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Abstract

In this Project, I will discuss some special properties about the two dimen-
sional distributions and their marginals, introduce moment generating func-
tions and characteristic functions which can be used to study distributions
more deeply. One particular can we consider is the bivariate Cauchy distribu-
tion. Moreover, we introduce how to construct a bivariate distribution from
two single, marginal, distributions.
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1 Introduction

The first part of the Project is to introduce the basic definitions and properties. This
part aiming to provide the preliminaries.

In the second part, I will write the moment generating functions (m.g.f.s) and
characteristic functions (ch.f.s) of bivariate distributions and some important prop-
erties and theorems about them. As an application, I discuss a special distribution:
bivariate Cauchy distribution.

In the final part, I will introduce the Farlie-Gumbel-Morgenstern (FGM) copula
and derive some properties about it. A copula is a function that makes marginals Fy
and Fy to some joint distribution F. It was first introduced by Sklar. Now copulas
and several parametric families of copulas have been widely used in statistics. One
of the most popular parametric families is the FGM copula, whose properties were

discussed by Farlie [1].



2 Random Variables, Distributions and
Covariance

For now I will introduce some basic definitions of bivariate r.v.s and their distribu-

tions.

Definition 2.1. We denote 2 be the whole sample space and let .% be the o-algebra
of all events, i.e. .Z satisfies

(i) Q € .7,

(i) If A € .Z, then A° = Q\A € .Z;

(iii) If A, € F,n=1,2,..., then |~ A, € Z.
Let P : % — R be a probability, i.e. a function on .# satisfying

(a) P(A) > 0 for all A € .7;

(b) P(Q) = 1;

(c) If A; € .7 for all i = 1,2, ... which are pairwise disjoint, then

P (Z AZ-) => P(4), (o — additivity).
=1 =1

It is generally accepted to call the triple (€2, %, P) a probability space. We assume
that all r.v.s considered below are defined in a given probability space (2, .%#, P).

Definition 2.2. Consider the random vector &(w) = (& (w), & (w)), its components

are r.v.s. The function

F(z,y) =P(&G(w) < 2,6 (w) <y), (z,y) € R?

is called a distribution function (d.f.) of £. Its dimension is 2.



Suppose, there exists a non-negative function p(z,y), (z,y) € R?, such that

F(z,y) = /; /: p(z,y)dzdy,

where fRQ p(z,y)dxdy = 1; it is called a probability density function.

Definition 2.3 (Marginal). We consider two-dimensional random vector (&, 7).

(1)[General| Let its d.f. be F' as defined above. Let
Fi(z) = P(€ < ) = F(z, +o0) and Fy(y) = P(n < y) = F(+00,y).

These are called the marginal d.f.s of F(z,y), also of the components £ and 7.
(2)[Discrete] Suppose that £ takes values in the set {xy, zo,...,x,} and 7 takes
values in the set {y1,92, ..., Ym }, and we know P({ = z;,n = y;) = pi;. Then P({ =

x;) = a;, P(n = y;) := b; are found as follows:

Zpij = Qj, Zpij = b;.
j i

The two coefficients, {a;} and {b;} are the probability distributions of & and 7,
respectively.

(3)[Continuous] Let (£,7n) have a probability density function p(z,y). Then

Fi(z) = /_ Oo /_ Zp(u,y)dudy, Fy(y) = /_ Z /_ yoop(a;,v)dxdv.

Hence the probability density functions of Fj(x) and Fy(y), also of £ and 7, are

p(z) = / (@, y)dy,  paly) = / Pz, y)d.

They are called marginal densities functions of £ and 7, respectively.



Definition 2.4. The r.v.s &, & are said to be independent if

P(&1(w) <2, 6&(w) <y) = P(&(w) < 2)P(&(w) <y)

for all z,y from the range of values of &, &, respectively.

Definition 2.5 (Expectation). In the general case, we will use a special integral,
called Riemann-Stieltjes integral, to define it.

Let the d.f. of the random vector (&,&) be F(xy, ), (z1,72) € R% The
expectation of (§1,&s) is denoted by (E&;, ESy), where

E¢; :/ x;dF (xq, x2) :/xzsz(:cl) < 00
R2

R

where F; is the marginal d.f. of &, « = 1,2. If the integral is not finite, then we say
that the expectation of (&1,&;) does not exists.
So in the case of discrete random variables, E(&1) = >, wia;, E(§) = >, 25055 in

the continuous case, E(§;) = [, xp;(z)dz.

Remark 2.6. More generally, we have the following formula for any measurable

function g(x1,2s), (z1,72) € R?, assuming the integral w.r.t. F exists:

Eg(fbfz) :/ 9($1,$2)dp($1,x2)-

RQ

Definition 2.7 (Variance and Covariance). Consider a random vector & = (&1, &),

we define its covariance matrix as

Var& COV(fl,fz)

C —
e Cov(&2,&1) Varé,

where Var(&;) = E[(& — E&;)?] is the variance of & and Cov(§;, ;) = E[(& — E&)(E; —



E¢;)] is the covariance between ¢; and §; for 4,5 = 1,2 if all of these are finite. So

COV(fi,SZ’) = Var(f,) and COV(€) = (COV(&;, fj))gxg‘

Remark 2.8. The matriz Cov(§) is non-negative definite: for allt; € R we have

2
Z Cov(j, &k )tjty = E <Z ti(& — Eﬁj)) > 0.
Jk J

3 Moment Generating Functions and

Characteristic Functions

Now we will introduce two tools, moment generating functions and characteristic
functions, to analyse the distributions. For two random variables X and Y, the joint
moment generating functions of them contains rich information about their joint

probability distribution. (See [3])

Definition 3.1. For two r.v.s X and Y, the moment generating function (m.g.f.) is
defined as
M)Qy(tl, tg) = E(exp(th + tQY))

where real vector (¢1,t,) take values in a closed rectangle I} x I, C R? containsing

the origin (0, 0).

Hence we find that Mx(t1) = Mxy(t1,0) and My (t2) = Mxy(0,t3) are the
marginal m.g.f.s of X and Y, repectively. Now we can use m.g.f.s to express properties

and facts we are familiar with from our Probability course.

Theorem 3.2. Consider two r.v.s X andY with d.f. F(z,y) and m.g.f. Mxy(t1,t2).

Then for allr,s € Z>o
8T‘+8MX7Y

XT’YS —
E ) ot ot

(0,0)



and
0O"Mx ,  0°My

ar+sMX7Y
ooty oty (0) ots (0)-

Cov(X",Y?) = Jr013
1

(070) -

Proof. We have

O+ My y or+s
Xt 1) = hz+ty
ot ots (t, ) ot ots /Rf (z.y)

ar—l—setl T+iay
S I § o
/RQ o @)

:/ 2"yt TRV (1) y).
R2

For the second equality, the existence of the m.g.f. allows to change the differentiation

and the integration by Fubini type theorem.

Hence
8T+SMXY
———(0,0) = "y dF =E(X"Y?).
Gk 0.0) = [ wyar(ey) - By
Moreover,
It Mx y "My ,  0°My
—_— — 0)=E(X"Y?®) —E(X")E(Y*
e (0.0) = T 0T (0) = ECUY?) — ECrE(Y)
which is exactly Cov(X",Y™). O

Corollary 1. If the m.g.f. Mxy exists, then all moments of X and'Y are finite.

Theorem 3.3 (Uniqueness in terms of m.g.f.). Consider (X,Y) and (U, V), two
r.v.s. Then Mxy = Myy in some neighborhood of the origin if and only if (X,Y)
and (U, V') have the same joint d.f.s.

Proof. This proof relies on Laplace transforms. I refer to [2] for the entire proof. [

Here, we will use m.g.f.s to make conclusions about the independence of the

components of the random vectors.



Theorem 3.4. Consider two r.v.s X andY with joint d.f. F(x,y), the two marginal
d.f.s G(z) and H(y) and the m.d.f. Mxy(t1,t2). Then X and Y are independent if
and only if

Mxy(t,t2) = Mx (t1) My (t2)

for all (ty,ty) in some neighborhood of the origin, (0,0) in R2.

Proof. 1f (X,Y) are independent by the definition of expectation, we have

My y (ti,ty) = E(e1XT2Y) = E(eh¥el2Y)
= E(e")E(e"") = Mx (t1) My (t2).
Conversely, if My y(t1,t2) = Mx(t1)My(ty) for all (¢1,%2) in some neighborhood of
the origin, we claim that X and Y are independent. By the uniqueness of a d.f. from
its m.g.f., the bivariate d.f. F(z,y) is the unique distribution that corresponds to
My y and G(x)H (y) is the unique distribution that corresponds to Mx My . Hence
F(z,y) = G(x)H(y), (z,y) € R O

Corollary 2. Consider two r.v.s X andY. Then X and Y are independent if and
only if

Cov(e"¥, e2Y) =0
for all (t1,t3) in some neighborhood of origin.

Proof. Use the previous theorem and the following fact, assuming that all expecta-

tions are finite,
Cov(e" ¥, eY) = E(e"XT2Y) — E(e"*)E(e"Y) = My y (t1,ts) — Mx (t1) My (),

then well done. ]



Actually, we have the following expansion:

o0

s
01 X Y\ 1%2 r s
Cov(e"*,e?") = E T!S!COV(X LY.
r,s=0

Hence we can show that if X, Y have bounded supports then Cov(X",Y*) = 0 for all

r,s > 0 if and only if X and Y are independent. I have seen details in [3].

Example 1. In the theorem if X and Y are arbitrary r.v.s which are independent,

then we have

Mx+y(t) = M)gy(t,t) = MX(t)My(t)

But conversely, if X andY satisfies Mxiy(t) = Mxy(t,t) = Mx(t)My(t), then X

and Y may not be independent.

Indeed, consider (X,Y) to be a two-dimensional random wvector defined by the

table:

XY 1 2 3 | Total of X

2 1 3 1

1 T 18 18 3

3 2 1 1

2 i 18 18 3

1 3 2 1

3 % s 18 3
Total of Y % % % 1

Then the sum Z = X +Y 1is given in the following table:

d
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We find separately the m.g.f. of each of X, Y and Z:

1 1
Mx(t) = g(et + e+ e, My(t) = g(et + e e,

1
My(t) = §(€2t + 2% + 3¢ + 2e7 + ).

Now it is easy to see that My(t) = Mx(t)My(t). Howvever the r.v.s X and Y are
not independent. Because P(X = i,Y = j) # P(X = i)P(Y = j) for all i # j.
For example, if i = 1,7 = 2, we have P(X = i,Y = j) = %8, P(X =1) = %,
P(Y =j) =s.

We already mentioned above that all moments exist if its m.g.f. exists. Here is
an interesting question: Is there a r.v. X such that all moment E(X¥) are finite,
however the m.g.f. does not exist? To answer this question, we consider univariate

case. (See [5]) Consider a r.v. Z with density f(x) = 3 exp(—/)Lg,,, then

E(Z") = / o* 2 exp(—a)ds = / ey
0 0

— 1 o0 o0
ft—/ We%ﬁ:/ {2 =t gy
0 0

2
= T(2k +2) = (2k + 1)\.

By the definition of a m.g.f.,

1

M(z) = 5 /000 exp(zx — /7)dx.

So, is this function finite for Z in a neighborhood of the origin? If ¢ > 0 is small
enough then for every z with 0 < z < ¢ we have zx — \/r = \/z(2/r — 1) = o0 as
x — 00. So 5 [7 exp(zx — \/x)dx = o0, hence M (z) does not exist.

In general it is useful to introduce a function which exists for any probability

distribution. Now we introduce the second tool, characteristic functions (ch.f.).
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Definition 3.5. Consider a random vector (X, Y') with d.f. F(x,y). The character-

istic function (ch.f) is denoted by 1xy and defined as follows:

Uxy(ti,te) = E(eMFH0EY) = / IR (2, y),  (t,ta) € R2.
R2

Theorem 3.6. Consider two r.v.s X and Y with joint d.f. F(x,y) and ch.f. ¥xy,
then for all r;s € Ng = {0,1,2,...}

s Oy

E(X"Y®) =i
XY = e ans

(0,0).
Theorem 3.7 (Uniqueness of d.f.). Consider (X,Y) and (U, V), two random vectors.
Then ¥xy = Yy in some neighborhood of the origin if and only if (X,Y) and (U, V)

have the same joint d.f.s.

Theorem 3.8. Consider two r.v.s X and Y, their ch.f. is ¢¥xy(t1,t2). Then X and
Y are independent if and only if

Yxy(ti,ta) = Yx(t)y (t2)

for all (t1,t2) in some neighborhood of the origin.

Proof. All of these theorem are the same as in the case of m.g.f. above. O]

We can use ch.f.s and the uniqueness theorem for d.f.s, to derived interesting
statements. Such is the following fact.
Example. Consider an arbitrary matrix M € Maj.o(R) and a bivarate normal
random vector & ~ No(uy, pia, 03,03, p). For convenience we introduce the nota-

2
01 pPO102

tions p and C, where pup = (uy,p2)?,C = . We use the ma-
pPO102 0'%

trix M and the new random vector n = ME as a linear transformation. Then

1~ No(Mp, MCM?). Here N denotes 2-dimensional normal distribution.

11



Proof. Consider the ch.f. of . For any real vector t € R?, we have

ben(t) _ EeitTME _ Eei(MTt)TE

= exp (i(Mp,)Tt — %tT(MCMT)t> :

The explicit form of ¢, (¢) allows to conclude that n = M§& ~ No(Mp, MCM?T).
We tell this by words: A linear transformation of a normal random vector is normal.

And we saw how exactly the parameters change. [

4 Bivariate Cauchy Distribution

Recall first that a r.v. & with values in R has Cauchy distribution, and we write

& ~ Cyq, if £ is continuous and has density

1 1
- R.
p(z) 7l+a? Te

Definition 4.1. We say that the random vectors (X,Y") follows bivariate Cauchy

distribution, (X,Y") ~ Cy, if its joint density is

1 1

p(z.y) = 5 (ESCERTIEE

z,y € R.

Proposition 4.2 (Marginals). If (X,Y) ~ Cy, then X ~ Cy and Y ~ Cy, i.e. the

marginal densities are

px(z) = x€R, py(y) =

(1 + x2)

12



Proof. First, we need a specific indefinite integral:

1 d y=V1+z?tanu V1+ a2
1+ 22 + y2)372
B / V1+ 22
) (1 +22)3/2(1 + tan® u)3/2 cos? u

1 /cos3ud 1 / P
== u = cos udu
1+22 ) cos?u 1+ 22

— Y el

(1+22)\/1+4 a2 + y?

Second, use the Newton-Leibniz formula:

du

o0

/ 1 du — Y B 2
R N T N ey B WPy
Hence
1
px() /Rp(%y) e
Well done.

(1422 + (1 + 22) tan®u)3/2 cos? u

du

]

Another observation is that the expectation of a r.v. X ~ C; does not exist!

Indeed, by definition we have

X

E(X):Axpx(x)dxzémdx,

which does not exist! As a consequence, higher order moments E(| X|") also do not

exist for any r > 1, hence no variance.

Corollary 3. This also tells us the m.g.f. of Cauchy distribution does not exists!

However, even if the m.g.f. does not exists, the ch.f. always exists, and in many

case it can be found explicitly. Here is the such a case.

13



Theorem 4.3. If the random vectors (X,Y) ~ Cy, then its ch.f. is

wX,Y(t17t2) = exXp <—\/t% + t%) s (tl,tz) € RQ.

Proof. Just need to calculate 5= [o, e/ T29) (1 + 22 + ) =3 2dzdy.

First it is easy to see that for any integrable function g, we have

[ taraa= [ 21 t0C0,,

where a € R or a = co. Then, by using this and the known fact,

1 . )
cosu = 5(6” +e ),

we obtain:
1 tlx—l—tgy
(t1,t9) = — dxd

VYxy(t1,t2) = o0 oo ( 1+x2 y2)3/2 ray
1 ztlm —ztlz itoy —itoy
1 +e M) (e te )dmdy
T 8 R2 1—1—$2+y)3/2
1 t t
1 cos(tix) cos Qy)d a0
T o 1+ 22 +y2)3/2

2/ / cos(|t1]z) COS(|t2|y>da:dy

(14 22+ y?)3/2
= exp (—\/t%—l—t%).

The last step is a tricky and complicated integral and we can see details of this and

more general results in [7]. O

14



5 Farlie-Gumbel-Morgenstern (FGM) Family

of Distributions

We will discribe how from two 1-dimensional distributions to construct a bivariate
distribution and study its properties. To mention that FGM copulas are investigated
in many publications e.g., in [4] and [6].

We start with introducing the general copula with the most basic definitions and

some fundamental results.

Definition 5.1. Let S; and Sy be nonempty subsets of R and let H be a function
defined on S} x Sy C R% For any rectangle B = [z, 23] X [y1,y2] with all of whose

vertices are in S7 X Sy, we define the H-volume of B is
Vi(B) = H(z2,y2) — H(z1,y2) — H(22,y1) + H(z1, 1)
A such function H is called 2-increasing if Vy(B) > 0 for all rectangles B whose

vertices lie in Sy x 5.

General fact: Suppose a r.v. & ~ F. Define a new r.v. n = F(£). Clearly, n

take values in [0, 1], and moreover, 1 is continuous uniform on [0, 1], its density is
fo = Tp,

Definition 5.2. A two-dimensional copula is a function C' : [0,1] x [0,1] — [0, 1]
with the following properties
(i) For any u,v € [0, 1]

C(u,0) =C(0,v) =0and C(u,1) =u, C(1,v)=n.

(ii) C' is 2-increasing in the square [0, 1]2.
Now we introduce the statement of the following fundamental theorem.

15



Theorem 5.3 (Sklar’s Theorem). Let H(x,y), (z,y) € R? be the 2-dimensional d.f.
with marginal d.f.s ' and G. Then there exists a copula C such that for all x,y € R,

H(z,y) = C(F(x),G(y)).

If F and G are continuous, then C' is unique. Conversely, if C' is a copula function
and F and G are d.f.s, then the function H defined by H(—,—) = C(F(-),G(-))

is a 2-dimensional d.f. with marginals F' and G.

Now we back to FGM copula. We start with two d.f.s, say F} and F5: each is
defined on (—o00, 00), values in [0, 1], non-decreasing, right-continuous. Now, for any

number «, o € [—1, 1], we define the function
G(z,y) = Fi(z)F2(y)(1 + a(l — Fi(2))(1 — F2(y))), 2,y € R.

We can check that G is a 2-dimensional d.f. Indeed, we just need to verify that
Gla,y) satisfies (i) lim_Gla,y) = lim Gla,y) =0, (i) _lim _Glo,y) = 1,(i)

G(z,y) is right-continuous with x and y, (iv) for any a < b, ¢ < d, one has
G(b,d) + G(a,c) > G(a,d) + G(b,c).

Actually (i),(ii),(iii) are trivial by the definition of Fj and F5. To see (iv), consider

U1 < ug and vy < vq, then

G(Ug, Ug) — G(Ul, ’02) — G(Ug, ’Ul) + G(Ul, ’Ul)
= (Fi(u2) — Fi(u1))(Fa(v2) — Fa(v1))
X (1+a(l = Fi(ur) = Fi(uz))(1 = Fa(v1) — Fa(v2))).

Hence it is non-negative when a € [—1, 1], since 0 < F; < 1. Thus we conclude that

16



by Sklar’s theorem there is a random vector, say (X,Y'), such that this G is its joint
d.f.

Moreover, since G(x,00) = Fi(z) and G(00,y) = Fy(y), we see that the marginals
of (X,Y) are F} and F; for any a € [—1, 1]. So this is an infinite family with the same
marginals. As a consequence, the marginal distributions do not determine uniquely
the 2-dimensional distribution.

Assume X ~ Fj and Y ~ Fy are continuous with densities fi(x), fo(y). Then the
2-dimensional probability density function of (X,Y") is

Gz, y)

oxdy [i(@) f2(y)(1 + a(2F1(z) — 1)(2F(y) — 1))

g(w,y) =

It is useful to know the correlation between X and Y. First we find:

Cov(X,Y) = / (o~ E(X))(y — E(YV))g(ar y)dedy

~ ([ e ) ([ Ernnima)

va( [@-eoi@enRE - vie) ([ - EM)mERE) - )

— o [ @~ eNA@eRAE - o) ( [0~ E0DROERE) - 1)

Also we can find the correlation coefficient:

Cov(X,Y) axD

pXY) = \/Var(X)Var(Y) VVar(X)Var(Y)’

where

D= ([ e~ ExNA@ERE@ - ar) ( [ - EDAEERG) - Dir).

It is of great interest to find the upper bound of the correlation coefficient. Since

17



we have the decomposition D = DDy where

D = ( [ (o~ EXDAEIF) - 1)ds

and
D: = ( [ - EODRGICRG) - Vi),

we just need to estimate one of them. Actually, we have the following chain of

relations:

Dt = ( [ ECO)@F@) - 1)f(:v)d:v)2
~ ([ (1« - eC0)V/T@) (2F(0) - V7)) dx)2
<0 ([ -ecopsaan) ([ ere - v2rwi) = 255,

where (1) is Cauchy-Swartz inequality and the last step is because

/R(2F(z) 12 f(2)ds = / (2u — 1)2du — %

0
Hence DDy < VE"T(X) and

_ OéDlDQ
v/ Var(X)Var(Y)

p(X,Y)

[0
Sga

well done.
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6 Conclusions

For now after we introduce the basic definitions, we have described the properties
of moment generating functions and characteristic functions, the bivariate Cauchy

distribution and some properties about the FGM copula.

7 Symbols and Notations

Table 1: Symbols

Symbol meaning Symbol meaning

P Probability Measure P Probability Density Function

E Expectation Var Variance
Cov Covariance p Correlation Coefficient
C Cauchy Distribution N Normal Distribution
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