
Algebraic Cycles and Hodge Theory
Xiaolong Liu

August 18, 2023

Contents
1 Introduction 2

2 Some Background of Mixed Hodge Theory 2
2.1 Basic Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 A Classical Example of Mixed Hodge Structure . . . . . . . . . . . . . . 3

3 Cycle Classes and Abel–Jacobi Map 5
3.1 Cycle Classes and Cycle Map . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Hodge Classes and Hodge Conjecture . . . . . . . . . . . . . . . . . . . . 8
3.3 The Abel–Jacobi Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Deligne Cohomology and Deligne Classes . . . . . . . . . . . . . . . . . 14

4 Mumford’s Theorem and its Generalizations 17
4.1 Representability and Roitman’s Theorem . . . . . . . . . . . . . . . . . 17
4.2 The Bloch-Srinivas Construction and Mumford’s Theorem . . . . . . . . 21

4.2.1 Decomposition of the Diagonal . . . . . . . . . . . . . . . . . . . 21
4.2.2 Mumford’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Some Other Applications . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 The Bloch Conjecture and its Generalizations 27
5.1 Some Classifications of Surfaces . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Bloch’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Filtrations on Chow groups . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 The case of Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . 28

Index 29

References 30

1



1 Introduction
The reader of course need to be familiar with the book [4] including the basic theory
and schemes, cohomology, curves and surfaces. We will also use the intersection theory
frequently such as the main contents of [3] or [2] and the reader should familiar with
these. Finally we will omit the most basic theory of complex Hodge theory, such as the
first seven chapters in [6].

We will focus on the final part of the book [7]. There are three topics of Hodge
theory in this book but we just discuss the final part of them. We will also use the
Serre’s GAGA-principle without explanation.

2 Some Background of Mixed Hodge Theory
2.1 Basic Definition and Properties
Definition 2.1. A rational (real) mixed Hodge structure of weight n is given by a Q-
vector space (R-vector space) H equipped with an increasing filtration WiH called the
weight filtration , and a decreasing filtration on HC := H ⊗C, called the Hodge filtration
F kHC. Such that the induced Hodge filtration on each GrWi H make GrWi H to be a
Hodge structure of weight n+ i.

These filtrations are required to be bounded. Recall that a morphism α : (U,F ) →
(V,G) is said to be strict if Imα∩GpV = α(F pU). It’s easy to show that the morphism
of rational pure Hodge structures are strict for Hodge filtration (even in type (r, r), see
[6] Lemma 7.23).

This is an analogue theory of Hodge decomposition of pure Hodge structures:

Lemma 2.2. Let (H,W,F ) be a mixed Hodge structure. Then there exists a decompo-
sition

HC =
⊕
p,q

Hp,q

with Hp,q ⊂ F pHC∩Wp+q−nHC, such that via the projectionWp+q−nHC → GrWp+q−nHC,
the space Hp,q can be identified with

Hp,q(GrWp+q−nHC) := F pGrWp+q−nHC ∩ F qGrWp+q−nHC.

More generally, we have

WiHC =
⊕

p+q≤n+i
Hp,q, F iHC =

⊕
p≥i

Hp,q.

This decomposition is preserved by the morphisms of mixed Hodge structures.
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Proof. This is pure linear algebra, we omit it and refer [7] Lemma 4.21.

Remark 2.3. Unlike the pure case, the decomposition above may satisfies Hp,q 6= Hp,q,
although this does become true after projection to GrWp+qHC.

Theorem 2.4 (P. Deligne, 1971). The morphisms

α : (H,W,F )→(H ′,W ′, F ′)

of (rational or real) mixed Hodge structures are strict for the filtrations W and F .

Proof. We will only show the statement for W since the statement for H is similar.
Pick l′ ∈ α(HC)∩WiH

′ and we write l′ = α(l) with l =
∑

p,q l
p,q by Lemma 2.2. As

l′ ∈W ′
iH

′
C, then α(lp,q) = 0 for p+ q > n+ i by Lemma 2.2 again. Hence l′ ∈ α(WiHC)

and well done.

2.2 A Classical Example of Mixed Hodge Structure
We consider a smooth complex variety U with a compactificationX such thatX\U = D,
a effective normal crossing divisor.

Definition 2.5. Define a subsheaf ΩkX(logD) ⊂ ΩkX(∗D) such that α ∈ Γ(V,ΩkX(logD))
if α is a meromorphic differential form on V , holomorphic on V \D and admits a pole
of order at most 1 along (each component of) D, and the same holds for dα. Hence
d = ∂ in it and we call the complex (Ω∗

X(logD), ∂) the logarithmic de Rham complex .

Lemma 2.6. Let z1, ..., zn be local coordinates on an open set V ⊂ X, in which D∩V is
defined by the equation z1 · · · zr = 0. Then ΩkX(logD)|V is a sheaf of free O|U -modules
with basis

dzi1
zi1

∧ · · · ∧ dzil
zil

∧ dzj1 ∧ · · · ∧ dzjm

where is ≤ r, js > r and l +m = k. In particular, ΩkX(logD) is locally free.

Proof. Almost trivial, see [6] Lemma 8.16.

Proposition 2.7. Let inclusion j : U ↪→ X, then we have a canonical inclusion
ΩkX(logD) ⊂ j∗Ω

k
U ⊂ j∗A k

U which give us a morphism of complex

Ω∗
X(logD) → j∗A

∗
U .

Then this is a quasi-isomorphism. In particular we have

Hk(U,C) ∼= Hk(X,Ω∗
X(logD)).
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Proof. This is not hard to see and we refer [6] Proposition 8.18. From this we have
Hk(X,Ω∗

X(logD)) ∼= Hk(X, j∗A ∗
U ). As A ∗

U is a sheaf of C∞
U -modules which is a resolu-

tion of CU , then j∗A ∗
U is a sheaf of C∞

X -modules, so it is acyclic and

Hk(X, j∗A
∗
U )

∼= HkΓ(X, j∗A
∗
U ) = HkΓ(U,A ∗

U ) = Hk(U,C).

Hence we get the result.

For now we will give Hk(U,Q) (or Hk(U,R)) a mixed Hodge structure. First we
will give two filtrations over Ω∗

X(logD).
We define the Hodge filtration over Ω∗

X(logD) to be

F pΩ∗
X(logD) = Ω≥p

X (logD).

For weight filtration, we define WlΩ
∗
X(logD) to be

WlΩ
∗
X(logD) =

{ ∧l Ω1
X(logD) ∧ Ω∗−l

X , 0 ≤ l ≤ r,
0, l > r.

(We often let W k :=W−k)
Now for simplicity, we let the divisor D is simply normal crossing with D =

∪
iDi

where each Di ⊂ X is a smooth hypersurface, and the intersection of any l hypersurfaces
Di1 , ..., Dil is transverse. We equip I with a total order. We let

D(k) :=
⨿

K⊂I,|K|=k

DK =
⨿

K⊂I,|K|=k

∩
i∈K

Di

with inclusions jk : D(k) → X and jM : DM → X.
Proposition 2.8. There exists a natural isomorphism

WkΩ
∗
X(logD)/Wk−1Ω

∗
X(logD) ∼= jk,∗Ω

∗−k
D(k) .

Proof. This morphism defined by Poincaré residue map . Give a local coordinates in
V ⊂ X we define ResV : Γ(V,WkΩ

∗
X(logD)) → Γ(V, jk,∗Ω

∗−k
D(k)) as

α =
∑

K⊂{1,...,r}⊂I,|K|≤k

αK,LdzL ∧ dzK
zK

7→ (ResV α)M =

(
(2π

√
−1)k

∑
L

αM,LdzL|DM∩V

)
M

.

Note that this annihilates the sections of Wk−1Ω
∗
X(logD) and change coordinates only

change the elements in Wk−1Ω
∗
X(logD), Hence we get a well-defined residue map:

α :WkΩ
∗
X(logD)/Wk−1Ω

∗
X(logD) ∼= jk,∗Ω

∗−k
D(k) .

This is an isomorphism is easy to see. We refer [6] Proposition 8.32.
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Now these two filtrations induce two filtrations over RΓ(X,Ω∗
X(logD)), and hence

over Hk(U,C) by Proposition 2.7. So the arguments in [6] is far from complete and
we need some derived-version filtration of these, such as mixed Hodge complex. We
omitted this and we refer section 3.3 in [5].

Theorem 2.9 (P. Deligne, 1971). The discussion above equip Hk(U,C) a mixed Hodge
structure which is independent with X,D.

Proof. This follows from some analysis of the weight spectral sequence (induced by
W ∗ =W−∗), here we give a sketch.

By the general theory of spectral sequence, we have

WE
p,q
1 = Hp+q(X,GrpWΩ∗

X(logD)).

By Proposition 2.8 we have GrpWΩ∗
X(logD) ∼= j−p,∗Ω

∗+p
D(−p) , hence

Hp+q(X,GrpWΩ∗
X(logD)) = H2p+q(X, j−p,∗Ω

∗
D(−p))

= H2p+q(D(−p),Ω∗
D(−p)) = H2p+q(D(−p),C).

We can also get that the differential

d1 : H2p+q(D(−p),C) H2p+q+2(D(−p−1),C)

⊕
|K|=−pH

2p+q(DK ,C)
⊕

|L|=−p−1H
2p+q+2(DL,C)

∼= ∼=

has component dL1,K equal to zero for L ⊈ K, and equal to (−1)q+sjLK,∗ when K = {i1 <
· · · < ip} and L = K\{is} where jLK : DK → DL (see Proposition 8.34 in [6]). Hence
we can deduce any pages of weight spectral sequence! By some analysis we can get the
result which omitted, we refer Theorem 3.4.7 and section 3.4.1.5 in [5].

3 Cycle Classes and Abel–Jacobi Map
3.1 Cycle Classes and Cycle Map
The case of general complex manifolds with closed analytic subsets
Let X be a n + r-dimensional complex manifold with a codimension r closed analytic
subset Z, we will associated Z to be a cohomology class [Z] ∈ H2r(X,Z).

Lemma 3.1. If Y ⊂ X be a closed complex submanifold of codimension k, then the
natural map H l(X,Z) → H l(X\Y,Z) is an isomorphism for l ≤ 2k − 2.
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Proof. Trivial, just need to look at the long exact sequence induced by the good pair
(X,X\Y ) and using Thom’s isomorphism and the excision theorem.

Come back to our case, as in algebraic geometry, we can have a filtration

∅ = Zn+1 ⊂ · · · ⊂ Z0 = Z

where dimZi = n− i and Zk\Zk−1 is a closed complex submanifold of dimension n− k
in X\Zk−1 (see [6] Theorem 11.11 for the proof).

We apply this Lemma to each X\Zk ⊂ X\Zk+1, we have

H2r(X,Z) ∼= H2r(X\Z1,Z).

Here Z\Z1 is smooth. So we just need to consider the case when Z is a smooth complex
submanifold in X!

If Z is a smooth complex submanifold of codimension r in X, then by Thom’s
isomorphism and the excision theorem, we have the following diagram

H2r(X,X\Z;Z) H2r(X,Z)

H2r(X,X\Z;Z) H0(Z,Z)
∼=,T

=

jZ

Then we define [Z] = jZ(T
−1(1)) ∈ H2r(X,Z).

Remark 3.2. We an also using the most natural way: if Z =
∑

i niZi, we can define
[Z] =

∑
i ni[Zi] where [Zi] = PD(ji,∗([Z ′

i]fund)) and ji : Z ′
i → X is a resolution of

singularity of Zi, [Z ′
i]fund is the fundamental homology class and PD denotes Poincaré

duality!

Here we give some discription using the de Rham cohomology without proof:

Proposition 3.3. Let U ⊂ X be a neighbourhood of Z isomorphic to a neighbourhood
V of the section in the normal bundle NZ/X . Let ω be a closed form of degree k with
support in V , satisfying ∫

π−1(z)
ω = 1

where π : V → Z is the projection. Then the form ω is a representative in de Rham
cohomology of the class [Z].

Proof. See Lemma 11.14 in [6].
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The case of compact Kähler manifolds
Let X be a n+r-dimensional compact Kähler manifold with a codimension r closed an-
alytic subset Z. We have associated Z to be a cohomology class [Z] ∈ H2r(X,Z).
Now using Hodge decomposition, we will discuss the type of [Z] in H2r(X,C) =⊕

p+q=2rH
p,q(X).

Theorem 3.4. The image of [Z] in H2r(X,C) lies in Hr,r(X).
Proof. Here we need to use the following two results (for the proof, see [6] Lemma 7.30
and Theorem 11.21, using the de Rham discription we discussed above this is easy to
prove):
(i) If Y be a compact Kähler manifold of dimension m, then

Hp,q(Y ) =

 ⊕
k+l=2m−p−q,(k,l) ̸=(m−p,m−q)

Hk,l(Y )

⊥

where the orthogonality is relative to the Poincaré duality on Y .

(ii) (Lelong, 1957) The current ω 7→
∫
Zsmooth

ω maps to zero on the exact forms. Hence
it is an element inH2n(X,C)∗. Then this element is equal to the image of [Z]under
the morphism

H2r(X,Z) → H2r(X,C) → H2n(X,C)∗.

By (i), we just need to show that
∫
X [Z] ∧ α = 0 for any α of type (p, q), p + q = 2n,

(p, q) 6= (n, n). Then this is trivial by (ii).

The case of complex smooth (quasi-)projective varieties
Let X be a complex smooth quasi-projective variety of dimension n and Z ∈ Zk(X),
then we give [Z] ∈ H2n−2k(X,Z) as above.
Proposition 3.5. If Z ∼rat 0, then [Z] = 0 ∈ H2n−2k(X,Z), hence we give the class
map

cl : CHl(X) → H2n−2l(X,Z), Z 7→ [Z].

We denote its kernal CHl(X)hom.
Proof. WLOG we can assume X is projective. Let W ⊂ X is of dimension k + 1 and
φ ∈ K(W )∗, we just need to show [τ∗div(φ)] = 0 where τ : W ′ → W → X be a
resolution of singularity of W .

We can easy to see [τ∗div(φ)] = τ∗[div(φ)] where τ∗ : H2(W ′,Z) → H2n−2k(X,Z)
defined by Poincaré duality by Remark 3.2. Hence we just need to show [div(φ)] = 0 ∈
H2(W ′,Z). This follows from Lelong’s fundamental theorem that [D] = c1(O(D)) ∈
H2(W ′,Z).
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Proposition 3.6. Let f : X → Y be morphism of smooth quasi-projective varieties.

(i) If Z ∈ CHl(X), Z ′ ∈ CHk(X), then

cl(Z · Z ′) = cl(Z) ∪ cl(Z ′) ∈ H2k+2l(X,Z);

(ii) if Z ∈ CHk(Y ), then f∗ cl(Z) = cl(f∗Z) ∈ H2k(X,Z);

(iii) if f proper and Z ∈ CHk(X), then f∗ cl(Z) = cl(f∗Z) ∈ H2k−2 dimX+2 dimY (Y,Z).

Proof. We have showed (iii) in the proof of Proposition 3.5. We first show the case of
closed immersion of (ii). Indeed, by moving lemma we may assume Z and X intersect
generically transverse. We may assume Z is irreducible. By Lemma 3.1 we may assume
Z and X intersect transversely. Then compare the normal bundle and well done.

Then we prove (i). We know by definition that

[Z × Z ′] = p∗1[Z] ∪ p∗2[Z ′].

Let diagonal δ : ∆X = X ⊂ X×X, then by the case of closed immersion of (ii) we have

cl(Z · Z ′) = cl(δ∗(Z × Z ′)) = δ∗ cl(Z × Z ′) = δ∗(p∗1[Z] ∪ p∗2[Z ′]) = cl(Z) ∪ cl(Z ′),

well done.
For the general case of (ii), this follows from (i) and decomposition

f : X
graph−→ X × Y → Y,

well done.

3.2 Hodge Classes and Hodge Conjecture
Definition 3.7. If (VZ, F ∗VC) is a pure Hodge structure of weight 2p, then we denote
the set of Hodge classes

Hdg(V ) := VZ ∩ V p,p.

Now consider a compact Kähler manifold X with its standard Hodge structure, then
we have:

Theorem 3.8. The cohomology class of analytic subsets of X and the Chern classes of
the holomorphic vector bundles over X are all Hodge classes.

Proof. The first way is Theorem 3.4. For the second one, we know that if X is algebraic,
this is trivial since the Chern classes in the cohomology group can come from the Chern
classes in the Chow group! Indeed, we can tensoring some higher times ample bundle
and get a map from X to a Grassmannian such that the Chern class of this bundle
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comes from the Schubert classes in the Grassmannian (see [2] Proposition 10.2). In
general, we have a classical result that

H∗(P (E )) ∼=
H∗(X)[ζ]

ζr + c1(E )ζr−1 + · · ·+ cr(E )

and ζ = c1(OPE (1)) is of type (1, 1). Hence well done.

Corollary 3.9. If X is algebraic, these two subgroups of Hdg(X) coincide.

Proof. Omitted.

Converse is true in codimension 1 which is classical Lefschetz (1, 1)-Theorem:

Theorem 3.10. In this case, the group Hdg2(X,Z) is equal to the image of c1 : PicX →
H2(X,Z).

But this is false in general. Actually, J. Kollár in 1992 gave a counterexample. His
counterexample is given by hypersurfaces X of degree d in the projective space P4. Such
a hypersurface satisfies H2(X,Z) = Z, and the class of a plane curve P2 ∩ X is equal
to d times the generator of H2(X,Z). He shows that this generator is not, however, in
general, the class of an algebraic cycle.

In Q-coefficient, we have the following famous conjectures:

Conjecture 1 (Hodge Conjecture). Let X be a projective manifold, and α ∈ Hdg2k(X).
Then a multiple Nα with N 6= 0 is the class of an algebraic cycle.

Conjecture 2 (Generalized Hodge Conjecture, Grothendieck). Let X be a smooth
algebraic variety, and L ⊂ H2k+l(X,Q) a rational sub-Hodge structure contained in
F kH2k+l(X). Then there exist (not necessarily smooth) algebraic subvarieties ji : Yi →
X of codimension k such that L is contained in

∑
i ji,∗H2n−l(Yi,Q) where dimX = n+k.

Finally, we have an easy relation between Hodge class in product space and mor-
phism of Hodge structures which is useful:

Lemma 3.11. Let k + l is even, then the class

α ∈ Hk(X,Z)⊗H l(Y,Z) ⊂ Hk+l(X × Y,Z)

is a Hodge class if and only if the corresponding map

α′ ∈ HomZ(H
2n−k(X,Z),H l(Y,Z))

via Poincaré duality is a morphism of Hodge structures (of degree (k+ l−n, k+ l−n)).

Proof. This is not hard, we refer [6] Lemma 11.41.
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3.3 The Abel–Jacobi Map
Let X be a compact Kähler manifold.

Definition 3.12. We know H2k−1(X,R) ∼= H2k−1(X,C)/F kH2k−1(X) and consider
the lattice H2k−1(X,Z) ⊂ H2k−1(X,R), we get the k-th intermediate Jacobian J2k−1(X)
as a complex torus

J2k−1(X) := H2k−1(X,C)/(F kH2k−1(X)⊕H2k−1(X,Z)).

Remark 3.13. Note that in general J2k−1(X) is not an abelian variety! But J1(X) =
Pic0(X) is.

Definition 3.14. Pick Z ∈ Zk(X)hom, then we can find a differentiable chain Γ ⊂ X
of real dimension 2n− 2k + 1 such that ∂Γ = Z. Consider

∫
Γ ∈ A2n−2k+1(X)∗, When

we restrict it into Fn−k−1H2n−2k+1(X)∗, we find that by the reason of type and Stokes’s
formula,

∫
Γ ∈ Fn−k−1H2n−2k+1(X)∗ is independent of the choice of the representative

of cohomology class. One can also easy to see that if we descend
∫
Γ in

Fn−k−1H2n−2k+1(X)∗/H2n−2+1(X,Z) ∼= J2k−1(X),

it is independent of the choice of Γ such that ∂Γ = Z! Hence we give a morphism called
the Abel-Jacobi map

ΦkX : Z ∈ Zk(X)hom → J2k−1(X), Z 7→
∫
Γ
.

Theorem 3.15 (Griffiths, 1968). Let Y be a connected complex manifold, y0 ∈ Y
a reference point, and Z ⊂ Y × X a cycle of codimension k. We will assume that
Z =

∑
i niZi where each Zi is flat over Y , then the map

φ : Y → J2k−1(X), y 7→ ΦkX(Zy − Zy0)

is holomorphic.

Proof. See Theorem 12.4 in [6].

Now we consider two special cases when k = 1 and k = dimX.
When k = 1, by Proposition 12.7 in [6] we can show that c1(O(Z)) = Φ1

X(Z) ∈
J1(X) = Pic0(X). Then we get:

Corollary 3.16 (Abel’s Theorem). If D be a divisor homologous to 0 in X, then
Φ1
X(D) = 0 if and only if OX(D) is trivial.

When k = n = dimX, we find that if X is connected, such a cycle is homologous to
0 if and only if it is of degree 0.
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Definition 3.17. We define the Albanese variety Alb(X) := J2n−1(X) and the holo-
morphic map

albX : X → Alb(X), x 7→ Φ2n−1
X (x− x0)

is called the Albanese map .

Remark 3.18. (a) The Albanese map satisfies the following universal property: For
every holomorphic map f : X → T with values in a complex torus and satisfying
f(x0) = 0, there exists a unique morphism of complex tori such that:

X Alb(X)

T

alb

f
∃!g

Hence this give us a purely algebraic construction. For details see Theorem 12.15
in [6];

(b) actually for sufficiently large k, the morphism

albkX : Xk → Alb(X), (x1, ..., xk) 7→
∑
i

albX(xi)

is surjective. Hence we can use this to show that Alb(X) is an abelian variety.
For details see Lemma 12.11 and Corollary 12.12 in [6].

Theorem 3.19. Let X,Y are two compact Kähler manifolds with Y connected and
Z ⊂ Y × X be a cycle of codimension k which is flat over Y . Hence we have the
holomorphic map φ : Y → J2k−1(X) given by y 7→ ΦkX(Zy−Zy0). Hence by the universal
property, we get a morphsim of complex tori ψ : Alb(Y ) → J2k−1(X) factor through φ.
Then ψ induced by [Z]1,2k−1 : H2 dimY−1(Y,Z) → H2k−1(X,Z), the (1, 2k− 1)-Künneth
component. In particular, the image of ψ is a complex subtorus of J2k−1(X) having the
property that its tangent space at 0 is contained in Hk−1,k(X).

Proof. The main result is not hard to see (Theorem 12.17 in [6]). Let m = dimY , then
the morphism of Hodge structures [Z] is of bidegree (k −m, k −m), and as the Hodge
structure on H2m−1(Y ) is of type (m,m − 1) + (m − 1,m), the image of [Z] is thus
contained in Hk,k−1(X)⊕Hk−1,k(X). Well done.

When X be a smooth (quasi-)projective variety, we can descend this map into Chow-
group level:

Lemma 3.20. If Z ∈ Zk(X) with Z ∼rat 0, then Φn−kX (Z) = 0. Hence we get the map:

Φn−kX : CHk(X)hom → J2n−2k−1(X).
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Proof. Let Z be a subvariety. As Z ∼rat 0, we have a subvariety W ⊂ Z×P1 dominates
P1 such that W0 = Z and W∞ = 0. By Theorem 3.15 we have a holomorphic map from
P1 to a torus:

f : P1 → J2n−2k−1(X), t 7→ Φn−kX (Wt −W0).

Since P1 has no non-zero holomorphic forms of degree 1, so that the pullbacks by f of
the holomorphic 1-forms on the torus must vanish, which is equivalent to df = 0. Thus,
we have

Φn−kX (Z) = f(∞) = f(0) = Φn−kX (0) = 0,

well done.

Moreover, there is also a compactible relation with the intersection product.

Proposition 3.21. Now for any Z ∈ CHk(X), we have the map cl(Z)∪ : H2l−1(X,Z) →
H2l+2k−1(X,Z) which can descend to cl(Z)∪ : J2l−1(X) → J2l+2k−1(X). If let Z ′ ∈
CHl(X)hom, then by Proposition 3.6(i) we have Z · Z ′ ∈ CHk+l(X)hom. Then we have

Φk+lX (Z · Z ′) = cl(Z) ∪ ΦlX(Z
′).

Proof. This is not hard but we omit the proof and refer to [7] Proposition 9.23. Note
that this is the special case of Theorem 3.33.

Finally in this case with dimX = n, we introduce two more maps induced by the
Abel-Jacobi map.

We know that if Z ∼alg 0, then Z ∼hom 0 for any Weil cohomology theory (see [3]).
Then we define Griffk(X) := Zk(X)hom/Zk(X)alg.

Remark 3.22. When k = 1, n and X connected, we have Griffk(X) = 0. Here we need
a classical result:

• Let X by any variety and xi ∈ X. Then there is an irreducible curve C on X
containing xi. (Sketch of the proof, which is so classical: Given any two points
on a projective variety, blow them up and re embed the blownup variety in PN .
Then by Bertini, any general linear section of the right codimension will meet the
variety in an irreducible curve which also meets both exceptional divisors. Then
blowing back down gives an irreducible curve connecting the original points.)

For k = 1, we know that any two homologous trivial divisor lies in the connected variety
Pic0(X), then by this results with normalizing that curve gives a map from just one
smooth connected curve that connects your two points. Hence Griff1(X) = 0.

For k = n, as any 0-cycle lies over an irreducible curve in X by this result, normal-
izing that curve and we get Griffn(X) = 0.

But when 2 ≤ k < n in general Griffk(X) 6= 0. So we define Griffk(X) to find their
difference and to deduce some new Abel-Jacobi maps as follows.
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We define J2k−1(X)alg ⊂ J2k−1(X) be the largest subtorus with tangent space
contained in Hk−1,k(X). Hence by Theorem 3.19 we know that ΦkX(Zk(X)alg) ⊂
J2k−1(X)alg. We can also define J2k−1(X)trans := J2k−1(X)/J2k−1(X)alg as the tran-
scendental part of the intermediate Jacobian.

Remark 3.23. This is because in general J2k−1(X) is not algebraic but J2k−1(X)alg is
always algebraic, and hence J2k−1(X)alg is an abelian variety! Indeed, by the classical
Hodge–Riemann bilinear relation: (see [6] Theorem 6.32)

• Consider a Hermitian form Hk on Hk(X,C) defined by

Hk(α, β) = (
√
−1)k

∫
X
ωn−k ∧ α ∧ β̄,

then the form (−1)
k(k−1)

2 (
√
−1)p−q−kHk is positive definite on the complex subspace

Hp,q(X) ∩Hk(X,C)prim.

we can get the result directly.

Hence we can define the continuous (algebraic) part of the Abel-Jacobi map ΦkX,alg :

Zk(X)alg → J2k−1(X)alg and the transcendental part of the Abel-Jacobi map:

Zk(X)hom J2k−1(X)

Griffk(X) J2k−1(X)trans

Φk
X

Φk
X,trans

Conjecture 3. The map ΦkX,alg : Zk(X)alg → J2k−1(X)alg is surjective.

Proof using Hodge conjecture. By Remark 3.23, we know that A := J2k−1(X)alg is an
abelian variety. Let N = dimA and we get an isomorphism of Hodge structures

α : H2N−1(A,Z) ∼= H2k−1(X,Z)alg.

By Lemma 3.11, this α corresponds to a Hodge class [α] ∈ Hdg2k(A × X). Then by
Hodge conjecture we can find a cycle Z of codimension k with cl(Z) = N [α]. Then by
Theorem 3.19 we know that the map A = Alb(A) → J2k(X) induced by Z is equal to
N times of A ∼= J2k−1(X)alg, hence surjective.

Remark 3.24. This is right when X be a 3-dimensional projective manifold covered by
rational curves. See Exercise 12.2 in [6].

13



3.4 Deligne Cohomology and Deligne Classes
Definition 3.25. Let X be a complex manifold and p ≥ 1, we define the Deligne complex
ZD(p) is

0 → Z (2π
√
−1)p−→ OX

d→ ΩX → · · · → Ωp−1
X → 0.

We define the Deligne cohomology Hk
D(X,Z(p)) := Hk(X,Z(p)).

Remark 3.26. We have ZD(1) 'qis O∗
X [−1] and H2

D(X,Z(1)) = H1(X,O∗
X).

Proposition 3.27. If X is a compact Kähler manifold, then there exists a long exact
sequence

· · · → Hk
D(X,Z(p)) → Hk(X,Z)

→ Hk(X,C)/F pHk(X,C) → Hk+1D(X,Z(p)) → · · · .

Proof. First we consider

0 → Ω≤p−1
X [−1] → ZD(p) → Z → 0

which induce a long exact sequence and we see that we just need to showHk(X,Ω≤p−1
X ) =

Hk(X,C)/F pHk(X,C). From the basic fact of Hodge structure (e.g. Proposition 7.5
in [6]) Hk(X,Ω≥p

X ) = F pHk(X,C) and the exact sequence

0 → Ω≥p
X → Ω∗

X → Ω≤p−1
X → 0

we can get the result directly.

Corollary 3.28. In this case, we have exact sequence

0 → J2p−1(X) → H2p
D (X,Z(p)) → Hdg2p(X,Z) → 0.

Proof. This follows directly from the k = 2p in theorem and the fact

Hdg2p(X,Z) = ker(H2p(X,Z) → Hk(X,C)/F pH2p(X)).

Well done.

Here we give another method to compute the Deligne cohomology H2p
D (X,Z(p)).

Definition 3.29. Let X is a differentiable manifold. Let the group of differential char-
acters Ξldiff(X) be a subgroup of Hom(Zdiffl ,R/Z) consist of χ : Zdiffl → R/Z such that
there exists a real differential form (obviously uniquely determined by χ) ω ∈ Al+1(X)
satisfying

χ(∂φ) =

∫
∆l+1

φ∗ω mod Z, ∀φ ∈ Cdiffl+1(X).
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Remark 3.30. (i) We have dω = 0. Indeed, for any φ : ∆l+2 → X, we have∫
∆l+2

φ∗(dω) =

∫
∂∆l+2

φ∗ω mod Z = χ(∂∂φ) = 0 ∈ R/Z.

Hence we get dω = 0.

(ii) The de Rham class [ω] ∈ H l+1(X,Z). Indeed, this follows from definition such
that

∫
∆l+1

φ∗ω ⊂ Z for ∂φ = 0.

(iii) If X is a complex manifold and µ ∈ Al−1(X) is real, then by Stokes’ formula we
have ∫

∆l

φ∗(i∂µ) =

∫
∆l

φ∗(i∂µ) =

∫
∆l

φ∗(−idµ+ i∂µ) =

∫
∆l

φ∗(i∂µ).

Hence
∫
∆l
φ∗(i∂µ) ∈ R and we get a canonical differential character

∫
i∂µ : φ 7→∫

∆l
φ∗(i∂µ).

Theorem 3.31. Let X is a compact Kähler manifold. Let Ξ2p−1
diff (X)p,p be a subgroup

which consist of characters whose associated form ω of type (p, p). Then

H2p
D (X,Z(p)) ∼= K2p−1

diff (X) := Ξ2p−1
diff (X)p,p/

{∫
i∂µ : µ ∈ Ap−1,p−1

R (X)

}
.

Proof. Omitted, see Theorem 12.29 in [6].

Finally we give an analogue of cycle map correspond to Deligne cohomology using
differential characters.

Theorem 3.32. Let X be a smooth projective variety, then there exists the Deligne cycle
class map

clD : CHk(X) → H2n−2k
D (X,Z(n− k))

such that c ◦ clD = cl and clD |CHk(X)hom = Φn−kX where c : H2n−2k
D (X,Z(n − k)) →

Hdg2n−2k(X,Z) in Corollary 3.28.

Proof. Here we give a very concise sketch of the construction when Z ∈ Zk(X) is
smooth. First we need the following result:

• (Soulé, 1992) For Z ∈ Zp(X) is smooth, there exists a real form ψ of type (p −
1, p − 1) on X\Z such that it is integrable and with the equality of currents
i∂∂ψ = Z − ω such that the following construction well-defined (see Theorem
12.31 in [6]):
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For a closed differentiable chain γ of dimension 2p− 1, there exists a closed differ-
entiable chain γ′ of dimension 2p− 1 which does not meet Z, and a differentiable
chain Γ of dimension 2p, such that γ = γ′+ ∂Γ. We define a differential character

χZ,ψ : γ 7→
∫
γ′
i∂ψ +

∫
Γ
ω mod Z.

Moreover, descend in K2p−1
diff (X), this is independent to the choice of ψ.

Then we use this to define [Z]D = χZ,ψ ∈ K2p−1
diff (X) = H2p

D (X,Z(p)).

We can also define the product in the Deligne cohomology

− ·D − : H2p
D (X,Z(p))⊗H2q

D (X,Z(q)) → H2p+2q
D (X,Z(p+ q))

induced by
Ξ2p−1
diff (X)× Ξ2q−1

diff (X) → Ξ2p+2q−1
diff (X), (φ, ψ) 7→ φ · ψ

defined as follows:

• Pick Z ∈ Zdiffl (X) and consdier the diagonal δ : X → X ×X. Let Zi ∈ Zdiffki
(X)

and Z ′
i ∈ Zdiffli

(X) with ki + li = 2p + 2q − 1 such that by Künneth formula we
have a differentiable chain Γ of dimension 2p+ 2q on X ×X such that

δ(Z) =
∑
i

Zi × Z ′
i + ∂Γ.

We define

φ · ψ(Z) :=
∑

i,ki=k−1

φ(Zi)

∫
Z′
i

ωψ +
∑
i,ki=k

ψ(Z ′
i)

∫
Zi

ωϕ +

∫
Γ
p∗1ωϕ ∧ p∗2ωψ.

In this case φ · ψ associated to the form p∗1ωϕ ∧ p∗2ωψ.

By these construction we have:

Theorem 3.33. For Z ∈ CHk(X), Z ′ ∈ CHl(X) we have

clD(Z · Z ′) = clD(Z) ·D clD(Z ′).

Note that in this case Proposition 3.6(i) and Proposition 3.21 are the special cases
of this result.
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4 Mumford’s Theorem and its Generalizations
4.1 Representability and Roitman’s Theorem
Fix a complex connected projective variety X.

Definition 4.1. We say CH0(X) is representable if the map

σd : X
(d) ×X(d) → CH0(X)hom, (Z1, Z2) 7→ Z1 − Z2

is surjective for d� 0 where X(d) = Xd/Sd.

Lemma 4.2. The fibers of σd are countable unions of closed algebraic subsets of X(d)×
X(d).

Proof. Pick Z = Z+ − Z− of degree 0 in CH0(X)hom and we need to learn the fiber
σ−1
d (Z). It consist of the pairs (Z1, Z2) such that Z1 − Z2 ∼rat Z, which means that
there exist curves Ci ⊂ X with normalizations νi : Ci → X and rational functions φi
over Ci such that ∑

i

νi,∗div(φi) = Z1 − Z2 − Z.

That is, there exist effective 0-cycles A,B such that

Z1 + Z− +A =
∑
i

νi,∗φ
−1
i (0) +B, (1)

Z2 + Z+ +A =
∑
i

νi,∗φ
−1
i (∞) +B. (2)

Now Ci parametrized by a countable union of Hilbert scheme
⨿
iHilb

Pi
X where Pi are

degree 1 integral polynomials. Moreover, if we fix these Hilbert schemes and the degrees
di of the divisors φ−1

i (0), each function φi can be viewed as a pencil of degree di on Ci.
Finally, if we fix the degrees a and b of A and B, the 0-cycles A and B are parametrised
by the symmetric products X(a) and X(b)!

Thus, on the condition of fixing certain discrete data, the objects (Ci, φi, νi, A,B)
are parametrised by a projective algebraic variety K. Moreover, the equations (1) (2)
define a closed algebraic subset X(d) ×X(d) ×K. Then the result is trivial now.

Remark 4.3. By the proof, we know that there exists a countable union B of proper
algebraic subsets of X(d) ×X(d) such that for any x ∈ X(d) ×X(d)\B, the dimension of
the fibre σ−1(σ(x)) is constant and equal to r.

Definition 4.4. (i) The dimension of Imσd is defined to be equal to 2nd− r which is
with d, where r is defined as above and n = dimX (so 2nd = dim(X(d) ×X(d))).
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(ii) We say CH0(X) is infinite-dimensional if

lim
d→∞

dim Imσd = ∞.

Proposition 4.5. Group CH0(X) is representable if and only if it is finite-dimensional.

Proof. If CH0(X) is representable, then there is some D � 0 such that σD is surjective.
For any d we consider

R = {(Z1, Z2, Z
′
1, Z

′
2) ∈ X(d) ×X(d) ×X(D) ×X(D) : σd(Z1, Z2) = σD(Z

′
1, Z

′
2)}.

Then p : R → X(d) × X(d) is surjective. By the proof of previous Lemma, we know
that R is a countable union of closed algebraic subsets. By Baire’s Theorem we have
a irreducible component R0 maps along p has a non-empty interior. Hence p0 : R0 →
X(d) ×X(d) is surjective. If (Z1, Z2, Z

′
1, Z

′
2) ∈ R0, we have

dim(Z1,Z2)R0 ∩ (X(d) ×X(d) × (Z ′
1, Z

′
2)) ≥ 2nd− 2nD.

As it is contained in σ−1
d σD(Z

′
1, Z

′
2) and p0 is surjective, we know that any fibers of σd

are of dimension≥ 2nd− 2nD. Hence dim Imσd ≤ 2nD.
Conversely, if CH0(X) is finite-dimensional, then we have dim ImσD = dim ImσD+1 =

· · · for some D � 0. For any point x ∈ X we define

X(D) ×X(D) X(D+1) ×X(D+1)

CH0(X)hom

σD σD+1

ix

where ix : (Z1, Z2) 7→ (Z1 + x, Z2 + x). Let F = σ
(Z1,Z2)
D for some general point

(Z1, Z2) and F ′ be a general fiber of σD+1. Hence dimF ′ = dimF + 2n. Let F ′′ =
σ−1
D (Z1 + x, Z2 + x). By semicontinuity of the dimensions of the fibres, we have dimF ′′ ≥
dimF ′. Define

R = {(Z1, Z2, Z
′
1, Z

′
2) ∈ X(D+1)×X(D+1)×X(D)×X(D) : σD+1(Z1, Z2) = σD(Z

′
1, Z

′
2)}.

It is now clear that R has an algebraic component R0 passing through (Z1 + x, Z2 +
x, Z1, Z2), which dominates X(D) × X(D), and is such that the fibre of the second
projection q : R0 → X(D) ×X(D) is of dimension equal to dimF ′′, and so of dimension
greater than or equal to dimF +2nD, whereas the fibres of the first projection p : R0 →
X(D+1) ×X(D+1) are of generic dimension at most equal to dimF . As a conclusion, we
have

dim p(R0) ≥ dimF ′ − dimF + 2nD = 2n(D + 1) = dimX(D+1) ×X(D+1).

Therefore p is surjective and ImσD = ImσD+1. Hence σD is surjective.
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There is another equivalent statement of representability:

Proposition 4.6. Group CH0(X) is representable if and only if for every smooth curve
C = Y1 ∩ · · · ∩ Yn−1 which is a complete intersection of ample hypersurfaces Yi ⊂ X,
letting j : C ↪→ X be the inclusion, the map

j∗ : CH0(C)hom = J(C) → CH0(X)hom

is surjective.

Proof. If we have such C, then by Remark 3.18(b) we have surjection

C(g) → CH0(C)hom = J(C), z 7→ z − g · z0.

By the surjectivity of j∗ we know that

X(g) → CH0(X)hom, z 7→ z − g · z0

is surjective.
Conversely, we will only give a sketch. Fix 0 ∈ C, let n ≥ 2 and consider

σ0m : X(m) → CH0(X)hom, Z 7→ σm(Z,m0).

Now let dim Imσ0m = K for any m � 0, the fibers of σ0m has dimension mn − K.
We claim that an irreducible component of maximal dimension Z of a general fibre of
σ0m cannot be contained in a set of the form X(m−i) +W, i ≥ 1, with W ⊂ X(i) and
dimW < i. We omitted the proof of the claim and we refer to Page 285 in [7].

• Let Y1 be an ample hypersurface of X and let Z be an irreducible subset of X(m)

not contained in any subset of the form X(m−i) +W, i ≥ 1, with W ⊂ X(i) and
dimW < i. Then if dimZ ≥ m, we have Z ∩ Y (m)

1 6= ∅. (Lemma 10.13 in [7])

Hence by the claim and this result, we know that a general fibre of σ0m intersects Y
(m)
1

for m � 0. Hence σ0m and σ0m|Y (m)
1

have the same image for m � 0. As the images
of the maps σ0m|Y (m)

1

are also of bounded dimension, so we can iterate the reasoning to
finally conclude that σ0m and σ0m|C(m) have the same image for m � 0. Hence for any
0-cycle of form Z −m0, we have Z −m0 ∼rat Z ′ −m0 for Z ′ ∈ C(m), so

j∗ : CH0(C)hom = J(C) → CH0(X)hom

is surjective.

Now we will use the following theorem:
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Theorem 4.7 (Roitman 1980, Bloch 1979). The Albanese map

albX : CH0(X)hom → Alb(X)

induces an isomorphism on torsion points for every smooth projective variety X.

Finally we can use these results to show that the representability can be justified by
the following theorem of Roitman:

Theorem 4.8 (Roitman, 1972). If CH0(X) is representable, then the Albanese map is
an isomorphism:

albX : CH0(X)hom ∼= Alb(X).

In particular, in this case CH0(X)hom is an algebraic group.

Proof. By Proposition 4.6, if CH0(X) is representable, then for every smooth curve
C = Y1 ∩ · · · ∩ Yn−1 which is a complete intersection of ample hypersurfaces Yi ⊂ X,
letting j : C ↪→ X be the inclusion, the map

j∗ : CH0(C)hom = J(C) → CH0(X)hom

is surjective. We claim that j∗ induced by a correspondence Γ satisfies:

(i) Γ∗ takes values in CH0(C)hom and is a group homomorphism;

(ii) Γ∗ is surjective.

Indeed, consider φ : C(g) → J(C) by z1+· · ·+zg 7→ albC(
∑

i zi−gc0) where g = g(C)
and c0 ∈ C fixed. We define

Γ1
C := {(a, c) ∈ J(C)× C : ∃z ∈ C(g), c ∈ z, φ(z) = a}

and Γ2
C := g(J(C)× c0). We define ΓC = Γ1

C − Γ2
C . Then easy to see that ΓC satisfies

the condition (i). Define Γ := (id, j)∗ΓC ⊂ J(C) ×X, then one can see that Γ induce
j∗ and satisfies (i)(ii).

By the similar argument in the proof of Lemma 4.2, we know that kerΓ∗ is a count-
able union of algebraic subsets of A = J(C) which is also a subgroup (hence the count-
able union of translates of an abelian subvariety A0). Then there exists an abelian
subvariety B ⊂ A, which is supplementary to A0 up to isogeny, i.e. such that the
morphism A0 × B → A, (a, b) 7→ a+ b is surjective with finite kernel. Hence replace A
by B we let assume kerΓ∗ is countable.

Define R := {(x, a) : Γ∗(a) = x − x0} ⊂ X × A. Then it is a countable union of
algebraic sets whose projection onto X is surjective, since Γ∗ is surjective. Thus, R has
an algebraic component R0 which dominates X. Furthermore, as kerΓ∗ is countable,
the projection R0 → X is finite of degree r. R0 is thus a correspondence of dimension
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equal to dimX between X and A, and provides a morphism α : X → A, given by
x 7→ albA(R0,∗(x− x0)). By the definition of R0 and property (i), it is clear that

Γ∗ ◦ α(x) = r(x− x0).

Moreover, by the universal property of the Albanese map, there exists a morphism of
groups β such that we have the following comuutative diagram:

Alb(X) A

CH0(X)hom CH0(X)hom

albX
α

β

Γ∗

r·id

Hence ker albX is torsion, so that

albX : CH0(X)hom → Alb(X)

is an isomorphism up to torsion, since albX is always surjective by Remark 3.18(b).
Then by Theorem 4.7, well done.

4.2 The Bloch-Srinivas Construction and Mumford’s Theorem
4.2.1 Decomposition of the Diagonal
Here we introduce the heart result due to Bloch-Srinivas, in order to prove Mumford’s
Theorem 4.12. Here we give a more generalized result 4.9 and we only use the special
case 4.11 to prove the Mumford’s Theorem.

Let f : X → Y be a projective fibration with X,Y smooth and connected variety.
Let Z ∈ CHk(X).

(*) There exists a subvariety X ′ ⊂ X such that for every y ∈ Y , the cycle Zy :=
Z|Xy ∈ CHk(Xy) vanishes in CHk(Xy −X ′

y).

Theorem 4.9 (Bloch-Srinivas, 1980-1983). If Z satisfies the property (*), then there
exist an integer m > 0, and a cycle Z ′ supported in X ′, such that we have the equality

mZ = Z ′ + Z ′′ ∈ CHk(X),

where Z ′′ is a cycle supported in f−1(Y ′), for a proper closed algebraic subset Y ′ ⊂ Y .

Proof. One omitted, we refer [7] Theorem 10.19.
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Corollary 4.10. Let Γ ∈ CHk(X1 × Y ) for some connected smooth variety X1, and
assume that for every y ∈ Y , the cycle Γ∗(y) ∈ CHk(X1) restricts to zero in CHk(X1\X ′

1)
for a subvariety X ′

1 ⊂ X1. Then we have adecomposition

mΓ = Z ′ + Z ′′ ∈ CHk(X1 × Y ),

where Z ′ is supported in X ′
1 × Y and Z ′′ is supported in X1 × Y ′, for a proper closed

algebraic subset Y ′ ⊂ Y .

Proof. Take X = X1 × Y in Theorem 4.9.

Corollary 4.11 (Decomposition of the Diagonal). Consider ∆X ⊂ X × X be the
diagonal scheme. Assume there is a closed subvariety j : X ′ ⊂ X such that

j∗ : CH0(X
′) → CH0(X)

is surjective. Then there exists a proper closed algebraic subset T ⊂ X, and a decompo-
sition

m∆X = Z ′ + Z ′′,

where Z ′ is supported in T ×X and Z ′′ is supported in X ×X ′.

Proof. Take X1 = Y = X in Corollary 4.10 and since j∗ is surjective, we know that
CH0(X\X ′) = 0. Well done.

4.2.2 Mumford’s Theorem
We will use these results to prove the following kind of generalizations of Mumford’s
Theorem 4.16 and Roitman’s Theorem 4.14. Note that when k = n = 2 this is weaker
than Theorem 4.16.

Theorem 4.12. Let X be a smooth complex projective variety. If there exists a subva-
riety j : X ′ ↪→ X such that dimX ′ < k and the map

j∗ : CH0(X
′) → CH0(X)

is surjective, then H0(X,ΩkX) = 0.

Proof. By Corollary 4.11, there exists a proper closed algebraic subset T ⊂ X, and a
decomposition

m∆X = Z ′ + Z ′′,

where Z ′ is supported in T × X and Z ′′ is supported in X × X ′. Hence m cl(∆X) =
cl(Z ′) + cl(Z ′′). By Lemma 3.11, their Künneth components induce

m[∆X ]
∗, [Z ′]∗, [Z ′′]∗ : Hr(X,Z) → Hr(X,Z)
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for each r. As [∆X ]
∗ = id, we have

m · id = [Z ′]∗ + [Z ′′]∗ ∈ End(Hr(X,Z)).

Pick l : T̂ → X, a resolution of singularity of T . As the cycle Z ′′ is supported in
T ×X, it comes from a cycle Ẑ ′′ of T̂ ×X, so we have

cl(Z ′′) = (l, id)∗(cl(Ẑ ′′)).

By the definition we have [Z ′′]∗ = l∗ ◦ [Ẑ ′′]∗. Similarly, let ĵ : X̂ ′ → X be a resolution
of singularity of X ′, and let Ẑ ′ be a cycle of X × X̂ ′ such that (id, ĵ)∗(Ẑ ′) = Z ′. Hence
[Z ′]∗ = [Ẑ ′]∗ ◦ ĵ∗.

Combining these we have

mη = ([Ẑ ′]∗ ◦ ĵ∗)η + (l∗ ◦ [Ẑ ′′]∗)η

for any η ∈ H0(X,ΩrX). As dimX ′ < k, then ĵ∗η = 0 for all r ≥ k. As dimT < dimX,
then l∗ is of bidegree (s, s) for s > 0. Combining these, we have η = 0 for all r ≥ k.

Corollary 4.13. In this case, if CH0(X)hom = 0, then H0(X,ΩkX) = 0 for all k > 0.

Proof. In the Theorem 4.12 we pick X ′ be a single point and well done.

Theorem 4.14 (Roitman 1972). Let X be a smooth complex projective variety of
dimension n. Let dm be the dimension of the general fiber of σm. If H0(X,ΩkX) 6= 0,
then for m� 0 we have

dm < 2(n− k + 1)m.

Proof. We give the main idea of the proof. Let dm ≥ 2(n − k + 1)m and let X ′ be
the complete intersection of n − k + 1 ample hypersurfaces, and use the same proof of
Proposition 4.6 show that X ′(m) ×X ′(m) must intersect the fibres of σm for m� 0, on
the condition that we have dm ≥ 2(n− k+1)m. Then we can get j∗ is surjective! Then
by Theorem 4.12 and well done.

The Roitman’s Theorem 4.14 is also some kind of generalizations of Mumford’s
Theorem and note that when k = n = 2 this is weaker than Theorem 4.16.

Lemma 4.15. Let S be a smooth complex projective surface such that H0(S,KS) 6= 0.
Define an algebraic component

R =

(x1, ..., x2n) ∈ S2n :
∑

1≤i≤2n

nixi = 0 ∈ CH0(S)

 .

Assume that R dominates Sn via the first projection. Then the first projection p1 : R→
Rn is generically finite.
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Proof. By the proof of Theorem 4.12 and Corollary 4.10, we have:

• LetW be a smooth projective variety, and let Z ⊂W×X be a cycle of codimension
n = dimX. Assume that there exists a k0-dimensional subvariety X ′ ⊂ X such
that for every w ∈ W , the 0-cycle Zw is rationally equivalent in X to a cycle
supported on X ′. Then for every k > k0 and every η ∈ H0(X,ΩkX), we have
[Z]∗η = 0 in H0(W,ΩkW ).

Then we can use this to prove the Lemma. The detail we refer [7] Lemma 10.25.

Theorem 4.16 (Mumford 1968). Let S be a smooth complex projective surface such
that H0(S,KS) 6= 0. Then for any integer m, the map σm has countable general fiber.
In particular, CH0(S) is not representable.

Proof. If the general fiber of σm are not countable, then there would exist an algebraic
subvariety R ⊂ S(n) × S(n) × S(n) × S(n) such that the first projection R→ S(n) × S(n)

is dominant with positive- dimensional fibres, and such that

(Z1, Z2, Z3, Z4) ∈ R⇒ σn(Z1, Z2) = σn(Z3, Z4).

But then, taking the inverse image of R, we find that there exists R′ ⊂ Sn×Sn×Sn×Sn
such that the first projection R′ → Sn×Sn is dominant with positive-dimensional fibres,
and such that the similar relation holds as R. But this would contradict Lemma 4.15.
Well done.

4.2.3 Some Other Applications
Theorem 4.17 (Bloch-Srinivas 1983). Let X be a smooth complex projective variety
such that there exists a subvariety j : X ′ ⊂ X, of dimension ≤ 3, such that the map

j∗ : CH0(X
′) → CH0(X)

is surjective. Then the Hodge conjecture holds for classes of degree 4 on X.

Proof. By Corollary 4.11, there exists a proper closed algebraic subset T ⊂ X, which
we may assume to be of codimension 1, and a decomposition

m∆X = Z ′ + Z ′′,

where Z ′ is supported in T ×X and Z ′′ is supported in X ×X ′.
Take k : T̂ → X, ĵ : X̂ ′ → X be the resolution of singularities of T,X ′. Note that

we have m cl(∆X) = cl(Z ′) + cl(Z ′′) which induce the morphism of Hodge structures

m[∆X ]
∗ = [Z ′]∗ + [Z ′′]∗ ∈ End(H4(X,Z))
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via the Künneth components of type (2n− 4, 4).
Now pick Ẑ ′ ⊂ T̂ × X be a cycle of codimension n such that (k, id)∗Ẑ ′ = Z ′, and

pick Ẑ ′′ ⊂ X × X̂ ′ be a cycle of codimension n such that (id, ĵ)∗Ẑ ′′ = Z ′′. We have
[Z ′]∗ = k∗[Ẑ ′]∗ and [Z ′′]∗ = [Ẑ ′′]∗ĵ∗.

Now as dimX ′ ≤ 3, the rational Hodge conjecture holds for X̂ ′ by Theorem 3.10
and Hard Lefschetz Theorem. If α ∈ Hdg2(X)Q, then the classes ĵ∗α and [Z ′]∗α are
classes of algebraic cycles. The relation

m[∆X ]
∗α = mα = k∗[Ẑ ′]∗α+ [Ẑ ′′]∗ĵ∗α

and the compatibility of the cycle class map with correspondences then show that α is
also the class of an algebraic cycle with rational coefficients. Well done.

Theorem 4.18 (Bloch-Srinivas 1983). Let X be a smooth complex projective variety
such that there exists a subvariety j : S ⊂ X, of dimension ≤ 2, such that

j∗ : CH0(S) → CH0(X)

is surjective. Then the group Griff2(X) is a torsion group.

Proof. By Corollary 4.11, there exists a proper closed algebraic subset T ⊂ X, which
we may assume to be of codimension 1, and a decomposition

m∆X = Z ′ + Z ′′,

where Z ′ is supported in T ×X and Z ′′ is supported in X × S.
Take k : T̂ → X, ĵ : Ŝ → X be the resolution of singularities of T, S. Now pick

Ẑ ′ ⊂ T̂ ×X be a cycle of codimension n such that (k, id)∗Ẑ ′ = Z ′, and pick Ẑ ′′ ⊂ X× Ŝ
be a cycle of codimension n such that (id, ĵ)∗Ẑ ′′ = Z ′′. We have [Z ′]∗ = k∗[Ẑ ′]∗ and
[Z ′′]∗ = [Ẑ ′′]∗ĵ∗.

Now pick z ∈ CH2(X)hom, then

mz = k∗[Ẑ ′]∗z + [Ẑ ′′]∗ĵ∗z.

As S is a surface, then ĵ∗z ∈ CH0(Ŝ)hom. Hence ĵ∗z ∼alg 0. Similarly [Ẑ ′]∗z ∈
CH1(T̂ )hom hence [Ẑ ′]∗z ∼alg 0 by Remark 3.22. As the algebraic cycles which equiva-
lent to 0 are stable under the action of correspondences, we have mz ∼alg 0 and hence
Griff2(X) is a torsion group.

4.3 Generalizations
Theorem 4.19 (Paranjape 1994, Laterveer 1996). Assume that for k ≤ k0, the maps

cl : CHk(X)⊗Q → H2n−2k(X,Q)
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are injective. Then there exists a decomposition

m∆X = Z0 + ···+ Zk0 + Z ′ ∈ CHn(X ×X),

wherem 6= 0 is an integer, Zi is supported inW ′
i×Wi with dimWi = i and dimW ′

i = n−i
and Z ′ is supported in T ×X, where T ⊂ X is a closed algebraic subset of codimension
≥ k0 + 1.
Proof. See [7] Theorem 10.29. Note that this is a generalization of Corollary 4.11 when
k0 = 0.

Theorem 4.20 (Schoen 1993, Lewis 1995). Let a smooth projective complex variety X
satisfies the condition that for every k ≤ k0, the map

cl : CHk(X)⊗Q → H2n−2k(X,Q)

is injective, then
Hp,q(X) = 0, ∀p 6= q, q ≤ k0.

Proof. By Theorem 4.19, we have

m∆X = Z0 + ···+ Zk0 + Z ′ ∈ CHn(X ×X),

where m 6= 0 is an integer, Zi is supported in W ′
i ×Wi with dimWi = i and dimW ′

i =
n − i and Z ′ is supported in T × X, where T ⊂ X is a closed algebraic subset of
codimension ≥ k0 + 1.

Let Wij ,W
′
ij are the irreducible components of Wi,W

′
i , then we have

Zi =
∑
j

nijW
′
ij ×Wij .

Let τ : T̂ → X be the resolution of singularity of T and let Ẑ ′ ∈ CHn(T̂ ×X) such that
(τ, id)∗Ẑ ′ = Z ′.

For any l we induce the morphisms of Hodge structures as before:

m[∆X ]
∗ = m · id = [Z0]

∗ + ···+ [Zk0 ]
∗ + [Z ′]∗ ∈ End(H l(X,Z)).

Hence
[Zi]

∗α =
∑
j

nij〈α, [Wij ]〉[W ′
ij ].

Hence if α ∈ Hp,q(X) for p 6= q, then mα = τ∗([Ẑ ′]∗α). Hence if α ∈ Hp,q(X) for p 6= q,
then

mα ∈ Imτ∗ ∩Hp,q(X).

Now we let codimension of T is k0 + 1, then τ∗ : Hp+q−2k0−2(T̂ ,Z) → Hp+q(X,Z) is a
morphism of Hodge structures of bidegree (k0 + 1, k0 + 1), so that Imτ∗ ∩ Hp,q(X) =
0, q ≤ k0. Hence well done.
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5 The Bloch Conjecture and its Generalizations
5.1 Some Classifications of Surfaces
The fundamental theory of classifications of surfaces we refer [1].

Definition 5.1. Let X be a projective smooth surface. We define the irregularity of X
as q(X) := h1,0(X). If q(X) = 0 we say X is regular.

Theorem 5.2. If κ(X) = −∞, then it is a birationally ruled surface.

Theorem 5.3 (Castelnuovo). A projective smooth surface X is rational if and only if
q = pg = 0.

Theorem 5.4. Let X be a minimal surface with κ(X) = 0. Then we have q(X) ≤ 2,
and also the following results:

(i) If q(X) = 2, then X is an abelian surface. In particular, H0(X,KX) 6= 0.

(ii) If q(X) = 1, then X is a quotient of the product of two elliptic curves E and F by
a finite group G acting with no fixed points, via an action which is compatible with
the product structure (i.e. G ⊂ AutF × AutE). If pg(X) = 0, then G acts on E
via translations, and the action on F is such that the quotient F/G is a rational
curve.

(iii) If q(X) = 0, then X is a K3 surface, or an Enriques surface, i.e. the quotient of
a K3 surface Y by an involution without fixed point acting by −1 on H0(Y,KY ).
In the second case only, we have pg(X) = 0.

Proof. See [1]. Note that q(X) ≤ 2 is easy to prove from a fact that K2
X = 0 for a

minimal surface X of Kodaira dimension 0. By Riemann-Roch we have

χ(X,OX) =
c1(KX)

2 + c2(KX)

12
.

AsK2
X = c1(KX)

2 = 0 and c2(X) = χtop(X) =
∑

i(−1)2bi(X) we can get the result.

Theorem 5.5. If κ(X) = 1 and q > 0, then X admits a morphism φ : X → C whose
fibre is an elliptic curve. If κ(X) = 1 and q(X) = 0, then X admits a pencil of elliptic
curves (Et)t∈P1.

Remark 5.6. Conversely, a surface which is fibred in elliptic curves always satisfies the
condition that κ(X) ≤ 1. Indeed, if E is the generic fibre of the fibration φ : X → C,
then the normal bundle of E in X is trivial and the adjunction formula then shows that
KX |E = KE, where KE is the trivial bundle if E is an elliptic curve. But then it is
clear that the pluricanonical maps ΦnKX

factor through φ.
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Theorem 5.7. If X is a surface satisfying κ(X) = 1 and pg(X) = 0, then q(X) ≤ 1.
If q(X) = 1, then the Albanese map

albX : X → AlbX = E

is an isotrivial fibration if the fibres are of genus > 1, or an elliptic fibration with smooth
isomorphic fibres if the fibres are of genus 1. In the latter case, replacing X → E by the
associated Jacobian fibration J → E (a variation version of the intermediate Jacobians,
see section 7.1.1 in [7]), one can show that κ(J) = 0, q(J) = 1, so that J is of the type
described in theorem 5.4(ii).

Proof. The inequality q(X) ≤ 1 again follows from Riemann-Roch and fact that K2
X =

0. The isotriviality of the fibration can be deduced from the positivity of the bundles
R0 albX,∗KX/E .

5.2 Bloch’s Conjecture
5.3 Filtrations on Chow groups
5.4 The case of Abelian varieties

28



Index
J2k−1(X)alg, 13
CHl(X)hom, 7
Griffk(X), 12∫
i∂µ, 15

Abel-Jacobi map, 10
Albanese map, 11
Albanese variety, 11

class map, 7

Deligne cohomology, 14
Deligne complex, 14
Deligne cycle class map, 15

group of differential characters, 14

Hodge classes, 8

Hodge filtration, 2
Hodge–Riemann bilinear relation, 13

intermediate Jacobian, 10
irregularity, 27

logarithmic de Rham complex, 3

mixed Hodge structure, 2

Poincaré residue map, 4

regular surface, 27
representable, 17

strict morphism, 2

weight filtration, 2

29



References
[1] Arnaud Beauville. Complex Algebraic Surfaces. London Mathematical Society Stu-

dent Texts. Cambridge University Press, 2 edition, 1996.

[2] David Eisenbud and Joe Harris. 3264 and all that: A second course in algebraic
geometry. Cambridge University Press, 2016.

[3] William Fulton. Intersection theory, 2nd, volume 2. Springer Science & Business
Media, 1998.

[4] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.

[5] Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, and Phillip A Griffiths. Hodge
theory, 2014.

[6] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I, volume 76. Cam-
bridge University Press, 2002.

[7] Claire Voisin. Hodge Theory and Complex Algebraic Geometry II, volume 77. Cam-
bridge University Press, 2003.

30


	Introduction
	Some Background of Mixed Hodge Theory
	Basic Definition and Properties
	A Classical Example of Mixed Hodge Structure

	Cycle Classes and Abel–Jacobi Map
	Cycle Classes and Cycle Map
	Hodge Classes and Hodge Conjecture
	The Abel–Jacobi Map
	Deligne Cohomology and Deligne Classes

	Mumford's Theorem and its Generalizations
	Representability and Roitman's Theorem
	The Bloch-Srinivas Construction and Mumford's Theorem
	Decomposition of the Diagonal
	Mumford's Theorem
	Some Other Applications

	Generalizations

	The Bloch Conjecture and its Generalizations
	Some Classifications of Surfaces
	Bloch's Conjecture
	Filtrations on Chow groups
	The case of Abelian varieties

	Index
	References

