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1 Introduction
The theory of duality is beautiful theory in the commutative algebra and algebraic geometry. In the
book [BH98], the authors introduce the duality of Cohen-Macaulay rings. But it can not work for
more general rings. In this note, we will introduce the general theory of duality of more general rings
using derived category. We will generalize the notion of canonical modules in [BH98] into dualizing
complexes and we will see that in the case of Cohen-Macaulay rings, this complex can be concentrated
in the one place. So we again have the canonical modules.

Now we give the outline of the note:

• In the section 2, we will give a quike introduction of local cohomology using derived category
which is a basic tool.

• In the section 3, we will introduce the basic theory of dualizing complexes of Noetherian rings
and introduce the local duality theorem.

• In the section 4, we will consider the special case of Cohen-Macaulay and Gorenstein Rings and
to find some special properties. We will also consider the more cases of rings which have dualizing
complexes

• In the final section 5, we will give a glimpse of the global theory of dualizing complexes in
algebraic geometry.

Note that we will mainly follows the chapter 47 in [Pro24] and Chapter 25 in [GW23]. The basic
theory of derived categopries, injective hulls and Matlis duality will be omitted and we refer to [BH98]
or the beginning of chapter 47 in [Pro24].

Acknowledgement. Here I am grateful to Prof. Manolis C.Tsakiris for this interesting course of
advanced commutative algebra in the Chinese Academy of Sciences. This course gave me an opportu-
nity to learn these wonderful theories.

2 Local Cohomology of Noetherian Rings
Here we will follows section 47.8–47.11 in [Pro24] and summary some results about several definitions
of local cohomology using derived categories which we will use later. The reader can begin to read the
Section 3 and omit this whole section for now.

More general theory we refer [Har67] or [Gro68] or chapter51 of [Pro24].

2.1 More on Čech Complex and Koszul Complex
Lemma 2.1. Let R be a ring. Let ϕ : E→ R be an R-module map. Let e ∈ E with image f = ϕ(e) in
R. Then f = de+ ed as endomorphisms of K•(ϕ). In particular, multiplication by fi on K•(f1, ..., fr)
is homotopic to zero.

Proof. This is true because d(ea) = d(e)a− ed(a) = fa− ed(a).
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Lemma 2.2. Let R be a ring. Let f1, . . . , fr ∈ R. The (extended alternating) Čech complex of R is the
cochain complex

R→
⊕

i0
Rfi0
→

⊕
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr

where R is in degree 0, the term
⊕

i0
Rfi0

is in degre 1, and so on. The maps are defined as follows
1. The map R→

⊕
i0
Rfi0

is given by the canonical maps R→ Rfi0
.

2. Given 1 ⩽ i0 < . . . < ip+1 ⩽ r and 0 ⩽ j ⩽ p+ 1 we have the canonical localization map
R
fi0 ...f̂ij ...fip+1

→ Rfi0 ...fip+1

3. The differentials use the canonical maps of (2) with sign (−1)j.
Then

R→
⊕

i0
Rfi0
→

⊕
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr

is a colimit of the Koszul complexes K(R, fn1 , . . . , fnr ); see proof for a precise statement.
Proof. We have

K(R, fn1 , . . . , fnr ) : 0→ ∧r(R⊕r)→ ∧r−1(R⊕r)→ . . .→ R⊕r → R→ 0
with the term ∧r(R⊕r) sitting in degree 0. Let en1 , . . . , enr be the standard basis of R⊕r. Then the
elements enj1 ∧ . . . ∧ enjr−p

for 1 ⩽ j1 < . . . < jr−p ⩽ r form a basis for the term in degree p of the
Koszul complex. Further, observe that

d(enj1 ∧ . . .∧ enjr−p
) =

∑
(−1)a+1fnjae

n
j1 ∧ . . .∧ ênja ∧ . . .∧ enjr−p

.

The transition maps of our system
K(R, fn1 , . . . , fnr )→ K(R, fn+1

1 , . . . , fn+1
r )

are given by the rule
enj1 ∧ . . .∧ enjr−p

7−→ fi0 . . . fip−1e
n+1
j1

∧ . . .∧ en+1
jr−p

where the indices 1 ⩽ i0 < . . . < ip−1 ⩽ r are such that {1, . . . r} = {i0, . . . , ip−1} q {j1, . . . , jr−p}.
We omit the short computation that shows this is compatible with differentials. Observe that the
transition maps are always 1 in degree 0 and equal to f1 . . . fr in degree r.

Denote Kp(R, fn1 , . . . , fnr ) the term of degree p in the Koszul complex. Observe that for any f ∈ R
we have

Rf = lim−→(R
f−→ R

f−→ R→ . . .)
Hence we see that in degree p we obtain

lim−→Kp(R, fn1 , . . . fnr ) =
⊕

1⩽i0<...<ip−1⩽r
Rfi0 ...fip−1

Here the element enj1 ∧ . . . ∧ enjr−p
of the Koszul complex above maps in the colimit to the ele-

ment (fi0 . . . fip−1)
−n in the summand Rfi0 ...fip−1

where the indices are chosen such that {1, . . . r} =
{i0, . . . , ip−1}q {j1, . . . , jr−p}. Thus the differential on this complex is given by

d(1 in Rfi0 ...fip−1
) =

∑
i̸∈{i0,...,ip−1}

(−1)i−t in Rfi0 ...fitfifit+1 ...fip−1

Thus if we consider the map of complexes given in degree p by the map⊕
1⩽i0<...<ip−1⩽r

Rfi0 ...fip−1
−→

⊕
1⩽i0<...<ip−1⩽r

Rfi0 ...fip−1

determined by the rule
1 in Rfi0 ...fip−1

7−→ (−1)i0+...+ip−1+p in Rfi0 ...fip−1

then we get an isomorphism of complexes from lim−→K(R, fn1 , . . . , fnr ) to the extended alternating Čech
complex defined in this section. We omit the verification that the signs work out.
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2.2 Deriving Torsion
Definition 2.3. Let R be a ring with an ideal I ⊂ R. Fix M ∈ModR.

(a) We define
M[In] := {m ∈M : Inm = 0}, M[I∞] =

⊕
n

M[In].

(b) We call M is I∞-torsion if M = M[I∞]. We let I∞-torsion be the subcategory of ModR consist
of I∞-torsion modules

Here we give some easy but important properties of this notion.

Proposition 2.4. Let R be a ring with an ideal I ⊂ R.

(a) Let M ∈ I∞-torsion, then M admits a resolution

· · · → K2 → K1 → K0 →M→ 0

with each Ki a direct sum of copies of R/In for n variable. In particular, the category I∞-torsion
is a Grothendieck abelian category.

(b) Let I be a finitely generated ideal of R, then for any M ∈ModR we have (M/M[I∞])[I] = 0.
(c) Let I be a finitely generated ideal of R, then I∞-torsion is a Serre subcategory of the abelian

category ModR, that is, an extension of I∞-torsion modules is I∞-torsion.
(d) Let I be a finitely generated ideal of R and M ∈ModR, then we have an exact sequence

0→M[I∞]→M→
∏

p/∈V(I)

Mp.

In particular, we have M ∈ I∞-torsion if and only if supp(M) ⊂ V(I). Hence the subcategory
I∞-torsion ⊂ModR depends only on the closed subset V(I) ⊂ Spec(R).

Proof. For (a), there is a canonical surjection
⊕

m∈M R/Inm → M → 0 where nm is the smallest
positive integer such that Inm ·m = 0. The kernel of the preceding surjection is also an I∞-torsion
module. Proceeding inductively, we construct the desired resolution of M.

For (b), Let m ∈ M. If m maps to an element of (M/M[I∞])[I] then Im ⊂ M[I∞]. Write
I = (f1, ..., ft). Then we see that fim ∈ M[I∞]. Thus we see that INm = 0 for some large N � 0.
Hence m maps to zero in (M/M[I∞]).

For (c), suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence of modules with M ′

and M ′′ both I∞-torsion modules. Then M ′ ⊂ M[I∞] and hence M/M[I∞] is a quotient of M ′′ and
therefore I∞-torsion. Combined with (b) this implies that it is zero.

For (d), let M ∈ ModR and let x ∈ M. If x ∈ M[I∞], then x maps to zero in Mf for all f ∈ I.
Hence x maps to zero in Mp for all I 6⊂ p. Conversely, if x maps to zero in Mp for all I 6⊂ p, then x
maps to zero in Mf for all f ∈ I. Hence if I = (f1, ..., fr), then fni

i x = 0 for some ni ⩾ 1. It follows
that x ∈M[IN] for N =

∑
i ni. Thus M[I∞] is the kernel of M→

∏
p/∈Z Mp.

Definition 2.5 (Fake Local Cohomology). Let R be a ring and let I be a finitely generated ideal. By
Proposition 2.4(a), the category I∞-torsion is a Grothendieck abelian category and hence the derived
category D(I∞-torsion) exists by some homological algebra, as Tag 079Q. Hence we have the derived
functor

RΓI : D(R)→ D(I∞-torsion)
of ΓI :ModR → I∞-torsion given by M 7→M[I∞] which is left exact.
Moreover, we define H

q
I (K) := Hq(RΓI(K)) for any K ∈ D(R).

Remark 2.6. Note that this functor does not deserve the name local cohomology unless the ring R is
Noetherian.

Now we discuss some basic properties of the functor.
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Proposition 2.7. Let R be a ring and let I be a finitely generated ideal.
(a) The functor RΓI is right adjoint to the functor D(I∞-torsion)→ D(R).
(b) For any object K of D(R) we have

RΓI(K) = hocolimRHomR(R/I
n,K)

in D(R) and hence
H

q
I (K) := RqΓI(K) = lim−→ExtqR(R/In,K)

as modules for all q ∈ Z.
(c) Let K• be a complex of A-modules such that f : K• → K• is an isomorphism for some f ∈ I, i.e.,

K• is a complex of Rf-modules. Then RΓI(K
•) = 0.

Proof. For (a), this follows from the fact that taking I∞-torsion submodules is the right adjoint to the
inclusion functor I∞-torsion→ModR.

For (b), let J• be a K-injective resolution of K. Then we have

RΓI(K) = ΓI(J
•) = J•[I∞] = lim−→

n

J•[In]

= lim−→
n

HomR(R/I
n, J•) = hocolimRHomR(R/I

n,K).

Well done.
For (c), in this case the cohomology modules of RΓI(K

•) are both f∞-torsion and f acts by auto-
morphisms. Hence the cohomology modules are zero and hence the object is zero.

In the end of this small section we consider another category. Let R be a ring and let I be a finitely
generated ideal. By Proposition 2.4(c), I∞-torsion is a Serre subcategory of the abelian category
ModR. This shows that I∞-torsion ⊂ModR exact which induce the functor D(I∞-torsion)→ D(R)
which factor through

D(I∞-torsion)→ DI∞-torsion(ModR).

Proposition 2.8. Let R be a ring and let I be a finitely generated ideal. Let M,N ∈ I∞-torsion.
(a) HomD(R)(M,N) = HomD(I∞-torsion)(M,N)

(b) Ext2D(I∞-torsion)(M,N)→ Ext2D(R)(M,N) is not surjective in general. In particular,D(I∞-torsion)→
DI∞-torsion(ModR) is not an equivalence in general.

Proof. (a) is trivial and the counterexample of (b) we refer Tag 0A6P.

Remark 2.9. However in the Noetherian case this will be true. We will see this later.

2.3 Basic Theory of Local Cohomology
Now we will introduce some true local cohomologies.

Theorem 2.10 (Real Local Cohomology, I). Let R be a ring and let I ⊂ R be a finitely generated ideal
and Z = V(I) ⊂ Spec(R). There exists a right adjoint RΓZ to the inclusion functor DI∞-torsion(R) →
D(R). In fact, if I is generated by f1, . . . , fr ∈ R, then we have

RΓZ(K) =

R→
∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr

⊗LR K

functorially in K ∈ D(R).
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Proof. Say I = (f1, . . . , fr) is an ideal. Let K• be a complex of R-modules. There is a canonical map of
complexes R→

∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr

 −→ R.

from the extended Čech complex to R. Tensoring with K•, taking associated total complex, we get a
map

Tot

K• ⊗R (R→
∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr)

 −→ K•

in D(R). We claim the cohomology modules of the complex on the left are I∞-torsion, i.e., the LHS is
an object of DI∞-torsion(R). Namely, we haveR→

∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr

 = lim−→K(R, fn1 , . . . , fnr )

by Lemma 2.2. Moreover, multiplication by fni on the complex K(R, fn1 , . . . , fnr ) is homotopic to zero
by Lemma 2.1. Since

Hq (LHS) = lim−→Hq(Tot(K• ⊗A K(R, fn1 , . . . , fnr )))
we obtain our claim. On the other hand, if K• is an object of DI∞-torsion(R), then the complexes
K• ⊗R Rfi0 ...fip have vanishing cohomology. Hence in this case the map LHS→ K• is an isomorphism
in D(A). The construction

RΓZ(K
•) = Tot

K• ⊗R

R→
∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr


is functorial in K• and defines an exact functor D(R)→ DI∞-torsion(R) between triangulated categories.
It follows formally from the existence of the natural transformation RΓZ → id given above and the
fact that this evaluates to an isomorphism on K• in the subcategory, that RΓZ is the desired right
adjoint.

Hence now we have the functor

RΓZ : D(R)→ DI∞-torsion(R).

As we have seen, we construct the functor using Čech complex. Is there some relation between this
and the functor in algebraic geometry?
Definition 2.11 (Real Local Cohomology, II). Let (X,OX) be a ringed space. Let Z ⊂ X be a closed
subset. Consider the functor ΓZ :Mod(OX)→Mod(OX(X)) given by

ΓZ(F ) := {s ∈ Γ(X,F ) : supp(s) ⊂ Z}.

Using K-injective resolutions, we obtain the right derived functor

RΓZ(X,−) : D(OX)→ D(OX(X)).

The group H
q
Z(X,K) = Hq(RΓZ(X,K)) the cohomology module with support in Z.

We now show that they are the same! Indeed, we can use Čech complex to rebuild RΓZ(X,−), and
then we can connected to RΓZ : D(R)→ DI∞-torsion(R) as before.
Proposition 2.12. Let R be a ring and let I be a finitely generated ideal. Set Z = V(I) ⊂ X = Spec(R).
For K ∈ D(A) corresponding to K̃ ∈ DQCoh(OX), there is a functorial isomorphism

RΓZ(K) = RΓZ(X, K̃).
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Proof. Note that there exists a distinguished triangle

RΓZ(X, K̃)→ RΓ(X, K̃)→ RΓ(U, K̃)→ RΓZ(X, K̃)[1]

where U = X \ Z. We know that RΓ(X, K̃) = K. Say I = (f1, . . . , fr). Then we obtain a finite affine
open covering U : U = D(f1) ∪ . . . ∪ D(fr). As affine schemes are separated, the alternating Čech
complex Tot(Ĉ•

alt(U, K̃•)) computes RΓ(U, K̃) where K• is any complex of R-modules representing K.
Working through the definitions we find

RΓ(U, K̃) = Tot

K• ⊗R (
∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr)


It is clear that K• = RΓ(X, K̃•) → RΓ(U, K̃•) is induced by the diagonal map from A into

∏
Rfi .

Hence we conclude that

RΓZ(X,F•) = Tot

K• ⊗R

R→
∏
i0

Rfi0
→

∏
i0<i1

Rfi0fi1
→ . . .→ Rf1...fr


Well dominate.

Nex we will introduce the noetherian case and compare the fake local cohomology and the real
cohomology.

Proposition 2.13. Let R be a Noetherian ring and let I ⊂ R be an ideal.

1. The adjunction RΓI(K)→ K is an isomorphism for K ∈ DI∞-torsion(R).

2. The functor D(I∞-torsion)→ DI∞-torsion(R) is an equivalence.

3. RΓI(K) = RΓZ(K) for K ∈ D(R).

Proof. Boring proof, we refer Tag 0955.

So in the Noetherian case (so in the whole theory we consider) we will use RI(−).
Finally we will consider local cohomology and completion which will used in local duality theorem.

We will consider noetherian to avoid the derived completion.

Proposition 2.14. Let A be a Noetherian ring and let I be an ideal. For an object K ∈ D(A) we have

RΓZ(K
∧) = RΓZ(K) and (RΓZ(K))

∧ = K∧.

Hence the functorsRΓZ and ∧ define quasi-inverse equivalences of categoriesDI∞-torsion(A)↔ Dcomp(A, I).

Proof. See Tag 0A6W.

2.4 Local Cohomology and Depth
In this small section we will introduce a result about the depth and local cohomology. Note that
depthI(M) here is the grade Grade(I,M) in [BH98].

Theorem 2.15. Let R be a Noetherian ring, let I ⊂ R be an ideal, and let M be a finite A-module
such that IM 6= M. Then the following integers are equal:

(1) depthI(M),
(2) the smallest integer i such that ExtiA(A/I,M) is nonzero, and
(3) the smallest integer i such that Hi

I(M) is nonzero.
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Moreover, we have ExtiA(N,M) = 0 for i < depthI(M) for any finite A-module N annihilated by a
power of I.
Proof. We prove the equality of (1) and (2) by induction on depthI(M) which is allowed since depthI(M) <∞ now.

If depthI(M) = 0, then I is contained in the union of the associated primes of M. By prime
avoidance we see that I ⊂ p for some associated prime p. Hence HomA(A/I,M) is nonzero. Thus
equality holds in this case.

Assume that depthI(M) > 0. Let f ∈ I be a nonzerodivisor on M such that depthI(M/fM) =
depthI(M) − 1. Consider the short exact sequence

0→M→M→M/fM→ 0

and the associated long exact sequence for Ext∗A(A/I,−). Note that ExtiA(A/I,M) is a finite A/I-
module. Hence we obtain

HomA(A/I,M/fM) = Ext1A(A/I,M)

and short exact sequences

0→ ExtiA(A/I,M)→ ExtiA(A/I,M/fM)→ Exti+1
A (A/I,M)→ 0

Thus the equality of (1) and (2) by induction.
Observe that depthI(M) = depthIn(M) for all n ⩾ 1 for example by the fact that the sequence

(f1, ..., fr) is regular if and only if (fe1
1 , . . . , fer

r ) is regular for any fixed ei > 0 (see Tag 07DV for
the proof). Hence by the equality of (1) and (2) we see that ExtiA(A/In,M) = 0 for all n and
i < depthI(M). Let N be a finite A-module annihilated by a power of I. Then we can choose a short
exact sequence

0→ N ′ → (A/In)⊕m → N→ 0
for some n,m ⩾ 0. Then HomA(N,M) ⊂ HomA((A/In)⊕m,M) and ExtiA(N,M) ⊂ Exti−1

A (N ′,M)
for i < depthI(M). Thus a simply induction argument shows that the final statement of the lemma
holds.

Finally, we prove that (3) is equal to (1) and (2). We have H
p
I (M) = lim−→ExtpA(A/In,M) by

Proposition 2.7(b). Thus we see that Hi
I(M) = 0 for i < depthI(M). For i = depthI(M), using the

vanishing of Exti−1
A (I/In,M) we see that the map ExtiA(A/I,M) → Hi

I(M) is injective which proves
nonvanishing in the correct degree.

3 Dualizing Complexes
In this section we will consider the general theory of dualizing complexes of Noetherian rings.

3.1 General Properties of Dualizing Complexes
Definition 3.1. Let A be a Noetherian ring. A dualizing complex is a complex of A-modules ω•

A such
that
(a) ω•

A has finite injective dimension.
(b) Hi(ω•

A) is a finite A-module for all i.
(c) A→ RHomA(ω

•
A,ω•

A) is a quasi-isomorphism.
Next we consider some most basic properties.

Proposition 3.2. Let A be a Noetherian ring. If ω•
A is a dualizing complex, then the functor

D : K 7−→ RHomA(K,ω•
A)

is an anti-equivalence DCoh(A) → DCoh(A) which exchanges D+
Coh(A) and D−

Coh(A) and induces an
anti-equivalence Db

Coh(A)→ Db
Coh(A). Moreover D ◦D is isomorphic to the identity functor.
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Proof. Note that RHomA(K,ω•
A) ∈ DCoh(A) follows from the fact that ω•

A has finite injective dimen-
sion and consider the exact triangle τ⩽nK→ K→ τ⩾n+1K→ τ⩽nK[1].

Now we know that there is a canonical morphism

K = RHomA(ω
•
A,ω•

A)⊗LA K −→ RHomA(RHomA(K,ω•
A),ω•

A)

by taking K-injective resolutions. We can show that this is an isomorphism when K is pseudo-coherent
(see Tag 0A68, since we can choose finite projective modules as resolution). Consider exact triangle
τ⩽nK→ K→ τ⩾n+1K→ τ⩽nK[1] again, then this is an isomorphism for τ⩽nK. So it suffices to show
that both τ⩾n+1K and RHomA(RHomA(τ⩾n+1K,ω•

A),ω•
A) have vanishing cohomology in degrees

⩽ n− c for some c. But ω•
A has finite injective dimension, this is trivial.

Let R be a ring. Recall that an object L of D(R) is invertible if it is an invertible object for the
symmetric monoidal structure on D(R) given by derived tensor product.
Proposition 3.3. Let A be a Noetherian ring.

(a) Let F : Db
Coh(A)→ Db

Coh(A) be an A-linear equivalence of categories. Then F(A) is an invertible
object of D(A).

(b) [Uniqueness] If ω•
A and (ω ′

A)
• are dualizing complexes, then (ω ′

A)
• is quasi-isomorphic to

ω•
A ⊗LA L for some invertible object L of D(A).

(c) Let B = S−1A be a localization. If ω•
A is a dualizing complex, then ω•

A ⊗A B is a dualizing
complex for B.

(d) Let f1, . . . , fn ∈ A generate the unit ideal. If ω•
A is a complex of A-modules such that (ω•

A)fi is
a dualizing complex for Afi for all i, then ω•

A is a dualizing complex for A.
(e) Let A → B be a finite ring map of Noetherian rings. Let ω•

A be a dualizing complex. Then
RHom(B,ω•

A) is a dualizing complex for B. In particular, this is right for any surjective ring
map.

Proof. For (a), this is not about the dualizing complex and complicated. We refer Tag 0A7E.
For (b), By Proposition 3.2 and (a) the functor

K 7→ RHomA(RHomA(K,ω•
A), (ω ′

A)
•)

maps A to an invertible object L. In other words, there is an isomorphism

L −→ RHomA(ω
•
A, (ω ′

A)
•)

Since L has finite tor dimension, this means that we can apply the similar proof in Proposition 3.2 to
see that

RHomA(ω
•
A, (ω ′

A)
•)⊗LA K −→ RHomA(RHomA(K,ω•

A), (ω ′
A)

•)

is an isomorphism for K in Db
Coh(A). In particular, setting K = ω•

A finishes the proof.
For (c), let ω•

A → I• be a quasi-isomorphism with I• a bounded complex of injectives. Then S−1I•

is a bounded complex of injective B = S−1A-modules representing ω•
A⊗A B. Thus ω•

A⊗A B has finite
injective dimension. Since Hi(ω•

A ⊗A B) = Hi(ω•
A)⊗A B by flatness of A→ B we see that ω•

A ⊗A B
has finite cohomology modules. Finally, the map

B −→ RHomA(ω
•
A ⊗A B,ω•

A ⊗A B)

is a quasi-isomorphism as internal hom commutes with flat base change in this case (Tag 0A6A). Well
done.

For (d), consider the double complex∏
i0

(ω•
A)fi0 →

∏
i0<i1

(ω•
A)fi0fi1 → . . .

The associated total complex is quasi-isomorphic to ω•
A for example by the descent theory.
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By assumption the complexes (ω•
A)fi have finite injective dimension as complexes of Afi -modules.

This implies that each of the complexes (ω•
A)fi0 ...fip , p > 0 has finite injective dimension over Afi0 ...fip .

This in turn implies that each of the complexes (ω•
A)fi0 ...fip , p > 0 has finite injective dimension over

A as injectivity can be descent via flat maps. Hence ω•
A has finite injective dimension as a complex

of A-modules (as it can be represented by a complex endowed with a finite filtration whose graded
parts have finite injective dimension). Since Hn(ω•

A)fi is a finite Afi module for each i we see that
Hi(ω•

A) is a finite A-module. Finally, the (derived) base change of the map A → RHomA(ω
•
A,ω•

A)
to Afi is the map Afi → RHomA((ω

•
A)fi , (ω•

A)fi). Hence we deduce that A→ RHomA(ω
•
A,ω•

A) is
an isomorphism and the proof is complete.

For (e), let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injectives. Then

HomA(B, I•) is a bounded complex of injective B-modules representingRHom(B,ω•
A). ThusRHom(B,ω•

A)

has finite injective dimension. By spectral sequence ExtpA(B,Hq(ω•
A)) ⇒ Extp+q

A (B,ω•
A) that ω•

A is
an object of DCoh(B). Finally, we compute

HomD(B)(RHom(B,ω•
A),RHom(B,ω•

A)) = HomD(A)(RHom(B,ω•
A),ω•

A) = B

and for n 6= 0 we compute

HomD(B)(RHom(B,ω•
A),RHom(B,ω•

A)[n]) = HomD(A)(RHom(B,ω•
A),ω•

A[n]) = 0

which proves the last property of a dualizing complex. In the displayed equations, the second equality
holds by Proposition 3.2.

Note that not all rings have dualizing complexes, here we give some way to construct new rings
with this property from the old one.

Proposition 3.4. Let A be a Noetherian ring which has a dualizing complex ω•
A.

(a) Then ω•
A ⊗A A[x] is a dualizing complex for A[x].

(b) Then any A-algebra essentially of finite type over A has a dualizing complex.
(c) Let m ⊂ A be a maximal ideal and set κ = A/m. Then RHomA(κ,ω•

A)
∼= κ[n] for some n ∈ Z.

Proof. For (a), set B = A[x] and ω•
B = ω•

A ⊗A B. We know that in this case ω•
B has finite injective

dimension. Since Hi(ω•
B) = Hi(ω•

A) ⊗A B by flatness of A → B we see that ω•
A ⊗A B has finite

cohomology modules. Finally, the map

B −→ RHomB(ω
•
B,ω•

B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change in this case. Well
done.

For (b), this follows from a combination of (a) and Proposition 3.3(c)(e).
For (c), this is true because RHomA(κ,ω•

A) is a dualizing complex over κ by Proposition 3.3(e),
because dualizing complexes over κ are unique up to shifts (Proposition 3.3(b)), and because κ is a
dualizing complex over κ.

3.2 Dualizing Complexes over Local Rings
Let (A,m, κ) be a Noetherian local ring. By Proposition 3.3(b) we know that if R has a dualizing
complex, then it is unique up to an invertible objects. Now we define a canonical choice this these
complexes:

Definition 3.5. Let (A,m, κ) be a Noetherian local ring. Then a dualizing complex ω•
A is said to be

normalized, if
RHomA(κ,ω•

A)
∼= κ[0]

by Proposition 3.4(c).

Here we consider some basic results of normalizeddualizing complexes.
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Lemma 3.6. Let (A,m, κ)→ (B,m ′, κ ′) be a finite local map of Noetherian local rings. Let ω•
A be a

normalized dualizing complex. Then ω•
B = RHom(B,ω•

A) is a normalized dualizing complex for B. In
particular, this is right for surjective morphism.

Proof. By Proposition 3.3(e) the complex ω•
B is dualizing for B. We have

RHomB(κ
′,ω•

B) = RHomB(κ
′,RHom(B,ω•

A)) = RHomA(κ
′,ω•

A)

since RHom is right adjoint to the restriction functor. Since κ ′ is isomorphic to a finite direct sum of
copies of κ as an A-module and since ω•

A is normalized, we see that this complex only has cohomology
placed in degree 0. Thus ω•

B is a normalized dualizing complex as well.

Lemma 3.7. Let (A,m, κ) be a Noetherian local ring. Let F be an A-linear self-equivalence of the
category of finite length A-modules. Then F is isomorphic to the identity functor.

Proof. Since κ is the unique simple object of the category we have F(κ) ∼= κ. Since our category is
abelian, we find that F is exact. Hence F(E) has the same length as E for all finite length modules
E. Since Hom(E, κ) = Hom(F(E), F(κ)) ∼= Hom(F(E), κ) we conclude from Nakayama’s lemma that E
and F(E) have the same number of generators. Hence F(A/mn) is a cyclic A-module. Pick a generator
e ∈ F(A/mn). Since F is A-linear we conclude that mne = 0. The map A/mn → F(A/mn) has to be
an isomorphism as the lengths are equal. Pick an element

e ∈ lim←−
n

F(A/mn)

which maps to a generator for all n (small argument omitted). Then we obtain a system of isomor-
phisms A/mn → F(A/mn) compatible with all A-module maps A/mn → A/mn′ (by A-linearity of F
again). Since any finite length module is a cokernel of a map between direct sums of cyclic modules,
we obtain the isomorphism of the lemma.

Lemma 3.8. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. Let

E = E(κ) be an injective hull of κ. Then there exists a functorial isomorphism

RHomA(N,ω•
A) = HomA(N,E)[0]

for N running through the finite length A-modules.

Proof. By induction on the length of N we see that RHomA(N,ω•
A) is a module of finite length

sitting in degree 0. Thus RHomA(−,ω•
A) induces an anti-equivalence on the category of finite length

modules. Since the same is true for HomA(−,E) by Matlis duality we see that

N 7−→ HomA(RHomA(N,ω•
A),E)

is an equivalence as in Lemma 3.7. Hence it is isomorphic to the identity functor. Since HomA(−,E)
applied twice is the identity by Matlis duality again, we obtain the statement of the lemma.

Lemma 3.9. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. Let M

be a finite A-module and let d = dim(supp(M)). Then

(a) if ExtiA(M,ω•
A) is nonzero, then i ∈ {−d, . . . , 0},

(b) the dimension of the support of ExtiA(M,ω•
A) is at most −i,

(c) depth(M) is the smallest integer δ ⩾ 0 such that Ext−δ
A (M,ω•

A) 6= 0.

Proof. We prove this by induction on d. If d = 0, this follows from Lemma 3.8 and Matlis duality
which guarantees that HomA(M,E) is nonzero if M is nonzero.

Assume the result holds for modules with support of dimension < d and that M has depth > 0.
Choose an f ∈ m which is a nonzerodivisor on M and consider the short exact sequence

0→M→M→M/fM→ 0
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Since dim(supp(M/fM)) = d− 1 we may apply the induction hypothesis. Writing Ei = ExtiA(M,ω•
A)

and Fi = ExtiA(M/fM,ω•
A) we obtain a long exact sequence

. . .→ Fi → Ei f−→ Ei → Fi+1 → . . .

By induction Ei/fEi = 0 for i + 1 6∈ {− dim(supp(M/fM)), . . . ,− depth(M/fM)}. By Nakayama’s
lemma we conclude Ei = 0 for i 6∈ {− dim(supp(M)), . . . ,− depth(M)}. Moreover, in the boundary case
i = − depth(M) we deduce that Ei is nonzero as Fi+1 is nonzero by induction. Since Ei/fEi ⊂ Fi+1 we
get

dim(supp(Fi+1)) ⩾ dim(supp(Ei/fEi)) ⩾ dim(supp(Ei)) − 1
we also obtain the dimension estimate (b).

If M has depth 0 and d > 0 we let N = M[m∞] and set M ′ = M/N. Then M ′ has depth > 0
and dim(supp(M ′)) = d. Thus we know the result for M ′ and since RHomA(N,ω•

A) = HomA(N,E)
(Lemma 3.8) the long exact cohomology sequence of Ext’s implies the result for M.

Remark 3.10. Let (A,m) and ω•
A be as in Lemma 3.9, we see that ω•

A has injective-amplitude in
[−d, 0] because part (c) of that lemma applies. In particular, for any A-module M (not necessarily
finite) we have ExtiA(M,ω•

A) = 0 for i 6∈ {−d, . . . , 0}.
Some easy but important corollaries:

Corollary 3.11. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. Then

depth(A) is the smallest integer δ ⩾ 0 such that H−δ(ω•
A) 6= 0.

Proof. Immediate from Lemma 3.9(c).

Corollary 3.12. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. If

dim(A) = 0, then ω•
A

∼= E[0] where E is an injective hull of the residue field.
Proof. Immediate from Lemma 3.8.

Corollary 3.13. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex. Let I ⊂ m
be an ideal of finite length. Set B = A/I. Then there is a distinguished triangle

ω•
B → ω•

A → HomA(I,E)[0]→ ω•
B[1]

in D(A) where E is an injective hull of κ and ω•
B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0→ I→ A→ B→ 0 and Lemmas 3.8 and 3.6.

Corollary 3.14. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. Let

f ∈ m be a nonzerodivisor. Set B = A/(f). Then there is a distinguished triangle

ω•
B → ω•

A → ω•
A → ω•

B[1]

in D(A) where ω•
B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0→ A→ A→ B→ 0 and Lemma 3.6.

Lemma 3.15. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. Let p

be a minimal prime of A with dim(A/p) = e. Then Hi(ω•
A)p is nonzero if and only if i = −e.

Proof. Since Ap has dimension zero, there exists an integer n > 0 such that pnAp is zero. Set B = A/pn

and ω•
B = RHomA(B,ω•

A). Since Bp = Ap we see that

(ω•
B)p = RHomA(B,ω•

A)⊗LA Ap = RHomAp
(Bp, (ω•

A)p) = (ω•
A)p

By Lemma 3.6 we may replace A by B. After doing so, we see that dim(A) = e. Then we see that
Hi(ω•

A)p can only be nonzero if i = −e by Lemma 3.9 parts (1) and (2). On the other hand, since
(ω•

A)p is a dualizing complex for the nonzero ring Ap (Proposition 3.3(c)) we see that the remaining
module has to be nonzero.
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In the end of this section, we will consider some dimension theory of noetherian local rings with
dualizing complex.

Lemma 3.16. Let A be a Noetherian ring. Let p be a minimal prime of A. Then Hi(ω•
A)p is nonzero

for exactly one i.

Proof. The complex ω•
A ⊗A Ap is a dualizing complex for Ap (Proposition 3.3(c)). The dimension of

Ap is zero as p is minimal. Hence the result follows from Corollary 3.12.

This lemmas shows that generically the cohomology of dualizing complex lying over the only place.
Let A be a Noetherian ring and let ω•

A be a dualizing complex. Proposition 3.4(c) allows us to
define a function

δ = δω•
A
: Spec(A) −→ Z

by mapping p to the integer δ(p) which is the unique integer such that

(ω•
A)p[−δ(p)]

is a normalized dualizing complex over the Noetherian local ring Ap.

Corollary 3.17. Let A be a Noetherian ring and let ω•
A be a dualizing complex. Let A → B be a

surjective ring map and let ω•
B = RHom(B,ω•

A) be the dualizing complex for B. Then we have

δω•
B
= δω•

A
|Spec(B)

Proof. This follows from the definition of the functions and Lemma 3.6.

Lemma 3.18. Let A be a Noetherian ring and let ω•
A be a dualizing complex. Then the function

δ = δω•
A
satsifies that for any specialization x⇝ y and x 6= y in Spec(A), we have δ(x) > δ(y), and if

x⇝ y is immediate, then δ(x) = δ(y) + 1.

Proof. Let p ⊂ q be an immediate specialization. We have to show that δ(p) = δ(q) + 1. We may
replace A by A/p, the complex ω•

A by ω•
A/p = RHom(A/p,ω•

A), the prime p by (0), and the prime q

by q/p, see Corollary 3.17. Thus we may assume that A is a domain, p = (0), and q is a prime ideal
of height 1.

Then Hi(ω•
A)(0) is nonzero for exactly one i, say i0, by Lemma 3.16. In fact i0 = −δ((0)) because

(ω•
A)(0)[−δ((0))] is a normalized dualizing complex over the field A(0).
On the other hand (ω•

A)q[−δ(q)] is a normalized dualizing complex for Aq. By Lemma 3.15 we see
that

He((ω•
A)q[−δ(q)])(0) = He−δ(q)(ω•

A)(0)

is nonzero only for e = − dim(Aq) = −1. We conclude

−δ((0)) = −1− δ(q)

as desired.

By the argument of point-set topology, one can show that if A has that kind of function δ, then
Spec(A) is catenary (see Tag 02IA) Now we using these we have the following interesting facts.

Proposition 3.19. Let A be a Noetherian ring and let ω•
A be a dualizing complex.

(a) Then A is universally catenary of finite dimension.
(b) Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•

A. Let d = dim(A)
and ωA = H−d(ω•

A). Then

1. the support of ωA is the union of the irreducible components of Spec(A) of dimension d,
2. ωA satisfies (S2).
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Proof. For (a), this is because we have the function
δ = δω•

A
: Spec(A) −→ Z

and by Lemma 3.18, it is catenary as we have seen. Hence by Proposition 3.4(b) that A is universally
catenary.

Because any dualizing complex ω•
A is in Db

Coh(A) the values of the function δω•
A

in minimal primes
are bounded by Lemma 3.16. On the other hand, for a maximal ideal m with residue field κ the integer
i = −δ(m) is the unique integer such that ExtiA(κ,ω•

A) is nonzero by Proposition 3.4(c). Since ω•
A

has finite injective dimension these values are bounded too. Since the dimension of A is the maximal
value of δ(p) − δ(m) where p ⊂ m are a pair consisting of a minimal prime and a maximal prime we
find that the dimension of Spec(A) is bounded. This finish (a).

For (b), we will use Lemma 3.9 without further mention. By Lemma 3.15 the support ofωA contains
the irreducible components of dimension d. Let p ⊂ A be a prime. By Lemma 3.18 the complex
(ω•

A)p[− dim(A/p)] is a normalized dualizing complex for Ap. Hence if dim(A/p)+dim(Ap) < d, then
(ωA)p = 0. This proves the support of ωA is the union of the irreducible components of dimension d,
because the complement of this union is exactly the primes p of A for which dim(A/p) + dim(Ap) < d
as A is catenary by (a). On the other hand, if dim(A/p) + dim(Ap) = d, then

(ωA)p = H− dim(Ap) ((ω•
A)p[− dim(A/p)])

Hence in order to prove ωA has (S2) it suffices to show that the depth of ωA is at least min(dim(A), 2).
We prove this by induction on dim(A). The case dim(A) = 0 is trivial.

Assume depth(A) > 0. Choose a nonzerodivisor f ∈ m and set B = A/fA. Then dim(B) = dim(A)−
1 and we may apply the induction hypothesis to B. By Corollary 3.14 we see that multiplication by f is
injective on ωA and we get ωA/fωA ⊂ ωB. This proves the depth of ωA is at least 1. If dim(A) > 1,
then dim(B) > 0 and ωB has depth > 0. Hence ωA has depth > 1 and we conclude in this case.

Assume dim(A) > 0 and depth(A) = 0. Let I = A[m∞] and set B = A/I. Then B has depth ⩾ 1
and ωA = ωB by Corollary 3.13. Since we proved the result for ωB above the proof is done.

3.3 Grothendieck’s Local Duality Theorem
Lemma 3.20. Let (A,m, κ) be a Noetherian local ring. Let ω•

A be a normalized dualizing complex.
Let Z = V(m) ⊂ Spec(A). Then E = R0ΓZ(ω•

A) is an injective hull of κ and RΓZ(ω
•
A) = E[0].

Proof. As our ring is noetherian, we have RΓm = RΓZ. Thus
RΓZ(ω

•
A) = RΓm(ω

•
A) = hocolimRHomA(A/mn,ω•

A)

by Proposition 2.7(b). Let E ′ be an injective hull of the residue field. By Lemma 3.8 we can find
isomorphisms

RHomA(A/mn,ω•
A)

∼= HomA(A/mn,E ′)[0]
compatible with transition maps. Since E ′ =

⋃
E ′[mn] = lim−→HomA(A/mn,E ′) as we seen in the course

we conclude that E ∼= E ′ and that all other cohomology groups of the complex RΓZ(ω
•
A) are zero.

Here is the main result of this section.
Theorem 3.21 (Grothendieck’s Local Duality Theorem). Let (A,m, κ) be a Noetherian local ring.
Let ω•

A be a normalized dualizing complex. Let E be an injective hull of the residue field. Let
Z = V(m) ⊂ Spec(A). Denote ∧ derived completion with respect to m. Then

RHomA(K,ω•
A)

∧ ∼= RHomA(RΓZ(K),E[0])
for K in D(A).
Proof. Observe that E[0] ∼= RΓZ(ω

•
A) by Lemma 3.20. Now completion on the left hand side goes

inside, thus we have to prove

RHomA(K
∧, (ω•

A)
∧) = RHomA(RΓZ(K),RΓZ(ω•

A))

This follows from the equivalence between Dcomp(A,m) and Dm∞-torsion(A) given in Proposition 2.14.
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Here is a special but useful case of the theorem above.

Corollary 3.22. Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized dualizing complex.

Let E be an injective hull of the residue field. Let K ∈ DCoh(A). Then

Ext−i
A (K,ω•

A)
∧ = HomA(H

i
m(K),E)

where ∧ denotes m-adic completion.

4 Cohen-Macaulay, Gorenstein Rings and More
4.1 Cohen-Macaulay Rings
Recall that by Corollary 3.11, if (A,m, κ) be a Noetherian local ring with normalized dualizing complex
ω•

A, then we have
depth(A) = min{δ ⩾ 0 : H−δ(ω•

A) 6= 0}.

Proposition 4.1. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A. Let

M be a finite A-module. The following are equivalent

(a) M is Cohen-Macaulay,
(b) ExtiA(M,ω•

A) is nonzero for a single i,
(c) Ext−i

A (M,ω•
A) is zero for i 6= dim(supp(M)).

Denote CMd the category of finite Cohen-Macaulay A-modules of depth d. ThenM 7→ Ext−d
A (M,ω•

A)
defines an anti-auto-equivalence of CMd.

Proof. We will use the results of Lemma 3.9 without further mention. Fix a finite module M. If M is
Cohen-Macaulay, then only Ext−d

A (M,ω•
A) can be nonzero, hence (a) ⇒ (c). The implication (3c) ⇒

(b) is immediate. Assume (b) and let N = Ext−δ
A (M,ω•

A) be the nonzero Ext where δ = depth(M).
Then, since

M[0] = RHomA(RHomA(M,ω•
A),ω•

A) = RHomA(N[δ],ω•
A)

(Proposition 3.2) we conclude that M = Ext−δ
A (N,ω•

A). Thus δ ⩾ dim(Supp(M)). However, since we
also know that δ ⩽ dim(Supp(M)), we conclude that M is Cohen-Macaulay.

To prove the final statement, it suffices to show that N = Ext−d
A (M,ω•

A) is in CMd for M in
CMd. Above we have seen that M[0] = RHomA(N[d],ω•

A) and this proves the desired result by the
equivalence of (a) and (c).

Apply this to the ring itself, we have:

Corollary 4.2. Let (A,m, κ) be a Noetherian local ring with normalized dualizing complex ω•
A and

dualizing module ωA = H− dim(A)(ω•
A). The following are equivalent

1. A is Cohen-Macaulay,

2. ω•
A is concentrated in a single degree, and

3. ω•
A = ωA[dim(A)].

In this case ωA is a maximal Cohen-Macaulay module.

As we may replace A by the localization at a prime, we have:

Corollary 4.3. Let A be a Noetherian ring. If there exists a finite A-module ωA such that ωA[0] is
a dualizing complex, then A is Cohen-Macaulay.
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Proposition 4.4 (Opneness of CM locus). Let A be a Noetherian ring with dualizing complex ω•
A.

Let M be a finite A-module. Then

U = {p ∈ Spec(A) | Mp is Cohen-Macaulay}

is an open subset of Spec(A) whose intersection with supp(M) is dense.

Proof. If p is a generic point of supp(M), then depth(Mp) = dim(Mp) = 0 and hence p ∈ U. This
proves denseness. If p ∈ U, then we see that

RHomA(M,ω•
A)p = RHomAp

(Mp, (ω•
A)p)

has a unique nonzero cohomology module, say in degree i0, by Proposition 4.1. Since RHomA(M,ω•
A)

has only a finite number of nonzero cohomology modules Hi and since each of these is a finite A-
module, we can find an f ∈ A, f 6∈ p such that (Hi)f = 0 for i 6= i0. Then RHomA(M,ω•

A)f has a
unique nonzero cohomology module and reversing the arguments just given we find that D(f) ⊂ U.

Hence apply this to A we know that

U = {p ∈ Spec(A) | Mp is Cohen-Macaulay}

is a dense open subset of Spec(A).

4.2 Gorenstein Rings
In this section we will consider a ring with best behaver with its dualizing complex.

Definition 4.5. (a) Let A be a Noetherian local ring. We say A is Gorenstein if A[0] is a dualizing
complex for A.

(b) Let A be a Noetherian ring. We say A is Gorenstein if Ap is Gorenstein for every prime p of A.

This seems different as one in [BH98], but we will see later they are equivalent. Here we consider
some corollaries.

Corollary 4.6. A Gorenstein ring is Cohen-Macaulay.
Proof. Follows from Corollary 4.2.

Corollary 4.7. A regular local ring is Gorenstein. A regular ring is Gorenstein.
Proof. Let A be a regular ring of finite dimension d. Then A has finite global dimension d. Hence
Extd+1

A (M,A) = 0 for all A-modules M. Thus A has finite injective dimension as an A-module. It
follows that A[0] is a dualizing complex, hence A is Gorenstein.

Next we will give some conditions and properties of Gorenstein rings. Note that when A is local
Gorenstein, we have dualizing complex A[0], but in the non-local case, this may not true.

Proposition 4.8. Let A be a Noetherian ring.

(1) If A has a dualizing complex ω•
A, then

(a) A is Gorenstein ⇔ ω•
A is an invertible object of D(A);

(b) {p ∈ Spec(A) | Ap is Gorenstein} is an open subset.

(2) If A is Gorenstein, then A has a dualizing complex if and only if A[0] is a dualizing complex.
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Proof. For (1)(b), assume that Ap is Gorenstein. Let nx be the unique integer such that Hnx((ω•
A)p)

is nonzero and isomorphic to Ap. Since ω•
A is in Db

Coh(A) there are finitely many nonzero finite A-
modules Hi(ω•

A). Thus there exists some f ∈ A, f 6∈ p such that only Hnx((ω•
A)f) is nonzero and

generated by 1 element over Af. Since dualizing complexes are faithful (by definition) we conclude
that Af

∼= Hnx((ω•
A)f). In this way we see that Aq is Gorenstein for every q ∈ D(f). This proves that

the set in (1)(b) is open.
For (1)(a), the implication ⇐ follows from the fact after localization. The implication ⇒ follows

from the discussion in the previous paragraph, where we showed that if Ap is Gorenstein, then for
some f ∈ A, f 6∈ p the complex (ω•

A)f has only one nonzero cohomology module which is invertible.
For (2), if A[0] is a dualizing complex then A is Gorenstein by part (1). Conversely, we see that

part (1) shows that ω•
A is locally isomorphic to a shift of A. Since being a dualizing complex is local

by Proposition 3.3(d) the result is clear.
Proposition 4.9. Let (A,m, κ) be a Noetherian local ring. Then A is Gorenstein if and only if
ExtiA(κ,A) is zero for i� 0.
Proof. Observe that A[0] is a dualizing complex for A if and only if A has finite injective dimension
as an A-module (follows immediately from Definition). Thus the lemma follows from the fact that
M ∈ModR has finite injective dimension if and only if ExtiA(κ,M) is zero for i� 0 (Tag 0AVJ).

This proposition shows our definition is the same as one in [BH98].
Proposition 4.10. Let (A,m, κ) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor. Set
B = A/(f). Then A is Gorenstein if and only if B is Gorenstein.
Proof. If A is Gorenstein, then B is Gorenstein by Corollary 3.14.

Conversely, suppose that B is Gorenstein. Then ExtiB(κ,B) is zero for i � 0 by Proposition 4.9.
Recall that RHom(B,−) : D(A)→ D(B) is a right adjoint to restriction. Hence

RHomA(κ,A) = RHomB(κ,RHom(B,A)) = RHomB(κ,B[1])

The final equality by direct computation for RHom(B,A). Thus we see that ExtiA(κ,A) is zero for
i� 0 and A is Gorenstein by Proposition 4.9 again.
Proposition 4.11. Let A→ B be a flat local homomorphism of Noetherian local rings. The following
are equivalent
(1) B is Gorenstein;
(2) A and B/mAB are Gorenstein.
Proof. Below we will use without further mention that a local Gorenstein ring has finite injective
dimension by Proposition 4.9. By flat base-change we have

ExtiA(κA,A)⊗A B = ExtiB(B/mAB,B)

for all i.
Assume (2). Using that RHom(B/mAB,−) : D(B) → D(B/mAB) is a right adjoint to restriction

we obtain
RHomB(κB,B) = RHomB/mAB(κB,RHom(B/mAB,B))

The cohomology modules ofRHom(B/mAB,B) are the modules ExtiB(B/mAB,B) = ExtiA(κA,A)⊗AB.
Since A is Gorenstein, we conclude only a finite number of these are nonzero and each is isomorphic to a
direct sum of copies of B/mAB. Hence since B/mAB is Gorenstein we conclude that RHomB(B/mB,B)
has only a finite number of nonzero cohomology modules. Hence B is Gorenstein.

Assume (1). Since B has finite injective dimension, ExtiB(B/mAB,B) is 0 for i � 0. Since A → B

is faithfully flat we conclude that ExtiA(κA,A) is 0 for i� 0. We conclude that A is Gorenstein. This
implies that ExtiA(κA,A) is nonzero for exactly one i, namely for i = dim(A), and Extdim(A)

A (κA,A) ∼=
κA (see Lemma 3.6, Corollary 4.2, and Corollary 4.6). Thus we see that ExtiB(B/mAB,B) is zero
except for one i, namely i = dim(A) and Extdim(A)

B (B/mAB,B) ∼= B/mAB. Thus B/mAB is Gorenstein
by Lemma 3.6.
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4.3 More Rings with Dualizing Complexes
In this section, we will see which kind of Noetherian rings have dualizing complexes.
Lemma 4.12. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let ω•

A be a dualizing complex.
Then ω•

A ⊗A A∧ is a dualizing complex on the I-adic completion A∧.

Proof. We just show the following fact:
• Let A→ B be a flat map of Noetherian rings. Let I ⊂ A be an ideal such that A/I = B/IB and

such that IB is contained in the Jacobson radical of B. Let ω•
A be a dualizing complex. Then

ω•
A ⊗A B is a dualizing complex for B.

Indeed, it is clear that ω•
A ⊗A B is in Db

Coh(B). By base-change we see that

RHomB(K⊗A B,ω•
A ⊗A B) = RHomA(K,ω•

A)⊗A B

for any K ∈ Db
Coh(A). For any ideal IB ⊂ J ⊂ B there is a unique ideal I ⊂ J ′ ⊂ A such that

A/J ′⊗AB = B/J. Thus ω•
A⊗AB has finite injective dimension (see Tag 0DW2). Finally, we also have

RHomB(ω
•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω
•
A,ω•

A)⊗A B = A⊗A B = B

as desired.

Corollary 4.13. The following types of rings have a dualizing complex:
(1) Gorenstein local rings (such as, regular local rings),
(2) Noetherian complete local rings,
(3) Dedekind domains,
(4) any ring which is obtained from one of the rings above by taking an algebra essentially of finite

type, or by taking an ideal-adic completion.

Proof. (1) follows from definition and Corollary 4.7.
(2) follows from Proposition 3.3(e) and the Cohen structure theorem that any complete Noetherian

local ring is the quotient of a regular local ring.
For (3), let A be a Dedekind domain. Then every ideal I is a finite projective A-module. Thus

every A-module has finite injective dimension at most 1 since we can check Exti(A/I,K) by directly
computation. It follows easily that A[0] is a dualizing complex.

(4) follows from Proposition 3.4(b) and Lemma 4.12.

So now we have many rings with dualizing complexes. Note also that there are many rings without
dualizing complexes since by Proposition 3.19, any Noetherian local rings with dualizing complex is
universally catenary of finite dimension. So we may wonder that is there some equivalent condition of
the ring with dualizing complexes? Yes we have!
Theorem 4.14 (Sharp’s conjecture; Kawasaki 2002). A Noetherian ring has a dualizing complex if
and only if it is a quotient of a finite dimensional Gorenstein ring.

Proof. See the Corollary 1.2 in [Kaw02] for the proof.

5 A Glimpse of Duality in Algebraic Geometry
Here we first introduce some history of Grothendieck duality in algebraic geometry. For a modern
introduction of duality theory and global dualizing complexes we refer Chapter 25 in [GW23].

Our aim is to find a right adjoint functor f! of Rf∗ where f : X → Y be a proper morphism
of schemes (actually this defined as f× for proper morphisms and f! for separated morphisms using
Nagata’s compactification). The projective case was found many years ago (see 3.5 in [Illar] for
arguments). But the proper case is harder. The first discussion of this is in the book [Har66] by the
communication of Grothendieck and Hartshorne using residue theory. But there are several mistakes
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in it and is corrected in [Con00]. Another discussion is in the appendix of [Har66] due to Pierre Deligne
and [Ver69] due to Jean-Louis Verdier (see also [LH09]).

As the words of Neeman, these two methods are both not good enough since the first one is very
complicated and the second one is hard to compute them. So the modern theory due to Neeman is
[Nee96]. See also Chapter 25 in [GW23] or Chapter 48 in [Pro24].

Here we assume our schemes are all Noetherian (we have more general results as in Chapter 25 in
[GW23] again).
Theorem 5.1 (Grothendieck Duality). Let f : X → S be a proper morphism of schemes with E ∈
DQcoh(X) and F ∈ D+

Qcoh(S), then we have

Rf∗RH omX(E, f!F) ∼= RH omX(Rf∗E, F).
Moreover, we have the following properties.
(a) (−)! is stable under composition. It satisfies flat base-change (more generally, tor-independent

base-change, see Theorem 25.31 in [GW23]).
(b) When f is also of finite Tor-dimension (see Remark 25.39 in [GW23] for more informations),

then
f!F ∼= Lf∗F⊗L f!OS = Lf∗F⊗L ω•

X/S

where ω•
X/S := f!OS is relative dualizing complex.

(c) Let f : X g→ Y
h→ S are proper morphisms, then ω•

X := f!ω•
S and ω•

Y := h!ω•
S are again dualizing

complexes and if g is of finite Tor-dimension, then

ω•
X
∼= Lf∗ω•

Y ⊗L ω•
X/Y .

(d) When f : X→ S is smooth proper of relative dimension n, then for any F ∈ D+
Qcoh(S) we have

f!F ∼= Lf∗F⊗L Ωn
X/S[n].

(e) When i : Z ↪→ X be a closed immersion, then for all K ∈ D+
Qcoh(X) we have

i!K ∼= R(i∗H omOX
(i∗OZ,K)).

As an application, we have the following Serre duality:
Corollary 5.2 (Serre Duality). Let X be a proper scheme over a field k. Denote by f : X→ Speck the
structure morphism. Then f!OSpeck = ω•

X be the dualizing complex. Moreover, we have the following:
(a) ω•

X ∈ Db
Coh(X) and Hi(ω•

X) = 0 for all i /∈ [− dim(X), 0].
(b) For K ∈ DQcoh(X), there are isomorphisms for all i ∈ Z

ExtiX(K,ω•
X)

∼= H−i(X,K)∨.

When X is Cohen-Macaulay, we have ExtiX(K,ωX[dimX]) ∼= H−i(X,K)∨ and ExtdimX−i
X (F ,ωX) ∼=

Hi(X,F )∨ for F ∈ Qcoh(X).
(c) If K is a perfect complex on X (e.g., a finite locally free OX-module), then there are functorial

isomorphisms of finite-dimension k-vector spaces for all i

Hi(X,ω•
X ⊗LX K∨) ∼= H−i(X,K)∨.

If X is Cohen-Macaulay, we have HdimX−i(X,ωX ⊗OX
E ∨) ∼= Hi(X,E ) for vector bundles E .

More recently, Clausen and Scholze have sketched a new approach to duality for coherent sheaves
using their theory of condensed mathematics [Sch19]. In this setting, the category of schemes is
embedded fully faithfully in the category of discrete adic spaces. In this category, every discrete adic
space and every morphism of discrete adic spaces has a functorial “compactification” which simplifies
the definition of f! if f is “sufficiently finite”. One even obtains a full six-functor formalism if one
restricts to “sufficiently finite” morphisms for the functors f! and f!.
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