ;
(iii) If An ∈ F , n = 1, 2, ..., then

⋃∞
n=1An ∈ F .

Let P : F → R be a probability, i.e. a function on F satisfying
(a) P(A) ≥ 0 for all A ∈ F ;
(b) P(Ω) = 1;
(c) If Ai ∈ F for all i = 1, 2, ... which are pairwise disjoint, then

P
(

∞∑
i=1

Ai

)
=

∞∑
i=1

P(Ai), (σ − additivity).

It is generally accepted to call the triple (Ω,F ,P) a probability space. We assume
that all r.v.s considered below are defined in a given probability space (Ω,F ,P).

Definition 2.2. Consider the random vector ξ(ω) = (ξ1(ω), ξ2(ω)), its components
are r.v.s. The function

F (x, y) = P(ξ1(ω) ≤ x, ξn(ω) ≤ y), (x, y) ∈ R2

is called a distribution function (d.f.) of ξ. Its dimension is 2.
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Suppose, there exists a non-negative function p(x, y), (x, y) ∈ R2, such that

F (x, y) =

∫ x

−∞

∫ y

−∞
p(x, y)dxdy,

where
∫
R2 p(x, y)dxdy = 1; it is called a probability density function.

Definition 2.3 (Marginal). We consider two-dimensional random vector (ξ, η).
(1)[General] Let its d.f. be F as defined above. Let

F1(x) = P(ξ ≤ x) = F (x,+∞) and F2(y) = P(η ≤ y) = F (+∞, y).

These are called the marginal d.f.s of F (x, y), also of the components ξ and η.
(2)[Discrete] Suppose that ξ takes values in the set {x1, x2, ..., xn} and η takes

values in the set {y1, y2, ..., ym}, and we know P(ξ = xi, η = yj) = pij. Then P(ξ =

xi) := ai,P(η = yj) := bj are found as follows:

∑
j

pij = ai,
∑
i

pij = bj.

The two coefficients, {ai} and {bj} are the probability distributions of ξ and η,
respectively.

(3)[Continuous] Let (ξ, η) have a probability density function p(x, y). Then

F1(x) =

∫ x

−∞

∫ ∞

−∞
p(u, y)dudy, F2(y) =

∫ ∞

−∞

∫ y

−∞
p(x, v)dxdv.

Hence the probability density functions of F1(x) and F2(y), also of ξ and η, are

p1(x) =

∫
R
p(x, y)dy, p2(y) =

∫
R
p(x, y)dx.

They are called marginal densities functions of ξ and η, respectively.
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Definition 2.4. The r.v.s ξ1, ξ2 are said to be independent if

P(ξ1(ω) ≤ x, ξ2(ω) ≤ y) = P(ξ1(ω) ≤ x)P(ξ2(ω) ≤ y)

for all x, y from the range of values of ξ1, ξ2, respectively.

Definition 2.5 (Expectation). In the general case, we will use a special integral,
called Riemann-Stieltjes integral, to define it.

Let the d.f. of the random vector (ξ1, ξ2) be F (x1, x2), (x1, x2) ∈ R2. The
expectation of (ξ1, ξ2) is denoted by (Eξ1,Eξ2), where

Eξi =
∫
R2

xidF (x1, x2) =

∫
R
xidFi(xi) <∞

where Fi is the marginal d.f. of ξi, i = 1, 2. If the integral is not finite, then we say
that the expectation of (ξ1, ξ2) does not exists.

So in the case of discrete random variables, E(ξ1) =
∑

i xiai, E(ξ2) =
∑

j xjbj; in
the continuous case, E(ξi) =

∫
R xpi(x)dx.

Remark 2.6. More generally, we have the following formula for any measurable
function g(x1, x2), (x1, x2) ∈ R2, assuming the integral w.r.t. F exists:

Eg(ξ1, ξ2) =
∫
R2

g(x1, x2)dF (x1, x2).

Definition 2.7 (Variance and Covariance). Consider a random vector ξ = (ξ1, ξ2),
we define its covariance matrix as

Cov(ξ) =

 Varξ1 Cov(ξ1, ξ2)
Cov(ξ2, ξ1) Varξ2

 ,

where Var(ξi) = E[(ξi − Eξi)2] is the variance of ξi and Cov(ξi, ξj) = E[(ξi − Eξi)(ξj −
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Eξj)] is the covariance between ξi and ξj for i, j = 1, 2 if all of these are finite. So
Cov(ξi, ξi) = Var(ξi) and Cov(ξ) = (Cov(ξi, ξj))2×2.

Remark 2.8. The matrix Cov(ξ) is non-negative definite: for all tj ∈ R we have

∑
j,k

Cov(ξj, ξk)tjtk = E
(∑

j

tj(ξj − Eξj)
)2

≥ 0.

3 Moment Generating Functions and
Characteristic Functions

Now we will introduce two tools, moment generating functions and characteristic
functions, to analyse the distributions. For two random variables X and Y , the joint
moment generating functions of them contains rich information about their joint
probability distribution. (See [3])

Definition 3.1. For two r.v.s X and Y , the moment generating function (m.g.f.) is
defined as

MX,Y (t1, t2) = E(exp(t1X + t2Y ))

where real vector (t1, t2) take values in a closed rectangle I1 × I2 ⊂ R2 containsing
the origin (0, 0).

Hence we find that MX(t1) = MX,Y (t1, 0) and MY (t2) = MX,Y (0, t2) are the
marginal m.g.f.s ofX and Y , repectively. Now we can use m.g.f.s to express properties
and facts we are familiar with from our Probability course.

Theorem 3.2. Consider two r.v.s X and Y with d.f. F (x, y) and m.g.f. MX,Y (t1, t2).
Then for all r, s ∈ Z≥0

E(XrY s) =
∂r+sMX,Y

∂tr1∂t
s
2

(0, 0)
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and
Cov(Xr, Y s) =

∂r+sMX,Y

∂tr1∂t
s
2

(0, 0)− ∂rMX

∂tr1
(0)

∂sMY

∂ts2
(0).

Proof. We have

∂r+sMX,Y

∂tr1∂t
s
2

(t1, t2) =
∂r+s

∂tr1∂t
s
2

∫
R2

et1x+t2ydF (x, y)

=

∫
R2

∂r+set1x+t2y

∂tr1∂t
s
2

dF (x, y)

=

∫
R2

xryset1x+t2ydF (x, y).

For the second equality, the existence of the m.g.f. allows to change the differentiation
and the integration by Fubini type theorem.

Hence
∂r+sMX,Y

∂tr1∂t
s
2

(0, 0) =

∫
R2

xrysdF (x, y) = E(XrY s).

Moreover,

∂r+sMX,Y

∂tr1∂t
s
2

(0, 0)− ∂rMX

∂tr1
(0)

∂sMY

∂ts2
(0) = E(XrY s)− E(Xr)E(Y s)

which is exactly Cov(Xr, Y s).

Corollary 1. If the m.g.f. MX,Y exists, then all moments of X and Y are finite.

Theorem 3.3 (Uniqueness in terms of m.g.f.). Consider (X,Y ) and (U, V ), two
r.v.s. Then MX,Y = MU,V in some neighborhood of the origin if and only if (X,Y )

and (U, V ) have the same joint d.f.s.

Proof. This proof relies on Laplace transforms. I refer to [2] for the entire proof.

Here, we will use m.g.f.s to make conclusions about the independence of the
components of the random vectors.
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Theorem 3.4. Consider two r.v.s X and Y with joint d.f. F (x, y), the two marginal
d.f.s G(x) and H(y) and the m.d.f. MX,Y (t1, t2). Then X and Y are independent if
and only if

MX,Y (t1, t2) =MX(t1)MY (t2)

for all (t1, t2) in some neighborhood of the origin, (0, 0) in R2.

Proof. If (X,Y ) are independent by the definition of expectation, we have

MX,Y (t1, t2) = E(et1X+t2Y ) = E(et1Xet2Y )

= E(et1X)E(et2Y ) =MX(t1)MY (t2).

Conversely, if MX,Y (t1, t2) = MX(t1)MY (t2) for all (t1, t2) in some neighborhood of
the origin, we claim that X and Y are independent. By the uniqueness of a d.f. from
its m.g.f., the bivariate d.f. F (x, y) is the unique distribution that corresponds to
MX,Y and G(x)H(y) is the unique distribution that corresponds to MXMY . Hence
F (x, y) = G(x)H(y), (x, y) ∈ R2.

Corollary 2. Consider two r.v.s X and Y . Then X and Y are independent if and
only if

Cov(et1X , et2Y ) = 0

for all (t1, t2) in some neighborhood of origin.

Proof. Use the previous theorem and the following fact, assuming that all expecta-
tions are finite,

Cov(et1X , et2Y ) = E(et1X+t2Y )− E(et1X)E(et2Y ) =MX,Y (t1, t2)−MX(t1)MY (t2),

then well done.
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Actually, we have the following expansion:

Cov(et1X , et2Y ) =
∞∑

r,s=0

tr1t
s
2

r!s!
Cov(Xr, Y s).

Hence we can show that if X,Y have bounded supports then Cov(Xr, Y s) = 0 for all
r, s > 0 if and only if X and Y are independent. I have seen details in [3].

Example 1. In the theorem if X and Y are arbitrary r.v.s which are independent,
then we have

MX+Y (t) =MX,Y (t, t) =MX(t)MY (t).

But conversely, if X and Y satisfies MX+Y (t) = MX,Y (t, t) = MX(t)MY (t), then X

and Y may not be independent.
Indeed, consider (X,Y ) to be a two-dimensional random vector defined by the

table:

X/Y 1 2 3 Total of X

1 2
18

1
18

3
18

1
3

2 3
18

2
18

1
18

1
3

3 1
18

3
18

2
18

1
3

Total of Y 1
3

1
3

1
3

1

Then the sum Z = X + Y is given in the following table:

Z 2 3 4 5 6

P 1
9

2
9

3
9

2
9

1
9
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We find separately the m.g.f. of each of X, Y and Z:

MX(t) =
1

3
(et + e2t + e3t),MY (t) =

1

3
(et + e2t + e3t),

MZ(t) =
1

9
(e2t + 2e3t + 3e4t + 2e5t + e6t).

Now it is easy to see that MZ(t) = MX(t)MY (t). Howvever the r.v.s X and Y are
not independent. Because P(X = i, Y = j) ̸= P(X = i)P(Y = j) for all i ̸= j.
For example, if i = 1, j = 2, we have P(X = i, Y = j) = 1

18
, P(X = i) = 1

3
,

P(Y = j) = 1
3
.

We already mentioned above that all moments exist if its m.g.f. exists. Here is
an interesting question: Is there a r.v. X such that all moment E(Xk) are finite,
however the m.g.f. does not exist? To answer this question, we consider univariate
case. (See [5]) Consider a r.v. Z with density f(x) = 1

2
exp(−

√
x)1R≥0

, then

E(Zk) =

∫ ∞

0

xk
1

2
exp(−

√
x)dx =

1

2

∫ ∞

0

xke−x1/2

dx

√
x=t===== 1

2

∫ ∞

0

t2ke−t2tdt =

∫ ∞

0

t2k+1e−tdt

= Γ(2k + 2) = (2k + 1)!.

By the definition of a m.g.f.,

M(z) =
1

2

∫ ∞

0

exp(zx−
√
x)dx.

So, is this function finite for Z in a neighborhood of the origin? If ε > 0 is small
enough then for every z with 0 < z < ε we have zx −

√
x =

√
x(z

√
x − 1) → ∞ as

x→ ∞. So 1
2

∫∞
0

exp(zx−
√
x)dx = ∞, hence M(z) does not exist.

In general it is useful to introduce a function which exists for any probability
distribution. Now we introduce the second tool, characteristic functions (ch.f.).
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Definition 3.5. Consider a random vector (X,Y ) with d.f. F (x, y). The character-
istic function (ch.f) is denoted by ψX,Y and defined as follows:

ψX,Y (t1, t2) = E(eit1X+it2Y ) =

∫
R2

ei(t1x+t2y)dF (x, y), (t1, t2) ∈ R2.

Theorem 3.6. Consider two r.v.s X and Y with joint d.f. F (x, y) and ch.f. ψX,Y ,
then for all r, s ∈ N0 = {0, 1, 2, . . .}

E(XrY s) = i−r−s∂
r+sψX,Y

∂tr1∂t
s
2

(0, 0).

Theorem 3.7 (Uniqueness of d.f.). Consider (X,Y ) and (U, V ), two random vectors.
Then ψX,Y = ψU,V in some neighborhood of the origin if and only if (X,Y ) and (U, V )

have the same joint d.f.s.

Theorem 3.8. Consider two r.v.s X and Y , their ch.f. is ψX,Y (t1, t2). Then X and
Y are independent if and only if

ψX,Y (t1, t2) = ψX(t1)ψY (t2)

for all (t1, t2) in some neighborhood of the origin.

Proof. All of these theorem are the same as in the case of m.g.f. above.

We can use ch.f.s and the uniqueness theorem for d.f.s, to derived interesting
statements. Such is the following fact.
Example. Consider an arbitrary matrix M ∈ M2×2(R) and a bivarate normal
random vector ξ ∼ N2(µ1, µ2, σ

2
1, σ

2
2, ρ). For convenience we introduce the nota-

tions µ and C, where µ = (µ1, µ2)
T ,C =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. We use the ma-

trix M and the new random vector η = Mξ as a linear transformation. Then
η ∼ N2(Mµ,MCMT ). Here N2 denotes 2-dimensional normal distribution.

11



Proof. Consider the ch.f. of η. For any real vector t ∈ R2, we have

ψη(t) = EeitTMξ = Eei(MT t)T ξ

= exp
(
i(Mµ)T t− 1

2
tT (MCMT )t

)
.

The explicit form of ψη(t) allows to conclude that η = Mξ ∼ N2(Mµ,MCMT ).
We tell this by words: A linear transformation of a normal random vector is normal.
And we saw how exactly the parameters change.

4 Bivariate Cauchy Distribution

Recall first that a r.v. ξ with values in R has Cauchy distribution, and we write
ξ ∼ C1, if ξ is continuous and has density

p(x) =
1

π

1

1 + x2
, x ∈ R.

Definition 4.1. We say that the random vectors (X,Y ) follows bivariate Cauchy
distribution, (X,Y ) ∼ C2, if its joint density is

p(x, y) =
1

2π

1

(1 + x2 + y2)3/2
, x, y ∈ R.

Proposition 4.2 (Marginals). If (X,Y ) ∼ C2, then X ∼ C1 and Y ∼ C1, i.e. the
marginal densities are

pX(x) =
1

π(1 + x2)
, x ∈ R, pY (y) =

1

π(1 + y2)
, y ∈ R.
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Proof. First, we need a specific indefinite integral:

∫
1

(1 + x2 + y2)3/2
dy

y=
√
1+x2 tanu==========

∫ √
1 + x2

(1 + x2 + (1 + x2) tan2 u)3/2 cos2 udu

=

∫ √
1 + x2

(1 + x2)3/2(1 + tan2 u)3/2 cos2 udu

=
1

1 + x2

∫ cos3 u
cos2 udu =

1

1 + x2

∫
cosudu

=
y

(1 + x2)
√
1 + x2 + y2

+ C.

Second, use the Newton-Leibniz formula:

∫
R

1

(1 + x2 + y2)3/2
dy =

y

(1 + x2)
√
1 + x2 + y2

∣∣∣∣∣
∞

−∞

=
2

1 + x2
.

Hence
pX(x) =

∫
R
p(x, y)dy =

1

π(1 + x2)
, x ∈ R.

Well done.

Another observation is that the expectation of a r.v. X ∼ C1 does not exist!
Indeed, by definition we have

E(X) =

∫
R
xpX(x)dx =

∫
R

x

π(1 + x2)
dx,

which does not exist! As a consequence, higher order moments E(|X|r) also do not
exist for any r > 1, hence no variance.

Corollary 3. This also tells us the m.g.f. of Cauchy distribution does not exists!

However, even if the m.g.f. does not exists, the ch.f. always exists, and in many
case it can be found explicitly. Here is the such a case.
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Theorem 4.3. If the random vectors (X,Y ) ∼ C2, then its ch.f. is

ψX,Y (t1, t2) = exp
(
−
√
t21 + t22

)
, (t1, t2) ∈ R2.

Proof. Just need to calculate 1
2π

∫
R2 e

i(t1x+t2y)(1 + x2 + y2)−3/2dxdy.
First it is easy to see that for any integrable function g, we have∫ a

−a

g(x)dx =

∫ a

−a

g(x) + g(−x)
2

dx

where a ∈ R or a = ∞. Then, by using this and the known fact,

cosu =
1

2
(eiu + e−iu),

we obtain:

ψX,Y (t1, t2) =
1

2π

∫
R2

ei(t1x+t2y)

(1 + x2 + y2)3/2
dxdy

=
1

8π

∫
R2

(eit1x + e−it1x)(eit2y + e−it2y)

(1 + x2 + y2)3/2
dxdy

=
1

2π

∫
R2

cos(t1x) cos(t2y)
(1 + x2 + y2)3/2

dxdy

=
2

π

∫ ∞

0

∫ ∞

0

cos(|t1|x) cos(|t2|y)
(1 + x2 + y2)3/2

dxdy

= exp
(
−
√
t21 + t22

)
.

The last step is a tricky and complicated integral and we can see details of this and
more general results in [7].
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5 Farlie-Gumbel-Morgenstern (FGM) Family
of Distributions

We will discribe how from two 1-dimensional distributions to construct a bivariate
distribution and study its properties. To mention that FGM copulas are investigated
in many publications e.g., in [4] and [6].

We start with introducing the general copula with the most basic definitions and
some fundamental results.

Definition 5.1. Let S1 and S2 be nonempty subsets of R and let H be a function
defined on S1 × S2 ⊂ R2. For any rectangle B = [x1, x2] × [y1, y2] with all of whose
vertices are in S1 × S2, we define the H-volume of B is

VH(B) = H(x2, y2)−H(x1, y2)−H(x2, y1) +H(x1, y1).

A such function H is called 2-increasing if VH(B) ≥ 0 for all rectangles B whose
vertices lie in S1 × S2.

General fact: Suppose a r.v. ξ ∼ F . Define a new r.v. η = F (ξ). Clearly, η
take values in [0, 1], and moreover, η is continuous uniform on [0, 1], its density is
fη = 1[0,1].

Definition 5.2. A two-dimensional copula is a function C : [0, 1] × [0, 1] → [0, 1]

with the following properties
(i) For any u, v ∈ [0, 1]

C(u, 0) = C(0, v) = 0 and C(u, 1) = u, C(1, v) = v.

(ii) C is 2-increasing in the square [0, 1]2.

Now we introduce the statement of the following fundamental theorem.
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Theorem 5.3 (Sklar’s Theorem). Let H(x, y), (x, y) ∈ R2 be the 2-dimensional d.f.
with marginal d.f.s F and G. Then there exists a copula C such that for all x, y ∈ R,

H(x, y) = C(F (x), G(y)).

If F and G are continuous, then C is unique. Conversely, if C is a copula function
and F and G are d.f.s, then the function H defined by H(−,−) = C(F (−), G(−))

is a 2-dimensional d.f. with marginals F and G.

Now we back to FGM copula. We start with two d.f.s, say F1 and F2: each is
defined on (−∞,∞), values in [0, 1], non-decreasing, right-continuous. Now, for any
number α, α ∈ [−1, 1], we define the function

G(x, y) = F1(x)F2(y)(1 + α(1− F1(x))(1− F2(y))), x, y ∈ R.

We can check that G is a 2-dimensional d.f. Indeed, we just need to verify that
G(x, y) satisfies (i) lim

x→−∞
G(x, y) = lim

y→−∞
G(x, y) = 0, (ii) lim

x→∞,y→∞
G(x, y) = 1,(iii)

G(x, y) is right-continuous with x and y, (iv) for any a < b, c < d, one has

G(b, d) +G(a, c) ≥ G(a, d) +G(b, c).

Actually (i),(ii),(iii) are trivial by the definition of F1 and F2. To see (iv), consider
u1 < u2 and v1 < v2, then

G(u2, v2)−G(u1, v2)−G(u2, v1) +G(u1, v1)

= (F1(u2)− F1(u1))(F2(v2)− F2(v1))

× (1 + α(1− F1(u1)− F1(u2))(1− F2(v1)− F2(v2))).

Hence it is non-negative when α ∈ [−1, 1], since 0 ≤ Fi ≤ 1. Thus we conclude that
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by Sklar’s theorem there is a random vector, say (X,Y ), such that this G is its joint
d.f.

Moreover, since G(x,∞) = F1(x) and G(∞, y) = F2(y), we see that the marginals
of (X,Y ) are F1 and F2 for any α ∈ [−1, 1]. So this is an infinite family with the same
marginals. As a consequence, the marginal distributions do not determine uniquely
the 2-dimensional distribution.

Assume X ∼ F1 and Y ∼ F2 are continuous with densities f1(x), f2(y). Then the
2-dimensional probability density function of (X,Y ) is

g(x, y) =
∂2G(x, y)

∂x∂y
= f1(x)f2(y)(1 + α(2F1(x)− 1)(2F2(y)− 1)).

It is useful to know the correlation between X and Y . First we find:

Cov(X,Y ) =

∫
R2

(x− E(X))(y − E(Y ))g(x, y)dxdy

=

(∫
R
(x− E(X))f1(x)dx

)(∫
R
(y − E(Y ))f2(y)dy

)
+ α

(∫
R
(x− E(X))f1(x)(2F1(x)− 1)dx

)(∫
R
(y − E(Y ))f2(y)(2F2(y)− 1)dx

)
= α

(∫
R
(x− E(X))f1(x)(2F1(x)− 1)dx

)(∫
R
(y − E(Y ))f2(y)(2F2(y)− 1)dx

)
Also we can find the correlation coefficient:

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=

α×D√
Var(X)Var(Y )

,

where

D =

(∫
R
(x− E(X))f1(x)(2F1(x)− 1)dx

)(∫
R
(y − E(Y ))f2(y)(2F2(y)− 1)dx

)
.

It is of great interest to find the upper bound of the correlation coefficient. Since
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we have the decomposition D = D1D2 where

D1 =

(∫
R
(x− E(X))f1(x)(2F1(x)− 1)dx

)
and

D2 =

(∫
R
(y − E(Y ))f2(y)(2F2(y)− 1)dx

)
,

we just need to estimate one of them. Actually, we have the following chain of
relations:

D2
1 =

(∫
R
(x− E(X))(2F (x)− 1)f(x)dx

)2

=

(∫
R

(
(x− E(X))

√
f(x)

)(
(2F (x)− 1)

√
f(x)

)
dx

)2

≤(1)

(∫
R
(x− E(X))2f(x)dx

)(∫
R
(2F (x)− 1)2f(x)dx

)
=

Var(X)

3
,

where (1) is Cauchy-Swartz inequality and the last step is because

∫
R
(2F (z)− 1)2f(z)dz =

∫ 1

0

(2u− 1)2du =
1

3
.

Hence D1D2 ≤ Var(X)
3

and

ρ(X,Y ) =
αD1D2√

Var(X)Var(Y )
≤ α

3
,

well done.
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6 Conclusions

For now after we introduce the basic definitions, we have described the properties
of moment generating functions and characteristic functions, the bivariate Cauchy
distribution and some properties about the FGM copula.

7 Symbols and Notations

Table 1: Symbols

Symbol meaning Symbol meaning

P Probability Measure p Probability Density Function
E Expectation Var Variance

Cov Covariance ρ Correlation Coefficient
C Cauchy Distribution N Normal Distribution
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