2022 Final Exam of Analytic Number Theory

Huang Binrong

June 20, 2022

Problem 1. (i) State the Chebyshev inequality and Mertens' theorem without the proof;

(ii) Show that

$$\varphi(q) \gg \frac{q}{\log \log q}.$$

Problem 2. (i) Let $\chi_{\mathbb{P}}$ as $\chi_{\mathbb{P}}(n) = 1$ for n prime and $\chi_{\mathbb{P}}(n) = 0$ for n not a prime. Show that

$$\chi_{\mathbb{P}} = \mu * \omega;$$

(ii) Prove that

$$\frac{n}{\varphi(n)} = \sum_{d|n} \frac{\mu^2(d)}{\varphi(d)};$$

(iii) Prove that

$$\sum_{n \le x} \frac{n}{\varphi(n)} = x \sum_{d|n} \frac{\mu^2(d)}{d\varphi(d)} + O(\log x).$$

Problem 3. Prove that

$$\sum_{n \le x, (n,q)=1} 1 = \frac{\varphi(q)}{q} x + O(q^{\varepsilon}),$$

for all $\varepsilon > 0$.

Problem 4. Let $\pi(x) = \sum_{p \le x} 1$ and $\vartheta(x) = \sum_{p \le x} \log p$, then show that the following statements are equivalent:

$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right);$$
$$\vartheta(x) = x + O\left(\frac{x}{\log x}\right).$$

Problem 5. Prove that the equation $x^2 + 2x - 60 \equiv \pmod{2022}$ has no integral solutions. (Remark: 337 is a prime.)

Problem 6. (i) Prove that

$$\log(n) = \sum_{d|n} \Lambda(d);$$

(ii) Let χ be a Dirichlet character mod q, then assume that $L(1,\chi) \neq 0$, show that

$$\sum_{n \le x} \frac{\chi(n)\Lambda(n)}{n} = O(1).$$

Problem 7. (i) State the Pólya-Vinogradov inequality without proof;

(ii) For any M > N > 0, show that

$$\sum_{N < n \le M} \frac{\chi(n)}{n} \ll \frac{1}{N} \sqrt{q} \log q.$$

Problem 8. Prove the Dirichlet theorem: giving Q > 0 and $x \in \mathbb{R}$, then exists $a, q \in \mathbb{Z}$ with (a, q) = 1 such that

$$|qx-a| < \frac{1}{Q}.$$