Fano Varieties and The Geometry of the Kuznetsov components

Xiaolong Liu

November 14, 2023

Contents

Preface

[\[5\]](#page-74-1)[[6](#page-74-2)]. We only consider the schemes and categories over C.

Note that our \mathbb{P} is $\mathbb{P}(\mathscr{E}) := \underline{\text{Spec}}_X \text{Sym}\mathscr{E}^\vee$ which is different from the Grothendieck's construct except for the Proposition [1.4.1.](#page-12-1)

CONTENTS

Chapter 1

Derived Category and Semi-Orthogonal Decomposition

Here we follows some definitions and results in[[15\]](#page-75-0) and [\[23](#page-75-1)]. Note that when I working in the derived category, we will omit the **R** or **L** of the derived functors.

1.1 Basic Definitions

Definition 1.1.1. *A full triangulated subcategory* \mathcal{D}' ⊂ \mathcal{D} *is called right (left) admissible if the inclusion has a right (left) adjoint* $\pi : \mathscr{D} \to \mathscr{D}'$. If it is both right and left admissible, *we call it admissible .*

The **orthogonal complement** of $a(an \text{ admissible})$ subcategory $\mathscr{D}' \subset \mathscr{D}$ is the full *subcategory* \mathscr{D}'^{\perp} *of all objects* $C \in \mathscr{D}$ *such that* $\text{Hom}(B, C) = 0$ *for all* $B \in \mathscr{D}'$. (*one can also assume [⊥]D′ similarly)*

Remark 1.1.2. When we let the inclusion is $j : \mathcal{D}' \rightarrow \mathcal{D}$, then its right (left) adjoint *functor will be denoted by* $j^!$ (j^*) . But we will not use them when it will be confused *with the true maps of derived functors.*

Definition 1.1.3. An object $E \in \mathcal{D}$ in a *k*-linear triangulated category \mathcal{D} is called *exceptional if*

$$
\operatorname{Hom}(E, E[\ell]) = \begin{cases} k, & \text{if } \ell = 0, \\ 0, & \text{if } \ell \neq 0. \end{cases}
$$

An exceptional sequence is a sequence $E_1, ..., E_n$ of exceptional objects such that $\text{Hom}(E_i, E_j[\ell]) =$ 0 *for all* $i > j$ *and all* ℓ *.*

An exceptional sequence is full if $\mathscr D$ *is generated by* $\{E_i\}$ *.*

An exceptional collection $E_1, ..., E_n$ *is strong if in addition* $\text{Hom}(E_i, E_j[\ell]) = 0$ *for all* i, j *and all* $\ell \neq 0$ *.*

Definition 1.1.4. *A sequence of full triangulated subcategories* $\mathscr{D}_1, ..., \mathscr{D}_n \subset \mathscr{D}$ *defines a semi-orthogonal decomposition if the following holds:*

- *(a) For all* $i > j$ *we have* $\mathscr{D}_j \subset \mathscr{D}_i^{\perp}$ *.*
- *(b)* For any $F \in \mathcal{D}$ there is a sequence of distinguished triangles:

 $where A_i = cone(F_i \rightarrow F_{i-1}) \in \mathcal{D}_i$ *for any i.*

In this case we denote it $\mathscr{D} = \langle \mathscr{D}_1, ..., \mathscr{D}_n \rangle$.

Remark 1.1.5. *Some remarks:*

- *(a) The condition (a) in the definition implies that the "filtration" in (b) and its "factors" are unique and functorial.*
- *(b) When we consider a sequence of full admissible triangulated subcategories* \mathcal{D}_1 *, ...,* \mathcal{D}_n ⊂ \mathscr{D} *such that* $\mathscr{D}_j \subset \mathscr{D}_i^{\perp}$ *for all* $i > j$ *and let them generates a subcategory* \mathscr{A} *, then this defines an S.O.D:*

$$
\mathscr{D}=\left\langle \mathscr{A}^{\perp},\mathscr{D}_{1},...,\mathscr{D}_{n}\right\rangle .
$$

Hence moreover if Dⁱ generates D, then these becomes an S.O.D. This is just the definition of S.O.D in [\[15](#page-75-0)].

(c) If X is a smooth projective variety and $\mathbf{D}^b(X) = \langle \mathcal{D}_1, ..., \mathcal{D}_n \rangle$ is an S.O.D, then *eachcomponent* \mathcal{D}_i *is admissible. See* [[4](#page-74-3)].

Remark 1.1.6. *Some other remarks:*

- *(a) If* $E \in \mathcal{D}$ *is exceptional, then the objects* $\bigoplus_i E[i]^{\oplus j_i}$ *form an admissible triangulated subcategory* $\langle E \rangle \subset \mathcal{D}$ *.*
- (b) Let $E_1, ..., E_n$ be an exceptional sequence in \mathscr{D} . Then the admissible triangu*lated subcategories* $\langle E_1 \rangle$, ..., $\langle E_n \rangle$ form a semi-orthogonal sequence. In this case *if* E_i generates a subcategory $\mathscr C$, then one can easy to show that $\mathscr C$ is admissible *(Proposition 2.6 in [\[26](#page-75-2)]). Hence we have S.O.Ds*

$$
\mathscr{D} = \left\langle \mathscr{C}^\perp, E_1, ..., E_n \right\rangle = \left\langle E_1, ..., E_n, \perp \mathscr{C} \right\rangle.
$$

If this sequence is a full exceptional sequence, then this forms an S.O.D. of D by trivial reason.

- *(c) Any semi-orthogonal sequence of full admissible triangulated subcategories* \mathscr{D}_1 *, ...,* \mathscr{D}_n ⊂ *D defines an S.O.D.* of *D*, if and only if any object $A \in \mathcal{D}$ with $A \in \mathcal{D}_i^{\perp}$ for all $i = 1, ..., n$ $i = 1, ..., n$ $i = 1, ..., n$ *is trivial. See Lemma 1.61 in [[15\]](#page-75-0).*
- *(d)* If $\mathscr{D}_1, ..., \mathscr{D}_n \subset \mathscr{D}$ *is an S.O.D., then* $\mathscr{D}_1 \subset \langle \mathscr{D}_2, ..., \mathscr{D}_n \rangle^{\perp}$ *is an equivalence. See Exercise 1.62 in [\[15\]](#page-75-0).*

So the admissible triangulated subcategories will be useful. Here we give a nice property about the admissible triangulated subcategories of the derived category of smooth projective varieties. First we recall that a triangulated category *D* of finite type is called right (left) saturated if any contravariant (covariant) cohomological functor of finite type $\mathscr{D} \to \text{Vect}$ is representable.

Theorem 1.1.7. *This separated as two important parts:*

- *(i)* Let the triangulated category $\mathscr A$ be right (left) saturated. Assume that $\mathscr A$ is *embedded in a triangulated category D as a full triangulated subcategory. Then A is right (left) admissible.*
- *(ii)* Let *X* be a smooth projective variety. Then $\mathbf{D}^b(X)$ is right and left saturated.

Proof. We refer [\[4\]](#page-74-3) for the original proof.

Definition 1.1.8. Fix an algebraic variety X and a line bundle $\mathscr L$ over it.

(a) A right Lefschetz decomposition of $\mathbf{D}^b(X)$ *with respect to* \mathcal{L} *is a**S.O.D of form*

$$
\mathbf{D}^b(X)=\left\langle \mathscr{D}_0, \mathscr{D}_1\otimes \mathscr{L},...,\mathscr{D}_{m-1}\otimes \mathscr{L}^{\otimes (m-1)} \right\rangle
$$

where $0 \subset \mathscr{D}_{m-1} \subset \cdots \subset \mathscr{D}_1 \subset \mathscr{D}_0$.

(b) A left Lefschetz decomposition of $\mathbf{D}^b(X)$ with respect to \mathcal{L} is a S.O.D of form

$$
\mathbf{D}^b(X)=\left\langle \mathscr{D}_{m-1}\otimes \mathscr{L}^{\otimes (1-m)},...,\mathscr{D}_1\otimes \mathscr{L}^{\otimes (-)},\mathscr{D}_0\right\rangle
$$

where $0 \subset \mathscr{D}_{m-1} \subset \cdots \subset \mathscr{D}_1 \subset \mathscr{D}_0$.

The subcategories Dⁱ forming a Lefschetz decomposition will be called blocks, the largest will be called the first block. Usually we will consider right Lefschetz decompositions. So, we will call them simply Lefschetz decompositions. We call a Lefschetz decompositions is rectangular if $\mathscr{D}_{m-1} = \cdots = \mathscr{D}_1 = \mathscr{D}_0$ *.*

If we need to consider the moduli space, we need to consider the family version of S.O.D:

Definition 1.1.9. *A triangulated category* \mathcal{T} *is S*-linear *if it is equipped with a module structure over the tensor triangulated category* $\mathbf{D}^b(S)$ *. In particular, if X is a scheme over S* and $f: X \to S$ *is the structure morphism then an S.O.D*

$$
\mathbf{D}^b(X)=\langle \mathscr{A}_1,...,\mathscr{A}_m\rangle
$$

is S-linear if each of the subcategories \mathscr{A}_k *satisfies that for* $A \in \mathscr{A}_k$ *and* $F \in \mathbf{D}^b(S)$ *one* $has A \otimes f^*F \in \mathscr{A}_k$.

Theorem 1.1.10 (Kuznetsov)**.** *If X is an algebraic variety over S with an S-linear S.O.D*

$$
\mathbf{D}^{b}(X) = \langle \mathscr{A}_{1},...,\mathscr{A}_{m} \rangle ,
$$

then for a change of base morphism $T \rightarrow S$ *there is, under a certain technical condition, a T-linear S.O.D*

$$
\mathbf{D}^{b}(X\times_{S}T)=\langle \mathscr{A}_{1T},...,\mathscr{A}_{mT}\rangle,
$$

such that $\pi^*A \in \mathcal{A}_{iT}$ for any $A \in \mathcal{A}_i$ and $\pi_*(A') \in \mathcal{A}_i$ for any $A' \in \mathcal{A}_{iT}$ which has *proper support over X.*

Proof. See[[20\]](#page-75-3).

1.2 Grothendieck Duality

Theorem 1.2.1 (Grothendieck Duality). Let $f: X \to Y$ be a separated map of finite *type schemes over a field k. Then we have the following:*

(i) The derived direct image $\mathbb{R} f_*$: $\mathbb{D}_{\text{Ocoh}}(X) \to \mathbb{D}_{\text{Ocoh}}(Y)$ *admits a right adjoint* $f^! : \mathbf{D}_{\text{Qcoh}}(Y) \to \mathbf{D}_{\text{Qcoh}}(X)$ *. Moreover, for any* $K \in \mathbf{D}_{\text{Qcoh}}(X), L \in \mathbf{D}_{\text{Qcoh}}(Y)$ *, the counit map induces the following natural quasi-isomorphism in* $\mathbf{D}_{\text{Ocoh}}(Y)$:

$$
\mathbf{R}f_*\mathbf{R}\mathscr{H}om_X(K, f^!L) \simeq \mathbf{R}\mathscr{H}om_Y(\mathbf{R}f_*K, L).
$$

Moreover, both **R***f[∗] and f* ! *can be restricted to the bounded below derived subcategories, which also forms an adjoint pair.*

(ii) Assume f is proper and of finite Tor-dimension, then for any $L \in \mathbf{D}_{\text{Qcoh}}(Y)$ *, we have a natural quasi-isomorphism*

$$
f^!L \simeq f^! \mathscr{O}_Y \otimes^{\mathbf{L}}_{\mathscr{O}_Y} \mathbf{L} f^*L.
$$

 $Moreover, \, both \, \mathbf{R} f_{\ast} \, \mathit{and} \, f^{!} \, \mathit{can} \, \mathit{be \, restricted \, to \, upper-bounded/lower-bounded/bounded}$ *derived category of coherent cohomology.*

*Proof.*For (i) we refer 6.3 in [[31\]](#page-76-0). For (ii) we refer 2.14, 5.13 in [\[32](#page-76-1)].

 \Box

Definition 1.2.2. *Under the assumption of* $f : X \rightarrow Y$ *being proper and finite Tordimension, we call* $\omega_f^* := f^! \mathcal{O}_Y$ *the dualizing complex of f.*

Theorem 1.2.3. Let $f: X \to Y$ be a morphism of finite type schemes over k . Assume *X is connected. Then we have the following:*

- *(i)* If *f* is Cohen-Macaulay, then there exists a coherent sheaf ω_f over X such that $\omega_f^* = \omega_f[n]$ *for some integer n. If the map f is of purely relative dimension d, then* $n = d$ *.*
- *(ii) If f is furthermore* a smooth morphism, then we have $\omega_f^* = \Omega_f^n[n]$ for $n = \dim X$ $dim Y$.

Proposition 1.2.4. Let $f: X \rightarrow Z$ be the composition of maps $g: X \rightarrow Y$ and $h: Y \to Z$ *of finite type k-schemes. Then we have a natural isomorphism* $f^! = g^! \circ h^!$. *If moreover g, h being proper and finite Tor-dimension, then*

$$
\omega_f^* = \mathbf{L} g^* \omega_h^* \otimes^{\mathbf{L}} \omega_g^*.
$$

Proof. This follows from the uniqueness of the right adjoint.

1.3 Grothendieck Groups

Let $\mathscr D$ be a triangulated category linear over a field k. Let $\mathscr D$ is of finite type, that is, for every pair of objects E and F of \mathscr{D} the vector space $\bigoplus_i \text{Hom}_{\mathscr{D}}(E, F[i])$ is finitedimensional. We define the Euler pairing on $K_0(\mathscr{D})$ defined as

$$
\chi(v, w) := \sum_{i} (-1)^i \dim_k \operatorname{Hom}_{\mathscr{D}}(v, w[i]).
$$

 $\bf{Definition 1.3.1.}$ We define the numerical Grothendieck group $K_0^{\mathrm{num}}(\mathscr{D})$ is defined as $K_0(\mathscr{D})/T$ where $T \subset K_0(\mathscr{D})$ consist of $v \in K_0(\mathscr{D})$ such that $\chi(v, w) = 0$ for all $w \in K_0(\mathscr{D})$.

Note that $K_0^{\text{num}}(\mathscr{D})$ *is torsion-free.*

Remark 1.3.2. *Let D be a triangulated category with a heart of a bounded t-structure D♡ ⊂ D. Consider homomorphisms*

$$
i: K_0(\mathscr{D}^\heartsuit) \to K_0(\mathscr{D})
$$

induced by inclusion and

$$
F: K_0(\mathscr{D}) \to K_0(\mathscr{D}^\heartsuit), \quad [X] \mapsto \sum_{n \in \mathbb{Z}} (-1)^n [H^n_{\mathscr{D}^\heartsuit}(X)].
$$

12*CHAPTER 1. DERIVED CATEGORY AND SEMI-ORTHOGONAL DECOMPOSITION*

Then we can show that these are inverse to each other.

In a special case, let A be an abelian category and $\mathbf{D}^b(\mathcal{A})$ *be its bounded derived category.* Then for any heart of a bounded *t*-structure $\mathbf{D}^b(\mathcal{A})^{\heartsuit} \subset \mathbf{D}^b(\mathcal{A})$ there is a *natural identification between Grothendieck groups*

$$
K_0(\mathbf{D}^b(\mathcal{A})^{\heartsuit}) = K_0(\mathbf{D}^b(\mathcal{A})) = K_0(\mathcal{A})
$$

as A here is just a special heart.

We call $\mathscr D$ is numerically finite if $K^{\mathrm{num}}_0(\mathscr D)$ has finite rank.

Proposition 1.3.3. If we consider $\mathscr{D} := \mathbf{D}^b(X)$ for a projective smooth variety X of *dimension d over an algebraically closed field k, then we have isomorphisms*

$$
\mathrm{ch}: K_0(X)_{\mathbb{Q}} \cong \mathrm{CH}^*(X)_{\mathbb{Q}}, \quad K_0^{\mathrm{num}}(X)_{\mathbb{Q}} \cong \mathrm{CH}^*_{\mathrm{num}}(X)_{\mathbb{Q}}.
$$

As $CH^*_{num}(X)$ *is of finite rank, then* $D^b(X)$ *is numerically finite.*

*Proof.*By [[13\]](#page-75-4) Example 15.2.16 we know that ch : $K_0(X)_{\mathbb{Q}} \to \mathrm{CH}^*(X)_{\mathbb{Q}}$ is an isomorphism. Then we get ch : $K_0^{\text{num}}(X)_{\mathbb{Q}} \cong \text{CH}^*_{\text{num}}(X)_{\mathbb{Q}}$ by $\text{HRR: } \chi(v, w) = \int_X \text{ch}(v^{\vee}) \text{ch}(w) \text{td}(X)$. Hence we just need to show $\text{CH}^*_{\text{num}}(X)$ is of finite rank.

Pick a Weil cohomoloty theory *H∗* , for example, take algebraic de Rham cohomology for characteristic zero and take crystalline cohomology for positive characteristic. We just need to prove that $\dim_{\mathbb{Q}} \mathrm{CH}^i_{\mathrm{num}}(X)_{\mathbb{Q}} \leq \dim H^{2i}(X) =: b_{2i}(X)$. For simplicity we take étale cohomology $H^*_{\text{\'et}}(X, \mathbb{Q}_\ell)$ of \mathbb{Q}_ℓ -coefficient with $\ell \neq \text{char}(k)$. This is classical.

Choose $\alpha_1, ..., \alpha_m \in \mathbb{Z}^{d-i}(X)$ whose classes in $H^{2d-2i}_{\text{\'et}}(X,\mathbb{Q}_\ell)$ form a maximal set of \mathbb{Q}_{ℓ} -linearly independent elements in the image of the cycle class map $\text{cl}_X : Z^{d-i}(X) \to$ $H_{\text{\'et}}^{2d-2i}(X, \mathbb{Q}_\ell)$. Clearly $m \leq b_{2d-2i}(X) = b_{2i}(X)$. Consider the linear map

$$
\lambda: \mathrm{CH}^i(X) \to \mathbb{Z}^m, \beta \mapsto \left(\int_X \beta \cdot \alpha_1, ..., \int_X \beta \cdot \alpha_m\right).
$$

We claim ker $\lambda = Z_{\text{num}}^i(X)$. Trivially $Z_{\text{num}}^i(X) \subset \text{ker }\lambda$. Conversely, set $\alpha \in \text{CH}^{d-i}(X)$ and $cl_X(\alpha) = \sum \nu_j cl_X(\alpha_j)$ where $\nu_j \in \mathbb{Q}_\ell$. Then

$$
\int_X \beta \cdot \alpha = \text{tr}(\text{cl}_X(\alpha) \cup \text{cl}_X(\beta))
$$

$$
= \sum_j \nu_j \text{tr}(\text{cl}_X(\alpha_j) \cup \text{cl}_X(\beta))
$$

$$
= \sum_j \nu_j \int_X \beta \cdot \alpha_j.
$$

Hence if $\beta \in \text{ker }\lambda$, then $\beta \in Z^i_{\text{num}}(X)$. Hence we get the claim. By the claim we get $B^i(X) \hookrightarrow \mathbb{Q}^m$. Hence well done. \Box **Proposition 1.3.4.** *Let X be a smooth projective variety. Given an S.O.D*

$$
\mathbf{D}^b(X) = \langle \mathscr{A}_1, ..., \mathscr{A}_n \rangle \,,
$$

then there are isomorphisms

$$
K_0(X) \cong \bigoplus_{i=1}^n K_0(\mathscr{A}_i), \quad K_0^{\text{num}}(X) \cong \bigoplus_{i=1}^n K_0^{\text{num}}(\mathscr{A}_i).
$$

Proof. The embedding functors $\mathscr{A}_i \to \mathbf{D}^b(X)$ induce a map $\bigoplus_i \mathscr{A}_i \to \mathbf{D}^b(X)$, whose inverse is the map induced by the projection functors $\mathbf{D}^b(X) \to \mathscr{A}_i$. This isomorphism also descends to numerical Grothendieck groups. \Box

1.4 Example I – Projective Bundles

Proposition 1.4.1. *For a smooth projective variety Y we consider the projective bundle* $\pi : \mathbb{P}(\mathscr{E}) \to Y$ *of locally free sheaf* \mathscr{E} *of rank r on Y*, *in the sense of Grothendieck. Then* for any $a \in \mathbb{Z}$ we claim that $\pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a), \dots, \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(a+r-1)$ is an S.O.D. $of \mathbf{D}^b(\mathbb{P}(\mathscr{E}))$ *.*

Remark 1.4.2. *Hence this is a rectangular Lefschetz decomposition where all* \mathcal{D}_i = $\pi^* \mathbf{D}^b(Y)$ and $\mathscr{L} = \mathscr{O}(1)$ *.*

This combined by the following three things:

Step 1. The subcategories $\pi^* \mathbf{D}^b(Y) \otimes \mathcal{O}(i)$ are all admissible of $\mathbf{D}^b(\mathbb{P}(\mathscr{E}))$. This follows from Theorem [1.1.7](#page-8-0).

Step 2. For any $E \in \pi^* \mathbf{D}^b(Y) \otimes \mathcal{O}(m)$, $F \in \pi^* \mathbf{D}^b(Y) \otimes \mathcal{O}(n)$, we have $\text{Hom}(E, F) = 0$ for any $r - 1 \ge m - n > 0$.

Indeed, we can let $m = 0$ and hence $-r+1 \leq n < 0$. Let $E = \pi^*E'$ and $F =$ $\pi^* F' \otimes \mathcal{O}(n)$, hence

$$
\operatorname{Hom}(E, F) = \operatorname{Hom}(E', \pi_*(\pi^*F' \otimes \mathscr{O}(n))) = \operatorname{Hom}(E', F' \otimes \pi_*\mathscr{O}(n)).
$$

It's well-known that $\mathbf{R}^i \pi_* \mathcal{O}(n) =$ $\sqrt{ }$ \int $\overline{1}$ Sym^{*n*}*E*, for $i = 0$, 0, for $0 < i < r - 1$, Sym^{$-n-r$} \mathscr{E}^{\vee} ,for $i = r - 1$. Well done.

Step 3. Categories $\pi^* \mathbf{D}^b(Y) \otimes \mathcal{O}(a)$,..., $\pi^* \mathbf{D}^b(Y) \otimes \mathcal{O}(a+r-1)$ generates $\mathbf{D}^b(\mathbb{P}(\mathscr{E}))$.

Herewe generalize the proof for \mathbb{P}^n in [[15\]](#page-75-0) Corollary 8.29. Consider

then by the canonical identification

$$
H^{0}(\mathbb{P}(\mathscr{E}) \times_{Y} \mathbb{P}(\mathscr{E}), \mathscr{O}(1) \boxtimes \mathscr{Q}^{\vee})
$$

= $H^{0}(\mathbb{P}(\mathscr{E}), \mathscr{O}(1) \otimes p_{*}q^{*}\mathscr{Q}^{\vee})$
= $H^{0}(\mathbb{P}(\mathscr{E}), \mathscr{O}(1) \otimes \pi_{1}^{*}\pi_{2,*}\mathscr{Q}^{\vee})$
= $H^{0}(Y, \pi_{1,*}\mathscr{O}(1) \otimes \pi_{2,*}\mathscr{Q}^{\vee})$
= $H^{0}(Y, \mathscr{E} \otimes \mathscr{E}^{\vee})$

where $0 \to \mathcal{Q} \to \pi^* \mathcal{E} \to \mathcal{O}(1) \to 0$ is the universal exact sequence. Let *s* correspond to the id_{*E*}, then $Z(s) = \Delta \subset \mathbb{P}(\mathscr{E}) \times_Y \mathbb{P}(\mathscr{E})$. By the Koszul resolution of \mathscr{O}_{Δ} respect to the *s*, we have an exact sequence:

$$
0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q})
$$

$$
\to \cdots \to \mathscr{O}(-1) \boxtimes \mathscr{Q} \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.
$$

(you can also use the Euler exact sequence instead of the universal exact sequence, just as in [\[15](#page-75-0)] Corollary 8.29)

Now there is to way to slove this.

The First Way: for any coherent sheaf $\mathscr{F} \in \text{Coh}(\mathbb{P}(\mathscr{E}))$, tensoring $q^*\mathscr{F}$ we have

$$
0 \to \mathscr{O}(-r+1) \boxtimes \bigwedge^{r-1} \mathscr{Q} \otimes \mathscr{F} \to \mathscr{O}(-r+2) \boxtimes \bigwedge^{r-2} \mathscr{Q} \otimes \mathscr{F}
$$

$$
\to \cdots \to \mathscr{O}(-1) \boxtimes (\mathscr{Q} \otimes \mathscr{F}) \to \mathscr{O} \boxtimes \mathscr{F} \to q^* \mathscr{F}|_{\Delta} \to 0.
$$

Consider a spectral sequence

$$
E_1^{ij} = \mathbf{R}^i p_{\ast}(\mathscr{O}(j) \boxtimes \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F}) = \mathscr{O}(j) \otimes \mathbf{R}^i p_{\ast} q^{\ast} \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F}
$$

$$
= \mathscr{O}(j) \otimes \pi_1^{\ast} \mathbf{R}^i \pi_{2,\ast} \bigwedge^{-j} \mathscr{Q} \otimes \mathscr{F} \Rightarrow \mathbf{R}^{i+j} p_{\ast} q^{\ast} \mathscr{F}|_{\Delta}.
$$

We know that $\mathbf{R}^{i+j} p_* q^* \mathscr{F}|_{\Delta} = 0$ if $i + j \neq 0$ and $\mathbf{R}^{i+j} p_* q^* \mathscr{F}|_{\Delta} = \mathscr{F}$ if $i + j = 0$. Since any E_1^{ij} $i₁^{i_j}$ contained in

$$
\left\langle \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(-r+1), \ldots, \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(0) \right\rangle,
$$

so is \mathscr{F} . Hence well done (if you use the Euler exact sequence instead of the universal exact sequence, the similar spectral sequence called the generalized Beilinson spectral sequence as Proposition 8.28 in [\[15](#page-75-0)]).

The Second Way: Consider again the Koszul resolution

$$
0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q})
$$

$$
\to \cdots \to \mathscr{O}(-1) \boxtimes \mathscr{Q} \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.
$$

Split it into short exact sequences

$$
0 \to \bigwedge^{r-1} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to \bigwedge^{r-2} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to M_{r-2} \to 0,
$$

\n
$$
0 \to M_{r-2} \to \bigwedge^{r-3} (\mathscr{O}(-1) \boxtimes \mathscr{Q}) \to M_{r-3} \to 0,
$$

\n...
\n
$$
0 \to M_1 \to \mathscr{O} \boxtimes \mathscr{O} \to \mathscr{O}_{\Delta} \to 0.
$$

Tensor product with *q ∗F* and direct image under the first projection *p* yields distinguished triangles of Fourier-Mukai transforms:

$$
\Phi_{M_{i+1}}(\mathscr{F}) \to \Phi_{\bigwedge^i(\mathscr{O}(-1)\boxtimes \mathscr{D})}(\mathscr{F}) \to \Phi_{M_i}(\mathscr{F}) \to \Phi_{M_{i+1}}(\mathscr{F})[1].
$$

Easy to see that

$$
\Phi_{\bigwedge^i(\mathscr{O}(-1)\boxtimes \mathscr{D})}(\mathscr{F}) \in \left\langle \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(-i) \right\rangle.
$$

By induction we get $F = \Phi_{\mathscr{O}_{\Delta}} F \in \left\langle \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O}(-r+1), \ldots, \pi^* \mathbf{D}^b(Y) \otimes \mathscr{O} \right\rangle$. Well done.

Fully Exceptional Sequence. By the discussed above, we know that pick any fully exceptional sequence $E_1, ..., E_n$ of Y, the set

$$
\{\pi^*E_1 \otimes \mathscr{O}(a), ..., \pi^*E_n \otimes \mathscr{O}(a), ..., \pi^*E_1 \otimes \mathscr{O}(a+r-1), ..., \pi^*E_n \otimes \mathscr{O}(a+r-1)\}
$$

is a fully exceptional sequence of $\mathbb{P}(\mathscr{E})$ for any $a \in \mathbb{Z}$.

Example 1.4.1. *More general case, such as Grassmann-bundle and even the flag bundle has the similar things. We refer[[35\]](#page-76-2).*

We even have the similar about the general Brauer-Severi variety which need the twist derived category. See[[3](#page-74-4)].

1.5 Example II – Blow-Ups

Here we follows section 11.1 in [\[15](#page-75-0)]. First we need some results about closed immersions.

Lemma 1.5.1. *Suppose* $j: Y \hookrightarrow X$ *of codimension C with normal bundle* N *is the zero locus of a regular section of a locally free sheaf* $\mathscr E$ *of rank c. Then for any* $F \in D^b(Y)$ *there exists the following canonical isomorphisms:*

$$
(i) j^* j_* \mathscr{O}_Y \simeq \bigoplus_{k} \bigwedge^{k} \mathscr{N}^{\vee}[k],
$$

\n
$$
(ii) j_* j^* j_* F \simeq j_* \mathscr{O}_Y \otimes j_* F \simeq j_* \left(\bigoplus_{k} \bigwedge^{k} \mathscr{N}^{\vee}[k] \otimes F \right),
$$

\n
$$
(iii) \mathscr{H}om_X(j_* \mathscr{O}_Y, j_* F) \simeq j_* \left(\bigoplus_{k} \bigwedge^{k} \mathscr{N}[-k] \otimes F \right).
$$

In particular, we have

$$
\mathcal{H}^{\ell}(j^*j_*F) \simeq \bigoplus_{s-r=\ell} \bigwedge^{r} \mathcal{N}^{\vee} \otimes \mathcal{H}^s(F)
$$

$$
\mathcal{E}xt_X^{\ell}(j_*\mathscr{O}_Y, j_*F) \simeq j_* \left(\bigoplus_{r+s=\ell} \bigwedge^{r} \mathcal{N} \otimes \mathcal{H}^s(F) \right).
$$

Proof. For (i), by Koszul resolution we get $j^*j_*\mathscr{O}_Y \simeq \bigwedge^* \mathscr{E}^{\vee}|_Y$. As the differentials in the Koszul complex $\bigwedge^* {\mathscr E}^{\vee}$ are given by contraction with the defining section, they become trivial on *Y*. Hence $j^*j_*\mathcal{O}_Y \simeq \bigoplus \bigwedge^k \mathcal{E}^{\vee}[k]|_Y$. As $\mathcal{E}|_Y \cong \mathcal{N}$, well done.

For (ii), we split the Koszul resolution into the following short exact sequences:

Again all these morphisms vanish on *Y* , we have

$$
M_i \otimes j_*F \simeq \left(\bigwedge^i \mathscr{E}^{\vee} \otimes j_*F\right) \oplus (M_{i+1}[1] \otimes j_*F).
$$

Putting these togetherand we get the result.

1.5. EXAMPLE II – BLOW-UPS 17

For (iii), as we have $\mathscr{H}om_X(j_*\mathscr{O}_Y, j_*F) \simeq (\bigwedge^i \mathscr{E}^{\vee})^{\vee} \otimes j_*F$, then by the similar argument of (ii) we get the result.

The final part follows from (ii)(iii) and the fact that j_* is exact and tensor product h the locally free sheaf commutes with taking cohomology. with the locally free sheaf commutes with taking cohomology.

Corollary 1.5.2. *Let* $j: Y \hookrightarrow X$ *be a smooth hypersurface. Then for any* $F \in D^b(Y)$ *there exists the following distinguished triangle*

$$
F \otimes \mathscr{O}_Y(-Y)[1] \to j^*j_*F \to F \to F \otimes \mathscr{O}_Y(-Y)[2].
$$

*Proof.*We omit it and refer [[15\]](#page-75-0) Corollary 11.4.

Lemma 1.5.3. Let $j: Y \hookrightarrow X$ be an arbitrary closed embedding of smooth varieties. *Then there exist isomorphisms*

$$
\mathcal{H}^i(j^*j_*\mathscr{O}_Y)\simeq\bigwedge^{i}\mathscr{N}_{Y/X}^\vee,\quad\mathscr{E}xt_X^i(j_*\mathscr{O}_Y,j_*\mathscr{O}_Y)\simeq\bigwedge^i\mathscr{N}_{Y/X}.
$$

Proof. Here we just give an idea, the detail we refer Proposition 11.8 in[[15\]](#page-75-0). Here we first pick a global resolution of locally free sheaves $\mathscr{G}^* \to \mathscr{O}_Y$ and get the free resolution $\mathscr{G}_{y}^{*} \to \mathscr{O}_{Y,y}$. Also we can let *Y* defined by a section of a vector bundle near *y*, hence we get a local Koszul resolution. Hence at the point *y* we can get the result from before. Easy to see that this is independent of any choice, we get the result. \Box

Proposition 1.5.4. *Let* $q : \widetilde{X} \to X$ *be the blow-up along a smooth subvariety* $Y \subset X$ *. Then for the structure sheaf* \mathscr{O}_Z *of a subvariety* $Z \subset Y$ *considered as an object in* $\mathbf{D}^b(X)$ *one has*

$$
\mathcal{H}^k(q^*\mathscr{O}_Z)\simeq (\Omega_{\pi}^{\otimes -k}\otimes \mathscr{O}_{\pi}(-k))|_{\pi^{-1}(Z)}
$$

where π : $\mathbb{P}(\mathcal{N}_{Y/X}) \to Y$ *is the contraction of the exceptional divisor.*

Proof. We will only show the case that $Y \subset X$ is given as the zero set of a regular section $s \in H^0(X, \mathscr{E})$ of a locally free sheaf \mathscr{E} of rank *c*. The general case follows from this and the similar argument of Lemma [1.5.3,](#page-16-0) we refer[[15\]](#page-75-0) Proposition 11.12 for details.

Consider $g: \mathbb{P}(\mathscr{E}) \to X$ and consider the Euler sequence

$$
0 \to \mathscr{O}_g(-1) \to g^*\mathscr{E} \stackrel{\phi}{\to} \mathscr{T}_g \otimes \mathscr{O}_g(-1) \to 0.
$$

Let $t := \phi(g^*(s)) \in H^0(\mathbb{P}(\mathscr{E}), \mathscr{T}_g \otimes \mathscr{O}_g(-1))$ and consider the zero scheme $Z(t) \subset \mathbb{P}(\mathscr{E})$. BLABLABLA

Hence *g* induced $Z(t) \to X$ can be identified with the blow-up $q : \widetilde{X} \to X$. Pick the Koszul resolution $\bigwedge^*(\mathcal{O}_g(1) \otimes \Omega_g) \to \mathcal{O}_{\widetilde{X}} \to 0$ of $\mathcal{O}_{\mathbb{P}(\mathscr{E})}$ -modules, hence

$$
\iota_*(\mathcal{H}^k(q^*\mathscr{O}_Z)) \simeq \iota_*(\mathcal{H}^k(\iota^*\mathscr{g}^*\mathscr{O}_Z)) \simeq \mathcal{H}^k(\iota_*\iota^*\mathscr{g}^*\mathscr{O}_Z)
$$

$$
\simeq \mathcal{H}^k(\mathscr{g}^*\mathscr{O}_Z \otimes \mathscr{O}_{\widetilde{X}}) \simeq \mathcal{H}^k(\bigwedge^*(\mathscr{O}_g(1) \otimes \Omega_g)|_{g^{-1}(Z)})
$$

where $\iota : \widetilde{X} = Z(t) \hookrightarrow \mathbb{P}(\mathscr{E})$. If *Z* is contained in *Y*, the differentials, which are given by contraction with the section *t*, vanish and, therefore

$$
\mathcal{H}^{k}(q^*\mathscr{O}_Z) \simeq (\Omega_g^{\otimes -k} \otimes \mathscr{O}_g(-k))|_{g^{-1}(Z)}.
$$

 \Box

Well done.

Lemma 1.5.5. *Suppose* $f : S \rightarrow T$ *is a projective morphism of smooth projective* varieties such that $f_* : \mathbf{D}^b(S) \to \mathbf{D}^b(T)$ sends \mathscr{O}_S to \mathscr{O}_T . Then $f^* : \mathbf{D}^b(T) \to \mathbf{D}^b(S)$ is *fully faithful and thus describes an equivalence of* $\mathbf{D}^b(T)$ *with an admissible triangulated subcategory of* $\mathbf{D}^b(S)$ *.*

Proof. Trivial by the projection formula and $f^* \dashv f_*,$ which shows directly id $\simeq f_* f^*,$ hence fully faithful. П

Lemma 1.5.6. *Let the smooth varieties* $Y \subset X$ *of codimension* $c > 1$ *, and let* $q : \widetilde{X} \to X$ *be the blow-up with exceptional divisor* $i: E \hookrightarrow \tilde{X}$ and $\pi: E = \mathbb{P}(\mathcal{N}_{Y/X}) \to Y$ *is the contraction of the exceptional divisor. Then the functor*

$$
\Phi_k = i_*(\mathscr{O}_E(kE) \otimes \pi^*(-)) : \mathbf{D}^b(Y) \to \mathbf{D}^b(\widetilde{X})
$$

is fully faithful for any k. Moreover, Φ_k *admits a right adjoint functor.*

Proof. The functor Φ_k is a Fourier-Mukai transform with kernel $\mathscr{O}_E(kE)$ considered as on object in $\mathbf{D}^b(Y \times \tilde{X})$. As such, Φ_k admits in particular right and left adjoint. Now we will use a result due to Bondal-Orlov (Proposition 7.1 in[[15\]](#page-75-0)):

• Consider the Fourier-Mukai transform $\Phi_{\mathscr{P}}: \mathbf{D}^b(X) \to \mathbf{D}^b(Y)$ between the derived categories of two smooth projective varieties *X* and *Y* given by an object $\mathscr{P} \in$ $\mathbf{D}^b(X \times Y)$. Then the functor $\Phi_{\mathscr{P}}$ is fully faithful if and only if for any two closed points $x, y \in X$ one has

$$
\operatorname{Hom}(\Phi_{\mathscr{P}}(\kappa(x)), \Phi_{\mathscr{P}}(\kappa(y))[i]) = \begin{cases} k, & \text{if } x = y \text{ and } i = 0; \\ 0, & \text{if } x \neq y \text{ or } i < 0 \text{ or } i > \dim(X). \end{cases}
$$

For any *j* and $x \neq y$, this follows from the fact that the result objects have disjoint supports.

Now we let $x = y \in Y$. We need to show that $\text{Ext}^i_{\tilde{X}}(\mathscr{O}_{E_x}, \mathscr{O}_{E_x})$ is trivial for $i \notin Y$ $[0, d = \dim Y]$ and of dimension one for $i = 0$. By Lemma [1.5.3](#page-16-0) we get the spectral sequence

$$
E_2^{p,q} = H^p(\widetilde{X}, \mathcal{E}xt_{\widetilde{X}}^q(\mathcal{O}_{E_x}, \mathcal{O}_{E_x})) = H^p\left(E_x, \bigwedge^q \mathcal{N}_{E_x/\widetilde{X}}\right)
$$

$$
\Rightarrow \text{Ext}_{\widetilde{X}}^{p+q}(\mathcal{O}_{E_x}, \mathcal{O}_{E_x}).
$$

Hence we need to determine $\mathscr{N}_{E_r/\widetilde{X}}$. Consider the exact sequence

$$
0 \to \mathscr{N}_{E_x/E} \to \mathscr{N}_{E_x/\widetilde{X}} \to \mathscr{N}_{E/\widetilde{X}}|_{E_x} \to 0,
$$

as $\mathscr{N}_{E/\widetilde{X}} = \mathscr{O}_E(E)$ and $\mathscr{N}_{E_x/E} = \mathscr{O}_{E_x}^{\oplus d}$ and since $E_x \cong \mathbb{P}^{c-1}$ one get

$$
\mathscr{N}_{E_x/\widetilde{X}} \cong \mathscr{O}_{E_x}(-1) \oplus \mathscr{O}_{E_x}^{\oplus d}
$$

by computing the $Ext¹$. Hence we can directly get the result.

Proposition 1.5.7. *Let the smooth varieties* $Y \subset X$ *of codimension* $c > 1$ *, and let q* : $X \rightarrow X$ *be the blow-up with exceptional divisor* $i: E \hookrightarrow X$ *and* $\pi: E = \mathbb{P}(\mathcal{N}_{Y/X}) \rightarrow Y$ *is the contraction of the exceptional divisor. Define*

$$
\mathscr{D}_k := \operatorname{Im}(\Phi_{-k} : \mathbf{D}^b(Y) \to \mathbf{D}^b(\widetilde{X}))
$$

for $k = -c + 1, ..., -1$ *and* $\mathscr{D}_0 := q^* \mathbf{D}^b(X)$ *. Then* $\mathscr{D}_{-c+1}, \ldots, \mathscr{D}_{-1}, \mathscr{D}_0$ forms an S.O.D of $\mathbf{D}^b(\widetilde{X})$ *.*

Proof. We divided this into three parts:

Step 1. For $-c+1 \leq \ell < k < 0$ we have $\mathscr{D}_{\ell} \subset \mathscr{D}_{k}^{\perp}$. For any $E, F \in \mathbf{D}^b(Y)$ we have

 $\text{Hom}(i_*(\pi^*F \otimes \mathscr{O}_{\pi}(k)), i_*(\pi^*E \otimes \mathscr{O}_{\pi}(\ell))) = \text{Hom}(i^*i_*\pi^*F, \pi^*E \otimes \mathscr{O}_{\pi}(\ell - k)).$

By Corollary [1.5.2,](#page-16-1) we get the distinguished triangle:

$$
\pi^* F \otimes \mathscr{O}_{\pi}(1)[1] \to i^* i_* \pi^* F \to \pi_* F \to \pi^* F \otimes \mathscr{O}_{\pi}(1)[2].
$$

Hence we just need to show that

$$
\operatorname{Hom}(\pi^*F, \pi^*E \otimes \mathscr{O}_{\pi}(\ell-k)) = 0 = \operatorname{Hom}(\pi^*F \otimes \mathscr{O}_{\pi}(1), \pi^*E \otimes \mathscr{O}_{\pi}(\ell-k)).
$$

Both are easily deduced from adjunction $\pi^* \dashv \pi_*$, the projection formula, and $\pi_* \mathcal{O}_\pi(\ell - \ell')$ *k*) = 0 for $−c + 1 \le \ell - k < 0$.

Step 2. For $-c+1 \leq \ell < 0$ we have $\mathscr{D}_{\ell} \subset \mathscr{D}_{0}^{\perp}$.

Again use $\pi_* \mathcal{O}_{\pi}(\ell) = 0$ for $-c+1 \leq \ell < 0$ to conclude this.

Step 3. We have $\mathscr{D}_{-c+1}, ..., \mathscr{D}_{-1}, \mathscr{D}_0$ generates $\mathbf{D}^b(\widetilde{X})$.

For this we let $E \in \mathscr{D}_k^{\perp}$ for all $-c+1 \leq k < 0$, then we claim that then exists an object $G \in \mathbf{D}^b(Y)$ with $i^*E \otimes \mathscr{O}_{\pi}(c-1) \simeq \pi^*G$.

By assumption, for any $-c+1 \leq k < 0$ one has $\text{Hom}(i_*(\pi^*F \otimes \mathcal{O}_{\pi}(k)), E) = 0$ for all $F \in \mathbf{D}^b(Y)$. By Grothendieck duality we get for any $-c+2 \leq k < 1$ one has $\text{Hom}(\pi^*F \otimes \mathscr{O}_{\pi}(k), i^*E) = 0.$ By Proposition [1.4.1](#page-12-1) we have $i^*E \in \pi^*D^b(Y) \otimes \mathscr{O}_{\pi}(-c+1)$.

Hence if we let $E' := E \otimes \mathscr{O}((-c+1)E)$, then $i^*E' \in \pi^* \mathbf{D}^b(Y)$. Pick such $G \in \mathbf{D}^b(Y)$ such that $i^*E' \simeq \pi^*G$.

If $i^*E' \simeq 0$, then supp $(E') \subset E$ and $E' \in \mathcal{D}_0$.

If not, consider the spectral sequence

$$
E_2^{r,s} = \mathrm{Hom}(E', \mathcal{H}^s(q^*\kappa(x))[r]) \Rightarrow \mathrm{Hom}(E', q^*\kappa(x)[r+s]).
$$

By Proposition [1.5.4](#page-16-2) we have $\mathcal{H}^s(q^*\kappa(x)) \simeq \Omega_{E_x}^{\otimes -s}(-s)$. Hence

$$
E_2^{r,s} \simeq \text{Hom}(E', i_*\Omega_{E_x}^{\otimes -s}(-s)[r])
$$

\simeq \text{Hom}(\pi^*G, \Omega_{E_x}^{\otimes -s}(-s)[r])
\simeq \text{Hom}(G, \pi_*\Omega_{E_x}^{\otimes -s}(-s)[r]) = 0

except for $s = 0$. Hence

$$
E_2^{m,0} \simeq \text{Hom}(G, \kappa(x)[m]) \simeq \text{Hom}(q^*\kappa(x), E[\dim X - m])^\vee \neq 0
$$

for some $m \in \mathbb{Z}$ and some $x \in Y$. Hence if $E \in \mathscr{D}_k^{\perp}$ for all $-c+1 \leq k < 0$, we cannot have $E \in \mathscr{D}_0^{\perp}$. Hence well done. \Box

1.6 Example III – Smooth Quadrics and Grassmannians

Here we follows the results in[[19\]](#page-75-5) and just give some results.

Proposition 1.6.1. *Let* Gr(*k, V*) *be the Grassmannian of k-dimensional subspaces in a vector space V of dimension n. Let U be thebtautological subbundle of rank k. If* char*k* = 0 *then there is a strong S.O.D*

$$
\mathbf{D}^b(\mathsf{Gr}(k,V)) = \langle \Sigma^{\alpha} \mathscr{U}^{\vee} \rangle
$$

where α *is a Young diagram in the* $k \times (n - k)$ *rectangle and* Σ^{α} *is the associated Schur functor.*

*Proof.*We will not prove this. We refer the original proof in [[19](#page-75-5)]. Note that as in the proof of the projective bundles, if we let $\mathscr{U}^{\perp} = ((V \otimes \mathscr{O}_{\mathsf{Gr}(k,V)})/\mathscr{U})^{\vee}$, then we can let a canonical section

$$
s \in H^0(\mathsf{Gr}(k,V) \times \mathsf{Gr}(k,V), \mathscr{U}^\vee \boxtimes (\mathscr{U}^\perp)^\vee) = V^\vee \otimes V = \mathrm{End}(V,V)
$$

correspond to the id_{*V*}. Then *s* vanishes exactly along the diagonal $\Delta \subset \mathsf{Gr}(k, V)$ \times $Gr(k, V)$ which induce the Koszul resolution

$$
\cdots \to \bigwedge^2(\mathscr{U} \boxtimes \mathscr{U}^\perp) \to \mathscr{U} \boxtimes \mathscr{U}^\perp \to \mathscr{O}_{\mathsf{Gr}(k,V) \times \mathsf{Gr}(k,V)} \to \mathscr{O}_{\Delta} \to 0
$$

where the *i*-th term is just the sum $\bigoplus_{\alpha} \Sigma^{\alpha} \mathscr{U} \boxtimes \Sigma^{\alpha^*} \mathscr{U}^{\perp}$ where α runs through Young diagrams with *i* cells. Hence as before this deduce another generalised Beilinson spectral sequence

$$
E_1^{p,q} = \bigoplus_{|\alpha|=-p} \mathbb{H}^q(F \otimes \Sigma^{\alpha^*} \mathscr{U}^\perp) \otimes \Sigma^{\alpha} \mathscr{U} \Rightarrow \mathcal{H}^{p+q}(F)
$$

for any $F \in \mathbf{D}^b(\mathsf{Gr}(k, V)).$

Remark 1.6.2. *Note that we even have the Lefschetz decomposition on some special Grassmannians. We refer [\[12](#page-75-6)] and we only give the statement.*

• *A Grassmannian* $\mathsf{Gr}(k,n)$ *with* $gcd(k,n) = 1$ *has a rectangular Lefschetz decomposition*

$$
\mathbf{D}^b(\mathsf{Gr}(k,V)) = \langle \mathcal{B}, \mathcal{B}(1), \cdots, \mathcal{B}(n-1) \rangle
$$

of length n, with B as:

$$
\mathscr{B} = \left\langle \Sigma^{\alpha} \mathscr{U}^{\vee} : \alpha_p < (n-k)(k-p)/k, 1 \leq p \leq k-1 \right\rangle,
$$

 ${\bf Proposition \ 1.6.3.} \ \ Let \ Q \subset \mathbb P^{n+1}_k.$ h_k^{n+1} be a smooth quadric hypersurface where chark $\neq 2$, *then there is a full exceptional collection*

$$
\mathbf{D}^{b}(Q) = \begin{cases} \langle S, \mathscr{O}_{Q}, \mathscr{O}(Q)(1), ..., \mathscr{O}(Q)(n-1) \rangle, n \text{ odd}; \\ \langle S^-, S^+, \mathscr{O}_{Q}, \mathscr{O}(Q)(1), ..., \mathscr{O}(Q)(n-1) \rangle, n \text{ even}; \end{cases}
$$

where S, S^{\pm} *are the spinor bundles.*

Remark 1.6.4. *This is also right for the family version, that is, consider a flat fibration in quadrics* $f: X \to S$ *. In other words, assume that* $X \subset \mathbb{P}_S(\mathscr{E})$ *is a divisor of relative degree* 2 where $\mathscr E$ *is of rank* $n+2$ *on a scheme S corresponding* to *a line subbundle* $\mathscr{L} \subset \text{Sym}^2 \mathscr{E}^{\vee}$. For each *i* there is a fully faithful functor $\Phi_i: \mathbf{D}^b(S) \to \mathbf{D}^b(X)$ given by $F \mapsto f^*F \otimes \mathscr{O}_{X/S}(i)$ *. Then we have a S.O.D*

$$
\mathbf{D}^b(X)=\left< \mathbf{D}^b(S,\mathscr{C}\ell_0),\Phi_0(\mathbf{D}^b(S)),...,\Phi_{n-1}(\mathbf{D}^b(S)) \right>
$$

where $\mathscr{C}\ell_0$ *is the sheaf of even parts of Clifford algebras on S associated with the quadric fibration* $X \to S$ *.*

1.7 Example IV – Curves

Here we will follows [\[33](#page-76-3)]. Let *C* be a smooth projective curve over C.

Proposition 1.7.1. *When* $g(C) = 0$ *, then* $C \cong \mathbb{P}^1$ *and we have S.O.D*

$$
\mathbf{D}^b(C) = \langle \mathscr{O}_C, \mathscr{O}_C(1) \rangle.
$$

Proof. Special case of Proposition [1.4.1](#page-12-1).

Now we consider $g(C) \geq 1$ and show a lemma.

Lemma 1.7.2. *Let* $g(C) \geq 1$ *. Suppose* $\mathscr{E} \in \text{Coh}(C)$ *is included in a triangle*

$$
Y \to \mathscr{E} \to X \to Y[1]
$$

 $with \text{Hom}^{\leq 0}(Y, X) = 0, \text{ then } X, Y \in \text{Coh}(C).$

Proof. Almost the pure homological algebra, using the fact that $\deg K_C \geq 0$ here. See [\[14](#page-75-7)] Lemma 7.2. \Box

Corollary 1.7.3. Let $g(C) \geq 1$ and $\mathbf{D}^b(C) = \langle \mathcal{A}, \mathcal{B} \rangle$ be an S.O.D. Then for any $\mathscr{E} \in \text{Coh}(C)$ *, there exist coherent sheaves* $B \in \mathscr{B} \cap \text{Coh}(C)$ *and* $A \in \mathscr{A} \cap \text{Coh}(C)$ *, and an exact sequence of sheaves*

$$
0 \to B \to \mathscr{E} \to A \to 0.
$$

Proposition 1.7.4. When $g(C) \geq 1$, then $\mathbf{D}^b(C)$ admits no non-trivial S.O.Ds.

Proof. Let $\mathbf{D}^b(C) = \langle \mathcal{A}, \mathcal{B} \rangle$ be an S.O.D. By Corollary [1.7.3](#page-21-0), for any closed point $x \in C$ there exist $B \in \mathscr{B} \cap \mathrm{Coh}(C)$, $A \in \mathscr{A} \cap \mathrm{Coh}(C)$ such that both of them are sheaves and there exists an exact sequence

$$
0 \to B \to \mathscr{O}_x \to A \to 0.
$$

Hence \mathscr{O}_x is contained in only one of $\mathscr A$ or $\mathscr B$. Hence $C(\text{Spec } \mathbb{C}) = C_{\mathscr A} \sqcup C_{\mathscr B}$ by this fact.

By Proposition 3.17 in [\[15](#page-75-0)] we know that the set of closed points forms a spanning class, hence if $C_{\mathscr{B}} = \emptyset$ or $C_{\mathscr{A}} = \emptyset$, then \mathscr{B} or \mathscr{A} is trivial. Hence we may let both $C_{\mathscr{B}}$ and $C_{\mathscr{A}}$ are not empty.

We now claim that any coherent sheaf in *B* must be torsion. Indeed, otherwise the support of the sheaf coincides with the whole variety C , hence there exists a non-trivial morphism from the sheaf to a closed point which belongs to $\mathscr A$. This is a contradiction.

Next we claim that any torsion free sheaf belongs to *A* . Indeed, let *E* be a torsion free sheaf. As before, we have an exact sequence

$$
0 \to B \to \mathscr{E} \to A \to 0.
$$

Since $\mathscr E$ is torsion free, so is *B*. Combined with the first claim, we see *B* must be zero, hence $A = \mathscr{E}$.

By Corollary 3.19 in[[15](#page-75-0)] we know that the set of torsion free sheaves forms a spanning class of $\mathbf{D}^b(C)$. Hence \mathscr{B} must be trivial. Well done. \Box

Remark 1.7.5. *Actually the only thing we use the* $g(C) \geq 1$ *is Corollary [1.7.3](#page-21-0). So any smooth projective variety satisfies Corollary [1.7.3](#page-21-0) admits no non-trivial S.O.Ds.*

1.8 Example V – Other Examples

Proposition 1.8.1. *Let X be a smooth projective variety with* $\omega_X \cong \mathscr{O}_X$ *, then* $\mathbf{D}^b(X)$ *admits no non-trivial S.O.Ds.*

Proof. Let there exists an S.O.D $\mathbf{D}^b(X) = \langle \mathcal{A}, \mathcal{B} \rangle$. Hence for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$ and for any *i* we have $Hom(B, A[i]) = 0$. Hence by Serre duality we have

$$
\operatorname{Hom}(B,A[i]) = \operatorname{Hom}(A[i],B[n])^{\vee} = \operatorname{Hom}(A,b[n-i])^{\vee} = 0.
$$

Hence $\mathbf{D}^b(X) = \langle \mathcal{B}, \mathcal{A} \rangle$ is also an S.O.D. Hence \mathcal{A}, \mathcal{B} forms an orthogonal decomposition. Hence by Proposition 3.10 in[[15\]](#page-75-0) and the fact that *X* is connected, this S.O.D must be trivial. П

Lemma 1.8.2. Let *X* be a smooth projective variety and $F \in D^b(X)$ is non-trivial, *and L be a globally generated line bundle. Then*

$$
\mathrm{Hom}_X(F, F \otimes \mathscr{L}) \neq 0.
$$

*Proof.*Here we follows [[33\]](#page-76-3). Let $m = \min\{i : H^i(F) \neq 0\}$ and consider the following standard distinguished triangle

$$
\tau_{\leq m} F \to F \to \tau_{\geq m+1} F \to \tau_{\leq m} F[1].
$$

Since $\tau_{\leq m} F$ is isomorphic to a shift of a sheaf, we can find $s \in H^0(X, \mathcal{L})$ which induce a non-trivial $\tau_{\leq m} F \to \mathscr{L} \otimes \tau_{\leq m} F$. Consider

$$
\tau_{\geq m+1} F[-1] \longrightarrow \tau_{\leq m} F \longrightarrow F \longrightarrow \tau_{\geq m+1} F
$$

\n
$$
\downarrow_{\sigma_{\geq m+1}[-1]} \qquad \qquad \downarrow_{\sigma_{\leq m}} \qquad \qquad \downarrow_{\sigma}
$$

\n
$$
\tau_{\geq m+1} F \otimes \mathscr{L}[-1] \longrightarrow \tau_{\leq m} F \otimes \mathscr{L} \longrightarrow F \otimes \mathscr{L} \longrightarrow \tau_{\geq m+1} F \otimes \mathscr{L}
$$

where these four vertical arrows are defined by taking tensor products with the section *s*. Hence here $\sigma_{\leq m} \neq 0$. Suppose that $\sigma = 0$. Then $\sigma_{\leq m} \neq 0$ factors through a morphism from to $\tau_{\geq m+1} F \otimes \mathcal{L}[-1]$, which is zero since $\tau_{\geq m+1} F \otimes \mathcal{L}[-1]$ has trivial cohomologies up to degree $m + 1$. Thus we obtain a contradiction, well done. up to degree $m + 1$. Thus we obtain a contradiction, well done.

Proposition 1.8.3. *Let X be a smooth projective variety whose canonical line bundle is globally generated.* Then $\mathbf{D}^b(X)$ has no exceptional objects.

Proof. This follows from Lemma [1.8.2](#page-22-1) and the duality

 $\text{Hom}(F, F[\dim X]) = \text{Hom}(F, F \otimes \omega_X)^{\vee} \neq 0.$

Well done.

CHAPTER 1. DERIVED CATEGORY AND SEMI-ORTHOGONAL DECOMPOSITION

Chapter 2

Non-Commutative Smooth Projective Varieties

Here we will follows the fundamental paper[[23\]](#page-75-1) and a nice survey [\[26](#page-75-2)].

2.1 Basic Definition

Definition 2.1.1. Let $\mathscr D$ be a triangulated category linear over $\mathbb C$. We say that $\mathscr D$ is a *(geometric) non-commutative smooth projective variety if there exists a smooth projective variety X over* $\mathbb C$ *and a fully faithful* $\mathbb C$ *-linear exact functor* $\mathscr D \to \mathbf D^b(X)$ *having left and right adjoints.*

Remark 2.1.2. *Actually there is another more general non-commutative smooth projective variety (without geometric), but we will just consider these case. Note that by identifying* $\mathscr D$ *with its essential image in* $\mathbf{D}^b(X)$ *, then the definition is only asking that D is an admissible subcategory.*

2.2 Functors of Fourier-Mukai Type

Before introduce this, we will introduce the products of the non-commutative smooth projective varieties. Note that there is a generalization $-$ gluing of categories, but we willomit it and we refer $|34|$ $|34|$ $|34|$.

Proposition 2.2.1. If $\mathscr{D}_1 \subset \mathbf{D}^b(X_1)$ and $\mathscr{D}_2 \subset \mathbf{D}^b(X_2)$ are non-commutative smooth *projective varieties, we can define D*¹ ⊠ *D*² *as the smallest triangulated subcategory of* $\mathbf{D}^b(X_1 \times X_2)$ which is closed under taking direct summands and contains all objects of *the form* $F_1 \boxtimes F_2$ *, with* $F_i \in \mathcal{D}_i$ *. Then* $\mathcal{D}_1 \boxtimes \mathcal{D}_2 \subset \mathbf{D}^b(X_1 \times X_2)$ *is admissible.*

Proof. By Remark [1.1.5\(](#page-7-0)c), we just need to show that there is an S.O.D:

$$
\mathbf{D}^b(X_1\times X_2)=\left\langle \mathscr{D}_1\boxtimes \mathscr{D}_2,{}^{\perp}\mathscr{D}_1\boxtimes \mathscr{D}_2, \mathscr{D}_1\boxtimes {}^{\perp}\mathscr{D}_2,{}^{\perp}\mathscr{D}_1\boxtimes {}^{\perp}\mathscr{D}_2 \right\rangle.
$$

The first condition is trivial by Künneth formula. The second condition follows from the finite locally free resolution and stupid truncations. See [\[26](#page-75-2)] Proposition 2.15 for details. \Box

Definition 2.2.2. Let X_1, X_2 be algebraic varieties. Let $\mathscr{D}_1 \hookrightarrow \mathbf{D}^b(X_1)$ and $\mathscr{D}_2 \hookrightarrow$ $\mathbf{D}^b(X_2)$ *be admissible categories. A functor* $F:\mathscr{D}_1\to\mathscr{F}_2$ *is called of Fourier-Mukai type if the composite functor*

$$
\mathbf{D}^b(X_1) \stackrel{\delta_1}{\rightarrow} \mathscr{D}_1 \stackrel{F}{\rightarrow} \mathscr{D}_2 \hookrightarrow \mathbf{D}^b(X_2)
$$

is equivalent to a Fourier-Mukai transform where δ_1 *<i>is the left adjoint of* $\mathscr{D}_1 \hookrightarrow \mathbf{D}^b(X_1)$ *.*

Proposition 2.2.3. *Let X be a smooth projective variety with an S.O.D*

$$
\mathbf{D}^b(X) = \langle \mathcal{D}_1, ..., \mathcal{D}_n \rangle.
$$

Then the induced projection $\delta_i : \mathbf{D}^b(X) \to \mathcal{D}_i$ *is of Fourier-Mukai type whose kernel is unique up to an isomorphism.*

Proof. There is a more general case in [\[20](#page-75-3)] Theorem 7.1. But in our case this is very easy. By Proposition [2.2.1](#page-24-3) the subcategories $\mathscr{D}_i \boxtimes \mathbf{D}^b(X)$ are admissible. Hence consider $K_i \in$ $\mathbf{D}^b(X \times X)$ as the projection of the structure sheaf of the diagonal $\Delta_* \mathscr{O}_X \in \mathbf{D}^b(X \times X)$ onto the category $\mathscr{D}_i \boxtimes \mathbf{D}^b(X)$ Then easy to see that there are just the Fourier-Mukai kernel here. The uniqueness follows from Theorem [1.1.10](#page-9-1). □

Remark 2.2.4. *In the case of the Proposition, if we let*

$$
\mathscr{B}_i := {}^{\perp} \langle \mathscr{D}_1, ..., \mathscr{D}_{i-1}, \mathscr{D}_{i+1}, ..., \mathscr{D}_n \rangle ,
$$

then the kernel P_i *of* δ_i *will be contained in* $\mathscr{D}_i \boxtimes \mathscr{B}_i^{\vee}$ *. This is easy but we will omit the proof and we refer* [\[22](#page-75-8)] Proposition 3.8. From this we find that $Ext^*(P_i, P_j \circ S_X) = 0$ *for any* $i \neq j$ *. See Corollary 3.10 in [\[22](#page-75-8)].*

Note that the Serre functor play a vital role in the whole theory. Here we will state some facts about it.

Proposition 2.2.5. *Some basic facts about the Serre functor:*

(i) If a Serre functor exists, then it is unique up to unique isomorphism and it is an exact functor of triangulated categories.

2.3. HOCHSCHILD HOMOLOGY AND COHOMOLOGY 27

(ii) If $j: \mathcal{C} \hookrightarrow \mathcal{D}$ *is an admissible subcategory and* \mathcal{D} *has a Serre functor* $S_{\mathcal{D}}$ *, then* \mathcal{C} *also has a Serre functor as:*

$$
S_{\mathscr{C}} \cong j^! \circ S_{\mathscr{D}} \circ j, \quad j^! \cong S_{\mathscr{C}} \circ j^* \circ S_{\mathscr{D}}^{-1}.
$$

Furthermore, a Serre functor on C ⊥ exists as well and satisfies

$$
S_{\mathscr{C}^\perp}\cong S_{\mathscr{D}}\circ \mathbf{R}_{\mathscr{C}},\quad S_{\mathscr{C}^\perp}^{-1}\cong \mathbf{L}_{\mathscr{C}}\circ S_{\mathscr{D}}^{-1}.
$$

In particular any non-commutative smooth projective variety has a Serre functor.

- *(iii) The Serre functor and its inverse of any non-commutative smooth projective variety are both of Fourier-Mukai type.*
- *(iv)* If $\mathscr{A} \to \mathscr{B}$ be a \mathbb{C} -linear equivalence with \mathscr{A}, \mathscr{B} are all have a Serre functor such *that the* Hom*s are all of finite dimension, then this equivalence commute with the Serre functors.*
- *(v) If F* : *A → B be a* C*-linear functor with A , B are all have a Serre functor* $S_{\mathscr{A}}, S_{\mathscr{B}}$ *such that the* Hom*s are all of finite dimension, then if* G *is a left adjoint of F*, then *F* has a right adjoint $S_{\mathscr{A}} \circ G \circ S_{\mathscr{B}}^{-1}$. Similar for another side.
- *(vi) Given two non-commutative smooth projective varieties* $\mathscr{D}_1 \subset \mathbf{D}^b(X_1)$ *and* $\mathscr{D}_2 \subset$ $\mathbf{D}^b(X_2)$, let us denote by $P_{S_{\mathscr{D}_1}} \in D^b(X_1 \times X_1)$, respectively $P_{S_{\mathscr{D}_2}} \in D^b(X_2 \times X_2)$, *kernels representing the Serre functors. Then the Serre functor of the product* $\mathscr{D}_1 \boxtimes \mathscr{D}_2 \subset \mathbf{D}^b(X_1 \times X_2)$ *is representable by* $P_{S_{\mathscr{D}_1}} \boxtimes P_{S_{\mathscr{D}_2}}$.

Proof. See [Tag 0FY6](https://stacks.math.columbia.edu/tag/0FY6)for (i). See Lemma 1.30 in [[15\]](#page-75-0) for (iv). See Remark 1.31 in [15] for (v) . Now we will prove $(ii)(iii)(vi)$.

For (ii), this directly follows from the definitions and the Yoneda's lemma. When $\mathscr{D} = \mathbf{D}^b(X)$ where *X* is a smooth projective variety, then $S_{\mathscr{D}}$ exists by Serre duality.

For (iii), consider the admissible $j : \mathscr{D} \hookrightarrow \mathbf{D}^b(X)$ for some smooth projective variety. By using (ii) and (v) we know that

$$
S_{\mathcal{D}}^{-1} \cong j^* \circ S_X^{-1} \circ j.
$$

By Proposition [2.2.3](#page-25-0) and the fact that *S^X* is of course a Fourier-Mukai transform, we find that $S_{\mathscr{D}}^{-1}$ is of Fourier-Mukai type. Hence $j \circ S_{\mathscr{D}}^{-1} \circ j^*$ is a Fourier-Mukai transform. As its inverse is just $j ∘ S_{\mathscr{D} ∘ j^*}$, then it is an equivalence and hence a Fourier-Mukai transform. Hence $S_{\mathscr{D}}$ is of Fourier-Mukai type.

For (vi), this can be showed directly. We omit it.

\Box

2.3 Hochschild homology and cohomology

 $\bf{Definition 2.3.1.}$ *Let* $\mathscr{D} \subset D^b(X)$ *be a non-commutative smooth projective variety and* $P \in \mathbf{D}(X \times X)$ the Fourier-Mukai kernel of the projection functor onto $\mathscr D$ and let S_X *is the Fourier-Mukai kernel of the Serre functor on X. Then we define the Hochschild cohomology and Hochschild homology of D as:*

$$
\mathsf{HH}^*(\mathscr{D}) := \mathrm{Ext}^*(P, P), \quad \mathsf{HH}_*(\mathscr{D}) := \mathrm{Ext}^*(P, P \circ S_X).
$$

More generally, the Hochschild cohomology of X with support in T and coefficients in E is defined as

$$
\mathsf{HH}^*_T(X,E) := \operatorname{Ext}^*(E,E \circ T)
$$

for any kernels $E, T \in D^b(X \times X)$ *. In case of* $T = \Delta_* \mathcal{O}_X$ *we call it the Hochschild cohomology of X* with coefficients in *E.* Similarly, in case of $T = S_X$ *we call it the Hochschild homology of X* with coefficients in *E. Hence when* $(E, T) = (P, \Delta_* \mathcal{O}_X)$ and (P, S_X) , this is just the Hochschild cohomology and Hochschild homology of \mathscr{D} .

Remark 2.3.2. *Some important remarks:*

(a) We can see that HH*∗*(*D*) *is a graded right module over* HH*[∗]* (*D*) *by Yoneda's lemma. Moreover, by the definition of Serre functor, the graded structure is given by*

$$
\mathrm{HH}^i(\mathscr{D}) \times \mathrm{HH}_j(\mathscr{D}) \to \mathrm{HH}_{i+j}(\mathscr{D}).
$$

(b) We can define a perfect pairing

$$
\mathsf{HH}_*(\mathscr{D}) \times \mathsf{HH}_{-*}(\mathscr{D}) \to \mathbb{C}
$$

which called a Mukai pairing. This follows from

$$
\mathsf{HH}_i(\mathscr{D}) = \mathsf{Ext}^i(P, P \circ S_X) = \mathsf{Ext}^i(P, P \circ S_{X \times X} S_X)
$$

$$
= \mathsf{Ext}^{-i}(P \circ S_X^{-1}, P)^\vee = \mathsf{HH}_{-i}(\mathscr{D})^\vee
$$

by Serre duality.

Lemma 2.3.3. Let $\mathscr{D} \subset \mathbf{D}^b(X)$ be a non-commutative smooth projective variety and *let* $P \in \mathbf{D}^{(X)} \times X$ *the Fourier-Mukai kernel of the projection functor onto* \mathcal{D} *, then we have*

$$
\mathsf{HH}^*(\mathscr{D}) = H^*(X, \Delta^! P), \quad \mathsf{HH}_*(\mathscr{D}) = H^*(X, \Delta^* P).
$$

Proof. Let *R* be the kernel of the right projection onto [⊥] \mathscr{D} . Then we have a distinguished triangle $R \to \Delta_* \mathcal{O}_X \to P$. On the other hand, $Ext^*(R, P) = Ext^*(R, P \circ S_X) = 0$ by Remark [2.2.4.](#page-25-1) Since

$$
\Delta^!(P \circ S_X) = \Delta^!(P \circ S_X) = \Delta^!(P \otimes p_2^* \omega_X[\dim X]) = \Delta^* P,
$$

we can get the result directly.

Lemma 2.3.4. *If* $\mathscr{A} = \langle \mathscr{A}_1, ..., \mathscr{A}_m \rangle$ *is an S.O.D, then*

$$
\mathsf{HH}_{*}(\mathscr{A}) = \mathsf{HH}_{*}(\mathscr{A}_{1}) \oplus \cdots \oplus \mathsf{HH}_{*}(\mathscr{A}_{m})
$$

which is orthogonal with respect to the Mukai pairing. Moreover, if $\mathscr{D} = \langle \mathscr{A}, \mathscr{B} \rangle$ *is an orthogonal decomposition, then*

$$
HH^*(\mathscr{D}) = HH^*(\mathscr{A}) \oplus HH^*(\mathscr{B}).
$$

If $\mathscr{A} \neq 0$, then $HH^0(\mathscr{A}) \neq 0$.

Proof. See[[22\]](#page-75-8) or[[26\]](#page-75-2) Proposition 2.25 for the proof.

Example 2.3.1. *Let E be an exceptional object, then* $HH_*({E}) = HH^*({E}) = \mathbb{C}$ *. Let* $E_1, ..., E_m$ *be an exceptional collection and let* $\mathscr{D} = \langle E_1, ..., E_m \rangle$ *. Then* $HH_*(\mathscr{D}) =$ C *[⊕]m, concentrated in degree* 0*.*

Theorem 2.3.5. *Let* $\mathscr{C} \subset \mathbf{D}^b(X)$, $\mathscr{D} \subset \mathbf{D}^b(Y)$, $\mathscr{E} \subset \mathbf{D}^b(Z)$ *be non-commutative smooth projective varieties.*

- *(i) Any Fourier-Mukai functor* $\Phi : \mathscr{C} \to \mathscr{D}$ *induces a morphism of graded k-vector* $spaces \Phi_{HH} : HH_*(\mathscr{C}) \to HH_*(\mathscr{D})$ *such that* $id_{HH} = id$ *and, given another functor* $\Psi : \mathscr{D} \to \mathscr{E}$, we have $(\Psi \circ \Phi)_{HH} = \Psi_{HH} \circ \Phi_{HH}$.
- *(ii) If* (Ψ*,* Φ) *is a pair of adjoint Fourier-Mukai functors, then*

$$
(-, \Phi_{HH}(-)) = (\Psi_{HH}(-), -)
$$

according to the Mukai pairing.

(iii) There is a Chern character ch : $K_0(\mathscr{D}) \to HH_0(\mathscr{D})$ *such that, for all* $F, G \in \mathscr{D}$ *,*

$$
(\operatorname{ch} E, \operatorname{ch} F) = \chi(E, F) := \sum_{i} (-1)^i \dim \operatorname{Ext}^i_Y(E, F).
$$

(iv) The Hochschild structure is invariant under exact equivalences of Fourier-Mukai type.

Proof. For (i), we first consider the case of Fourier-Mukai functor $\Phi_E : \mathbf{D}^b(X) \to \mathbf{D}^b(Y)$ of kernel *E*. Then its left and right adjoint are of kernels $E_L := E^{\vee} \otimes p_V^* \omega_Y [\dim Y]$ and $E_R := E^{\vee} \otimes p_X^* \omega_X[\text{dim } X]$, respectively. In our language, these are $E_L = E^{\vee} \circ S_Y$ and $E_R = S_X \circ E^{\vee}$. Hence this induce $\Phi_E \circ \Phi_{E_R} \to id_Y$ and $id_Y \to \Phi_E \circ \Phi_{E_L}$. In our

language, these are $\Delta_* \mathscr{O}_Y \to E \circ E_L$ and $E \circ E_R \to \Delta_* \mathscr{O}_Y$. Hence for any $\mu \in \mathsf{HH}_i(X)$, we induce

$$
\Delta_* \mathscr{O}_Y \to E \circ E_L = E \circ E^\vee \circ S_Y
$$

\n
$$
\simeq E \circ S_X^{-1} \circ S_X \circ E^\vee \circ S_Y
$$

\n
$$
\xrightarrow{\mu} E \circ S_X \circ E^\vee \circ S_Y[i]
$$

\n
$$
= E \circ E_R \circ S_Y[i] \to S_Y[i].
$$

Hence we get an element in $HH_i(Y)$. This induce $\Phi_{E,HH}$: $HH_i(X) \to HH_i(Y)$. In general case, this follows from this special case and Lemma [2.3.4](#page-28-0).

For (ii) this follows from the direct calculation and we omit it and refer[[7](#page-74-5)] Theorem 7.3. For (iii) this also follows from the direct calculation and we omit it and refer [\[7\]](#page-74-5) Theorem 7.1 and Theorem 7.6. For (iv) we refer[[22\]](#page-75-8) Section 7. \Box

Now we consider a special case: $\mathscr{D} = \mathbf{D}^b(X)$ for a smooth projective variety X of dimension n . In this case by Lemma [2.3.3](#page-27-0) we have

$$
\mathsf{HH}^*(X) := \mathsf{HH}^*(\mathbf{D}^b(X)) = H^*(X, \Delta^! \Delta_* \mathscr{O}_X),
$$

$$
\mathsf{HH}_*(X) := \mathsf{HH}_*(\mathbf{D}^b(X)) = H^*(X, \Delta^* \Delta_* \mathscr{O}_X).
$$

Consider the universal Atiyah class $\mathsf{At} \in \text{Ext}^1(\Delta_*\mathscr{O}_X, \Delta_*\Omega_X)$ correspond to

$$
0 \to I_{\Delta}/I_{\Delta}^2 \cong \Delta_* \Omega_X \to \mathscr{O}_{X \times X}/I_{\Delta}^2 \to \Delta_* \mathscr{O}_X \to 0.
$$

Repeat this we get

$$
\mathsf{At}^p : \Delta_* \mathcal{O}_X \to \Delta_* \Omega_X^p[p], \quad \mathsf{At}^p : \Delta_* \Omega_X^{n-p}[n-p] \to \Delta_* \omega_X[n]
$$

which by adjunction we get

$$
\Delta^* \Delta_* \mathcal{O}_X \to \Omega_X^p[p], \quad \bigwedge^p T_X[-p] \to \Delta^! \Delta_* \omega_X[n].
$$

Proposition 2.3.6 (Hochschild-Kostant-Rosenberg)**.** *For a smooth projective variety X of dimension n, then the previous maps induce isomorphisms*

$$
\Delta^* \Delta_* \mathcal{O}_X \cong \bigoplus_{p=0}^n \Omega_X^p[p], \quad \bigoplus_{p=0}^n \bigwedge^p T_X[-p] \cong \Delta^! \Delta_* \omega_X[n].
$$

In particular we have

$$
\mathsf{HH}^i(X) \cong \bigoplus_{p+q=i} H^q(X, \bigwedge^p T_X), \quad \mathsf{HH}_i(X) \cong \bigoplus_{q-p=i} H^q(X, \Omega_X^p).
$$

Proof. We refer [\[27](#page-76-5)] and [\[28](#page-76-6)].

2.4 Calabi-Yau Categories and its General Properties

2.4.1 Fractional Calabi-Yau Categories

The definition of Calabi-Yau categories is an analogue of the Calabi-Yau varieties:

Definition 2.4.1. *A triangulated category D is a fractional Calabi-Yau category if it has a Serre functor* $S_{\mathscr{D}}$ *and there are integers p and* $q \neq 0$ *such that* $S_{\mathscr{G}}^q$ $\frac{q}{\mathscr{D}} \cong [p].$

In the case of $(p, q) = (n, 1)$ *, we call* $\mathscr D$ *is an n*-Calabi-Yau category. Sometimes we *call n its dimension.*

2.4.2 Indecomposability

Definition 2.4.2. *A non-commutative smooth projective variety D is called connected* $if HH^0(\mathscr{D}) = \mathbb{C}.$

Remark 2.4.3. When $\mathscr{D} = \mathbf{D}^b(X)$, by Hochschild-Kostant-Rosenberg theorem [2.3.6](#page-29-0) we $have \ \mathsf{HH}^0(\mathbf{D}^b(X)) = H^0(X, \mathscr{O}_X).$

Proposition 2.4.4. *If* $\mathscr{D} \subset \mathbf{D}^b(X)$ *is a Calabi-Yau non-commutative smooth projective variety, then any S.O.D of D is completely orthogonal. In particular, if D is connected then D is indecomposable.*

Proof. Assume $\mathscr{D} = \langle \mathscr{A}, \mathscr{B} \rangle$ is an S.O.D. Then it is completely orthogonal by Serre duality since it is Calabi-Yau. By Lemma [2.3.4](#page-28-0) we have $HH^*(\mathscr{D}) = HH^*(\mathscr{A}) \oplus HH^*(\mathscr{B})$. If \mathscr{D} is connected, then we have $HH^*(\mathscr{A}) = 0$ or $HH^*(\mathscr{B}) = 0$. By Lemma [2.3.4](#page-28-0) again we have $\mathscr{A} = 0$ or $\mathscr{B} = 0$. \Box

2.4.3 Hochschild (co-)homology

Let $\mathscr{D} \subset \mathbf{D}^b(X)$ be a non-commutative smooth projective variety. Consider $\mathbf{D}^b(X) =$ $\langle \mathscr{D}^{\perp}, \mathscr{D} \rangle = \langle \mathscr{D}, {}^{\perp} \mathscr{D} \rangle$ with kernels of two projections $P_{\mathscr{D}}^{R}, P_{\mathscr{D}}^{L}$.

Lemma 2.4.5. *If D is n-Calabi-Yau then there exists a canonical isomorphism*

$$
P_{\mathscr{D}}^L[n] \cong P_{\mathscr{D}}^R \circ S_X.
$$

Proof. Let $f: \mathcal{D} \hookrightarrow \mathbf{D}^b(X)$ be the embedding, then $P_{\mathcal{D}}^R = ff^1$ and $P_{\mathcal{D}}^L = ff^*$. By Proposition [2.2.5](#page-25-2)(ii) we have $f' \circ S_X = S_{\mathscr{D}} \circ f^* = f^*[\overline{n}]$. Hence $ff' = ff^*[\overline{n}]$, well done. \Box

Proposition 2.4.6. *If* $\mathscr D$ *is n*-Calabi-Yau, then for all $k \in \mathbb{Z}$ *we have*

$$
\mathsf{HH}^k(\mathscr{D}) \cong \mathsf{HH}_{k-n}(\mathscr{D}).
$$

In particular if $\mathscr{D} \neq 0$ *then* $HH_{-n}(\mathscr{D}) \neq 0$ *.*

Proof. By Lemma [2.3.3](#page-27-0) we have $HH^*(\mathscr{D}) = H^*(X, \Delta^! P_{\mathscr{D}}^L)$. Also, the same argument shows that $HH_*(\mathscr{D}) = H^*(X, \Delta^* P_{\mathscr{D}}^R)$. Hence by Lemma [2.4.5](#page-30-4) we get the result! \Box

2.4.4 The Dimension of Calabi-Yau Subcategories

Theorem 2.4.7. Let $\mathscr{D} \subset \mathbf{D}^b(X)$ be a non-commutative smooth projective variety which *is* n *-Calabi-Yau, then* $n \leq \dim X$ *.*

Proof. By Lemma [2.3.4](#page-28-0) and Proposition [2.4.6,](#page-30-5) we have $HH_{-n}(\mathbf{D}^b(X)) \neq 0$. But by Hochschild-Kostant-Rosenberg isomorphism [2.3.6](#page-29-0) we have

$$
\mathsf{HH}_{-n}(\mathbf{D}^b(X))=\bigoplus_{p\in\mathbb{Z}} H^{p-n}(X,\Omega_X^p).
$$

Hence if $n > \dim X$ then the right hand side is zero. Hence $n \leq \dim X$.

Chapter 3

Examples of Fano Varieties

We always consider the schemes and vector spaces over Spec \mathbb{C} .

3.1 Basic Results of Fano Varieties

Theorem 3.1.1 (Fujita 1980-1984). *Let X be a smooth Fano n*-fold of index $r \geq n-1$. *Then the general element in the fundamental divisor is smooth.*

Proof. See[[36\]](#page-76-7) Theorem 2.3.2.

Theorem 3.1.2 (Mella 1996). *Let* X *be a smooth Fano* n -fold of index $n-2$. Then *the general element in the fundamental divisor is smooth.*

Proof. See[[29\]](#page-76-8) Theorem 2.5.

Corollary 3.1.3. *Let X be a smooth Fano* 3*-fold of index* 1 *and* $H^3 > 8$ *and* $\rho(X) = 1$ *. Then the linear system* $|-K_X|$ *is very ample and X is projectively normal which is an intersection of quadrics.*

Proof. See[[36\]](#page-76-7) Corollary 4.1.13.

Proposition 3.1.4. *Let X be a smooth Fano variety, then X is simply connected.*

Proof. By Kodaira's vanishing theorem, we find that $H^m(X, \mathcal{O}_X) = 0$ for all $m > 0$, hence $\chi(X, \mathscr{O}_X) = 1$. If $\pi : X' \to X$ is a connected finite étale cover, then X is also a smooth Fano variety. Hence $\chi(X', \mathscr{O}_{X'}) = 1$. But $\chi(X', \mathscr{O}_{X'}) = \deg \pi \chi(X, \mathscr{O}_X)$. Hence π is an isomorphism. \Box

Proposition 3.1.5. *Let X be a smooth Fano variety, then* Pic(*X*) *is finite generated and torsion free.*

 \Box

 \Box

Proof. By exponential sequence one has

$$
H^1(X, \mathcal{O}_X) \to Pic(X) \to H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}_X).
$$

By Kodaira's vanishing theorem, we find that $H^m(X, \mathcal{O}_X) = 0$ for all $m > 0$, hence $Pic(X) \cong H^2(X, \mathbb{Z})$. Hence Pic(X) is finite generated. To show Pic(X) is torsion free, we just need to show $H^2(X,\mathbb{Z})$ is torsion free. By universal coefficient theorem for cohomology, one has

$$
0 \to \text{Ext}^1(H_1(X,\mathbb{Z}),\mathbb{Z}) \to H^2(X,\mathbb{Z}) \to \text{Hom}(H_2(X,\mathbb{Z}),\mathbb{Z}) \to 0.
$$

As $\text{Hom}(H_2(X,\mathbb{Z}),\mathbb{Z})$ is torsion free, the only torsion of $H^2(X,\mathbb{Z})$ follows from $H_1(X,\mathbb{Z})$. As $H_1(X, \mathbb{Z}) = \pi_1(X)^{\text{abel}} = 0$ by Proposition [3.1.4](#page-32-2), hence Pic(X) is torsion free. \Box

Remark 3.1.6. *Hence any simply connected smooth projective variety over* C *has torsion free Picard group.*

3.2 Cubics

Proposition 3.2.1. *Let* $X_3 \subset \mathbb{P}^5$ *be a smooth cubic fourfold, then we have* $HH_*(X_3) =$ $\mathbb{C}[2] \oplus \mathbb{C}^{\oplus 25} \oplus \mathbb{C}[-2]$ *.*

Proof. Note that we have the exact sequence

$$
0 \to \Omega_X^{p-1}(-3) \to \Omega_{\mathbb{P}^5}^p|_X \to \Omega_X^p \to 0.
$$

Then the result can be deduced by this and Hochschild-Kostant-Rosenberg theorem [2.3.6.](#page-29-0) \Box

3.3 Gushel-Mukai Varieties

3.3.1 Basic Definitions and Properties

Let V_5 be a vector space of dimension 5 and consider the Plücker embedding $Gr(2, V_5) \hookrightarrow$ $\mathbb{P}(\bigwedge^2 V_5)$. For any vector space *K*, consider the cone $\mathsf{C}_K(\mathsf{Gr}(2, V_5)) \subset \mathbb{P}(\bigwedge^2 V_5 \oplus K)$ of vertex $\mathbb{P}(K)$. Choose a vector subspace $W \subset \bigwedge^2 V_5 \oplus K$ and a subscheme $Q \subset \mathbb{P}(W)$ defined by defined by one quadratic equation (possibly zero).

Definition 3.3.1. *The scheme*

$$
X=\mathsf{C}_K(\mathsf{Gr}(2, V_5))\cap \mathbb{P}(W)\cap Q
$$

is called a Gushel-Mukai intersection (GM intersection). A GM intersection X is called a Gushel-Mukai variety (GM variety) if *X* is a smooth variety of dimension dim $W - 5 \geq 1$.

Remark 3.3.2. *Some remarks:*

- *(a) In the original paper[[8](#page-74-6)] they defined without the smoothness (but always Gorenstein).*
- *(b) Note that all Q and* $\mathsf{C}_K(\mathsf{Gr}(2, V_5)) \cap \mathbb{P}(W)$ *are Gorenstein, hence all Cohen-Macaulay. So the dimension condition means they are dimensionally transverse, that is,* $\text{Tor}_{>0}(\mathscr{O}_Q, \mathscr{O}_{\mathsf{C}_K(\mathsf{Gr}(2, V_5)) \cap \mathbb{P}(W)}) = 0.$
- *(c) A GM variety X has a canonical polarization, the restriction H of the hyperplane class on* $\mathbb{P}(W)$ *; we will call* (X, H) *a polarized GM variety.*

The definition of a GM variety is not intrinsic. We actually have an intrinsic characterization. But before giving these, we will introduce a new definition:

Definition 3.3.3. Let *W* be a vector space and let $Y \subset \mathbb{P}(W)$ be a closed subscheme *which is an intersection of quadrics, i.e., the twisted ideal sheaf* $\mathcal{I}_X(2)$ *on* $\mathbb{P}(W)$ *is globally generated.*

 $Define$ $V_X := H^0(\mathbb{P}(W), \mathscr{I}_X(2))$ *, this yields a surjection* $V_X \otimes \mathscr{O}_{\mathbb{P}(W)}(-2) \rightarrow \mathscr{I}_X$ *which induce*

$$
V_X \otimes \mathscr{O}_X(-2) \twoheadrightarrow \mathscr{I}_X/\mathscr{I}_X^2 = \mathscr{N}_{X/\mathbb{P}(W)}^{\vee}.
$$

We define the excess conormal sheaf $\mathscr{E}\mathscr{N}_{X/\mathbb{P}(W)}^{\vee}$ to be the kernel of this map.

Theorem 3.3.4. *A smooth polarized projective variety* (X, H) *of dimension* $n \geq 1$ *is a polarized GM variety if and only if all the following conditions hold:*

- (A) $H^n = 10$ and $K_X = -(n-2)H$.
- *(b) H is very ample and the vector space* $W := H^0(X, \mathcal{O}_X(H))^{\vee}$ *has dimension* $n+5$ *.*
- (c) *X is an intersection of quadrics in* $\mathbb{P}(W)$ *and the vector space*

$$
V_6 := H^0(\mathbb{P}(W), \mathscr{I}_X(2)) \subset \text{Sym}^2 W^\vee
$$

of quadrics through X has dimension 6*.*

(d) The twisted excess conormal sheaf
$$
\mathscr{U}_X := \mathscr{E} \mathscr{N}_{X/\mathbb{P}(W)}^{\vee}(2H)
$$
 of X in $\mathbb{P}(W)$ is simple.

Proof. We first need to show a smooth polarized GM variety (X, H) satisfies (a)-(d).

For (a), as $deg(C_K(\text{Gr}(2, V_5))) = 5$ and they are dimensionally transverse, then $deg(X) = 10$. Let dim $K = k$ and hence $K_{\mathsf{C}_K(\mathsf{Gr}(2, V_5))} = -(5 + k)H$ by Lemma [3.3.7.](#page-37-0) Finally we have

$$
K_X = (-(5+k) + (10+k) - (n+5) + 2)H = -(n-2)H.
$$

For (b), we just need to show $W = H^0(X, \mathcal{O}_X(H))^{\vee}$. Consider the resolution

$$
0 \to \mathscr{O}(-5) \to V_5^{\vee} \otimes \mathscr{O}(-3) \to V_5 \otimes \mathscr{O}(-2) \to \mathscr{O} \to \mathscr{O}_{\mathsf{C}_K \mathsf{Gr}(2, V_5)} \to 0.
$$

Restrict it into $\mathbb{P}(W)$ and tensor the resolution of *Q* as $0 \to \mathcal{O}(-2) \to \mathcal{O} \to \mathcal{O}_Q$, then tensor $\mathcal{O}(1)$ again we get the resolution

$$
0 \to \mathscr{O}(-6) \to (V_5^{\vee} \oplus \mathbb{C}) \otimes \mathscr{O}(-4) \to (V_5 \otimes \mathscr{O}(-3)) \oplus (V_5^{\vee} \otimes \mathscr{O}(-2))
$$

$$
\to (V_5 \oplus \mathbb{C}) \otimes \mathscr{O}(-1) \to \mathscr{O}(1) \to \mathscr{O}_X(H) \to 0
$$

on $\mathbb{P}(W)$. Hence $H^{0}(X, \mathscr{O}_{X}(H)) = H^{0}(\mathbb{P}(W), \mathscr{O}_{\mathbb{P}(W)}(1)) = W^{\vee}$.

For (c), consider the resolution again:

$$
0 \to \mathscr{O}(-5) \to (V_5^{\vee} \oplus \mathbb{C}) \otimes \mathscr{O}(-3) \to (V_5 \otimes \mathscr{O}(-2)) \oplus (V_5^{\vee} \otimes \mathscr{O}(-1))
$$

$$
\to (V_5 \oplus \mathbb{C}) \otimes \mathscr{O} \to \mathscr{O}(2) \to \mathscr{O}_X(2H) \to 0
$$

Hence one can show that $H^0(\mathbb{P}(W), \mathscr{I}_X(2)) = V_5 \oplus \mathbb{C}$, hence well done.

For (d), we will use the induction of the dimension. For $n = 1$, this follows from some basic fact of excess normal sheaf and the Mukai's construction about a stable vector bundle of rank 2 on *X* to show that \mathcal{U}_X is stable, and hence simple. For the detailwe refer [[8](#page-74-6)] Theorem 2.3. Hence we now assume $n \geq 2$. Pick a smooth hyperplane section $X' \subset X$ which is also irreducible since $n \geq 2$ by Bertini's theorem. Hence X' is also a GM variety. One can easy to show that in this case $\mathscr{U}_X|_{X'} = \mathscr{U}_{X'}$ (see Lemma A.5 in [\[8\]](#page-74-6)). Hence we have $0 \to \mathcal{U}_X(-H) \to \mathcal{U}_X \to \mathcal{U}_{X'} \to 0$. Hence

$$
0 \to \operatorname{Hom}(\mathscr{U}_X, \mathscr{U}_X(-H)) \to \operatorname{Hom}(\mathscr{U}_X, \mathscr{U}_X) \to \operatorname{Hom}(\mathscr{U}_{X'}, \mathscr{U}_{X'}).
$$

If dim(Hom($\mathscr{U}_X, \mathscr{U}_X$)) > 1, then dim(Hom($\mathscr{U}_X, \mathscr{U}_X(-H)$)) > 0. By the similar argument we get

$$
0 \to \operatorname{Hom}(\mathscr{U}_X, \mathscr{U}_X(-2H)) \to \operatorname{Hom}(\mathscr{U}_X, \mathscr{U}_X(-H)) \to \operatorname{Hom}(\mathscr{U}_{X'}, \mathscr{U}_{X'}(-H)) = 0.
$$

Hence $\text{Hom}(\mathscr{U}_X, \mathscr{U}_X(-2H)) \neq 0$. By induction we get $\text{Hom}(\mathscr{U}_X, \mathscr{U}_X(-kH)) \neq 0$ for any $k > 0$. Hence for any $k > 0$ we have $\Gamma(X, \mathcal{U}_X^{\vee} \otimes \mathcal{U}_X(-kH)) \neq 0$. But these are vector bundles and *X* is integral of dimension \geq 2, hence this is impossible.

Now we let a smooth polarized projective variety (X, H) of dimension $n \geq 1$ which satisfies (a)-(d). We need to show that (X, H) is a polarized GM variety.

We know that

$$
\det \mathscr{U}_X^{\vee} = \det(\mathscr{N}_{X/\mathbb{P}(W)}^{\vee}(2H)) = \mathscr{O}_X(H)
$$

and the embedding $\mathscr{U}_X \hookrightarrow V_6 \otimes \mathscr{O}_X$. Taking wedge product, duality and global sections we get

$$
\bigwedge^2 V_6^{\vee} \to H^0(X, \mathscr{O}_X(H)) = W^{\vee}.
$$
Hence we get $W \to \Lambda^2 V_6$ which can be factored through an injection $W \to \Lambda^2 V_6 \oplus K$ for some vector space *K*. Hence we have

where $X \to Gr(2, V_6)$ induced by $\mathscr{U}_X \hookrightarrow V_6 \otimes \mathscr{O}_X$ and is commutative since these are the same linear system. Hence we get $X \subset C_K^{\circ}$ Gr(2*, V*₆) = C_K Gr(2*, V*₆) $\setminus \mathbb{P}(K)$.

Now by some facts of excess normal sheaves (see Proposition A.3 in[[8](#page-74-0)]), then excess normal sequence induce a functorial diagram:

$$
0 \to (V_6 \otimes \mathcal{U}_X)/\text{Sym}^2 \mathcal{U}_X \longrightarrow \bigwedge^2 V_6 \otimes \mathcal{O}_X \longrightarrow \det V_6 \otimes \mu^* \mathcal{N}_{\text{Gr}(2,V_6)/\mathbb{P}(\bigwedge^2 V_6)}^{\vee}(2) \to 0
$$

$$
\downarrow
$$

$$
0 \longrightarrow \det V_6 \otimes \mathcal{U}_X \longrightarrow \det V_6 \otimes V_6 \otimes \mathcal{O}_X \longrightarrow \det V_6 \otimes \mathcal{N}_{X/\mathbb{P}(W)}(2) \longrightarrow 0
$$

which follows from the expression of the excess normal sheaf of $\mathsf{Gr}(2, V_6) \subset \mathbb{P}(\bigwedge^2 V_6)$. The left vertical arrow induces a morphism $\lambda' : V_6 \otimes \mathcal{U}_X \to \det V_6 \otimes \mathcal{U}_X$. As \mathcal{U}_X is simple by (d) we get $\lambda: V_6 \to \det V_6$. Since λ' vanishes on $\text{Sym}^2 \mathscr{U}_X$, the image of \mathscr{U}_X in $\mathfrak{g} \otimes \mathcal{O}_X$ is contained in ker $\lambda \otimes \mathcal{O}_X$. Moreover, the middle vertical map in the diagram above is given by $v_1 \wedge v_2 \mapsto \lambda(v_1)v_2 - \lambda(v_2)v_1$.

We claim that $\lambda \neq 0$. If $\lambda = 0$, the middle vertical map in the diagram is zero, which means that all the quadrics cutting out C_K Gr(2*, V*₆) contain $\mathbb{P}(W)$, i.e. $\mathbb{P}(W) \subset$ C_K Gr(2*, V*₆). In other words, $\mathbb{P}(W)$ is a cone over $\mathbb{P}(W') \subset \mathsf{Gr}(2, V_6)$ with vertex a subspace of *K*. Hence $X \to \mathsf{Gr}(2, V_6)$ factor through $\mathbb{P}(W')$. Hence the vector bundle \mathscr{U}_X is a pullback from $\mathbb{P}(W')$ of the restriction of the tautological bundle of $\mathsf{Gr}(2, V_6)$ to $\mathbb{P}(W').$

There are two types of linear spaces on $\mathsf{Gr}(2, V_6)$: the first type corresponds to 2dimensional subspaces containing a given vector and the second type to those contained in a given 3-subspace $V_3 \subset V_6$. If W' is of the first type, the restriction of the tautological bundle to $\mathbb{P}(W')$ is isomorphic to $\mathscr{O} \oplus \mathscr{O}(-1)$, hence $\mathscr{U}_X \cong \mathscr{O} \oplus \mathscr{O}(-H)$ by Lemma [3.3.8.](#page-38-0) In particular, it is not simple, which is a contradiction. If W' is of the second type, the embedding $\mathscr{U}_X \to V_6 \otimes \mathscr{O}_X$ factors through a subbundle $V_3 \otimes \mathscr{O}_X \subset V_6 \otimes \mathscr{O}_X$. Recall that V_6 is the space of quadrics passing through *X* in $\mathbb{P}(W)$. Consider the schemetheoretic intersection M of the quadrics corresponding to the vector subspace V_3 . Since the embedding of the excess conormal sheaf factors through $V_3 \otimes \mathscr{O}_X$, the variety *X* is the complete intersection of *M* with the 3 quadrics corresponding to the quotient space V_6/V_3 . But the degree of *X* is then divisible by 8, which contradicts the fact that it is 10 by (a). Hence we conclude that $\lambda \neq 0$.

Now let $V_5 := \text{ker}(\lambda)$ is a hyperplane in v_6 which fits in the exact sequence $0 \rightarrow$ $V_5 \to V_6 \overset{\lambda}{\to} \det V_6 \to 0$. The composition $\mathscr{U}_X \hookrightarrow V_6 \otimes \mathscr{O}_X \overset{\lambda}{\to} \det V_6 \otimes \mathscr{O}_X$ vanish, hence we get $\mathscr{U}_X \hookrightarrow V_5 \otimes \mathscr{O}_X$.

We now replace V_6 with V_5 and repeat the above argument, then we get a linear map $W \to \Lambda^2 W_5$ which factor through $\mu : W \hookrightarrow \Lambda^2 W_5 \oplus K$ which induce again the embedding $X \subset C_K^{\circ}$ Gr $(2, V_5) = C_K$ Gr $(2, V_5) \setminus \mathbb{P}(K)$. By the functorial of the excess normalsequence (see Proposition A.3 in $[8]$ $[8]$ $[8]$) again we get that inside the space V_6 of quadrics cutting out *X* in $\mathbb{P}(W)$, the hyperplane V_5 is the space of quadratic equations of Gr(2*, V*5), i.e., of Plücker quadrics.

As the Plücker quadrics cut out the cone C_K Gr(2, V_5) in $\mathbb{P}(\bigwedge^2 V_5 \oplus K)$, they cut out C_K Gr(2, V_5) $\cap \mathbb{P}(W)$ in $\mathbb{P}(W)$. Since X is the intersection of 6 quadrics by condition (c), we finally obtain

$$
X=\mathsf{C}_K\operatorname{\mathsf{Gr}}(2,V_5)\cap \mathbb{P}(W)\cap Q
$$

where Q is some non-Plücker quadric corresponding to a point in $V_6 \backslash V_5$, so X is a GM variety. \Box

Remark 3.3.5. *This is right for all normal varieties with the similar proof.*

Remark 3.3.6. *The twisted excess conormal sheaf U^X that was crucial for the proof will be called its Gushel sheaf. As we showed in the proof, the projection of X from the vertex* $\mathbb{P}(K)$ *of the cone* C_K $\mathsf{Gr}(2, V_5)$ *defines a morphism* $X \to \mathsf{Gr}(2, V_5)$ *and the Gushel sheaf U^X is isomorphic to the pullback under this map of the tautological vector bundle on* $\mathsf{Gr}(2, V_5)$ *. The map* $X \to \mathsf{Gr}(2, V_5)$ *is thus determined by* \mathscr{U}_X *and is canonically associated with X. We call this map the Gushel map of X.*

When X have some mild singularity, then the Gushel map is just a rational map and \mathscr{U}_X is isomorphic to the pullback under this map of the tautological vector bundle *on* $\mathsf{Gr}(2, V_5)$ *in the smooth locus.*

Lemma 3.3.7. Let $X \subset \mathbb{P}^n$ be a subvariety such that $K_X = rH$. Let $\mathsf{C}(X) \subset \mathbb{P}^{n+1}$ be *a cone over X, then* $K_{\mathsf{C}(X)} = (r-1)H$ *.*

Proof. We know that the blow-up of of the vertex of $C(X)$ is

Let H' be the relative hyperplane class of p . Then

$$
K_{X'} = p^*(K_X + H) - 2H' = (r+1)p^*H - 2H'.
$$

On the other hand, the morphism π contracts the exceptional section $E \subset X'$ and H' is the pullback of $H_{\mathsf{C}(X)}$. Finally $E \sim_{\text{lin}} H' - p^*H$, hence

$$
K_{X'} = (r-1)H' - (r+1)E.
$$

 $Hence K_{C(X)} = (r-1)H.$

Lemma 3.3.8. *Let* $Z_p \subset \mathsf{Gr}(k, V)$ *be the subscheme parameterizing all k-planes containing the vector p.* Then $Z_p \cong Gr(k-1,n-1)$ *and the restriction of the tautological* subbundle $\mathscr{S}_{\mathsf{Gr}(k,V)}$ to Z_p splits as the sum of \mathscr{O} and the tautological subbundle \mathscr{S}_{Z_p} of $Z_p \cong \textsf{Gr}(k-1,n-1)$ *.*

Proof. This is almost trivial. Indeed, let $V_1 \subset V$ be the 1-dimensional subspace generated by the vector *p*. Let $V = V_1 \oplus V'$ be a direct sum decomposition. Then for each *k* − 1-dimensional subspace $U' \subset V'$ the sum $V_1 \oplus U'$ is a *k*-dimensional subspace of *V*. Hence the corresponding subbundle

$$
V_1 \otimes \mathscr{O} \oplus \mathscr{S}_{\mathsf{Gr}(k-1,V')} \subset V_1 \otimes \mathscr{O} \oplus V' \otimes \mathscr{O} = V \otimes \mathscr{O}
$$

induces a morphism $\mathsf{Gr}(k-1, V') \to \mathsf{Gr}(k, V)$ which is an isomorphism onto Z_p and such that the pullback of the tautological bundle is $V_1 \otimes \mathcal{O} \oplus \mathcal{S}_{Z_p}$. \Box

3.3.2 Some Classifications

Lemma 3.3.9. *Let* (*X, H*) *be a polarized variety. If it is projective normal, that is, the canonical map* $Sym^m H^0(X, \mathscr{O}_X(H)) \to H^0(X, \mathscr{O}_X(mH))$ *is surjective for any* $m \geq 0$ *, then H must be very ample.*

Proof. By the commutative diagram

we know that $|H|$ also induce an immersion. Hence H is very ample.

Proposition 3.3.10. *Let* (X, H) *be a smooth polarized variety of dimension* $n \geq 2$ *such that* $K_X = -(n-2)H$ *and* $H^1(X, \mathcal{O}_X) = 0$ *. If there is a hypersurface* $X' \subset X$ *in the linear system* $|H|$ *such that* $(X', H|_{X'})$ *is a smooth polarized GM variety,* (X, H) *is also a smooth polarized GM variety.*

 \Box

Proof. First we note that for any smooth GM variety (Y, H) the resolution

$$
0 \to \mathscr{O}(m-7) \to (V_5^{\vee} \oplus \mathbb{C}) \otimes \mathscr{O}(m-5) \to (V_5 \otimes \mathscr{O}(m-4)) \oplus (V_5^{\vee} \otimes \mathscr{O}(m-3))
$$

$$
\to (V_5 \oplus \mathbb{C}) \otimes \mathscr{O}(m-2) \to \mathscr{O} \to \mathscr{O}_Y(mH) \to 0
$$

can imply *Y* is projective normal, that is, the canonical map $Sym^m H^0(Y, \mathcal{O}_Y(H)) \rightarrow$ $H^0(Y, \mathscr{O}_Y(mH))$ is surjective for any $m \geq 0$.

Back to the result, we need to check the conditions in Theorem [3.3.4](#page-34-0). For (a), this follows from $H^n = H \cdot H^{n-1} = H|_{X'}^{n-1} = 10$. Now we know X' is projective normal, so is Xby [[18\]](#page-75-0) Lemma (2.9). By Lemma [3.3.9](#page-38-1) we know *H* is very ample. By $H^1(X, \mathscr{O}_X) = 0$ weknow that $h^0(X, \mathcal{O}_X(H)) = n+5$ by the case of X[']. This proves (b), and [[18\]](#page-75-0) Lemma (2.10) proves (c). For (d), since $\mathscr{U}_{X'}$ is simple, by the similar proof of (d) in Theorem [3.3.4](#page-34-0) we can also show that \mathscr{U}_X is simple. \Box

Theorem 3.3.11. Let *X* be a complex smooth projective variety of dimension $n \geq 1$, *together with an ample Cartier divisor H such that* $K_X \sim_{\text{lin}} -(n-2)H$ *and* $H^n = 10$ *. If we assume that*

- *when* $n \geq 3$ *, we have* $Pic(X) = \mathbb{Z} \cdot H$ *;*
- *when n* = 2*, the surface X is a Brill-Noether general K3 surface (a K3 surface is called Brill-Noether general if* $h^0(S, D)h^0(S, H - D) < h^0(S, H)$ *for all divisors D on S not linearly equivalent to* 0 *or H.* When $H^2 = 10$ *, this is equivalent to the fact that |H| contains a Clifford general smooth curve);*
- when $n = 1$, the genus-6 curve X is Clifford general (that is, it is neither hyperel*liptic, nor trigonal, nor a plane quintic).*

then X is a GM variety.

Before proving this, we need some Lemmas:

Lemma 3.3.12. Let *X* be a complex smooth projective variety of dimension $n \geq 3$ with *an ample divisor H such that* $H^n = 10$ *and* $K_X \sim_{\text{lin}} -(n-2)H$.

Then the linear system $|H|$ *is very ample and a smooth general* $X' \in |H|$ *satisfies* the same conditions: if $H' := H|_{X'}$, we have $(H')^{n-1} = 10$ and $K_{X'} \sim_{\text{lin}} -(n-3)H'$.

Proof. First we need to show that $h^0(H) > 0$. This follows from the follows result:

• Lemma **[3.3.12](#page-39-0).A.** Let *X* be a smooth Fano variety of dimension $n \geq 3$ such that $-K_X \sim_{\text{lin}} r$ *H* where *H* is ample. Then when $r \geq n-2$, then $h^0(H) > 0$.

Proof of Lemma [3.3.12.](#page-39-0)A. Now we separate it as two cases.

When $r \geq n-1$, use Kodaira vanishing theorem to $(x+r)H + K_X$ we have $h^{i}(xH) = 0$ for all $i > 0$ and all $x \ge -(n-2)$. Now we let $h^0(H) = 0$ and in these cases we have

3.3. GUSHEL-MUKAI VARIETIES 41

 $\chi(xH) = h^{0}(xH)$. Hence $\chi(xH)$, as a polynomial, has roots $-1, -2, ..., -(n-2)$, 1. As $\chi(0) = 1$ and $\chi(xH)$ as the top coefficient $\frac{H^n}{n!}$, we know that

$$
\chi(xH) = \frac{1}{n!} (x+1)(x+2)\cdots(x+n-2)(x-1)(H^nx - n(n-1))
$$

=
$$
\frac{1}{n!} \left(H^nx^n + \left(n(n-3)\frac{H^n}{2} - n(n-1)\right)x^{n-1} + \text{lower terms}\right).
$$

On the other hand, by HRR we get

$$
\chi(xH) = \frac{1}{n!} \left(H^n x^n + \frac{1}{2} n r H^n x^{n-1} + \text{lower terms} \right).
$$

Hence $\frac{1}{2}nrH^n = n(n-3)\frac{H^n}{2} - n(n-1)$, that is, $r = n-3 - \frac{2n-2}{H^n}$. But $r \geq n-1$, this is impossible. Hence $h^0(H) > 0$.

When $r = n - 2$, we will go through this directly. By Kodaira vanishing theorem again we have $h^{i}(xH) = 0$ for all $i > 0$ and all $x \ge -(n-3)$. For $x = -(n-2)$, we only have

$$
h^{i}(-(n-2)H) = h^{i}(K_X) = \begin{cases} 1, & i = n; \\ 0, & 0 \le i < n. \end{cases}
$$

Hence again we have

$$
\chi(xH) = \frac{1}{n!}(x+1)(x+2)\cdots(x+n-3)(H^nx^3+bx^2+cx+n(n-1)(n-2)).
$$

Now as $\chi(- (n-2)H) = (-1)^n$, we can find that $b = \frac{3}{2}H^n(n-2)$ and $c = 2n(n-1) +$ $\frac{1}{2}H^{n}(n-2)^{2}$. Hence $h^{0}(H) > 0$ by taking $x = 1$. \Box

Hence now $|H|$ is non-empty. Note that in this case H is already the fundamental divisor since $H^n = 10$. Hence by Theorem [3.1.1](#page-32-0) and Theorem [3.1.2](#page-32-1) as in this case the index of *X* is $\geq n-2$, then the general elements are smooth. Pick such *X'*. Then if $H' := H|_{X'}$, we have $(H')^{n-1} = 10$ and by adjunction formula we have $K_{X'} \sim_{\text{lin}} -(n-3)H'$. By Kodaira vanishing theorem we have $H^1(X, \mathcal{O}_X) = 0$. Hence the linear series $|H'|$ is just the restriction of $|H|$ to X' and the base loci of $|H|$ and $|H'|$ are the same. Taking successive linear sections, we arrive at a linear section *Y* of dimension 3 which is smooth and $K_Y \sim_{\text{lin}} -H_Y$ and $H_Y^3 = 10$.

If $Pic(Y) = \mathbb{Z} \cdot H_Y$, then by Corollary [3.1.3](#page-32-2) the pair (Y, H_Y) is projectively normal. If not, then $\rho(X) \geq 2$. By the classification theory (NEED TO ADD) of the Fano threefold, *Y* must be a divisor of bidegree $(3, 1)$ in $\mathbb{P}^3 \times \mathbb{P}^1$ and the pair (Y, H_Y) is again projectively normal.

Hence in both case, we can use the [\[18](#page-75-0)] Lemma (2.9) repeatly which imply that (X, H) is projectively normal. Hence by Lemma [3.3.9](#page-38-1) we know H is very ample. \Box **Remark 3.3.13.** *Note that in Lemma [3.3.12](#page-39-0).A, by the similar arguments we can show that when X is a smooth Fano variety of dimension n and index r with fundamental* divisor *H* we have $h^0(H) = \frac{1}{2}H^n(r-n+3) + n-1$ when $r > n-2$ and $h^0(H) = \frac{1}{2}H^n + n$ *when* $r = n - 2$ *.*

Lemma 3.3.14. *Let* (X, H) *be a polarized complex variety of dimension* $n \geq 2$ *which satisfies the hypotheses of Theorem [3.3.11.](#page-39-1) A general element of |H| then satisfies the same properties.*

Proof. Assume first $n \geq 4$. By Lemma [3.3.12](#page-39-0) we need only to prove that a general smooth $X' \in |H|$ satisfies $Pic(X') = \mathbb{Z} \cdot H'$ where $H' := H|_{X'}$. By Grothendieck-Lefschetz theorem we have $\text{Cl}(X) \cong \text{Cl}(X')$. Hence $\text{Pic}(X') = \mathbb{Z} \cdot H'$ as $\text{Pic}(X) = \mathbb{Z} \cdot H$.

When $n = 2$, this follows from definitions.

When $n = 3$, X is a smooth Fano 3-fold with $Pic(X) = \mathbb{Z} \cdot H$. Then by Corollary [3.1.3](#page-32-2) *X* is an intersection of quadrics. Any smooth hyperplane section *S* of *X* is a degree-10 smooth K3 surface which is still an intersection of quadrics. A general hyperplane section of *S* is still an intersection of quadrics, hence is a Clifford general curve. This proves that *S* is Brill-Noether general. \Box

Proof of Theorem [3.3.11.](#page-39-1) Induction on *n*. The case $n = 1$ was proved in Proposition [3.3.15](#page-41-0), so we assume $n \geq 2$. A general hyperplane section X' of X has the same properties by Lemma [3.3.14](#page-41-1), hence is a GM variety by the induction hypothesis. On the other hand, we have $H^1(X, \mathcal{O}_X) = 0$. By Proposition [3.3.10,](#page-38-2) we conclude that *X* is a GM variety. Well done. \Box

Some inverse results:

Proposition 3.3.15. *A smooth projective curve is a GM curve if and only if it is a Clifford general curve of genus* 6*.*

Proof. Follows from the Theorem [3.3.4](#page-34-0) and the Enriques-Babbage theorem in [\[2\]](#page-74-1) Section III.3. \Box

Proposition 3.3.16. *A smooth projective surface X is a GM surface if and only if X is a Brill-Noether general polarized K3 surface of degree* 10*.*

Proof. By Theorem [3.3.11,](#page-39-1) we just need to show that if *X* is a GM surface, then *X* is a Brill-Noether general polarized K3 surface of degree 10. In this case, we have $K_X = 0$ by Theorem [3.3.4\(](#page-34-0)a), and the resolution

$$
0 \to \mathscr{O}(-7) \to (V_5^{\vee} \oplus \mathbb{C}) \otimes \mathscr{O}(-5) \to (V_5 \otimes \mathscr{O}(-4)) \oplus (V_5^{\vee} \otimes \mathscr{O}(-3))
$$

$$
\to (V_5 \oplus \mathbb{C}) \otimes \mathscr{O}(-2) \to \mathscr{O} \to \mathscr{O}_X \to 0
$$

implies $H^1(X, \mathscr{O}_X) = 0$, hence X is a K3 surface. Moreover, a general hyperplane section of *X* is a GM curve, hence a Clifford general curve of genus 6, hence *X* is Brill-Noether general. \Box **Proposition 3.3.17.** *Let* (*X, H*) *be a polarized complex smooth GM variety of dimension* $n \geq 3$ *. Then* $Pic(X) = \mathbb{Z} \cdot H$ *. In particular, the polarization H is the unique GM polarization on X.*

Proof. By Theorem [3.3.11](#page-39-1), we just need to show that if (X, H) be a polarized complex smooth GM variety of dimension $n \geq 3$, then Pic(*X*) = $\mathbb{Z} \cdot H$. By Theorem [3.3.4,](#page-34-0) X is a Fano variety of degree 10 and is an intersection of quadrics. When $n = 3$, by the proof of Lemma [3.3.12](#page-39-0) we know that $Pic(X) = \mathbb{Z} \cdot H$. Now consider $n \geq 4$, a general hyperplane section *X′* of *X* satisfies the same properties by Lemma [3.3.14](#page-41-1) and by Grothendieck-Lefschetz theorem again (for general case we refer Theorem 1 in[[37\]](#page-76-0)) we have injection $Pic(X) \hookrightarrow Pic(X')$. Hence by induction we get the result. \Box

3.3.3 Grassmannian Hulls

Fix V_5 , V_6 , K , $W \subset \bigwedge^2 V_5 \oplus K$, $Q \subset \mathbb{P}(W)$ which defines a smooth GM variety

X = C_K Gr(2*, V*₅) ∩ $\mathbb{P}(W)$ ∩ *Q*.

Definition 3.3.18. *Define* $M_X := C_K$ Gr(2*, V*₅) \cap P(*W*) *to be the Grassmannian hull of X.* Hence $X = M_X \cap Q$ *which is a quadric section of* M_X *.*

 $Define$ $M'_{X} := \mathsf{Gr}(2, V_5) \cap \mathbb{P}(W')$ *to be the projected Grassmannian hull of* X *where W*^{*'*} *defined as the image of the projection* $\mu : W \subset \bigwedge^2 V_5 \oplus K \to \bigwedge^2 V_5$.

Remark 3.3.19. *Note that these two schemes are canonically associated to X via GM datas. See [\[8](#page-74-0)] Section 2.*

Now consider the Gushel map $X \to Gr(2, V_5)$.

Proposition 3.3.20. *Let X be a such smooth GM variety.*

(i) If $\mu : W \to \Lambda^2 V_5$ is injective, that is, μ induce $W \cong W'$, then $M_X \cong M'_X$ and *Gushel map* $X \to Gr(2, V_5)$ *is an embedding which induce*

$$
X \cong M'_X \cap Q = \text{Gr}(2, V_5) \cap \mathbb{P}(W) \cap Q.
$$

In this case we call X a ordinary GM variety. Hence in this case

$$
\dim X = \dim W - 5 \le \dim \bigwedge^2 V_5 - 5 = 5.
$$

(ii) If ker $\mu \neq 0$, then dim ker $\mu = 1$, $Q \cap \mathbb{P}(\ker \mu) = \emptyset$ and $M_X = \mathsf{C}_{\mathbb{P}(\ker \mu)} M'_X$ and the *Gushel map* $X \to \mathsf{Gr}(2, V_5)$ *induce* $X \to M'_X$ *which is a double covering branched at a quadric (which is a ordinary GM variety if* dim $X \geq 2$). In this case we call *X a special GM variety. Hence in this case it comes with a canonical involution from the double covering and*

$$
\dim X = \dim W - 5 \le \dim \bigwedge^2 V_5 + 1 - 5 = 6.
$$

Proof. For (i), this is trivial by the conditions.

For (ii), note that the blow up $\text{Bl}_{\mathbb{P}(\ker \mu)} M_X$ at its vertex is a $\mathbb{P}^{\dim \ker \mu}$ -bundle over *M*[′]_{*X*}. As *X* is smooth, then *X* ∩ $\mathbb{P}(K) = Q \cap \mathbb{P}(\ker \mu) = \emptyset$. Hence dim ker $\mu = 1$ as $\dim Q = \dim \mathbb{P}(W) - 1$. Now as *Q* is a quadric, then the Gushel map induce $X \to M'_X$ which is a double covering. We have $X \to M'_X$ branched along $\mathsf{Gr}(2, V_5) \cap \mathbb{P}(W') \cap Q$ which is a ordinary GM variety if $\dim X \geq 2$, \Box

Remark 3.3.21. *In (ii), if X is not smooth, then there is two more cases which from the similar arguments:*

 I *f* $\mathbb{P}(\ker \mu) \subset Q$ *. In this case* $\tilde{\mu}$: $X := \text{Bl}_{\mathbb{P}(\ker \mu) \cap Q} X \to M'_{X}$ *is generically* $\mathbb{P}^{\text{dim}\ker\mu-1}\text{-}bundle.$ If $\mathbb{P}(\ker\mu) \nsubseteq Q$ but $\mathbb{P}(\ker\mu) \cap Q \neq \emptyset$, then $\tilde{\mu}: \tilde{X} := \text{Bl}_{\mathbb{P}(\ker\mu) \cap Q} X \to$ M'_{X} *is generically* (dim ker $\mu - 1$)*-dim quadric bundle.*

Hence in the world of singular varieties there are many bad situations. But fortunately, we are living in a smooth world.

Remark 3.3.22. *By (ii), we can turn the special GM variety into a ordinary GM variety (as its branched locus). This leads to an important birational operation on the set of all GM varieties which can be described by GM datas. This actually gives a correspondence between special GM n-folds and ordinary GM* (*n −* 1)*-folds. For details we refer[[8](#page-74-0)] Lemma 2.33.*

Remark 3.3.23. *Hence in this case we know that we only need to assume* dim $K = 1$ *to construct the whole theory if we just consider the smooth GM varieties.*

Proposition 3.3.24. Let *X* be a smooth GM variety of dimension $2 \leq n \leq 6$, then the *Hodge diamonds as follows:*

Proof. Follows from[[25\]](#page-75-1), [\[17](#page-75-2)], [\[30](#page-76-1)] and[[9](#page-74-2)].

Proposition 3.3.25. Let *X* be a smooth GM variety of dimension $2 \leq n \leq 6$, then

$$
\mathsf{HH}_{*}(X) \cong \begin{cases} \mathbb{C}[2] \oplus \mathbb{C}^{\oplus 2n+18} \oplus \mathbb{C}[-2], & n \ even; \\ \mathbb{C}^{\oplus 10}[1] \oplus \mathbb{C}^{\oplus 2n-2} \oplus \mathbb{C}^{\oplus 10}[-1], & n \ odd. \end{cases}
$$

Proof. Follows directly from Proposition [2.3.6](#page-29-0) and Proposition [3.3.24.](#page-43-0)

 \Box

3.4 Debarre-Voisin Varieties

Definition 3.4.1. Let *X* be the smooth hyperplane section of $\mathsf{Gr}(3, V_{10})$, then we call *X a Debarre-Voisin variety.*

Hence it is of dimension 20 with canonical bundle

$$
\omega_X = \omega_{\mathsf{Gr}(3,V_{10})}|_X \otimes \mathscr{O}(X) = \mathscr{O}_X(-9).
$$

Hence it is a Fano variety.

This was first introduced in [\[10](#page-74-3)] aim of constructing new examples of locally complete families of polarized hyperkähler fourfolds.

Theorem 3.4.2 (Debarre-Voisin)**.** *Let X be a Debarre-Voisin variety, then the only nonzero Hodge numbers of the vainshing cohomology* $H^{20}(X, \mathbb{Q})$ _{van} *are*

$$
h_{\text{van}}^{9,11} = h_{\text{van}}^{11,9} = 1, \quad h_{\text{van}}^{10,10} = 20
$$

 $where H^{20}(X, \mathbb{Q})_{\text{van}} = \text{ker}(H^{20}(X, \mathbb{Q}) \to H^{22}(\text{Gr}(3, V_{10}), \mathbb{Q})).$

Proof. See Theorem 2.2(1) in [\[10\]](#page-74-3).

Corollary 3.4.3. *Let X be a Debarre-Voisin variety, then the Hodge number of X satisfies* $h^{p,q} = 0$ *for all* $p \neq q, p + q \neq 20$ *and* $p < 9$ *or* > 11 *when* $p + q = 20$ *and* $\sum_{p} h^{p,p} = 130.$

Proof. As *X* is a hyperplane section, by the weak Lefschetz theorem we get

$$
H^{40-j}(X,\mathbb{Q}) = H_j(X,\mathbb{Q}) \to H_j(\mathsf{Gr}(3,V_{10}),\mathbb{Q}) = H^{42-j}(\mathsf{Gr}(3,V_{10}),\mathbb{Q})
$$

which is isomorphism when $j < 20$ and surjective when $j = 20$. Hence by the cohomology of $Gr(3, V_{10})$, some duality theorem and Theorem [3.4.2](#page-44-0) we get the result. \Box

Proposition 3.4.4. *Let X be a Debarre-Voisin variety, then*

$$
\mathsf{HH}_*(X) = \mathbb{C}[2] \oplus \mathbb{C}^{\oplus 130} \oplus \mathbb{C}[-2].
$$

Proof. By Proposition [2.3.6](#page-29-0) and Corollary [3.4.3](#page-44-1) we get the result.

 \Box

3.5 Iliev-Manivel Varieties

Kuznetsov Components and Examples

4.1 The Construction of Kuznetsov Components

4.1.1 Spherical Functors

First let \mathcal{T}_1 and \mathcal{T}_2 are triangulated categories and $\Phi : \mathcal{T}_1 \to \mathcal{T}_2$ be a functor with right and left adjoints $\Phi^* \dashv \Phi \dashv \Phi^!$, then we define units and counits:

$$
\eta_{\Phi,\Phi^*}: \mathrm{id}_{\mathscr{T}_2} \to \Phi \circ \Phi^*, \quad \varepsilon_{\Phi^*,\Phi}: \Phi^* \circ \Phi \to \mathrm{id}_{\mathscr{T}_1};
$$

$$
\eta_{\Phi^!,\Phi}: \mathrm{id}_{\mathscr{T}_1} \to \Phi^! \circ \Phi, \quad \varepsilon_{\Phi,\Phi^!}: \Phi \circ \Phi^! \to \mathrm{id}_{\mathscr{T}_2}.
$$

 $\mathbf{Definition 4.1.1.}$ A $Fourier-Mukai functor \ \Phi : \mathbf{D}^b(X) \rightarrow \mathbf{D}^b(Y)$ is spherical if

- *(a) the map* $\eta_{\Phi^!,\Phi} \circ \Phi^* + \Phi^! \circ \eta_{\Phi,\Phi^*} : \Phi^* \oplus \Phi^! \to \Phi^! \circ \Phi \circ \Phi^*$ *is an isomorphism, and*
- *(b) the map* $(\Phi^* \circ \varepsilon_{\Phi, \Phi^!}, \varepsilon_{\Phi^*, \Phi} \circ \Phi^!): \Phi^* \circ \Phi \circ \Phi^! \to \Phi^* \oplus \Phi^!$ *is an isomorphism.*

Proposition 4.1.2. *Consider a Fourier-Mukai functor* $\Phi : \mathbf{D}^b(X) \to \mathbf{D}^b(Y)$ *which is spherical, we define* T_X, T_Y, T'_X, T'_Y *by the following distinguished triangles:*

$$
\begin{array}{ccc}\Phi^{*}\circ\Phi\stackrel{\varepsilon_{\Phi^{*},\Phi}}{\to} {\rm id}_X\to T_X,&T_Y\to {\rm id}_Y\stackrel{\eta_{\Phi,\Phi^{*}}}{\to}\Phi\circ\Phi^{*},\\ T'_X\to {\rm id}_X\stackrel{\eta_{\Phi^!,\Phi}}{\to}\Phi^!\circ\Phi,&\Phi\circ\Phi^{!}\stackrel{\varepsilon_{\Phi,\Phi^!}}{\to}{\rm id}_Y\to T'_Y.\end{array}
$$

Then these are mutually inverse autoequivalences of $\mathbf{D}^b(X)$ *and* $\mathbf{D}^b(Y)$ *.*

In this case we call TX, T^Y are spherical twist functors. Moreover, we have

$$
\Phi \circ T_X \cong T_Y \circ \Phi \circ [2], \quad T_X \circ \Phi^* \cong \Phi^* \circ T_Y \circ [2].
$$

Proof. The first statment is direct and we refer Proposition 2.13 in [\[23](#page-75-3)]. For the second, we can show directly that $\Phi^*[1] \cong T_X \circ \Phi^!$ and $\Phi^*[-1] \cong \Phi^! \circ T_Y$. Then by these the second statments are trivial. \Box

4.1.2 The Main Construction

Here is our fundamental theorem in this chapter due to Kuznetsov which follows[[23\]](#page-75-3):

Theorem 4.1.3 (Kuznetsov, 2015)**.** *Let M and X are smooth projective varieties with a spherical functor* Φ : $\mathbf{D}^b(X) \to \mathbf{D}^b(M)$ *between their derived categories. Let* T_M *and T^X be the spherical twists. Assume we have:*

(a) $\mathbf{D}^b(M)$ *has a rectangular Lefschetz decomposition*

$$
\mathbf{D}^b(M)=\left\langle \mathcal{B},\mathcal{B}\otimes\mathcal{L}_M,...,\mathcal{B}\otimes\mathcal{L}_M^{\otimes (m-1)}\right\rangle.
$$

- (b) There is some $1 \leq d < m$ such that for all $i \in \mathbb{Z}$ we have $T_M(\mathscr{B} \otimes \mathscr{L}_M^i) = \mathscr{B} \otimes \mathscr{L}_M^{i-d}$.
- *(c) There is a line bundle* \mathscr{L}_X *on X such that:* $\mathscr{L}_M \circ \Phi \cong \Phi \circ \mathscr{L}_X$ *.*
- *(d) Finally, assume that* $T_X \circ \mathscr{L}_X \cong \mathscr{L}_X \circ T_X$ *.*

Then the functor $\Phi^*|_{\mathscr{B}} : \mathscr{B} \to \mathbf{D}^b(X)$ *is fully faithful. If we let* $\mathscr{B}_X := \Phi^* \mathscr{B} \subset \mathbf{D}^b(X)$ *, then they induce an S.O.D*

$$
\mathbf{D}^{b}(X) = \langle \mathrm{Ku}(X), \mathscr{B}_X, \mathscr{B}_X \otimes \mathscr{L}_X, ..., \mathscr{B}_X \otimes \mathscr{L}_X^{\otimes (m-d-1)} \rangle
$$

 $where \ \mathsf{Ku}(X) := \Big\langle \mathscr{B}_X, \mathscr{B}_X \otimes \mathscr{L}_X, ..., \mathscr{B}_X \otimes \mathscr{L}_X^{\otimes (m-d-1)} \Big\rangle$ E*⊥ is called the Kuznetsov component of X associated to our data: M,* Φ*, and the rectangular Lefschetz decomposition of* $\mathbf{D}^b(M)$ *. Finally if we consider the following autoequivalences of* $\mathbf{D}^b(X)$ *:*

$$
\rho := T_X \circ \mathscr{L}_X^d, \quad \sigma := S_X \circ T_X \circ \mathscr{L}_X^m,
$$

if $c = \text{gcd}(d,m)$ *then the Serre functor of the Kuznetsov component* $\text{Ku}(X)$ *can be expressed as*

$$
S_{\mathsf{Ku}(X)}^{\frac{d}{c}} \cong \rho^{-\frac{m}{c}} \circ \sigma^{\frac{d}{c}}.
$$

In particular, if some powers of ρ *and* σ *are shifts then* $\text{Ku}(X)$ *is a fractional Calabi-Yau category.*

Proof. Note that the facts that functor $\Phi^*|_{\mathscr{B}} : \mathscr{B} \to \mathbf{D}^b(X)$ is fully faithful and the existence of Kuznetsov component $\mathsf{Ku}(X)$ are directly by arguments of category theory. We omit it and we refer Lemma 3.10 in [\[23](#page-75-3)] for details.

For the final argument, consider the degree shift functor:

$$
\mathsf{O}_{\mathsf{Ku}(X)} := \delta_{\mathsf{Ku}(X)} \circ \mathscr{L}_X : \mathsf{Ku}(X) \to \mathsf{Ku}(X).
$$

Then we have the following properties:

- (A) $\sigma \circ \rho = \rho \circ \sigma$.
- (B) $S_X^{-1} = \mathscr{L}_X^{\otimes m} \circ T_X \circ \sigma^{-1}.$
- (C) All components $\mathsf{Ku}(X), \mathscr{B}_X, \mathscr{B}_X \otimes \mathscr{L}_X^i$ are preserved by ρ and σ .
- (i) $O_{\mathsf{Ku}(X)}$ is an autoequivalence.
- (ii) $O_{\text{Ku}(X)}$ commute with σ , ρ .
- (iii) $O_{\mathsf{Ku}(X)}^i = \delta_{\mathsf{Ku}(X)} \circ \mathscr{L}_X^{\otimes i}$ for all $0 \leq i \leq m d$.

• (iv)
$$
S_{\text{Ku}(X)}^{-1} = \mathsf{O}_{\text{Ku}(X)}^{m-d} \circ \rho \circ \sigma^{-1}
$$
.

$$
\bullet \ \ (\text{v}) \ \mathsf{O}_{\mathsf{Ku}(X)}^d = \rho.
$$

Proofof Properties. (A)-(C) are direct and we refer Lemma 3.11 in [[23\]](#page-75-3). Property (i) follows by either (iv) or (v) . Property (ii) follows by a direct check. Property (iv) follows from (iii), Proposition [2.2.5](#page-25-0)(ii) and (B). Hence the key results are (iii) and (v).

For (iii), observe that the formula is true for $i = 0, 1$. Let us assume the formula is true for $0 \leq i \leq m - d$; we want to show it is true for $i + 1$ as well. Let $F \in \mathsf{Ku}(X)$, consider

$$
F \otimes \mathscr{L}_X^{\otimes i+1} \to \delta_{\mathsf{Ku}(X)}(F \otimes \mathscr{L}_X^{\otimes i}) \otimes \mathscr{L}_X = \mathsf{O}_{\mathsf{Ku}(X)}^i(F) \otimes \mathscr{L}_X
$$

$$
\to \delta_{\mathsf{Ku}(X)}(\mathsf{O}_{\mathsf{Ku}(X)}^i(F) \otimes \mathscr{L}_X) = \mathsf{O}_{\mathsf{Ku}(X)}^{i+1}(F).
$$

 $\mathcal{B}_X, \mathcal{B}_X \otimes \mathcal{L}_X, ..., \mathcal{B}_X \otimes \mathcal{L}_X^{\otimes (m-d-1)}$ $\Bigr\rangle.$ By the octahedral axiom, this cone is an extension of two objects

$$
G_1 \otimes \mathscr{L}_X \to \text{cone} \to G_2 \to
$$

where $G_1 \in \left\{ \mathscr{B}_X, \mathscr{B}_X \otimes \mathscr{L}_X, ..., \mathscr{B}_X \otimes \mathscr{L}_X^{\otimes (i-1)} \right\}$ $\Big\}$ and $G_2 \in \mathscr{B}_X$. Hence we get the result.

For (v), the general case need many categorial calculations and we refer Corollary 3.18 in [\[23](#page-75-3)]. Here we show the case $d \leq m - d$. Let $F \in \mathsf{Ku}(X)$, we have a distinguished triangle

$$
\Phi^*\Phi(F\otimes \mathscr{L}_X^{\otimes d})\to F\otimes \mathscr{L}_X^{\otimes d}\to \rho(F)\to.
$$

As $\rho(F) \in \text{Ku}(X)$, we need to show $\Phi^* \Phi(F \otimes \mathscr{L}_X^{\otimes d}) \in {}^{\perp} \text{Ku}(X)$. By adjointness we have $\Phi(F \otimes \mathscr{L}_X^{\otimes d}) \in \left< \mathscr{B}, \mathscr{B} \otimes \mathscr{L}_M, ..., \mathscr{B} \otimes \mathscr{L}_M^{\otimes (d-1)} \right>$ $\sum_{n=1}^{\infty}$ Easy to see that

$$
\Phi^*(\mathscr{B} \otimes \mathscr{L}_M^{\otimes i}) = \Phi^*(\mathscr{B}) \otimes \mathscr{L}_X^{\otimes i} = \mathscr{B}_X \otimes \mathscr{L}_X^{\otimes i}.
$$

Hence

$$
\Phi^*\Phi(F\otimes \mathscr{L}_X^{\otimes d})\in \left\langle \mathscr{B}_X, \mathscr{B}_X\otimes \mathscr{L}_X, ..., \mathscr{B}_X\otimes \mathscr{L}_X^{\otimes (d-1)} \right\rangle \subset {}^\perp \mathsf{Ku}(X).
$$

Well done!

Now come back to the proof. By property (iv), we can express the (inverse of the) Serre functor $S_{\mathsf{Ku}(X)}$ in terms of the functors $\mathsf{O}_{\mathsf{Ku}(X)}$, ρ and σ . By properties (A), (i) and (ii), all these functors commute. By raising everything to the power d/c , and by using property (v), the statement follows. \Box

Remark 4.1.4. *Note that in this case we have*

$$
\mathsf{Ku}(X) = \left\{ F \in \mathbf{D}^b(X) : \Phi(F) \in \left\langle \mathscr{B} \otimes \mathscr{L}_M^{-d}, ..., \mathscr{B} \otimes \mathscr{L}_X^{-1} \right\rangle \subset \mathbf{D}^b(M) \right\}
$$

by trivial reasons. See Lemma 3.12 in[[23\]](#page-75-3).

Remark 4.1.5. *The same result and proof with holds if consider the more general conditions:*

- *(a)* We could replace \mathscr{L}_M and \mathscr{L}_X by arbitrary autoequivalences.
- *(b) Second, we could replace* $\mathbf{D}^b(X)$ *and* $\mathbf{D}^b(M)$ *by non-commutative smooth projective varieties.*

We refer Remark 3.21 in [\[23](#page-75-3)] to consider the case of not rectangular case.

4.2 Example I – Hypersurfaces

Proposition 4.2.1. *Let M be a smooth projective variety with an rectangular Lefschetz decomposition*

$$
\mathbf{D}^b(M)=\left\langle \mathscr{B},\mathscr{B}\otimes\mathscr{L}_M,...,\mathscr{B}\otimes\mathscr{L}_M^{\otimes(m-1)}\right\rangle.
$$

Consider the map $f: X \to M$ *is a divisorial embedding with the image* $f(X)$ *being a smooth divisor in the linear system* $\mathscr{L}_{M}^{\otimes d}$ *for some* $1 \leq d \leq m$ *.*

Then the $\Phi := f_* : \mathbf{D}^b(X) \to \mathbf{D}^b(M)$ *is spherical. Let* $\mathscr{L}_X := f^* \mathscr{L}_M$ *and, then we satisfies conditions (a)-(d) in Theorem [4.1.3](#page-47-0). Moreover we have* $\rho = T_X \circ \mathcal{L}_X^d = [2]$ *. Hence we have S.O.D*

$$
\mathbf{D}^b(X)=\Big\langle\mathsf{Ku}(X),\mathscr{B}_X,\mathscr{B}_X\otimes\mathscr{L}_X,...,\mathscr{B}_X\otimes\mathscr{L}_X^{\otimes (m-d-1)}\Big\rangle
$$

 $where \mathscr{B}_X := f^* \mathscr{B}$ and $c = \gcd(d, m)$ with

$$
S_{\mathsf{Ku}(X)}^{d/c} \cong (f^*(\omega_M \otimes \mathscr{L}_M^m))^{d/c} \left[\frac{d \dim M + d - 2m}{c} \right]
$$

.

Finally, if $\omega_M = \mathscr{L}_M^{-m}$ *then* Ku(*X*) *is a fractional Calabi-Yau category.*

Proof. In this case $f^!F = f^*F \otimes \mathcal{L}_X^d[-1]$. Hence for any $F \in \mathbf{D}^b(M)$ we have

$$
f^! f_* f^* F \cong f^! (F \otimes f_* \mathscr{O}_X) \cong f^! (F \otimes (\mathscr{L}_M^{-d} \stackrel{\phi}{\to} \mathscr{O}_M))
$$

\n
$$
\cong f^* (F \otimes (\mathscr{L}_M^{-d} \stackrel{\phi}{\to} \mathscr{O}_M)) \otimes \mathscr{L}_X^d [-1]
$$

\n
$$
\cong f^* F \otimes (\mathscr{L}_X^{-d}[1] \oplus \mathscr{O}_X) \otimes \mathscr{L}_X^d [-1]
$$

\n
$$
\cong f^* F \oplus f^! F.
$$

Similar for $f^* \circ f_* \circ f^!$. Hence $\Phi = f_*$ is spherical.

Next consider the canonical distinguished triangles

$$
F \otimes \mathscr{L}_M^{-d} \to F \to f_* f^* F \to, \quad F \otimes \mathscr{L}_X^{-d}[1] \to f^* f_* F \to F \to.
$$

Note that the first one comes from $0 \to \mathscr{L}_M^{-d} \to \mathscr{O}_M \to f_* \mathscr{O}_X \to 0$ and the second one as follows: let $f^*f_*F \to F \to F' \to$, then we have

$$
f_* f^* f_* F \to f_* F \to f_* F' \to .
$$

By Koszul resolution we have

$$
f_* f^* f_* F = f_* F \otimes f_* \mathcal{O}_X \cong \text{cone}(f_* F \otimes \mathcal{L}_M^{-d} \to f_* F) \cong f_* F \oplus f_* F \otimes \mathcal{L}_M^{-d}[1].
$$

As $f_*f^*f_*F \to f_*F$ is just the second projection, we get $f_*F' \cong f_*F \otimes \mathcal{L}_M^{-d}[2]$, well done as f_* is fully faithful.

Hence we get $T_M = \mathscr{L}_M^{-d}$ and $T_X = \mathscr{L}_X^{-d}[2]$ which is commute with \mathscr{L}_X . Hence $\rho = [2]$ and $\sigma = f^*(\omega_M \otimes \mathcal{L}_M^m)[\dim M + 1]$. Well done.

Corollary 4.2.2. Let $X \subset \mathbb{P}^n$ be a smooth hypersurface of degree $d \leq n+1$ and $c = \gcd(d, n + 1)$ *. Then we have S.O.D*

$$
\mathbf{D}^{b}(X) = \langle \mathsf{Ku}(X), \mathscr{O}_X, \mathscr{O}_X(1), ..., \mathscr{O}_X(n-d) \rangle
$$

and the Serre functor of $\text{Ku}(X)$ *has the property* $S_{\text{Ku}(X)}^{d/c} = \left[\frac{(n+1)(d-2)}{c}\right]$ i *. In particular, if* $d|n+1$ *then* Ku(*X*) *is a Calabi-Yau category of dimension* $\frac{(n+1)(d-2)}{d}$.

Proof. Follows from Proposition [1.4.1](#page-12-0) and Proposition [4.2.1.](#page-49-0)

Corollary 4.2.3. *Assume* $gcd(k, n) = 1$ *and let* $X \subset Gr(k, n)$ *be a hypersurface of degree* $d \leq n$ *and let* $c = \gcd(d, n)$ *. Then there is an S.O.D:*

$$
\mathbf{D}^{b}(X) = \langle \mathsf{Ku}(X), \mathscr{B}_{X}, \mathscr{B}_{X}(1), ..., \mathscr{B}_{X}(n-d-1) \rangle
$$

where \mathscr{B}_X *is defined in Remark [1.6.2](#page-20-0). The Serre functor of* $\text{Ku}(X)$ *has the property* $S_{\mathsf{Ku}(X)} = \left[\frac{(k(n-k)+1)d-2n}{c} \right]$ *l.* In particular, if $d|n$ then $\mathsf{Ku}(X)$ *is a Calabi-Yau category of dimension* $k(n-k)+1-\frac{2n}{d}$ $\frac{2n}{d}$.

Proof. Follows from Remark [1.6.2](#page-20-0) and Proposition [4.2.1](#page-49-0).

 \Box

4.3 Example II – Double Coverings

4.3.1 Some Properties of Ramified Cyclic Covers

Definition 4.3.1 (Ramified Cyclic Covers). Let X be a normal variety and let \mathscr{L} a *line bundle on X* and $s \in H^0(X, \mathcal{L})$ a section with zero divisor $D = Z(s)$ *.*

The section s can be viewed as a map of sheaves $s : \mathcal{O}_X \to \mathcal{L}^m$ *. We define* $\bigoplus_{i=1}^{m-1} \mathscr{L}^{-i}$ as a sheaf of algebras on *X* where, for $i + j \geq m$, we use the multiplication

$$
\mathscr{L}^{-i}\otimes \mathscr{L}^{-j}\cong \mathscr{L}^{-i-j}\otimes \mathscr{O}_X\stackrel{\mathrm{id}\otimes s}{\longrightarrow} \mathscr{L}^{-i-j+m}.
$$

 $Consider p: Z := \underline{\text{Spec}}_X \bigoplus_{i=0}^{m-1} \mathcal{L}^{-i} \to X$ *which is a finite cover of degree m branched along D.*

Remark 4.3.2. *Note that* $\mathscr{L}_{X\setminus D}^m \cong \mathscr{O}_{X\setminus D}$ *, hence p is a finite étale morphism in* $X\setminus D$ *. Note also that D, X is smooth if and only if Z is smooth.*

Proposition 4.3.3. If the map $p: Z \to X$ is a double covering branched in a divisor *in the linear system* \mathscr{L}^2 *in X, then p is a cyclic cover* $Z = \text{Spec}_X (\mathscr{O}_X \oplus \mathscr{M}) \to X$ *such that* $\mathcal{M}^2 \cong \mathcal{L}^{-2}$. In particular when Pic(*X*) has no 2-torsion, then p is Z = $\operatorname{Spec}_X (\mathscr{O}_X \oplus \mathscr{L}^{-1}) \to X.$

Proof. Note that by trace map we have $p_*\mathscr{O}_Z \cong \mathscr{O}_X \oplus \mathscr{M}$ for a line bundle \mathscr{M} on X. Note that as *p* is branched in a divisor $D \in |\mathscr{L}^2|$, locally the branched covering is defined by $z^2 = s(x_0, ..., x_n)$ for local equation *s* of *D* and local generator $z \in \Gamma(\mathcal{M})$. Hence $\mathcal{M}^2 \cong \mathcal{O}(-D) = \mathcal{L}^{-2}$. Well done. \Box

Proposition 4.3.4. *Consider a cyclic cover* $p: Z := \underline{\text{Spec}}_X \bigoplus_{i=0}^{m-1} \mathscr{L}^{-i} \to X$ of smooth *varieties induced by* $s \in \Gamma(X, \mathcal{L}^m)$ *. Then*

$$
K_Z = p^*(K_X + \mathcal{L}^{m-1}).
$$

Proof. This is some kind of Riemann-Hurwitz formula. Note that if we consider *π* : $\mathbb{P}(\mathscr{O}_X \oplus \mathscr{L}) \to X$, know that $\pi_* \mathscr{O}(m) = \bigoplus_{i=0}^m \mathscr{L}^{-i}$. Hence Z is a hypersurface of degree *m* in $\mathbb{P}(\mathcal{O}_X \oplus \mathcal{L})$. By construction, *Z* does not meet the hypersurface at infinity of $\mathbb{P}(\mathcal{O}_X \oplus \mathcal{L})$. Therefore $\mathcal{O}(1)|_Z \cong \pi^*(\mathcal{L})|_Z$. Hence by some results of projective bundles, we have

$$
K_Z = (\pi^*(K_X \otimes \mathscr{L}) \otimes \mathscr{O}(m-2))|_Z = p^*(K_X + \mathscr{L}^{m-1}).
$$

Well done.

4.3.2 Kuznetsov Components of Double Coverings

Proposition 4.3.5. *Let M be a smooth projective variety with an rectangular Lefschetz decomposition*

$$
\mathbf{D}^b(M)=\left\langle \mathcal{B},\mathcal{B}\otimes\mathcal{L}_M,...,\mathcal{B}\otimes\mathcal{L}_M^{\otimes (m-1)}\right\rangle.
$$

Consider the map $f: X \to M$ *is a double covering branched in a divisor in the linear system* $\mathscr{L}_{M}^{\otimes 2d}$ *for some* $1 \leq d \leq m$ *such that* Pic(*M*) *has no* 2*-torsion.*

Then the $\Phi := f_* : \mathbf{D}^b(X) \to \mathbf{D}^b(M)$ is spherical. Let $\mathscr{L}_X := f^* \mathscr{L}_M$ and, then *we satisfies conditions (a)-(d) in Theorem [4.1.3.](#page-47-0) Moreover if we let τ be the covering involution, then we have* $\rho = T_X \circ \mathcal{L}_X^d = \tau[1]$ *. Hence we have* S.O.D

$$
\mathbf{D}^{b}(X)=\left\langle\mathsf{Ku}(X),\mathscr{B}_X,\mathscr{B}_X\otimes\mathscr{L}_X,...,\mathscr{B}_X\otimes\mathscr{L}_{X}^{\otimes(m-d-1)}\right\rangle
$$

where $\mathscr{B}_X := f^* \mathscr{B}$ *and* $c = \text{gcd}(d, m)$ *with*

$$
S_{\mathsf{Ku}(X)}^{d/c} \cong \tau^{(m-d)/c} (f^*(\omega_M \otimes \mathscr{L}_M^m))^{d/c} \left[\frac{d \dim M + d - m}{c} \right]
$$

Finally if $\omega_M = \mathscr{L}_M^{-m}$, then $\mathsf{Ku}(X)$ *is a fractional Calabi-Yau category.*

Proof. In this case $f^!F = f^*F \otimes \mathcal{L}_X^d$ and $f_*\mathcal{O}_X \cong \mathcal{L}_X^{-d} \oplus \mathcal{O}_X$ as $Pic(M)$ has no 2-torsion and Proposition [4.3.4,](#page-51-0) hence

$$
f' f_* f^* F \cong f'(F \otimes f_* \mathscr{O}_X) \cong f'(F \otimes (\mathscr{L}_X^{-d} \oplus \mathscr{O}_X))
$$

\n
$$
\cong f^* F \otimes (\mathscr{L}_X^{-d} \oplus \mathscr{O}_X) \otimes \mathscr{L}_X^d
$$

\n
$$
\cong f^* F \oplus f^! F.
$$

Similar for $f^* \circ f_* \circ f^!$. Hence $\Phi = f_*$ is spherical.

Next, we have the canonical distinguished triangles

$$
F \to f_* f^* F \to F \otimes \mathscr{L}_M^{-d} \to, \quad \tau^* F \otimes \mathscr{L}_X^{-d}[1] \to f^* f_* F \to F \to.
$$

We now give an idea of this counit sequence. As *f [∗]* and *f[∗]* are both Fourier-Mukai transform induced by $\mathscr{O}_{\Gamma(f)}$, and since f is flat, it is easy to check that the convolution of the FM kernels is given by the structure sheaf of the fiber product, so one needs to compute cone($\mathscr{O}_{X\times_Y X}\to \mathscr{O}_{\Delta}$). As $X\times_Y X=\Delta\cup \Gamma(\tau)$, we have an exact sequence

$$
0 \to \mathscr{O}_{\Gamma(\tau)}(-R) \to \mathscr{O}_{X \times_Y X} \to \mathscr{O}_{\Delta} \to 0
$$

where $R \in |\mathscr{L}_{M}^{2d}|$ is the branched locus. Hence the cone is $\mathscr{O}_{\Gamma(\tau)}(-R)[1] = \mathscr{O}_{\Gamma(\tau)}(-R)[1]$ which correspond to the functor is what we want.

Hence we get $T_M = \mathscr{L}_M^{-d}[-1]$ and $T_X = \tau \circ \mathscr{L}_X^{-d}[1]$ which is commute with \mathscr{L}_X since $\tau^* \mathscr{L} X \cong \mathscr{L}_X$. Hence $\rho = \tau[1]$ and $\sigma = \tau \circ f^* (\omega_M \otimes \mathscr{L}_M^m) [\dim M + 1]$. Hence ρ^2 and σ^2 are shifts if $\omega_M = \mathscr{L}_M^{-m}$. Well done.

.

 \Box

 \Box

Corollary 4.3.6. Let $X \to \mathbb{P}^n$ be a double covering ramified in a smooth hypersurface *of degree* 2*d with* $d \leq n+1$ *and let* $c = \gcd(d, n+1)$ *. Let* τ *be the involution of the double covering. Then we have S.O.D*

$$
\mathbf{D}^{b}(X) = \langle \mathsf{Ku}(X), \mathscr{O}_X, \mathscr{O}_X(1), ..., \mathscr{O}_X(n-d) \rangle
$$

with

$$
S_{\mathsf{Ku}(X)}^{d/c} \cong \tau^{(n+1-d)/c}\left[\frac{(n+1)(d-1)}{c}\right].
$$

In particular, if $d|n+1$ *and* $(n+1)/d$ *is odd then* $\text{Ku}(X)$ *is a Calabi-Yau category of dimension* $(n+1)(d-1)/d$.

Proof. Follows from Proposition [1.4.1](#page-12-0) and Proposition [4.3.5.](#page-52-0)

Corollary 4.3.7. Assume that $gcd(k, n) = 1$ and let $f: X \rightarrow Gr(k, n)$ be a double *covering ramified in a smooth hypersurface of degree* 2*d with* $d \leq n$ *and let* $c = \text{gcd}(d, n)$ *. Let τ be the involution of the double covering. Then we have S.O.D*

$$
\mathbf{D}^b(X) = \langle \mathsf{Ku}(X), \mathscr{B}_X, \mathscr{B}_X(1), ..., \mathscr{B}_X(n-d-1) \rangle
$$

with $\mathscr{B}_X = f^* \mathscr{B}$ *in Remark* [1.6.2](#page-20-0) *and*

$$
S_{\mathsf{Ku}(X)}^{d/c} \cong \tau^{(n-d)/c} \left[\frac{(k(n-k)+1)d-n}{c}\right].
$$

In particular, if d|n and n/*d is odd then* Ku(*X*) *is a Calabi-Yau category of dimension* $k(n-k) + 1 - n/d$.

Proof. Follows from Remark [1.6.2](#page-20-0) and Proposition [4.3.5](#page-52-0).

4.4 Example III – K3 categories

One of the interesting properties K3 surfaces have, is that moduli spaces of sheaves on them carry a symplectic structure, and so when smooth and compact they are hyperkähler varieties. One can use K3 categories in the same way. In fact, for any K3 category we can show that a moduli space of objects in it carries a symplectic form. This allows constructing new examples of hyper-kähler varieties.

However, finding other examples of noncommutative K3 categories seems to be a difficult problem. For instance, one can obtain a long list of hypersurfaces *X* in weighted projective spaces with $\mathsf{Ku}(X)$ being a K3 category. But it looks as most of them are equivalent to derived categories of K3 surfaces, or reduce to one of the three examples we will introduce.

For 3-Calabi-Yau Categories, we refer section 4.5 in [\[23\]](#page-75-3).

4.4.1 Cubic Fourfolds

Corollary 4.4.1. *Let* $X_3 \subset \mathbb{P}^5$ *be a smooth cubic fourfold. Then we have* S.O.D

$$
\mathbf{D}^b(X_3) = \langle \mathsf{Ku}(X_3), \mathscr{O}_{X_3}, \mathscr{O}_{X_3}(1), \mathscr{O}_{X_3}(2) \rangle
$$

where the Kuznetsov component $\text{Ku}(X_3)$ *is a K3 category.*

Proof. Follows from Corollary [4.2.2](#page-50-0) directly.

Proposition 4.4.2. *In this case we have* $HH_*(\text{Ku}(X_3)) = \mathbb{C}[2] \oplus \mathbb{C}^{\oplus 22} \oplus \mathbb{C}[-2]$ *.*

Proof. Actually by Corollary [4.4.1](#page-54-0), we have S.O.D

$$
\mathbf{D}^b(X_3) = \langle \mathrm{Ku}(X_3), \mathscr{O}_{X_3}, \mathscr{O}_{X_3}(1), \mathscr{O}_{X_3}(2) \rangle
$$

Hence $\mathbf{D}^b(X)$ is an S.O.D of $\mathsf{Ku}(X)$ and 3 exceptional objects. By Lemma [2.3.4](#page-28-0) and Example [2.3.1,](#page-28-1) we have

$$
\mathsf{HH}_*(X) = \mathsf{HH}_*(\mathsf{Ku}(X)) \oplus \mathbb{C}^3.
$$

By Proposition [3.2.1](#page-33-0) we get the result!

4.4.2 Gushel-Mukai Varieties

Recall the situation of GM-varieties:

Consider the Plücker embedding $\mathsf{Gr}(2, V_5) \hookrightarrow \mathbb{P}(\bigwedge^2 V_5)$. For any vector space K, consider the cone $\mathsf{C}_K(\mathsf{Gr}(2, V_5)) \subset \mathbb{P}(\bigwedge^2 V_5 \oplus K)$ of vertex $\mathbb{P}(K)$. Choose a vector subspace $W \subset \bigwedge^2 V_5 \oplus K$ and a subscheme $Q \subset \mathbb{P}(W)$ defined by defined by one quadratic equation (possibly zero).

Let $X = C_K(\mathsf{Gr}(2, V_5)) \cap \mathbb{P}(W) \cap Q$ be a such smooth GM variety of dimension dim *W* − 5. Let $M_X := C_K$ Gr(2*, V*₅) ∩ $\mathbb{P}(W)$ to be the Grassmannian hull of *X*. Hence *X* = *M*_{*X*} ∩ *Q* which is a quadric section of *M*_{*X*}. Let *M*[′]_{*X*} := Gr(2*, V*₅) ∩ $\mathbb{P}(W')$ to be the projected Grassmannian hull of *X* where *W′* defined as the image of the projection $\mu: W \subset \bigwedge^2 V_5 \oplus K \to \bigwedge^2 V_5.$

Now consider the Gushel map $X \to Gr(2, V_5)$ and dim $X \geq 3$ which is Fano.

(i) Ordinary GM variety: If $\mu : W \to \Lambda^2 V_5$ is injective, that is, μ induce $W \cong W'$, then $M_X \cong M'_X$ and Gushel map $X \hookrightarrow$ Gr(2*, V₅*) is an embedding which induce

$$
X\cong M'_X\cap Q=\mathrm{Gr}(2,V_5)\cap \mathbb{P}(W)\cap Q.
$$

Hence in this case dim $X = \dim W - 5 \le \dim \bigwedge^2 V_5 - 5 = 5$.

 \Box

(ii) Special GM variety: If ker $\mu \neq 0$, then dim ker $\mu = 1$, $Q \cap \mathbb{P}(\ker \mu) = \emptyset$ and $M_X = \mathsf{C}_{\mathbb{P}(\ker \mu)} M'_X$ and the Gushel map $X \to \mathsf{Gr}(2, V_5)$ induce $X \to M'_X$ which is a double covering branched at a quadric (which is a ordinary GM variety if $\dim X \geq 2$). Hence in this case it comes with a canonical involution from the double covering and dim $X = \dim W - 5 \le \dim \Lambda^2 V_5 + 1 - 5 = 6$.

Hence in any case X is related to the projected Grassmannian hull M'_{X} . So we need to describe the derived category of M'_{X} and its S.O.D. Here we let $N := \dim M'_{X} \ge$ dim $W \geq 3$.

Lemma 4.4.3. In this case (dim $X \geq 3$), M'_{X} is smooth.

Proof. See Proposition 2.22 in [\[8\]](#page-74-0).

Lemma 4.4.4. *Let* $i : M'_{X} \hookrightarrow$ Gr(2*, V*₅) *be the embedding, then:*

- *(i) The functor i*^{*} *is fully faithful on* $\mathscr{B} = \langle \mathscr{O}, \mathscr{U}^{\vee} \rangle$.
- *(ii)* Let $\mathscr{B}_{M'_X} := i^* \mathscr{B}$, then we have an S.O.D

$$
\mathbf{D}^b(M'_X)=\left<\mathscr{B}_{M'_X},\mathscr{B}_{M'_X}(1),...,\mathscr{B}_{M'_X}(N-2)\right>.
$$

Note that in this case $K_{M'_X} = -(N-1)H$ *.*

Proof. This is a direct application of the Theorem 1.2 in [\[21](#page-75-4)], we omit it. The fact $K_{M'_X} = -(N-1)H$ is trivial. \Box

Corollary 4.4.5. *Let X be a smooth GM variety as above of dimension* $n \geq 3$ *with the Gushel map* $f: X \to M'_X \hookrightarrow$ $Gr(2, V_5)$ *. Then* f^* *is fully faithful on* $\mathscr B$ *which induce an S.O.D*

$$
\mathbf{D}^b(X) = \langle \mathsf{Ku}(X), \mathscr{B}_X, \mathscr{B}_X(1), ..., \mathscr{B}_X(n-3) \rangle
$$

where $\mathscr{B}_X := f^* \mathscr{B} = f^* \langle \mathscr{O}, \mathscr{U}^\vee \rangle$. Moreover the Serre functor $S_{\mathsf{Ku}(X)}$ satisfies

- *if n is even, then* $S_{\mathsf{Ku}(X)} = [2]$ *, hence it is a K3 category;*
- *if n is odd, then* $S_{\mathsf{Ku}(X)} = \tau \circ [2]$ *when X is special; and* $S_{\mathsf{Ku}(X)} = \varpi \circ [2]$ *for a nontrivial involutive autoequivalence* ϖ *of* Ku(*X*).

Proof. If *X* is special, then dim $M'_{X} = n$ is smooth. Hence by Lemma [4.4.4](#page-55-0) we get an S.O.D

$$
\mathbf{D}^b(M'_X)=\left<\mathscr{B}_{M'_X},\mathscr{B}_{M'_X}(1),...,\mathscr{B}_{M'_X}(n-2)\right>.
$$

By Proposition [4.2.1](#page-49-0) we have S.O.D

$$
\mathbf{D}^{b}(X) = \langle \mathsf{Ku}(X), \mathscr{B}_{X}, \mathscr{B}_{X}(1), ..., \mathscr{B}_{X}(n-3) \rangle
$$

4.4. EXAMPLE III – K3 CATEGORIES 57

with $S_{\mathsf{Ku}(X)} = \tau^n \circ (f^* \omega_{M'_X}(n-1)) \circ [2] = \tau^n \circ [2]$. Hence if *n* is even, then $S_{\mathsf{Ku}(X)} = [2]$ and if *n* is odd, then $S_{\mathsf{Ku}(X)} = \tau \circ [2]$.

If *X* is ordinary, then dim $M'_{X} = n + 1$ is smooth. Hence by Lemma [4.4.4](#page-55-0) we get an S.O.D

$$
\mathbf{D}^{b}(M'_{X}) = \left\langle \mathcal{B}_{M'_{X}}, \mathcal{B}_{M'_{X}}(1), ..., \mathcal{B}_{M'_{X}}(n-1) \right\rangle.
$$

By Proposition [4.3.5](#page-52-0) we have S.O.D

$$
\mathbf{D}^{b}(X) = \langle \mathsf{Ku}(X), \mathscr{B}_X, \mathscr{B}_X(1), ..., \mathscr{B}_X(n-3) \rangle
$$

and let $c = \gcd(2, n)$ we have

$$
S^{2/c}_{\mathsf{Ku}(X)} = (f^*\omega_{X'}(n))^{2/c} \circ \left[\frac{4}{c}\right] \cong \left[\frac{4}{c}\right].
$$

If *n* is even, then $c = 2$ and $S_{\mathsf{Ku}(X)} = [2]$. Now we consider the case when *n* is odd. In this case we have $c = 1$, hence $S^2_{\mathsf{Ku}(X)} = [4]$. Then $S_{\mathsf{Ku}(X)} \circ [-2] = S^{-1}_{\mathsf{Ku}(X)} \circ [2] =: \varpi$, then ϖ is an involutive autoequivalence of Ku(X). Now if ϖ is trivial, then in this case Ku(*X*) is a K3-category. By Proposition [2.4.6](#page-30-0) we have $HH_{-2}(Ku(X)) \neq 0$. But this is impossible by Proposition 4.4.6. impossible by Proposition [4.4.6.](#page-56-0)

Proposition 4.4.6. *Let X be a smooth GM variety of dimension* $n \geq 3$ *. Then*

$$
\mathsf{HH}_*(\mathsf{Ku}(X)) \cong \left\{ \begin{matrix} \mathbb{C}[2] \oplus \mathbb{C}^{\oplus 22} \oplus \mathbb{C}[-2], n \textit{ even}; \\ \mathbb{C}^{\oplus 10}[1] \oplus \mathbb{C}^{\oplus 2} \oplus \mathbb{C}^{\oplus 10}[-1], n \textit{ odd}. \end{matrix} \right.
$$

Proof. Actually by Corollary [4.4.5](#page-55-1), we have S.O.D

$$
\mathbf{D}^b(X)=\left\langle\mathrm{Ku}(X),\mathscr{O}_X,\mathscr{U}^{\vee}_X,\mathscr{O}_X(1),\mathscr{U}^{\vee}_X(1),...,\mathscr{O}_X(n-3),\mathscr{U}^{\vee}_X(n-3)\right\rangle
$$

Hence $\mathbf{D}^b(X)$ is an S.O.D of $\mathsf{Ku}(X)$ and $2(n-2)$ exceptional objects. By Lemma [2.3.4](#page-28-0) and Example [2.3.1](#page-28-1), we have

$$
\mathsf{HH}_*(X) = \mathsf{HH}_*(\mathsf{Ku}(X)) \oplus \mathbb{C}^{2n-4}.
$$

By Proposition [3.3.25](#page-43-1) we get the result!

We can also find the Hochschild cohomology of $\mathsf{Ku}(X)$ as follows.

Proposition 4.4.7. *Let* X *be a smooth GM variety of dimension* $n \geq 3$ *. Then*

$$
\mathsf{HH}^*(\mathsf{Ku}(X)) \cong \begin{cases} \mathbb{C} \oplus \mathbb{C}^{\oplus 22}[-2] \oplus \mathbb{C}[-4], & n \ even; \\ \mathbb{C} \oplus \mathbb{C}^{\oplus 20}[-2] \oplus \mathbb{C}[-4], & n \ odd. \end{cases}
$$

Proof. When *n* is even, this follows from Proposition [2.4.6](#page-30-0) Proposition [4.4.6.](#page-56-0) When *n* is odd, this is significantly harder to compute. We refer Proposition 2.12 in[[24\]](#page-75-5) for the detailed proof. \Box

4.4.3 Debarre-Voisin Varieties

Corollary 4.4.8. *Let* $f: X \hookrightarrow Gr(3, V_{10})$ *be a Debarre-Voisin variety, then we have*

$$
\mathbf{D}^b(X) = \langle \mathsf{Ku}(X), \mathscr{B}_X, ..., \mathscr{B}_X(8) \rangle
$$

where $\mathscr{B}_X = f^* \mathscr{B}$ *has a strong full exceptional collection of length* 12 *and* $S_{\mathsf{Ku}(X)} = [2]$ *. Hence* Ku(*X*) *is a K3 category.*

Proof. Trivial by Remark [1.6.2](#page-20-0) and Proposition [4.2.1](#page-49-0).

 \Box

 \Box

Proposition 4.4.9. *Let* $f: X \hookrightarrow$ Gr(3*, V*₁₀) *be a Debarre-Voisin variety, then*

$$
\mathsf{HH}_*(\mathsf{Ku}(X)) \cong \mathbb{C}[2] \oplus \mathbb{C}^{\oplus 22} \oplus \mathbb{C}[-2].
$$

Proof. By Proposition [3.4.4](#page-44-2) and the same reason of Proposition [4.4.6](#page-56-0).

Equivalences of Kuznetsov Components with K3s

5.1 Cubic Fourfolds

There is an interesting conjecture:

Conjecture 1 (Kuznetsov). *A smooth cubic fourfold* $X \subset \mathbb{P}^5$ *is rational if and only if there exists a K3 surface S and an exact linear equivalence* $\mathsf{Ku}(X) \cong \mathbf{D}^b(S)$ *.*

Later chapters we will show the following:

Theorem 5.1.1 (Addington-Thomas, Bayer-Lahoz-Macrì-Nuer-Perry-Stellari)**.** *Let W be a cubic fourfold. Then* Ku(*W*) *is equivalent to the derived category of a K3 surface if and only if there is a primitive embedding of the hyperbolic lattice* $U \hookrightarrow K_0^{\text{num}}(W)$ *in the numerical Grothendieck group of W.*

Note that this shows the Kuznetsov component of a general (in moduli) cubic fourfold can not equivalent to the derived category of a K3 surface! But there are some cases will hold. Now we will prove this kind of special case of cubic fourfolds.

5.1.1 Generalized Pfaffian Varieties

Fix a complex vector space *W* of dimension *m* and $0 \le t \le |m/2|$. Then

Definition 5.1.2. *We define the generalized Pfaffian varieties as*

$$
\text{Pf}(2t,m)=\text{Pf}(2t,W):=\mathbb{P}\left(\left\{w\in \bigwedge^2 W: \text{rank}(W)\leq 2t\right\}\right)\subset \mathbb{P}\left(\bigwedge^2 W\right).
$$

Remark 5.1.3. *Note that for any* $w \in \bigwedge^2 W$ *, if we choose a basis* $e_1, ..., e_m$ *of W, then* $w = \sum_{ij} a_{ij} e_i \wedge e_j$. Hence $\text{rank}(w) = \text{rank}(a_{ij})$ where (a_{ij}) is skew-symmetric with even *rank.*

Remark 5.1.4. *Note also that* $Pf(2 \lfloor m/2 \rfloor, W) = \mathbb{P}(\bigwedge^2 W)$ *. Hence the biggest nontrivial case is* $Pf(2 | m/2| - 2, W)$ *and we sometimes call it the Pfaffian variety.*

The smallest one is $Pf(2, W) \cong Gr(2, W) \subset P(\bigwedge^2 W)$ *via the Plücker embedding.*

Remark 5.1.5. All the intermediate Pfaffians are singular with $\text{sing}(\text{Pf}(2t, W))$ = $Pf(2t - 2, W)$.

Proposition 5.1.6. *Consider the generalized Pfaffian varieties* $Pf(2t, W) \subset \mathbb{P}(\bigwedge^2 W)$, *then*

$$
\dim \mathsf{Pf}(2t, W) = 2t(m - 2t) + t(2t - 1) - 1
$$

which can be identified with the closure of the orbits of PGL(*W*)*.*

Proof. We just need to show that the open locus of constant rank 2t is of dimension $2t(m-2t) + t(2t-1) - 1$ which is the orbits of PGL(*W*).

For any $v \in \mathbb{P}(\bigwedge^2 W)$ of rank 2*t*, there exists a unique $V \subset W$ of dimension 2*t* such that

$$
v \in \operatorname{Im}(\mathbb{P}\left(\bigwedge^2 V\right) \to \left(\bigwedge^2 W\right)).
$$

Hence the locus of rank-2*t* bivectors is isomorphic to an open subspace of the projective bundle $\mathbb{P}_{\mathsf{Gr}(2t,W)}(\bigwedge^2 \mathscr{U})$ where \mathscr{U} is the universal bundle. Hence it is of dimension $2t(m-2t) + t(2t-1) - 1$ which is the orbits of PGL(*W*). \Box

Corollary 5.1.7. Let dim $W = 2n$ which is even, then $Pf(2n-2, W) \subset \mathbb{P}(\bigwedge^2 W)$ is a *hypersurface of degree n.*

Proof. It is a hypersurface by the previous Proposition. Actaully it is defined by $\det(a_{ij}) = 0$ which is a polynomial of degree *n* where $v = \sum_{ij} a_{ij} e_i \wedge e_j$. Hence it is of degree *n*. \Box

5.1.2 Main Results for Pfaffian Cubic Fourfold

The basic and rich results we refer[[16](#page-75-6)]. We will omit them.

Fix a complex vector space *V* of dimension 6. Pick a general linear subspace *L ⊂* $\mathbb{P}(\bigwedge^2 V)$ of dimension 8. Then we consider

$$
S := \mathsf{Pf}(2, V) \cap L, \quad W := \mathsf{Pf}(4, V^{\vee}) \cap L^{\perp}.
$$

Proposition 5.1.8. *In this case S is a smooth K3 surface of degree* 14 *and W is a smooth cubic fourfold.*

Proof. Now *S, W* are smooth by Bertini's theorem and Remark [5.1.4.](#page-59-0) By Corollary [5.1.7](#page-59-1) we know that *W* is a cubic fourfold. Now we consider *S*.

By Proposition [5.1.6](#page-59-2) we have dim $S = 8 - 6 = 2$. By some Schubert calculus (see Proposition 4.12 in[[11\]](#page-74-4)) we have

$$
\deg S = \deg \mathsf{Pf}(2, V) = \deg \mathsf{Gr}(2, V) = \deg \sigma_1^8 = \frac{8!}{5!4!} = 14.
$$

As in this case $Pf(2, V) = Gr(2, V) \subset \mathbb{P}(\bigwedge^2 V)$, we have $\omega_{Pf(2, V)} \cong \mathscr{O}(-6)$. Hence by adjunction formula we have $\omega_S \cong \mathscr{O}_S(-6) \otimes \mathscr{O}'_S(6) \cong \mathscr{O}_S$. Finally, consider

$$
0 \to \mathscr{O}_{\mathrm{Gr}(2,V)}(-1) \to \mathscr{O}_{\mathrm{Gr}(2,V)} \to \mathscr{O}_{H \cap \mathrm{Gr}(2,V)} \to 0.
$$

By Kodaira vanishing theorem and repeat this process we can get $H^1(S, \mathcal{O}_S) = 0$. Hence *S* is a smooth K3 surface of degree 14. \Box

Here we will call *W* be a Pfaffian cubic fourfold and *S* be its associated K3 surface. Now consider the correspondence

Here is our main theorem:

Theorem 5.1.9 (Kuznetsov)**.** *Let W be a Pfaffian cubic fourfold, and let S be the associated K3 surface. The ideal sheaf* \mathcal{I}_{Γ} *induces a Fourier-Mukai transform* $\Phi_{\mathcal{I}_{\Gamma}\otimes p_{W}^{*}\mathcal{O}_{W}}(-1)$: $\mathbf{D}^b(X) \to \mathbf{D}^b(S)$ which induce right adjoint which induce an equivalence

$$
\Phi: \mathbf{D}^b(S) \cong \mathsf{Ku}(W) \subset \mathbf{D}^b(W).
$$

*Proof.*We will give a sketch of [[1](#page-74-5)] Proposition 3, see also in Proposition 7.3.9 in [[16\]](#page-75-6). Under the additional assumption that L is general (which is enough for our future purposes). In this case, indeed, *S* does not contain a line and *W* does not contain a plane. See Lemma 6.2.3 in[[16\]](#page-75-6).

By Eagon-Northcott complex, which is a locally free resolution of \mathscr{I}_{Γ} here, we can restricting the complex to $p \times L^{\perp}$ we have a locally free resolution:

$$
0 \to \mathscr{O}_{L^{\perp}}(-4)^3 \to \mathscr{O}_{L^{\perp}}(-3)^8 \to \mathscr{O}_{L^{\perp}}(-2)^6 \to \mathscr{O}_{L^{\perp}} \to \mathscr{O}_{\Gamma_p} \to 0.
$$

Combine the exact sequence $0 \to \mathscr{O}_{L^{\perp}}(-3) \to \mathscr{I}_{\Gamma_p/L^{\perp}} \to \mathscr{I}_{\Gamma} = \mathscr{I}_{\Gamma_p/W} \to 0$, we can findthat $\Phi(\mathbf{D}^b(S)) \subset \mathsf{Ku}(W)$. See also Lemma 7.3.10 in [[16\]](#page-75-6).

By the standard criterion due to Bondal and Orlov in [\[15](#page-75-7)] Proposition 7.1, to show Φ is fully faithful, we just need to show

$$
\dim \operatorname{Hom}(\Phi(\mathcal{O}_{p_1}), \Phi(\mathcal{O}_{p_2})[i]) = 0
$$

for any $p_1 \neq p_2 \in S$ or $i < 0$ or $i > 2$ and for $p \in S$ we need to show $\Phi(\mathcal{O}_p)$ is simple.

Let $\Gamma_i := p_S^{-1}(p_i)$ which are quartic scrolls, a simple computation shows that $\Phi(\mathscr{O}_{p_i}) \cong \mathscr{I}_{\Gamma_i}(-1)^{\vee}(-3)[4]$. Hence we just need to consider \mathscr{I}_{Γ_i} in above claim. This is trivial when $i < 0$. Hence by Serre duality in $\mathsf{Ku}(X)$ this is right for $i > 2$.

Now we consider $p_1 \neq p_2$. We claim that Γ_1 and Γ_2 are distinct as in X with codimension ≥ 2 . Indeed, if we identify p_i with the subspace it parametrizes, we have $p_1 \cap p_2 = \{0\}$ because, otherwise, *S* would contain a line. This implies that if $\Gamma_1 = \Gamma_2$, then the maps $\pi_i : \Gamma_i \to \mathbb{P}(p_i)$ mapping *w* to $p_i \cap \text{ker}(w)$ would define two different rulings on $\Gamma_1 = \Gamma_2$. One can show that they are quartic scrolls. This is not possible, c.f. Section 6.2.6 in [\[16](#page-75-6)]. Hence Γ_1 and Γ_2 are distinct. For any p, the fiber of the same map $\pi : \Gamma_p \to \mathbb{P}(p)$ over a line $l \subset p$ is a linear subspace in W. But by assumption, W does not contain a plane. Hence this fiber is at most 1-dimensional, and in turn dim $\Gamma_p \leq 2$ (one can show that they are 2-dimensional reduced Cohen-Macaulay scheme of degree 4). Hence their codimension ≥ 2 . Hence now Γ_1 and Γ_2 are distinct with codimension *≥* 2.

Hence for $i = 0$, we have $Hom(\Gamma_1, \Gamma_2) = 0$ by Lemma [5.1.10](#page-61-0). Thus Serre duality gives the claim for $i = 2$. Finally, Hirzebruch-Riemann-Roch gives $\chi(\mathscr{I}_{\Gamma_1}, \mathscr{I}_{\Gamma_2}) = 0$ (see calculations in Lemma 7.3.11 in [\[16](#page-75-6)]), so the claim also holds in the remaining case $i=1$.

Hence now Φ is fully faithful. It is automatically essentially surjective by Proposition [2.4.4](#page-30-1) and Proposition [4.4.2](#page-54-1) shows $HH^0(Ku(W)) = HH_{-2}(Ku(W)) = \mathbb{C}$ since $Ku(W)$ is a K3 category.

Lemma 5.1.10. *Let* X *be a normal geometrically integral variety over* k *and* $W \subset X$ *be a subscheme with codimension* ≥ 2 *. Then* $\mathscr{I}_{W}^{\vee\vee} \cong \mathscr{O}_{X}$ *. In particular, if* $Y, Z \subset X$ *be subschemes both with codimension* ≥ 2 *, then if* $\text{Hom}(\mathscr{I}_Y, \mathscr{I}_Z) \neq 0$ *, then* $Z \subset Y$ *.*

Proof. The first one follows from \mathscr{I}_{W}^{\vee} is reflexive, $\mathscr{I}_{W}^{\vee\vee}$ is locally free and by Hartogs we find that $\mathscr{I}_{W}^{\vee\vee} \cong \mathscr{O}_{X}$. For the second one, as $\mathscr{I}_{Y}^{\vee\vee} \cong \mathscr{O}_{X}$ and $\mathscr{I}_{Z}^{\vee\vee} \cong \mathscr{O}_{X}$, any non-trivial $f : \mathscr{I}_Y \to \mathscr{I}_Z$ will induce the following diagram

As $\text{Hom}(\mathcal{O}_X, \mathcal{O}_X) = k$, we know that *f* is just an embedding of ideals $\mathcal{I}_Y \subset \mathcal{I}_Z$. Hence *Z ⊂ Y* . \Box

Remark 5.1.11. *Note that in this case* $\mathscr{I}_{W}^{\vee} \cong \mathscr{O}_{X}$ *. Indeed, by* $0 \to \mathscr{I}_{W} \to \mathscr{O}_{X} \to$ $\mathscr{O}_W \to 0$ *we have*

$$
0 \to \mathcal{H}om(\mathcal{O}_W, \mathcal{O}_X) = 0 \to \mathcal{H}om(\mathcal{O}_X, \mathcal{O}_X) \cong \mathcal{O}_X
$$

$$
\to \mathcal{H}om(\mathcal{I}_W, \mathcal{O}_X) \to \mathcal{E}xt^1(\mathcal{O}_W, \mathcal{O}_X) \to \cdots.
$$

Hence we just need to show $\mathscr{E}xt^1(\mathscr{O}_W, \mathscr{O}_X)$ *. In affine local, this follows from the fact that X is S2 and* depth $\iint_W \mathcal{O}_X = \inf\{\text{depth}\mathcal{O}_{X,x} : x \in V(I_W)\}\$ *with cohomological criterion for the lengh of regualr sequence.*

Now one can show that *W* is rational, see Corollary 6.2.27 in [\[16\]](#page-75-6). Hence this is one of the motivation of the Conjecture [1.](#page-58-0)

5.1.3 Other Examples

5.2 Gushel-Mukai Varieties

CHAPTER 5. EQUIVALENCES OF KUZNETSOV COMPONENTS WITH K3S

Derived Torelli Theorems

Stability Conditions on K3 Categories

Applications: Mukai's program

Application to Cubic Fourfolds and Gushel-Mukai Manifolds

CHAPTER 9. APPLICATION TO CUBIC FOURFOLDS AND GUSHEL-MUKAI MANIFOLDS
Index

admissible, 7

Debarre-Voisin variety, 45 dualizing complex, 11

Euler pairing, 11 exceptional element, 7 exceptional sequence, 7 excess conormal sheaf, 35

fractional Calabi-Yau category, 31

generalized Pfaffian varieties, 59 Grassmannian hull, 43 Grothendieck duality, 10 Gushel-Mukai intersection, 34 Gushel-Mukai variety, 34

Hochschild cohomology, 28 Hochschild homology, 28

Kuznetsov component, 48

left admissible, 7 left Lefschetz decomposition, 9 left saturated, 9

numerical Grothendieck group, 11

ordinary GM variety, 43 orthogonal complement, 7

Pfaffian cubic fourfold, 61 Pfaffian variety, 60 projected Grassmannian hull, 43

right admissible, 7 right Lefschetz decomposition, 9 right saturated, 9

special GM variety, 43 spherical twist functors, 47

 \emph{INDEX}

 $74\,$

Bibliography

- [1] N. Addington and M. Lehn. On the symplectic eightfold associated to a pfaffian cubic fourfold. *J. Reine Angew. Math.*, pages 129–137, 2017.
- [2] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. *Geometry of algebraic curves. Vol. I*. Springer-Verlag, New York, 1985.
- [3] M. Bernardara. A semiorthogonal decomposition for brauer-severi schemes. *Math. Nachr.*, 282(10):1406–1413, 2009.
- [4] Alexei Bondal and Mikhail Kapranov. Representable functors, serre functors, and mutations. *Mathematics of the USSR-Izvestiya*, 35:519, 1990.
- [5] Tom Bridgeland. Stability conditions on triangulated categories. *Ann. Math.*, 166(2):317–345, 2007.
- [6] Tom Bridgeland. Stability conditions on k3 surfaces. *Duke Math. J.*, 166(2):241– 291, 2008.
- [7] Andrei Căldăraru. The mukai pairing. i. the hochschild structure. *arXiv: 0308079v2*, 2003.
- [8] O. Debarre and A. Kuznetsov. Gushel-mukai varieties: classification and birationalities. *Algebr. Geom.*, 5:15–76, 2018.
- [9] Olivier Debarre and Alexander Kuznetsov. Gushel-mukai varieties: linear spaces and periods. *Kyoto J. Math.*, 59:897–953, 2019.
- [10] Olivier Debarre and Claire Voisin. Hyper-kähler fourfolds and grassmann geometry. *Journal für die reine und angewandte Mathematik (Crelles Journal).*, 649:63–87, 2010.
- [11] David Eisenbud and Joe Harris. *3264 and All That: A Second Course in Algebraic Geometry*. Cambridge University Press, 2016.
- [12] A. Fonarev. On minimal lefschetz decompositions for grassmannians. *Izv. RAN. Ser. Mat.*, 77:203–224, 2013.
- [13] William Fulton. *Intersection theory, 2nd*, volume 2. Springer Science & Business Media, 1998.
- [14] A.L. Gorodentsev, S.A. Kuleshov, and A.N. Rudakov. t-stabilities and tstructures on triangulated categories. *Translation in Izv. Math.*, 68, 2004.
- [15] D. Huybrechts. *Fourier-Mukai Transforms in Algebraic Geometry*. Oxford University Press, 2006.
- [16] D. Huybrechts. *The Geometry of Cubic Hypersurfaces*. Oxford University Press, 2023.
- [17] Atanas Iliev and Laurent Manivel. Fano manifolds of degree ten and epw sextics. *Ann. Sci. Ec. Norm. Super.*, 44:393–426, 2011.
- [18] V A Iskovskih. Fano 3-folds. i. *Mathematics of the USSR-Izvestiya*, 11(3):485, 1977.
- [19] M. Kapranov. On the derived categories of coherent sheaves on some homogeneous spaces. *Invent. Math.*, 92(3):479–508, 1988.
- [20] A. Kuznetsov. Base change for semiorthogonal decompositions. *Compos. Math.*, 147:852–876, 2011.
- [21] Alexander Kuznetsov. Hyperplane sections and derived categories. *Izv. Math.*, 70:447–547, 2006.
- [22] Alexander Kuznetsov. Hochschild homology and semiorthogonal decompositions. *arXiv: 0904.4330*, 2009.
- [23] Alexander Kuznetsov. Calabi-yau and fractional calabi-yau categories. *Journal für die reine und angewandte Mathematik (Crelles Journal)*, 2015.
- [24] Alexander Kuznetsov and Alexander Perry. Derived categories of gushel-mukai varieties. *Compositio Math.*, pages 1362–1406, 2018.
- [25] Dmitry Logachev. Fano threefolds of genus 6. *Asian J. Math.*, 16:515–559, 2012.
- [26] Emanuele Macrì and Paolo Stellari. *Lectures on Non-commutative K3 Surfaces, Bridgeland Stability, and Moduli Spaces*, pages 199–265. Springer International Publishing, 2019.
- [27] N. Markarian. Poincaré-birkoff-witt isomorphism, hochshild homology and riemann-roch theorem. *preprint MPIM2001-52*, 2001.
- [28] N. Markarian. The atiyah class, hochschild cohomology and the riemann-roch theorem. *J. London Math. Soc.*, 379:129–143, 2009.
- [29] Massimiliano Mella. Existence of good divisors on mukai varieties. *J. Algebraic Geom.*, 8:197–206, 1999.
- [30] J. Nagel. The generalized hodge conjecture for the quadratic complex of lines in projective four-space. *Math. Ann.*, 312:387–401, 1998.
- [31] A. Neeman. The grothendieck duality theorem via bousfield's techniques and brown representability. *J. Amer. Math. Soc.*, 9:205–236, 1996.
- [32] A. Neeman. Grothendieck duality made simple. *Preprint. ArXiv:1806.03293*, 2018.
- [33] S. Okawa. Semi-orthogonal decomposability of the derived category of a curve. *Adv. Math.*, 228:2869–2873, 2011.
- [34] D. Orlov. Smooth and proper noncommutative schemes and gluing of dg categories. *Adv. Math.*, 302:59–105, 2016.
- [35] Dmitri Orlov. Projective bundles, monoidal transformations, and derived categories of coherent sheaves. *Izvestiya Mathematics*, 41(1):133–141, 1993.
- [36] A.N. Parshin and I.R. Shafarevich. *Algebraic Geometry V: Fano Varieties*. Springer Berlin, Heidelberg, 1999.
- [37] G.V. Ravindra and V. Srinivas. The grothendieck-lefschetz theorem for normal projective varieties. *J. Algebraic Geo.*, 15(3):563–590, 2006.