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1 Introduction

The reader of course need to be familiar with the book [4] including the basic theory
and schemes, cohomology, curves and surfaces. We will also use the intersection theory
frequently such as the main contents of [3] or [2] and the reader should familiar with
these. Finally we will omit the most basic theory of complex Hodge theory, such as the
first seven chapters in [6].

We will focus on the final part of the book [7]. There are three topics of Hodge
theory in this book but we just discuss the final part of them. We will also use the
Serre’s GAGA-principle without explanation.

2 Some Background of Mixed Hodge Theory

2.1 Basic Definition and Properties

Definition 2.1. A rational (real) mixed Hodge structure of weight n is given by a Q-
vector space (R-vector space) H equipped with an increasing filtration W;H called the
weight filtration , and a decreasing filtration on Hc := H ® C, called the Hodge filtration
F*Hc. Such that the induced Hodge filtration on each GrE/VH make Gry/H to be a
Hodge structure of weight n + 1.

These filtrations are required to be bounded. Recall that a morphism « : (U, F) —
(V,G) is said to be strict if Ina "GPV = a(FPU). It’s easy to show that the morphism
of rational pure Hodge structures are strict for Hodge filtration (even in type (r,7), see
[6] Lemma 7.23).

This is an analogue theory of Hodge decomposition of pure Hodge structures:

Lemma 2.2. Let (H,W, F) be a mized Hodge structure. Then there exists a decompo-

sition
He = @ HPY
P,q

with HP4 C FPHcNWytq—nHc, such that via the projection Wy q—nHc — Gr'"

p+q—ntlC
the space HPY can be identified with

HeNFaGe”  He.

120 w
H (GI’ p+q—n

riq—ntlc) == FPGr!%,

p+q—n

More generally, we have

WiHe= @ H"Y F'He =P HP.

pHq<n+i p=>i

This decomposition is preserved by the morphisms of mized Hodge structures.



Proof. This is pure linear algebra, we omit it and refer 7] Lemma 4.21. O

Remark 2.3. Unlike the pure case, the decomposition above may satisfies HP? #£ HP4,

: S w
although this does become true after projection to Gr,.  Hc.

Theorem 2.4 (P. Deligne, 1971). The morphisms
a: (HW,F)—(H' W' F)
of (rational or real) mized Hodge structures are strict for the filtrations W and F'.

Proof. We will only show the statement for W since the statement for H is similar.
Pick I' € a(Hc) NW;H' and we write I’ = a(l) with [ = > P9 by Lemma .9 As

I' € W/HL, then a(iP) = 0 for p+q > n+1i by Lemma P.9 again. Hence I € o(W;Hc)

and well done. O

2.2 A Classical Example of Mixed Hodge Structure

We consider a smooth complex variety U with a compactification X such that X\U = D,
a effective normal crossing divisor.

Definition 2.5. Define a subsheaf Q% (log D) C Q% (xD) such that o € T'(V, Q% (log D))
if a is a meromorphic differential form on V', holomorphic on V\D and admits a pole
of order at most 1 along (each component of) D, and the same holds for da. Hence
d =0 in it and we call the complex (2% (log D), 0) the logarithmic de Rham complex .

Lemma 2.6. Let 21, ..., z,, be local coordinates on an open set V. C X, in which DNV s
defined by the equation z1 - -z, = 0. Then Q% (log D)|v is a sheaf of free O|y-modules

with basis
dzl-l A A dZil

Zil Ziz

/\del/\“-/\dem

where is <1, js > and | +m = k. In particular, Q% (log D) is locally free.
Proof. Almost trivial, see [6] Lemma 8.16. O

Proposition 2.7. Let inclusion j : U — X, then we have a canonical inclusion
Q]}’((log D) C j*Q’f] C j*szfg which give us a morphism of complex

% (log D) — ju /.
Then this is a quasi-isomorphism. In particular we have

H*(U,C) =~ H*(X, Q% (log D)).



Proof. This is not hard to see and we refer [6] Proposition 8.18. From this we have
HF (X, Q% (log D)) 2 H¥(X, j.o}). As @} is a sheaf of ¢3°-modules which is a resolu-
tion of Cyy, then j,.47; is a sheaf of €5°-modules, so it is acyclic and
H*(X, judlfs) =2 HFTD(X, juofs) = HYD(U, o) = H¥(U, C).
Hence we get the result. O
For now we will give H*(U,Q) (or H*(U,R)) a mixed Hodge structure. First we

will give two filtrations over Q% (log D).
We define the Hodge filtration over Q% (log D) to be

FPQ% (log D) = Q3" (log D).
For weight filtration, we define W% (log D) to be

|t *—1[
W,Q}(logD)—{ A QX(logOD)/\QX : olgifr,

(We often let WF := W_y)

Now for simplicity, we let the divisor D is simply normal crossing with D = |, D;
where each D; C X is a smooth hypersurface, and the intersection of any [ hypersurfaces
D, ..., Dy, is transverse. We equip I with a total order. We let

p®.= [ Dbpxk= [ (D

KCI,|K|=k KCI,|K|=ki€K
with inclusions jg : D®) —s X and gm Dy — X.
Proposition 2.8. There exists a natural isomorphism

Wiy (log D) /W12 (log D) == jir .5 .

Proof. This morphism defined by Poincaré residue map . Give a local coordinates in
V C X we define Res” : T'(V, W;.Q% (log D)) — T'(V, jk7*Q*D?,f)) as

dZK
o = E OCK,LdZL N —
2K

Kc{1,..,r}CI,|K|<k

— (Resva)M = ((QW\/—l)k Z OéM,LdZL|DMmV>
L M

Note that this annihilates the sections of Wj_1Q% (log D) and change coordinates only

change the elements in Wj,_1Q% (log D), Hence we get a well-defined residue map:

a: Wi (log D) /Wi—1Q% (log D) = jk’*Q*D_(,'f).

This is an isomorphism is easy to see. We refer [6] Proposition 8.32. O



Now these two filtrations induce two filtrations over RI'(X, Q% (log D)), and hence
over H®(U,C) by Proposition R.4. So the arguments in [6] is far from complete and
we need some derived-version filtration of these, such as mixed Hodge complex. We
omitted this and we refer section 3.3 in [5].

Theorem 2.9 (P. Deligne, 1971). The discussion above equip H*(U,C) a mized Hodge
structure which is independent with X, D.

Proof. This follows from some analysis of the weight spectral sequence (induced by
W* = W_,), here we give a sketch.
By the general theory of spectral sequence, we have

wEPY = HPHI(X, Gib, Q% (log D).
By Proposition R.§ we have Gr}, Q% (log D) = j,p,*Q*DJ?fp), hence

HPHI (X, Gy Q5 (log D)) = H#H(X, j, Q%)
= H*+e(D(-P), Y ) = H?*+4(DP) ).

We can also get that the differential

dy : H?+9(D(-P) C) —— H2Ptat2(D-r-1) ()

E E

D=y HP(Dk, C) —— @y=p1 HPH(Dy, C)

has component df x equal to zero for L ¢ K, and equal to (—1)7+* le(,* when K = {i; <
-+ < iy} and L = K\{is} where j% : Dx — Dy, (see Proposition 8.34 in [6]). Hence
we can deduce any pages of weight spectral sequence! By some analysis we can get the
result which omitted, we refer Theorem 3.4.7 and section 3.4.1.5 in [j]. O

3 Cycle Classes and Abel-Jacobi Map

3.1 Cycle Classes and Cycle Map
The case of general complex manifolds with closed analytic subsets

Let X be a n + r-dimensional complex manifold with a codimension r closed analytic
subset Z, we will associated Z to be a cohomology class [Z] € H*" (X, Z).

Lemma 3.1. If Y C X be a closed complex submanifold of codimension k, then the
natural map H'(X,7) — HY(X\Y,Z) is an isomorphism for | < 2k — 2.



Proof. Trivial, just need to look at the long exact sequence induced by the good pair
(X, X\Y) and using Thom’s isomorphism and the excision theorem. O

Come back to our case, as in algebraic geometry, we can have a filtration
@ZZR_HC"'CZO:Z

where dim Z; = n —i and Zi\Zx—_1 is a closed complex submanifold of dimension n — k
in X\ Z;—1 (see [6] Theorem 11.11 for the proof).
We apply this Lemma to each X\ Z, C X\ Zy1, we have

H*(X,Z) = H*(X\Z,,Z).

Here Z\Z; is smooth. So we just need to consider the case when Z is a smooth complex
submanifold in X!

If Z is a smooth complex submanifold of codimension r in X, then by Thom’s
isomorphism and the excision theorem, we have the following diagram

HY(X,X\Z;Z) %~ H¥(X,Z)

HY(X,X\Z:Z) —1 H°(Z,7)
Then we define [Z] = jz(T-1(1)) € H* (X, Z).

Remark 3.2. We an also using the most natural way: if Z =, n;Z;, we can define
[Z]) = >, nilZs) where [Z;] = PD(ji«([Z]]fna)) and j; : Z, — X is a resolution of
singularity of Zi, [Z!]funa is the fundamental homology class and PD denotes Poincaré
duality!

Here we give some discription using the de Rham cohomology without proof:

Proposition 3.3. Let U C X be a neighbourhood of Z isomorphic to a neighbourhood
V' of the section in the normal bundle Nz,x. Let w be a closed form of degree k with

support in 'V, satisfying
/ w=1
7 1(z)

where w : V. — Z is the projection. Then the form w is a representative in de Rham
cohomology of the class [Z].

Proof. See Lemma 11.14 in [6]. O



The case of compact Kihler manifolds

Let X be a n+ r-dimensional compact Kahler manifold with a codimension r closed an-
alytic subset Z. We have associated Z to be a cohomology class [Z] € H?"(X,Z).
Now using Hodge decomposition, we will discuss the type of [Z] in H?"(X,C) =

@p+q:2r Hp,q(X)'
Theorem 3.4. The image of [Z] in H*"(X,C) lies in H™(X).
Proof. Here we need to use the following two results (for the proof, see [6] Lemma 7.30

and Theorem 11.21, using the de Rham discription we discussed above this is easy to
prove):

(i) If Y be a compact Kéhler manifold of dimension m, then

HPA(Y) = P HM(Y)

k+1=2m—p—q,(k,l)#(m—p,m—q)

where the orthogonality is relative to the Poincaré duality on Y.

(ii) (Lelong, 1957) The current w — |.

Zsmooth
it is an element in H2"(X, C)*. Then this element is equal to the image of [Z]under

the morphism

w maps to zero on the exact forms. Hence

H*(X,Z) - H*(X,C) - H*(X,C)*.

By (i), we just need to show that [, [Z] A a = 0 for any a of type (p,q), p+ q = 2n,
(p,q) # (n,n). Then this is trivial by (ii). O

The case of complex smooth (quasi-)projective varieties

Let X be a complex smooth quasi-projective variety of dimension n and Z € Zi(X),
then we give [Z] € H?>"~?(X,Z) as above.

Proposition 3.5. If Z ~, 0, then [Z] = 0 € H*"2¥(X,7Z), hence we give the class
map
cl: CHy(X) — H" (X, 7), Z — |Z].

We denote its kernal CH;(X )pom-

Proof. WLOG we can assume X is projective. Let W C X is of dimension k 4+ 1 and
¢ € K(W)*, we just need to show [r.div(¢)] = 0 where 7 : W — W — X be a
resolution of singularity of W.

We can easy to see [r.div(¢)] = 7i[div(¢)] where 7. : H*>(W',Z) — H?" *(X,7Z)
defined by Poincaré duality by Remark @ Hence we just need to show [div(¢)] =0 €
H?(W',Z). This follows from Lelong’s fundamental theorem that [D] = ¢;(0(D)) €
H2(W' 7). O



Proposition 3.6. Let f: X — Y be morphism of smooth quasi-projective varieties.
(i) If Z € CH(X),Z' € CH*(X), then

A(Z-Z")=c(Z)uc(Z) e H¥ (X, 7);

(ii) if Z € CHF(Y), then f*cl(Z) = cl(f*Z) € H?*(X,Z);
(iii) if f proper and Z € CH*(X), then f.cl(Z) = cl(f.Z) € H?—2dmX+2dimY (y" 7y

Proof. We have showed (iii) in the proof of Proposition B.5. We first show the case of

closed immersion of (ii). Indeed, by moving lemma we may assume Z and X intersect

generically transverse. We may assume Z is irreducible. By Lemma @ we may assume

Z and X intersect transversely. Then compare the normal bundle and well done.
Then we prove (i). We know by definition that

[Z x Z'] = pi[Z] Up3[Z'].
Let diagonal § : Ax = X C X x X, then by the case of closed immersion of (ii) we have
c(Z-Z")=cl(6"(Z x Z") = 6" cl(Z x Z') = §*(pi[Z) U p5[Z']) = cl(Z) U cl(Z'),

well done.
For the general case of (ii), this follows from (i) and decomposition

FiXE Xy Sy,

well done. O

3.2 Hodge Classes and Hodge Conjecture

Definition 3.7. If (Vz, F*V¢) is a pure Hodge structure of weight 2p, then we denote
the set of Hodge classes
Hdg(V) := Vg N VPP,

Now consider a compact Kahler manifold X with its standard Hodge structure, then
we have:

Theorem 3.8. The cohomology class of analytic subsets of X and the Chern classes of
the holomorphic vector bundles over X are all Hodge classes.

Proof. The first way is Theorem @ For the second one, we know that if X is algebraic,
this is trivial since the Chern classes in the cohomology group can come from the Chern
classes in the Chow group! Indeed, we can tensoring some higher times ample bundle
and get a map from X to a Grassmannian such that the Chern class of this bundle



comes from the Schubert classes in the Grassmannian (see [2] Proposition 10.2). In
general, we have a classical result that

" ~ H*(X)[C]
_H (P(@@))_Cr+cl(g)<r71++Cr(éa)
and ¢ = ¢1(Opg(1)) is of type (1,1). Hence well done. O

Corollary 3.9. If X is algebraic, these two subgroups of Hdg(X) coincide.
Proof. Omitted. O
Converse is true in codimension 1 which is classical Lefschetz (1,1)-Theorem:

Theorem 3.10. In this case, the group Hdgz(X7 7) is equal to the image of ¢1 : PicX —
H?*(X,7).

But this is false in general. Actually, J. Kollar in 1992 gave a counterexample. His
counterexample is given by hypersurfaces X of degree d in the projective space P4. Such
a hypersurface satisfies H2(X,Z) = Z, and the class of a plane curve P2 N X is equal
to d times the generator of H?(X,Z). He shows that this generator is not, however, in
general, the class of an algebraic cycle.

In Q-coefficient, we have the following famous conjectures:

Conjecture 1 (Hodge Conjecture). Let X be a projective manifold, and o € Hdg?*(X).
Then a multiple Now with N # 0 is the class of an algebraic cycle.

Conjecture 2 (Generalized Hodge Conjecture, Grothendieck). Let X be a smooth
algebraic variety, and L C H?***(X,Q) a rational sub-Hodge structure contained in
FEHZH(X). Then there exist (not necessarily smooth) algebraic subvarieties j; : Y; —
X of codimension k such that L is contained in ), ji «Hon—1(Ys, Q) where dim X = n+k.

Finally, we have an easy relation between Hodge class in product space and mor-
phism of Hodge structures which is useful:

Lemma 3.11. Let k+1 is even, then the class
o€ HY(X,Z)® H\(Y,Z) c H"(X x Y,7)
1s a Hodge class if and only if the corresponding map
o € Homyz(H* *(X,7), H\(Y, 7))
via Poincaré duality is a morphism of Hodge structures (of degree (k+1—n,k+1—n)).

Proof. This is not hard, we refer [6] Lemma 11.41. O



3.3 The Abel-Jacobi Map
Let X be a compact Kéhler manifold.

Definition 3.12. We know H?*~'(X,R) = H?*~1(X,C)/FFH*~1(X) and consider
the lattice H*~1(X,7Z) ¢ H*~Y(X,R), we get the k-th intermediate Jacobian J**~1(X)
as a complex torus

JHHX) = H*Y(X,0)/(FFH*1(X) @ H*7 (X, Z2)).

Remark 3.13. Note that in general J?*=1(X) is not an abelian variety! But J'(X) =
Pic®(X) is.

Definition 3.14. Pick Z ¢ Zk(X)hom, then we can find a differentiable chain I' C X
of real dimension 2n — 2k + 1 such that 0T = Z. Consider [, € A>""*+1(X)*, When
we restrict it into FP~F"LH?"=2k+1(X)* we find that by the reason of type and Stokes’s
formula, fF € Frnh=l2n=2k+1(X)* js independent of the choice of the representative
of cohomology class. One can also easy to see that if we descend fr m

ank71H2n72k+1 (X)*/Hgn_2+1 (X, Z) ~ J2k71 ()()7

it is independent of the choice of I' such that O1' = Z! Hence we give a morphism called
the Abel-Jacobi map

ok Z e ZF( X pom — JFUX), Ze— / :
I

Theorem 3.15 (Griffiths, 1968). Let Y be a connected complex manifold, yo € Y
a reference point, and Z C Y x X a cycle of codimension k. We will assume that
Z =), niZ; where each Zi is flat over Y, then the map

¢:Y = JHFNX), yw (2, — Zy,)
s holomorphic.
Proof. See Theorem 12.4 in [6). O

Now we consider two special cases when k£ =1 and k£ = dim X.
When k = 1, by Proposition 12.7 in [6] we can show that ¢1(0(2)) = ®%(2) €
JY(X) = Pic’(X). Then we get:

Corollary 3.16 (Abel’s Theorem). If D be a divisor homologous to 0 in X, then
L (D) = 0 if and only if Ox (D) is trivial.

When k£ = n = dim X, we find that if X is connected, such a cycle is homologous to
0 if and only if it is of degree 0.

10



Definition 3.17. We define the Albanese variety Alb(X) := J>"~Y(X) and the holo-
morphic map
alby : X — AIb(X), z+ &3 (z — x0)

1s called the Albanese map .
Remark 3.18. (a) The Albanese map satisfies the following universal property: For

every holomorphic map f : X — T with values in a complex torus and satisfying
f(xg) =0, there exists a unique morphism of complex tori such that:

X 2, Alb(X)

Hence this give us a purely algebraic construction. For details see Theorem 12.15
in [6];
(b) actually for sufficiently large k, the morphism

albh : X* — AIb(X), (z1,...2x) = Y albx ()

is surjective. Hence we can use this to show that Alb(X) is an abelian variety.
For details see Lemma 12.11 and Corollary 12.12 in [6].

Theorem 3.19. Let X,Y are two compact Kdhler manifolds with Y connected and
Z CY x X be a cycle of codimension k which is flat over Y. Hence we have the
holomorphic map ¢ = Y — J**~1(X) given by y — CIDI)“((Zy—ZyO). Hence by the universal
property, we get a morphsim of complex tori 1 : Alb(Y) — J?*=1(X) factor through ¢.
Then 1 induced by [Z]V2F—1 . H2IY =1y, 7) — H**~Y(X,Z), the (1,2k — 1)-Kiinneth
component. In particular, the image of 1 is a complex subtorus of J**~1(X) having the
property that its tangent space at 0 is contained in Hk_l’k(X).

Proof. The main result is not hard to see (Theorem 12.17 in [G]). Let m = dimY’, then
the morphism of Hodge structures [Z] is of bidegree (k — m,k —m), and as the Hodge
structure on H?™~1(Y) is of type (m,m — 1) + (m — 1,m), the image of [Z] is thus
contained in H**~1(X) @ H*1#(X). Well done. O

When X be a smooth (quasi-)projective variety, we can descend this map into Chow-
group level:

Lemma 3.20. If Z € Zi,(X) with Z ~uyat 0, then @}_k(Z) = 0. Hence we get the map:

Y CHe (X ) pom — J2" 2 1(X).

11



Proof. Let Z be a subvariety. As Z ~up, 0, we have a subvariety W C Z x P! dominates
P! such that Wy = Z and Wy, = 0. By Theorem we have a holomorphic map from
P! to a torus:

fiPl = PN e R (W — W),

Since P! has no non-zero holomorphic forms of degree 1, so that the pullbacks by f of
the holomorphic 1-forms on the torus must vanish, which is equivalent to df = 0. Thus,
we have

% M(2) = floo) = f(0) = @5 *(0) =0,
well done. O

Moreover, there is also a compactible relation with the intersection product.

Proposition 3.21. Now for any Z € CH*(X), we have the map cl(Z)U : H*~Y(X,Z) —
H?H2k=1(X 7)) which can descend to cl(Z)U : J?=1(X) — JHH2E=V(X). If let Z' €
CH' (X )pom, then by Proposition [3.4(i) we have Z - Z' € CH*'(X)pom. Then we have

(7. 7"y = c(Z) u Dy (Z)).

Proof. This is not hard but we omit the proof and refer to [7] Proposition 9.23. Note
that this is the special case of Theorem . O

Finally in this case with dim X = n, we introduce two more maps induced by the
Abel-Jacobi map.

We know that if Z ~yj, 0, then Z ~y,, 0 for any Weil cohomology theory (see [3]).
Then we define Griffk(X) = Zk(X)hom/Zk(X)alg.

Remark 3.22. When k = 1,n and X connected, we have Griff*(X) = 0. Here we need
a classical result:

o Let X by any variety and x; € X. Then there is an irreducible curve C' on X
containing x;. (Sketch of the proof, which is so classical: Given any two points
on a projective variety, blow them up and re embed the blownup variety in PN.
Then by Bertini, any general linear section of the right codimension will meet the
variety in an irreducible curve which also meets both exceptional divisors. Then
blowing back down gives an irreducible curve connecting the original points.)

For k =1, we know that any two homologous trivial divisor lies in the connected variety
Pic®(X), then by this results with normalizing that curve gives a map from just one
smooth connected curve that connects your two points. Hence Griff'(X) = 0.

For k =n, as any 0-cycle lies over an irreducible curve in X by this result, normal-
izing that curve and we get Griff"(X) = 0.

But when 2 < k < n in general Griff*(X) # 0. So we define Griff*(X) to find their
difference and to deduce some new Abel-Jacobi maps as follows.

12



We define J%_l(X)alg C J*71(X) be the largest subtorus with tangent space
contained in H*M*(X). Hence by Theorem we know that ®% (ZF(X)a,) C
J#=1(X)ag. We can also define J2# (X )pans := J?*7H(X)/J?*71(X)ay as the tran-
scendental part of the intermediate Jacobian.

Remark 3.23. This is because in general J**=1(X) is not algebraic but J**~*(X),g is
always algebraic, and hence J%_l(X)alg is an abelian variety! Indeed, by the classical
Hodge—Riemann bilinear relation: (see |6] Theorem 6.32)

e Consider a Hermitian form Hj, on H*(X,C) defined by

Hy(a, B) = (le)k/ WEA QA B,

X

k(k—1)
2

then the form (—1) (v/=1)P=9=k H}. is positive definite on the complex subspace
HPA(X) (1 HH (X, ©) i

we can get the result directly.

Hence we can define the continuous (algebraic) part of the Abel-Jacobi map (I)I)C(,alg :
ZF(X)alg = J*71(X)alg and the transcendental part of the Abel-Jacobi map:

k
CDX

ZE(X)hom ——— J?1(X)

Loy

P )
Griff (X) =% J26=1(X) e

Conjecture 3. The map ¥ ZM(X)aig = JH (X)) is surjective.

alg
Proof using Hodge conjecture. By Remark , we know that A := J%*l(X)alg is an
abelian variety. Let N = dim A and we get an isomorphism of Hodge structures

o HN"YA Z) = H* X, Z)

By Lemma B.11], this a corresponds to a Hodge class [a] € Hdg?*(A x X). Then by
Hodge conjecture we can find a cycle Z of codimension k with cl(Z) = N[a]. Then by
Theorem we know that the map A = Alb(A) — J?*(X) induced by Z is equal to
N times of A 2 J?*71(X),,, hence surjective. O]

Remark 3.24. This is right when X be a 3-dimensional projective manifold covered by
rational curves. See Ezercise 12.2 in [6].

13



3.4 Deligne Cohomology and Deligne Classes

Definition 3.25. Let X be a complex manifold and p > 1, we define the Deligne complex

Zp(p) is

z G5 ﬁXiQX—>~--—>Q§(_1—>O.

0—
We define the Deligne cohomology HY (X, Z(p)) := H*(X, Z(p)).
Remark 3.26. We have Zp(1) ~ys O%[—1] and H3(X,Z(1)) = H'(X, 0%).

Proposition 3.27. If X is a compact Kdhler manifold, then there exists a long exact
sequence

= Hp(X,Z(p) — H(X,Z)
— H*(X,C)/FPH*(X,C) — H*"'D(X,Z(p)) — --- .
Proof. First we consider

0— Q)S(p_l[—l] —Zplp) =7 —0

which induce a long exact sequence and we see that we just need to show H¥ (X, Q)S(p _1) =
H*(X,C)/FPH*(X,C). From the basic fact of Hodge structure (e.g. Proposition 7.5
in [6]) HF(X, Q)Z(p) = FPH*(X,C) and the exact sequence

007 -0 =057 ' =0

we can get the result directly. O
Corollary 3.28. In this case, we have exact sequence

0 — JPHX) = HP(X,Z(p)) — Hdg?(X,Z) — 0.
Proof. This follows directly from the k£ = 2p in theorem and the fact

Hdg? (X,Z) = ker(H*(X,7) — H*(X,C)/FPH?(X)).
Well done. H
Here we give another method to compute the Deligne cohomology H%p (X, Z(p)).

Definition 3.29. Let X is a differentiable manifold. Let the group of differential char-
acters Z.+(X) be a subgroup of Hom(ZM, R/Z) consist of x : ZU — R/Z such that
there exists a real differential form (obviously uniquely determined by x) w € A™1(X)
satisfying

x(0¢) = ¢*w mod Z, V¢e CH(X).

AVEE]
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Remark 3.30. (i) We have dw = 0. Indeed, for any ¢ : Aj1o — X, we have
¢*(dw) = / ¢*w mod Z = x(00¢) =0 € R/Z.
IAVET) AV

Hence we get dw = 0.

(i1) The de Rham class [w] € HHY(X,Z). Indeed, this follows from definition such
that fAz+1 ¢*w C Z for ¢ = 0.

(iii) If X is a complex manifold and pu € A'=1(X) is real, then by Stokes’ formula we
have

ortiow) = [ o) = [ o (iduviow = [ o op).
Ay Ay Ay A
Hence fAz ¢*(i0u) € R and we get a canonical differential character [idp : ¢ —
Ja, ¢ (i0R).

Theorem 3.31. Let X is a compact Kdhler manifold. Let Eiﬁf_l(X)p’p be a subgroup
which consist of characters whose associated form w of type (p,p). Then

HEPOG20) = K300 = 28 o { o e a0

Proof. Omitted, see Theorem 12.29 in [§]. O

Finally we give an analogue of cycle map correspond to Deligne cohomology using
differential characters.

Theorem 3.32. Let X be a smooth projective variety, then there exists the Deligne cycle
class map
clp : CHL(X) — HE (X, Z(n — k))

such that coclp = cl and clp e, (x)0n = @’}(_k where ¢ : H%"_%(X,Z(n —-k) —

Hdg?" (X, Z) in Corollary [3.24.

Proof. Here we give a very concise sketch of the construction when Z € Zi(X) is
smooth. First we need the following result:

e (Soulé, 1992) For Z € ZP(X) is smooth, there exists a real form 1 of type (p —
1,p — 1) on X\Z such that it is integrable and with the equality of currents
i00 = Z — w such that the following construction well-defined (see Theorem
12.31 in [6]):
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For a closed differentiable chain v of dimension 2p — 1, there exists a closed differ-
entiable chain 7/ of dimension 2p — 1 which does not meet Z, and a differentiable
chain T" of dimension 2p, such that v = 7/ 4+ dI'. We define a differential character

XZ’¢:’yb—>/i(‘)¢+/w mod Z.
v r

Moreover, descend in Kgﬁf_ 1(X ), this is independent to the choice of .
Then we use this to define [Z]p = xzy € Kjb (X) = H2(X, Z(p)). O
We can also define the product in the Deligne cohomology
—p — HE (X, Z(p)) @ HY (X, Z(q)) — HE (X, Z(p + 0))

induced by

defined as follows:

e Pick Z € Z{(X) and consdier the diagonal 6 : X — X x X. Let Z; € Z,iiff(X)
and Z| € Zgiff(X) with k; +I; = 2p + 2¢ — 1 such that by Kiinneth formula we
have a differentiable chain I' of dimension 2p + 2¢ on X x X such that

8(Z) = Z;ix Z+oT.

We define

b 2) = S oz /Z e +i7ki2:kw<zz> /Z @t /F Pl A P

iki=k—1
In this case ¢ - 1 associated to the form pjwy A piwy.
By these construction we have:
Theorem 3.33. For Z € CHy(X), Z' € CH;(X) we have
cp(Z - 7' =clp(Z) -p clp(Z).

Note that in this case Proposition @(1) and Proposition are the special cases
of this result.

16



4 Mumford’s Theorem and its Generalizations

4.1 Representability and Roitman’s Theorem

Fix a complex connected projective variety X.

Definition 4.1. We say CHy(X) is representable if the map
oq: XD x X — CHy(X)pom, (21, %2) = Z1 — Zo
is surjective for d > 0 where X4 = X6,

Lemma 4.2. The fibers of o4 are countable unions of closed algebraic subsets of X (@ x
X,

Proof. Pick Z = Z* — Z~ of degree 0 in CHy(X )pom and we need to learn the fiber
agl(Z). It consist of the pairs (Z1, Z3) such that Z; — Zy ~ya¢ Z, which means that
there exist curves C; C X with normalizations v; : C; — X and rational functions ¢;
over C; such that

Z Vl7*d1V(¢l) = Zl — Z2 — Z.
i
That is, there exist effective 0-cycles A, B such that
Zv+Z7+A=) vi.g; ' (0)+ B, (1)
i

Zy+ 2V + A= vi.g; () + B. (2)

Now C; parametrized by a countable union of Hilbert scheme [], Hilb% where P; are
degree 1 integral polynomials. Moreover, if we fix these Hilbert schemes and the degrees
d; of the divisors ¢, 1(O), each function ¢; can be viewed as a pencil of degree d; on C;.
Finally, if we fix the degrees a and b of A and B, the 0-cycles A and B are parametrised
by the symmetric products X(® and X ®)!

Thus, on the condition of fixing certain discrete data, the objects (C;, ¢;, v, A, B)
are parametrised by a projective algebraic variety K. Moreover, the equations (1) (2)
define a closed algebraic subset X (4 x X4 x K. Then the result is trivial now. O

Remark 4.3. By the proof, we know that there exists a countable union B of proper
algebraic subsets of XD x XD sych that for any z € X@ x X(d)\B, the dimension of
the fibre o~ (o(x)) is constant and equal to r.

Definition 4.4. (i) The dimension of Imoy is defined to be equal to 2nd — r which is
with d, where r is defined as above and n = dim X (so 2nd = dim(X(® x X)),
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(ii) We say CHo(X) is infinite-dimensional if

lim dimImoy = oo.
d—o0

Proposition 4.5. Group CHy(X) is representable if and only if it is finite-dimensional.

Proof. 1f CHy(X) is representable, then there is some D > 0 such that op is surjective.
For any d we consider

R={(Z,25, 2, 25) € XD 5 X x X(P) 5« XDV 5.(Z,, Zo) = op(Z}, Z)}.

Then p : B — X@ x X(@ g surjective. By the proof of previous Lemma, we know
that R is a countable union of closed algebraic subsets. By Baire’s Theorem we have
a irreducible component Ry maps along p has a non-empty interior. Hence pg : Ry —
X@ x X is surjective. If (Z1, Zo, Z!, Z4) € Ry, we have

dimz, z,) Ro N (XD x X9 x (21, 2})) > 2nd — 2nD.

As it is contained in o O’D(Zl, Z4) and py is surjective, we know that any fibers of o4
are of dimension> 2nd — 2nD. Hence dim Imo,; < 2nD.
Conversely, if CHy(X) is finite-dimensional, then we have dim Imop = dimImopy; =
- for some D > 0. For any point x € X we define

D X (D+1) « X(D+1)

op
OD+1

CHO )hom
where i, : (Z1,722) — (Z1 + x,Zo + x). Let F = U(DZ“ZQ) for some general point
(Z1,Z3) and F’ be a general fiber of opy;. Hence dim F' = dim F' + 2n. Let F” =

051 (Z1 + x, Z3 + ). By semicontinuity of the dimensions of the fibres, we have dim F" >
dim F’. Define

R={(Z1,22,2},75) € XPFD 5 XD+ 5 XDV 5 X D) 5y (71, Zo) = op(Z), Z4)}.

It is now clear that R has an algebraic component Ry passing through (Z; + z, Zs +
x,Z1,Z2), which dominates X)) % X(P) and is such that the fibre of the second
projection ¢ : Ry — XP) x X () ig of dimension equal to dim F”, and so of dimension
greater than or equal to dim F'+2nD, whereas the fibres of the first projection p : Ry —
X (D+1) 5 x (D+D) are of generic dimension at most equal to dim F'. As a conclusion, we
have

dim p(Rg) > dim F’ — dim F + 2nD = 2n(D + 1) = dim X(P+V x x P+,

Therefore p is surjective and Imop = Imopy1. Hence op is surjective. ]
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There is another equivalent statement of representability:

Proposition 4.6. Group CHy(X) is representable if and only if for every smooth curve
C=Y1N---NY,_1 which is a complete intersection of ample hypersurfaces Y; C X,
letting 7 : C'— X be the inclusion, the map

j* : CHO(C)hom - J(O) — CHO(X)hom

18 surjective.

Proof. If we have such C, then by Remark B.1§(b) we have surjection
cl) CHo(C)pom = J(C), z+—2z—g- 2.
By the surjectivity of j, we know that
X — CHo(X)hom, 2> 2—g-20

is surjective.
Conversely, we will only give a sketch. Fix 0 € C, let n > 2 and consider

0% : X = CHo(X)pom, Z — om(Z, m0).

m

Now let dimImo?, = K for any m > 0, the fibers of o0, has dimension mn — K.
We claim that an irreducible component of maximal dimension Z of a general fibre of
00 cannot be contained in a set of the form Xm=) L Wi > 1, with W c X® and

dim W < i. We omitted the proof of the claim and we refer to Page 285 in [[].

e Let Y be an ample hypersurface of X and let Z be an irreducible subset of X (™)
not contained in any subset of the form Xm=0) 4 W, i > 1, with W c X® and
dim W < 4. Then if dim Z > m, we have Z N Yl(m) # (). (Lemma 10.13 in [7])

Hence by the claim and this result, we know that a general fibre of 00, intersects Yl(m)

for m > 0. Hence 0¥, and 021|Y(’") have the same image for m > 0. As the images
1

of the maps 09n|y(m) are also of bounded dimension, so we can iterate the reasoning to
1

finally conclude that 09, and ¢9,|(m) have the same image for m > 0. Hence for any
0-cycle of form Z — m0, we have Z — m0 ~uyy Z' — m0 for Z' € C™) so

j* : CHO(C’)hom = J(C) — CHO(X)hom
is surjective. ]

Now we will use the following theorem:
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Theorem 4.7 (Roitman 1980, Bloch 1979). The Albanese map
ale : CHO(X)hom — Alb(X)
mnduces an isomorphism on torsion points for every smooth projective variety X.

Finally we can use these results to show that the representability can be justified by
the following theorem of Roitman:

Theorem 4.8 (Roitman, 1972). If CHy(X) is representable, then the Albanese map is
an isomorphism:
alb X : CHo(X )pom = Alb(X).

In particular, in this case CHo(X )nom s an algebraic group.

Proof. By Proposition .6, if CHg(X) is representable, then for every smooth curve
C =Y1N---NY,_1 which is a complete intersection of ample hypersurfaces Y; C X,
letting j : C — X be the inclusion, the map

Js + CHo(C)nom = J(C) — CHo(X )hom
is surjective. We claim that j, induced by a correspondence I' satisfies:
(i) T« takes values in CHy(C)pom and is a group homomorphism;
(ii) T, is surjective.

Indeed, consider ¢ : C19) — J(C) by 214 - -+2, = albe (3, zi—gco) where g = g(CO)
and ¢y € C fixed. We define

Iti={(a,¢) e J(O)x C:3ze€CY cez ¢(z) =a}

and I'%, := g(J(C) x ¢g). We define I'c = Tt — I'Z. Then easy to see that I'c satisfies
the condition (i). Define I' := (id, j).I'c € J(C) x X, then one can see that I' induce
J« and satisfies (i)(ii).

By the similar argument in the proof of Lemma [1.4, we know that ker I', is a count-
able union of algebraic subsets of A = J(C) which is also a subgroup (hence the count-
able union of translates of an abelian subvariety Agp). Then there exists an abelian
subvariety B C A, which is supplementary to Ay up to isogeny, i.e. such that the
morphism Ag x B — A, (a,b) — a + b is surjective with finite kernel. Hence replace A
by B we let assume ker I, is countable.

Define R := {(z,a) : T'x(a) = © — 29} € X x A. Then it is a countable union of
algebraic sets whose projection onto X is surjective, since I'y is surjective. Thus, R has
an algebraic component Ry which dominates X. Furthermore, as kerI', is countable,
the projection Ry — X is finite of degree r. Ry is thus a correspondence of dimension
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equal to dim X between X and A, and provides a morphism « : X — A, given by
x> alba(Ro«(x — zp)). By the definition of Ry and property (i), it is clear that

Iyoa(x) =r(z — x9).

Moreover, by the universal property of the Albanese map, there exists a morphism of
groups (8 such that we have the following comuutative diagram:

Alb(x) —2 5 4

CI—IO (X)hom T—1d> CHO (X)hom

Hence ker albx is torsion, so that
alb X : CH()(X)hom — Alb(X)

is an isomorphism up to torsion, since albx is always surjective by Remark (b)
Then by Theorem @, well done. O
4.2 The Bloch-Srinivas Construction and Mumford’s Theorem

4.2.1 Decomposition of the Diagonal

Here we introduce the heart result due to Bloch-Srinivas, in order to prove Mumford’s
Theorem . Here we give a more generalized result @ and we only use the special
case to prove the Mumford’s Theorem.

Let f: X — Y be a projective fibration with X,Y smooth and connected variety.
Let Z € CHF(X).

(*) There exists a subvariety X’ C X such that for every y € Y, the cycle Z, =
Z|x, € CH*(X,) vanishes in CH*(X, — X}).

Theorem 4.9 (Bloch-Srinivas, 1980-1983). If Z satisfies the property (*), then there
exist an integer m > 0, and a cycle Z' supported in X', such that we have the equality

mZ = 7'+ 7" € CHF(X),
where Z" is a cycle supported in f~1(Y"), for a proper closed algebraic subset Y CY.

Proof. One omitted, we refer [7] Theorem 10.19. O
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Corollary 4.10. Let I' € CHk(Xl xY) for some connected smooth variety X1, and
assume that for everyy € Y, the cycle T*(y) € CH*(X)) restricts to zero in CHF (X 1\ X})
for a subvariety X{ C X1. Then we have adecomposition

ml' = 7' + 7" € CH*(X; x Y),

where Z' is supported in X{ XY and Z" is supported in X1 x Y', for a proper closed
algebraic subset Y C Y.

Proof. Take X = X; x Y in Theorem [1.9. O

Corollary 4.11 (Decomposition of the Diagonal). Consider Ax C X x X be the
diagonal scheme. Assume there is a closed subvariety j : X' C X such that

j* : CH()(X/) — CHO(X)
1s surjective. Then there exists a proper closed algebraic subset T' C X, and a decompo-
sition

mAx =2+ 27",

where Z' is supported in T x X and Z" is supported in X x X'.
Proof. Take X; = Y = X in Corollary and since j, is surjective, we know that
CHp(X\X’) = 0. Well done. O
4.2.2 Mumford’s Theorem

We will use these results to prove the following kind of generalizations of Mumford’s
Theorem and Roitman’s Theorem . Note that when k = n = 2 this is weaker
than Theorem .

Theorem 4.12. Let X be a smooth complex projective variety. If there exists a subva-
riety j : X' < X such that dim X' < k and the map

Jx - CHo(X/) — CHO(X)
is surjective, then HO(X, Q%) = 0.

Proof. By Corollary , there exists a proper closed algebraic subset T C X, and a

decomposition
mAx =27'+ 7",

where Z’ is supported in T'x X and Z” is supported in X x X’. Hence mcl(Ax) =
cl(Z") + cl(Z"). By Lemma B.11], their Kiinneth components induce

m[Ax]*, [Z),[2")" - H'(X,Z) — H"(X,Z)
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for each r. As [Ax]* = id, we have
m-id = [Z']* + [Z"]" € End(H" (X, Z)).

Pick [ : T — X, a resolution of singularity of T. As the cycle Z” is supported in
T x X, it comes from a cycle Z” of T' x X, so we have

l(Z2") = (1,id). (cl(Z")).

By the definition we have [Z2”]* = I, o [Z"]*. Similarly, let j : X’ — X be a resolution
of singularity of X', and let Z’ be a cycle of X x X’ such that (id,}).(Z') = Z’. Hence
2] =2 o 5.

Combining these we have

mi = ([2'7 o j)n+ (Lo [2"])n
for any n € HY(X,Q%). As dim X’ < k, then 7n=0forallr >k Asdim7T < dim X,
then [, is of bidegree (s, s) for s > 0. Combining these, we have n =0 for all > k. [
Corollary 4.13. In this case, if CHo(X )pom = 0, then H(X, Q’%) =0 for all k > 0.
Proof. In the Theorem we pick X’ be a single point and well done. O

Theorem 4.14 (Roitman 1972). Let X be a smooth complex projective variety of
dimension n. Let d,, be the dimension of the general fiber of o,,. If HO(X, Q])“() # 0,
then for m > 0 we have

dm <2(n—k+1)m.

Proof. We give the main idea of the proof. Let d,, > 2(n — k + 1)m and let X’ be
the complete intersection of n — k£ 4+ 1 ample hypersurfaces, and use the same proof of
Proposition [t.6 show that X’(™) x X’(™) must intersect the fibres of o, for m > 0, on
the condition that we have d,,, > 2(n — k+ 1)m. Then we can get j. is surjective! Then

by Theorem and well done. O

The Roitman’s Theorem is also some kind of generalizations of Mumford’s
Theorem and note that when k = n = 2 this is weaker than Theorem [£.16.

Lemma 4.15. Let S be a smooth complex projective surface such that H°(S, Kg) # 0.
Define an algebraic component

R = (:L‘l, ...,l'2n) S SQn : Z nix; =0 € CH()(S)
1<i<2n
Assume that R dominates S™ via the first projection. Then the first projection p1 : R —

R™ is generically finite.
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Proof. By the proof of Theorem and Corollary , we have:

e Let W be a smooth projective variety, and let Z C W x X be a cycle of codimension
n = dim X. Assume that there exists a kg-dimensional subvariety X’ C X such
that for every w € W, the 0-cycle Z,, is rationally equivalent in X to a cycle
supported on X’. Then for every k > kg and every n € H°(X, Q’)“(), we have
[Z*n =0 in HO(W,QF,).

Then we can use this to prove the Lemma. The detail we refer [[]] Lemma 10.25. O

Theorem 4.16 (Mumford 1968). Let S be a smooth complex projective surface such
that H°(S,Ks) # 0. Then for any integer m, the map o,, has countable general fiber.
In particular, CHo(S) is not representable.

Proof. If the general fiber of g, are not countable, then there would exist an algebraic
subvariety R € S x §() x §() % §(n) guch that the first projection R — S x §()
is dominant with positive- dimensional fibres, and such that

(ZhZQa Z3a Z4) € R= Un(Zla Z2) = Un(Z37 Z4)

But then, taking the inverse image of R, we find that there exists R’ C S™ x 8™ x S™ x S™
such that the first projection R' — S™ x S™ is dominant with positive-dimensional fibres,
and such that the similar relation holds as R. But this would contradict Lemma .
Well done. O

4.2.3 Some Other Applications

Theorem 4.17 (Bloch-Srinivas 1983). Let X be a smooth complex projective variety
such that there exists a subvariety j : X' C X, of dimension < 3, such that the map

j* : CHo(X/) — CH[)(X)
1s surjective. Then the Hodge conjecture holds for classes of degree 4 on X.

Proof. By Corollary , there exists a proper closed algebraic subset 7" C X, which
we may assume to be of codimension 1, and a decomposition

mAx = 7'+ 7",

where Z' is supported in 7' x X and Z” is supported in X x X'.
Take k : T'— X,j : X’ — X be the resolution of singularities of T', X’. Note that
we have mcl(Ax) = cl(Z") + cl(Z”) which induce the morphism of Hodge structures

m[Ax]* = [Z']* + [2"]* € End(H*(X,Z))
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via the Kiinneth components of type (2n — 4,4).

Now pick 7' cTxX bea cycle of codimension n such that (k,id)*Z’ = 7', and
pick 2" ¢ X x X' be a cycle of codimension n such that (id,;)*ZA” = 7". We have
2] = k(2] and 2] = (2]}

Now as dim X’ < 3, the rational Hodge conjecture holds for X/ by Theorem
and Hard Lefschetz Theorem. If o € Hdg?(X)g, then the classes j*a and [Z']*a are
classes of algebraic cycles. The relation

m[Ax]*a = ma = k[Z2 o + [2"]*]*

and the compatibility of the cycle class map with correspondences then show that « is
also the class of an algebraic cycle with rational coefficients. Well done. 0

Theorem 4.18 (Bloch-Srinivas 1983). Let X be a smooth complex projective variety
such that there exists a subvariety j: S C X, of dimension < 2, such that

1s surjective. Then the group Grifo(X ) is a torsion group.

Proof. By Corollary , there exists a proper closed algebraic subset T' C X, which
we may assume to be of codimension 1, and a decomposition

mAx = 7' + 7",

where Z' is supported in T' x X and Z” is supported in X x S.

Take k : T — X,j : S — X be the resolution of singularities of T, S. Now pick
Z2'cTxXbea cycle of codimension n such that (k, id)*Z’ = 7', and pick 72"c X xS
be a cycle of codimension n such that (id,j).Z"” = Z”. We have [Z']* = k,[Z']* and
[Z//]* _ [Z//]*j*

Now pick z € CH?(X)pom, then

mz = k|2 2 + [Z2"]) )" 2.

As S is a surface, then j*z € CHO(S')hom. Hence j*z ~alg 0. Similarly [2’]*2 €
CHl(T)hom hence [Z’]*z ~alg 0 by Remark . As the algebraic cycles which equiva-
lent to 0 are stable under the action of correspondences, we have mz ~,, 0 and hence
Griff?(X) is a torsion group. O
4.3 Generalizations

Theorem 4.19 (Paranjape 1994, Laterveer 1996). Assume that for k < ko, the maps

cl: CHy(X) ® Q — H? (X, Q)
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are injective. Then there exists a decomposition
mAx = Zo+ -+ Zy, + Z' € CH"(X x X),

wherem # 0 is an integer, Z; is supported in W/ x W; with diim W; = ¢ and dim W/ = n—i
and Z' is supported in T x X, where T C X is a closed algebraic subset of codimension
> ko + 1.

Proof. See [7] Theorem 10.29. Note that this is a generalization of Corollary when
ko = 0. O

Theorem 4.20 (Schoen 1993, Lewis 1995). Let a smooth projective complex variety X
satisfies the condition that for every k < ko, the map

cl: CHi(X) ® Q — H* (X, Q)
1s injective, then
HPY(X) =0, Vp#qq<hko.
Proof. By Theorem , we have
mAx = Zo+ -+ Z, + Z' € CH'(X x X),

where m # 0 is an integer, Z; is supported in W/ x W; with dim W; =i and dim W =
n — 4 and Z' is supported in T' x X, where T' C X is a closed algebraic subset of
codimension > kg + 1.

Let W;;, Wl’j are the irreducible components of W;, W/, then we have

Zi = ZTL”VVZ/J X sz
J

Let 7: 1:’ — X be the resolution of singularity of T and let 2’ € CH,(T" x X) such that
(1,1d) 2" = 7.
For any [ we induce the morphisms of Hodge structures as before:

m[Ax]* =m-id = [Zo]* + - + [Zy,]* + [2']" € End(H'(X, Z)).

Hence
(ZiT o= miglos, W) W],
J
Hence if o« € HP9(X) for p # ¢, then ma = 7,,([2']*@). Hence if a € HP4(X) for p # q,
then
ma € Im7, N HP4(X).

Now we let codimension of T is kg + 1, then 7, : HPT4=2k0=2(T 7)) — HPT4(X,7) is a
morphism of Hodge structures of bidegree (ko + 1,ko + 1), so that Im7, N HP4(X) =
0,q < ky. Hence well done. ]
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5 The Bloch Conjecture and its Generalizations

5.1 Some Classifications of Surfaces

The fundamental theory of classifications of surfaces we refer [L1].

Definition 5.1. Let X be a projective smooth surface. We define the irregularity of X
as q(X) := hO(X). If ¢(X) = 0 we say X is regular.

Theorem 5.2. If K(X) = —oo, then it is a birationally ruled surface.

Theorem 5.3 (Castelnuovo). A projective smooth surface X is rational if and only if
q=pg=0.

Theorem 5.4. Let X be a minimal surface with k(X) = 0. Then we have ¢(X) < 2,
and also the following results:

(i) If ¢(X) = 2, then X is an abelian surface. In particular, H°(X, Kx) # 0.

(ii) If (X) =1, then X is a quotient of the product of two elliptic curves E and F by
a finite group G acting with no fized points, via an action which is compatible with
the product structure (i.e. G C AutF x AutE). If ps(X) =0, then G acts on E
via translations, and the action on F is such that the quotient F'/G is a rational
curve.

(iii) If ¢(X) = 0, then X is a K3 surface, or an Enriques surface, i.e. the quotient of
a K3 surface Y by an involution without fived point acting by —1 on H°(Y, Ky).
In the second case only, we have py(X) = 0.

Proof. See [l]. Note that q(X) < 2 is easy to prove from a fact that K% = 0 for a
minimal surface X of Kodaira dimension 0. By Riemann-Roch we have

. Cl(Kx)Q -+ CQ(K_)()

As K% = c1(Kx)? = 0and c2(X) = Xiop(X) = >_;(—1)%b;(X) we can get the result. [

Theorem 5.5. If K(X) =1 and q > 0, then X admits a morphism ¢ : X — C whose
fibre is an elliptic curve. If K(X) =1 and q(X) =0, then X admits a pencil of elliptic
curves (Et)cp .

Remark 5.6. Conversely, a surface which is fibred in elliptic curves always satisfies the
condition that k(X) < 1. Indeed, if E is the generic fibre of the fibration ¢ : X — C,
then the normal bundle of E in X is trivial and the adjunction formula then shows that
Kx|p = Kg, where Kg is the trivial bundle if E is an elliptic curve. But then it is
clear that the pluricanonical maps ®yx, factor through ¢.
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Theorem 5.7. If X is a surface satisfying x(X) =1 and py(X) =0, then ¢(X) < 1.
If ¢(X) =1, then the Albanese map

alby : X - AlbX =F

1s an tsotrivial fibration if the fibres are of genus > 1, or an elliptic fibration with smooth
isomorphic fibres if the fibres are of genus 1. In the latter case, replacing X — E by the
associated Jacobian fibration J — E (a variation version of the intermediate Jacobians,
see section 7.1.1 in [7]), one can show that k(J) = 0,q(J) = 1, so that J is of the type
described in theorem [5.4(ii).

Proof. The inequality ¢(X) < 1 again follows from Riemann-Roch and fact that K3 =
0. The isotriviality of the fibration can be deduced from the positivity of the bundles
RO ale,* KX/E O
5.2 Bloch’s Conjecture

5.3 Filtrations on Chow groups

5.4 The case of Abelian varieties
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