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Preface

[5][6]. We only consider the schemes and categories over C.
Note that our P is P(E ) := Spec

X
SymE ∨ which is different from the Grothendieck’s

construct except for the Proposition 1.4.1.
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Chapter 1

Derived Category and
Semi-Orthogonal Decomposition

Here we follows some definitions and results in [15] and [23]. Note that when I working
in the derived category, we will omit the R or L of the derived functors.

1.1 Basic Definitions
Definition 1.1.1. A full triangulated subcategory D ′ ⊂ D is called right (left) admissible
if the inclusion has a right (left) adjoint π : D → D ′. If it is both right and left admissible,
we call it admissible .

The orthogonal complement of a(an admissible) subcategory D ′ ⊂ D is the full
subcategory D ′⊥ of all objects C ∈ D such that Hom(B,C) = 0 for all B ∈ D ′. (one
can also assume ⊥D ′ similarly)

Remark 1.1.2. When we let the inclusion is j : D ′ → D , then its right (left) adjoint
functor will be denoted by j! (j∗). But we will not use them when it will be confused
with the true maps of derived functors.

Definition 1.1.3. An object E ∈ D in a k-linear triangulated category D is called
exceptional if

Hom(E,E[`]) =

{
k,if ` = 0,

0,if ` 6= 0.

An exceptional sequence is a sequence E1, ..., En of exceptional objects such that Hom(Ei, Ej [`]) =
0 for all i > j and all `.

An exceptional sequence is full if D is generated by {Ei}.
An exceptional collection E1, ..., En is strong if in addition Hom(Ei, Ej [`]) = 0 for

all i, j and all ` 6= 0.

7
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Definition 1.1.4. A sequence of full triangulated subcategories D1, ...,Dn ⊂ D defines
a semi-orthogonal decomposition if the following holds:

(a) For all i > j we have Dj ⊂ D⊥
i .

(b) For any F ∈ D there is a sequence of distinguished triangles:

0 = Fm Fm−1 · · · F1 F0 = F

Am = cone(Fm → Fm−1) A1 = cone(F1 → F0)

where Ai = cone(Fi → Fi−1) ∈ Di for any i.

In this case we denote it D = 〈D1, ...,Dn〉.

Remark 1.1.5. Some remarks:

(a) The condition (a) in the definition implies that the “filtration” in (b) and its
“factors” are unique and functorial.

(b) When we consider a sequence of full admissible triangulated subcategories D1, ...,Dn ⊂
D such that Dj ⊂ D⊥

i for all i > j and let them generates a subcategory A , then
this defines an S.O.D:

D =
〈
A ⊥,D1, ...,Dn

〉
.

Hence moreover if Di generates D , then these becomes an S.O.D. This is just the
definition of S.O.D in [15].

(c) If X is a smooth projective variety and Db(X) = 〈D1, ...,Dn〉 is an S.O.D, then
each component Di is admissible. See [4].

Remark 1.1.6. Some other remarks:

(a) If E ∈ D is exceptional, then the objects
⊕

iE[i]⊕ji form an admissible triangulated
subcategory 〈E〉 ⊂ D .

(b) Let E1, ..., En be an exceptional sequence in D . Then the admissible triangu-
lated subcategories 〈E1〉 , ..., 〈En〉 form a semi-orthogonal sequence. In this case
if Ei generates a subcategory C , then one can easy to show that C is admissible
(Proposition 2.6 in [26]). Hence we have S.O.Ds

D =
〈
C⊥, E1, ..., En

〉
=
〈
E1, ..., En,

⊥C
〉
.

If this sequence is a full exceptional sequence, then this forms an S.O.D. of D by
trivial reason.
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(c) Any semi-orthogonal sequence of full admissible triangulated subcategories D1, ...,Dn ⊂
D defines an S.O.D. of D , if and only if any object A ∈ D with A ∈ D⊥

i for all
i = 1, ..., n is trivial. See Lemma 1.61 in [15].

(d) If D1, ...,Dn ⊂ D is an S.O.D., then D1 ⊂ 〈D2, ...,Dn〉⊥ is an equivalence. See
Exercise 1.62 in [15].

So the admissible triangulated subcategories will be useful. Here we give a nice
property about the admissible triangulated subcategories of the derived category of
smooth projective varieties. First we recall that a triangulated category D of finite type
is called right (left) saturated if any contravariant (covariant) cohomological functor of
finite type D → Vect is representable.

Theorem 1.1.7. This separated as two important parts:

(i) Let the triangulated category A be right (left) saturated. Assume that A is
embedded in a triangulated category D as a full triangulated subcategory. Then A
is right (left) admissible.

(ii) Let X be a smooth projective variety. Then Db(X) is right and left saturated.

Proof. We refer [4] for the original proof.

Definition 1.1.8. Fix an algebraic variety X and a line bundle L over it.

(a) A right Lefschetz decomposition of Db(X) with respect to L is a S.O.D of form

Db(X) =
〈
D0,D1 ⊗ L , ...,Dm−1 ⊗ L ⊗(m−1)

〉
where 0 ⊂ Dm−1 ⊂ · · · ⊂ D1 ⊂ D0.

(b) A left Lefschetz decomposition of Db(X) with respect to L is a S.O.D of form

Db(X) =
〈
Dm−1 ⊗ L ⊗(1−m), ...,D1 ⊗ L ⊗(−),D0

〉
where 0 ⊂ Dm−1 ⊂ · · · ⊂ D1 ⊂ D0.

The subcategories Di forming a Lefschetz decomposition will be called blocks, the largest
will be called the first block. Usually we will consider right Lefschetz decompositions. So,
we will call them simply Lefschetz decompositions. We call a Lefschetz decompositions
is rectangular if Dm−1 = · · · = D1 = D0.

If we need to consider the moduli space, we need to consider the family version of
S.O.D:
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Definition 1.1.9. A triangulated category T is S-linear if it is equipped with a module
structure over the tensor triangulated category Db(S). In particular, if X is a scheme
over S and f : X → S is the structure morphism then an S.O.D

Db(X) = 〈A1, ...,Am〉

is S-linear if each of the subcategories Ak satisfies that for A ∈ Ak and F ∈ Db(S) one
has A⊗ f∗F ∈ Ak.

Theorem 1.1.10 (Kuznetsov). If X is an algebraic variety over S with an S-linear
S.O.D

Db(X) = 〈A1, ...,Am〉 ,

then for a change of base morphism T → S there is, under a certain technical condition,
a T -linear S.O.D

Db(X ×S T ) = 〈A1T , ...,AmT 〉 ,

such that π∗A ∈ AiT for any A ∈ Ai and π∗(A
′) ∈ Ai for any A′ ∈ AiT which has

proper support over X.

Proof. See [20].

1.2 Grothendieck Duality
Theorem 1.2.1 (Grothendieck Duality). Let f : X → Y be a separated map of finite
type schemes over a field k. Then we have the following:

(i) The derived direct image Rf∗ : DQcoh(X) → DQcoh(Y ) admits a right adjoint
f ! : DQcoh(Y ) → DQcoh(X). Moreover, for any K ∈ DQcoh(X), L ∈ DQcoh(Y ), the
counit map induces the following natural quasi-isomorphism in DQcoh(Y ):

Rf∗RH omX(K, f !L) ' RH omY (Rf∗K,L).

Moreover, both Rf∗ and f ! can be restricted to the bounded below derived subcat-
egories, which also forms an adjoint pair.

(ii) Assume f is proper and of finite Tor-dimension, then for any L ∈ DQcoh(Y ), we
have a natural quasi-isomorphism

f !L ' f !OY ⊗LOY
Lf∗L.

Moreover, bothRf∗ and f ! can be restricted to upper-bounded/lower-bounded/bounded
derived category of coherent cohomology.

Proof. For (i) we refer 6.3 in [31]. For (ii) we refer 2.14, 5.13 in [32].
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Definition 1.2.2. Under the assumption of f : X → Y being proper and finite Tor-
dimension, we call ω∗

f := f !OY the dualizing complex of f .

Theorem 1.2.3. Let f : X → Y be a morphism of finite type schemes over k. Assume
X is connected. Then we have the following:

(i) If f is Cohen-Macaulay, then there exists a coherent sheaf ωf over X such that
ω∗
f = ωf [n] for some integer n. If the map f is of purely relative dimension d,
then n = d.

(ii) If f is furthermore a smooth morphism, then we have ω∗
f = Ωn

f [n] for n = dimX−
dimY .

Proposition 1.2.4. Let f : X → Z be the composition of maps g : X → Y and
h : Y → Z of finite type k-schemes. Then we have a natural isomorphism f ! = g! ◦ h!.

If moreover g, h being proper and finite Tor-dimension, then

ω∗
f = Lg∗ω∗

h ⊗L ω∗
g .

Proof. This follows from the uniqueness of the right adjoint.

1.3 Grothendieck Groups
Let D be a triangulated category linear over a field k. Let D is of finite type, that is,
for every pair of objects E and F of D the vector space

⊕
iHomD(E,F [i]) is finite-

dimensional. We define the Euler pairing on K0(D) defined as

χ(v, w) :=
∑
i

(−1)i dimk HomD(v, w[i]).

Definition 1.3.1. We define the numerical Grothendieck group Knum
0 (D) is defined as

K0(D)/T where T ⊂ K0(D) consist of v ∈ K0(D) such that χ(v, w) = 0 for all
w ∈ K0(D).

Note that Knum
0 (D) is torsion-free.

Remark 1.3.2. Let D be a triangulated category with a heart of a bounded t-structure
D♡ ⊂ D . Consider homomorphisms

i : K0(D
♡) → K0(D)

induced by inclusion and

F : K0(D) → K0(D
♡), [X] 7→

∑
n∈Z

(−1)n[Hn
D♡(X)].
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Then we can show that these are inverse to each other.
In a special case, let A be an abelian category and Db(A) be its bounded derived

category. Then for any heart of a bounded t-structure Db(A)♡ ⊂ Db(A) there is a
natural identification between Grothendieck groups

K0(Db(A)♡) = K0(Db(A)) = K0(A)

as A here is just a special heart.

We call D is numerically finite if Knum
0 (D) has finite rank.

Proposition 1.3.3. If we consider D := Db(X) for a projective smooth variety X of
dimension d over an algebraically closed field k, then we have isomorphisms

ch : K0(X)Q ∼= CH∗(X)Q, Knum
0 (X)Q ∼= CH∗

num(X)Q.

As CH∗
num(X) is of finite rank, then Db(X) is numerically finite.

Proof. By [13] Example 15.2.16 we know that ch : K0(X)Q → CH∗(X)Q is an isomor-
phism. Then we get ch : Knum

0 (X)Q ∼= CH∗
num(X)Q by HRR: χ(v, w) =

∫
X ch(v∨)ch(w)td(X).

Hence we just need to show CH∗
num(X) is of finite rank.

Pick a Weil cohomoloty theory H∗, for example, take algebraic de Rham cohomology
for characteristic zero and take crystalline cohomology for positive characteristic. We
just need to prove that dimQCHi

num(X)Q ≤ dimH2i(X) =: b2i(X). For simplicity we
take étale cohomology H∗

ét(X,Qℓ) of Qℓ-coefficient with ` 6= char(k). This is classical.
Choose α1, ..., αm ∈ Zd−i(X) whose classes in H2d−2i

ét (X,Qℓ) form a maximal set of
Qℓ-linearly independent elements in the image of the cycle class map clX : Zd−i(X) →
H2d−2i
ét (X,Qℓ). Clearly m ≤ b2d−2i(X) = b2i(X). Consider the linear map

λ : CHi(X) → Zm, β 7→
(∫

X
β · α1, ...,

∫
X
β · αm

)
.

We claim kerλ = Zi
num(X). Trivially Zi

num(X) ⊂ kerλ. Conversely, set α ∈ CHd−i(X)
and clX(α) =

∑
νjclX(αj) where νj ∈ Qℓ. Then∫

X
β · α = tr(clX(α) ∪ clX(β))

=
∑
j

νjtr(clX(αj) ∪ clX(β))

=
∑
j

νj

∫
X
β · αj .

Hence if β ∈ kerλ, then β ∈ Zi
num(X). Hence we get the claim. By the claim we get

Bi(X) ↪→ Qm. Hence well done.
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Proposition 1.3.4. Let X be a smooth projective variety. Given an S.O.D

Db(X) = 〈A1, ...,An〉 ,

then there are isomorphisms

K0(X) ∼=
n⊕

i=1

K0(Ai), Knum
0 (X) ∼=

n⊕
i=1

Knum
0 (Ai).

Proof. The embedding functors Ai → Db(X) induce a map
⊕

i Ai → Db(X), whose
inverse is the map induced by the projection functors Db(X) → Ai. This isomorphism
also descends to numerical Grothendieck groups.

1.4 Example I – Projective Bundles

Proposition 1.4.1. For a smooth projective variety Y we consider the projective bundle
π : P(E ) → Y of locally free sheaf E of rank r on Y , in the sense of Grothendieck. Then
for any a ∈ Z we claim that π∗Db(Y )⊗O(a),..., π∗Db(Y )⊗O(a+ r− 1) is an S.O.D.
of Db(P(E )).

Remark 1.4.2. Hence this is a rectangular Lefschetz decomposition where all Di =
π∗Db(Y ) and L = O(1).

This combined by the following three things:
Step 1. The subcategories π∗Db(Y )⊗O(i) are all admissible of Db(P(E )). This follows
from Theorem 1.1.7.
Step 2. For any E ∈ π∗Db(Y )⊗O(m), F ∈ π∗Db(Y )⊗O(n), we have Hom(E,F ) = 0
for any r − 1 ≥ m− n > 0.

Indeed, we can let m = 0 and hence −r + 1 ≤ n < 0. Let E = π∗E′ and F =
π∗F ′ ⊗ O(n), hence

Hom(E,F ) = Hom(E′, π∗(π
∗F ′ ⊗ O(n))) = Hom(E′, F ′ ⊗ π∗O(n)).

It’s well-known that Riπ∗O(n) =


SymnE ,for i = 0,

0,for 0 < i < r − 1,

Sym−n−rE ∨,for i = r − 1.

Well done.

Step 3. Categories π∗Db(Y )⊗ O(a),..., π∗Db(Y )⊗ O(a+ r − 1) generates Db(P(E )).
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Here we generalize the proof for Pn in [15] Corollary 8.29. Consider

P(E )×Y P(E )

P(E ) P(E )

Y

π1 π2

p q
⌜

then by the canonical identification

H0(P(E )×Y P(E ),O(1)⊠ Q∨)

= H0(P(E ),O(1)⊗ p∗q
∗Q∨)

= H0(P(E ),O(1)⊗ π∗
1π2,∗Q

∨)

= H0(Y, π1,∗O(1)⊗ π2,∗Q
∨)

= H0(Y,E ⊗ E ∨)

where 0 → Q → π∗E → O(1) → 0 is the universal exact sequence. Let s correspond to
the idE , then Z(s) = ∆ ⊂ P(E ) ×Y P(E ). By the Koszul resolution of O∆ respect to
the s, we have an exact sequence:

0 →
r−1∧

(O(−1)⊠ Q) →
r−2∧

(O(−1)⊠ Q)

→ · · · → O(−1)⊠ Q → O ⊠ O → O∆ → 0.

(you can also use the Euler exact sequence instead of the universal exact sequence, just
as in [15] Corollary 8.29)

Now there is to way to slove this.
The First Way: for any coherent sheaf F ∈ Coh(P(E )), tensoring q∗F we have

0 → O(−r + 1)⊠
r−1∧

Q ⊗ F → O(−r + 2)⊠
r−2∧

Q ⊗ F

→ · · · → O(−1)⊠ (Q ⊗ F ) → O ⊠ F → q∗F |∆ → 0.

Consider a spectral sequence

Eij
1 = Rip∗(O(j)⊠

−j∧
Q ⊗ F ) = O(j)⊗Rip∗q

∗
−j∧

Q ⊗ F

= O(j)⊗ π∗
1Riπ2,∗

−j∧
Q ⊗ F ⇒ Ri+jp∗q

∗F |∆.
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We know that Ri+jp∗q
∗F |∆ = 0 if i+ j 6= 0 and Ri+jp∗q

∗F |∆ = F if i+ j = 0. Since
any Eij

1 contained in〈
π∗Db(Y )⊗ O(−r + 1), ..., π∗Db(Y )⊗ O(0)

〉
,

so is F . Hence well done (if you use the Euler exact sequence instead of the universal
exact sequence, the similar spectral sequence called the generalized Beilinson spectral
sequence as Proposition 8.28 in [15]).
The Second Way: Consider again the Koszul resolution

0 →
r−1∧

(O(−1)⊠ Q) →
r−2∧

(O(−1)⊠ Q)

→ · · · → O(−1)⊠ Q → O ⊠ O → O∆ → 0.

Split it into short exact sequences

0 →
r−1∧

(O(−1)⊠ Q) →
r−2∧

(O(−1)⊠ Q) → Mr−2 → 0,

0 → Mr−2 →
r−3∧

(O(−1)⊠ Q) → Mr−3 → 0,

· · · ,
0 → M1 → O ⊠ O → O∆ → 0.

Tensor product with q∗F and direct image under the first projection p yields distin-
guished triangles of Fourier-Mukai transforms:

ΦMi+1(F ) → Φ∧i(O(−1)⊠Q)(F ) → ΦMi(F ) → ΦMi+1(F )[1].

Easy to see that
Φ∧i(O(−1)⊠Q)(F ) ∈

〈
π∗Db(Y )⊗ O(−i)

〉
.

By induction we get F = ΦO∆
F ∈

〈
π∗Db(Y )⊗ O(−r + 1), ..., π∗Db(Y )⊗ O

〉
. Well

done.
Fully Exceptional Sequence. By the discussed above, we know that pick any fully
exceptional sequence E1, ..., En of Y , the set

{π∗E1 ⊗ O(a), ..., π∗En ⊗ O(a), ..., π∗E1 ⊗ O(a+ r − 1), ..., π∗En ⊗ O(a+ r − 1)}

is a fully exceptional sequence of P(E ) for any a ∈ Z.

Example 1.4.1. More general case, such as Grassmann-bundle and even the flag bundle
has the similar things. We refer [35].

We even have the similar about the general Brauer-Severi variety which need the
twist derived category. See [3].
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1.5 Example II – Blow-Ups
Here we follows section 11.1 in [15]. First we need some results about closed immersions.

Lemma 1.5.1. Suppose j : Y ↪→ X of codimension C with normal bundle N is the zero
locus of a regular section of a locally free sheaf E of rank c. Then for any F ∈ Db(Y )
there exists the following canonical isomorphisms:

(i)j∗j∗OY '
⊕ k∧

N ∨[k],

(ii)j∗j∗j∗F ' j∗OY ⊗ j∗F ' j∗

(⊕ k∧
N ∨[k]⊗ F

)
,

(iii)H omX(j∗OY , j∗F ) ' j∗

(⊕ k∧
N [−k]⊗ F

)
.

In particular, we have

Hℓ(j∗j∗F ) '
⊕

s−r=ℓ

r∧
N ∨ ⊗Hs(F )

E xtℓX(j∗OY , j∗F ) ' j∗

( ⊕
r+s=ℓ

r∧
N ⊗Hs(F )

)
.

Proof. For (i), by Koszul resolution we get j∗j∗OY '
∧∗ E ∨|Y . As the differentials

in the Koszul complex
∧∗ E ∨ are given by contraction with the defining section, they

become trivial on Y . Hence j∗j∗OY '
⊕∧k E ∨[k]|Y . As E |Y ∼= N , well done.

For (ii), we split the Koszul resolution into the following short exact sequences:

Mi

· · ·
∧i+1 E ∨ ∧i E ∨ ∧i−1 E ∨ · · ·

Mi+1

Again all these morphisms vanish on Y , we have

Mi ⊗ j∗F '

(
i∧

E ∨ ⊗ j∗F

)
⊕ (Mi+1[1]⊗ j∗F ) .

Putting these togetherand we get the result.
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For (iii), as we have H omX(j∗OY , j∗F ) '
(∧i E ∨

)∨
⊗ j∗F , then by the similar

argument of (ii) we get the result.
The final part follows from (ii)(iii) and the fact that j∗ is exact and tensor product

with the locally free sheaf commutes with taking cohomology.

Corollary 1.5.2. Let j : Y ↪→ X be a smooth hypersurface. Then for any F ∈ Db(Y )
there exists the following distinguished triangle

F ⊗ OY (−Y )[1] → j∗j∗F → F → F ⊗ OY (−Y )[2].

Proof. We omit it and refer [15] Corollary 11.4.

Lemma 1.5.3. Let j : Y ↪→ X be an arbitrary closed embedding of smooth varieties.
Then there exist isomorphisms

Hi(j∗j∗OY ) '
−i∧

N ∨
Y /X , E xtiX(j∗OY , j∗OY ) '

i∧
NY /X .

Proof. Here we just give an idea, the detail we refer Proposition 11.8 in [15]. Here we
first pick a global resolution of locally free sheaves G ∗ → OY and get the free resolution
G ∗
y → OY,y. Also we can let Y defined by a section of a vector bundle near y, hence we
get a local Koszul resolution. Hence at the point y we can get the result from before.
Easy to see that this is independent of any choice, we get the result.

Proposition 1.5.4. Let q : X̃ → X be the blow-up along a smooth subvariety Y ⊂ X.
Then for the structure sheaf OZ of a subvariety Z ⊂ Y considered as an object in Db(X)
one has

Hk(q∗OZ) ' (Ω⊗−k
π ⊗ Oπ(−k))|π−1(Z)

where π : P(NY /X) → Y is the contraction of the exceptional divisor.
Proof. We will only show the case that Y ⊂ X is given as the zero set of a regular
section s ∈ H0(X, E ) of a locally free sheaf E of rank c. The general case follows from
this and the similar argument of Lemma 1.5.3, we refer [15] Proposition 11.12 for details.

Consider g : P(E ) → X and consider the Euler sequence

0 → Og(−1) → g∗E
ϕ→ Tg ⊗ Og(−1) → 0.

Let t := φ(g∗(s)) ∈ H0(P(E ),Tg ⊗ Og(−1)) and consider the zero scheme Z(t) ⊂ P(E ).
BLABLABLA
Hence g induced Z(t) → X can be identified with the blow-up q : X̃ → X. Pick the

Koszul resolution
∧∗(Og(1)⊗ Ωg) → O

X̃
→ 0 of OP(E )-modules, hence

ι∗(Hk(q∗OZ)) ' ι∗(Hk(ι∗g∗OZ)) ' Hk(ι∗ι
∗g∗OZ)

' Hk(g∗OZ ⊗ O
X̃
) ' Hk(

∗∧
(Og(1)⊗ Ωg)|g−1(Z))
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where ι : X̃ = Z(t) ↪→ P(E ). If Z is contained in Y , the differentials, which are given
by contraction with the section t, vanish and, therefore

Hk(q∗OZ) ' (Ω⊗−k
g ⊗ Og(−k))|g−1(Z).

Well done.

Lemma 1.5.5. Suppose f : S → T is a projective morphism of smooth projective
varieties such that f∗ : Db(S) → Db(T ) sends OS to OT . Then f∗ : Db(T ) → Db(S) is
fully faithful and thus describes an equivalence of Db(T ) with an admissible triangulated
subcategory of Db(S).

Proof. Trivial by the projection formula and f∗ a f∗, which shows directly id ' f∗f
∗,

hence fully faithful.

Lemma 1.5.6. Let the smooth varieties Y ⊂ X of codimension c > 1, and let q : X̃ → X
be the blow-up with exceptional divisor i : E ↪→ X̃ and π : E = P(NY /X) → Y is the
contraction of the exceptional divisor. Then the functor

Φk = i∗(OE(kE)⊗ π∗(−)) : Db(Y ) → Db(X̃)

is fully faithful for any k. Moreover, Φk admits a right adjoint functor.

Proof. The functor Φk is a Fourier-Mukai transform with kernel OE(kE) considered as
on object in Db(Y × X̃). As such, Φk admits in particular right and left adjoint. Now
we will use a result due to Bondal-Orlov (Proposition 7.1 in [15]):

• Consider the Fourier-Mukai transform ΦP : Db(X) → Db(Y ) between the derived
categories of two smooth projective varieties X and Y given by an object P ∈
Db(X×Y ). Then the functor ΦP is fully faithful if and only if for any two closed
points x, y ∈ X one has

Hom(ΦP(κ(x)),ΦP(κ(y))[i]) =

{
k,if x = y and i = 0;

0,if x 6= y or i < 0 or i > dim(X).

For any j and x 6= y, this follows from the fact that the result objects have disjoint
supports.

Now we let x = y ∈ Y . We need to show that Exti
X̃
(OEx ,OEx) is trivial for i /∈

[0, d = dimY ] and of dimension one for i = 0. By Lemma 1.5.3 we get the spectral
sequence

Ep,q
2 = Hp(X̃,E xtq

X̃
(OEx ,OEx)) = Hp

(
Ex,

q∧
N

Ex/X̃

)
⇒ Extp+q

X̃
(OEx ,OEx).
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Hence we need to determine N
Ex/X̃

. Consider the exact sequence

0 → NEx/E → N
Ex/X̃

→ N
E/X̃

|Ex → 0,

as N
E/X̃

= OE(E) and NEx/E = O⊕d
Ex
and since Ex

∼= Pc−1 one get

N
Ex/X̃

∼= OEx(−1)⊕ O⊕d
Ex

by computing the Ext1. Hence we can directly get the result.

Proposition 1.5.7. Let the smooth varieties Y ⊂ X of codimension c > 1, and let q :
X̃ → X be the blow-up with exceptional divisor i : E ↪→ X̃ and π : E = P(NY /X) → Y
is the contraction of the exceptional divisor. Define

Dk := Im(Φ−k : Db(Y ) → Db(X̃))

for k = −c+ 1, ...,−1 and D0 := q∗Db(X).
Then D−c+1, ...,D−1,D0 forms an S.O.D of Db(X̃).

Proof. We divided this into three parts:
Step 1. For −c+ 1 ≤ ` < k < 0 we have Dℓ ⊂ D⊥

k .
For any E,F ∈ Db(Y ) we have

Hom(i∗(π
∗F ⊗ Oπ(k)), i∗(π

∗E ⊗ Oπ(`))) = Hom(i∗i∗π
∗F, π∗E ⊗ Oπ(`− k)).

By Corollary 1.5.2, we get the distinguished triangle:

π∗F ⊗ Oπ(1)[1] → i∗i∗π
∗F → π∗F → π∗F ⊗ Oπ(1)[2].

Hence we just need to show that

Hom(π∗F, π∗E ⊗ Oπ(`− k)) = 0 = Hom(π∗F ⊗ Oπ(1), π
∗E ⊗ Oπ(`− k)).

Both are easily deduced from adjunction π∗ a π∗, the projection formula, and π∗Oπ(`−
k) = 0 for −c+ 1 ≤ `− k < 0.
Step 2. For −c+ 1 ≤ ` < 0 we have Dℓ ⊂ D⊥

0 .
Again use π∗Oπ(`) = 0 for −c+ 1 ≤ ` < 0 to conclude this.

Step 3. We have D−c+1, ...,D−1,D0 generates Db(X̃).
For this we let E ∈ D⊥

k for all −c + 1 ≤ k < 0, then we claim that then exists an
object G ∈ Db(Y ) with i∗E ⊗ Oπ(c− 1) ' π∗G.

By assumption, for any −c + 1 ≤ k < 0 one has Hom(i∗(π
∗F ⊗ Oπ(k)), E) = 0

for all F ∈ Db(Y ). By Grothendieck duality we get for any −c + 2 ≤ k < 1 one has
Hom(π∗F⊗Oπ(k), i

∗E) = 0. By Proposition 1.4.1 we have i∗E ∈ π∗Db(Y )⊗Oπ(−c+1).
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Hence if we let E′ := E ⊗ O((−c + 1)E), then i∗E′ ∈ π∗Db(Y ). Pick such G ∈ Db(Y )
such that i∗E′ ' π∗G.

If i∗E′ ' 0, then supp(E′) ⊂ E and E′ ∈ D0.
If not, consider the spectral sequence

Er,s
2 = Hom(E′,Hs(q∗κ(x))[r]) ⇒ Hom(E′, q∗κ(x)[r + s]).

By Proposition 1.5.4 we have Hs(q∗κ(x)) ' Ω⊗−s
Ex

(−s). Hence

Er,s
2 ' Hom(E′, i∗Ω

⊗−s
Ex

(−s)[r])

' Hom(π∗G,Ω⊗−s
Ex

(−s)[r])

' Hom(G, π∗Ω
⊗−s
Ex

(−s)[r]) = 0

except for s = 0. Hence

Em,0
2 ' Hom(G,κ(x)[m]) ' Hom(q∗κ(x), E[dimX −m])∨ 6= 0

for some m ∈ Z and some x ∈ Y . Hence if E ∈ D⊥
k for all −c + 1 ≤ k < 0, we cannot

have E ∈ D⊥
0 . Hence well done.

1.6 Example III – Smooth Quadrics and Grassmannians
Here we follows the results in [19] and just give some results.

Proposition 1.6.1. Let Gr(k, V ) be the Grassmannian of k-dimensional subspaces in
a vector space V of dimension n. Let U be thebtautological subbundle of rank k. If
chark = 0 then there is a strong S.O.D

Db(Gr(k, V )) =
〈
ΣαU ∨〉

where α is a Young diagram in the k× (n− k) rectangle and Σα is the associated Schur
functor.

Proof. We will not prove this. We refer the original proof in [19]. Note that as in the
proof of the projective bundles, if we let U ⊥ = ((V ⊗OGr(k,V ))/U )∨, then we can let a
canonical section

s ∈ H0(Gr(k, V )× Gr(k, V ),U ∨ ⊠ (U ⊥)∨) = V ∨ ⊗ V = End(V, V )

correspond to the idV . Then s vanishes exactly along the diagonal ∆ ⊂ Gr(k, V ) ×
Gr(k, V ) which induce the Koszul resolution

· · · →
2∧
(U ⊠ U ⊥) → U ⊠ U ⊥ → OGr(k,V )×Gr(k,V ) → O∆ → 0
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where the i-th term is just the sum
⊕

αΣ
αU ⊠ Σα∗

U ⊥ where α runs through Young
diagrams with i cells. Hence as before this deduce another generalised Beilinson spectral
sequence

Ep,q
1 =

⊕
|α|=−p

Hq(F ⊗ Σα∗
U ⊥)⊗ ΣαU ⇒ Hp+q(F )

for any F ∈ Db(Gr(k, V )).

Remark 1.6.2. Note that we even have the Lefschetz decomposition on some special
Grassmannians. We refer [12] and we only give the statement.

• A Grassmannian Gr(k, n) with gcd(k, n) = 1 has a rectangular Lefschetz decom-
position

Db(Gr(k, V )) = 〈B,B(1), · · · ,B(n− 1)〉

of length n, with B as:

B =
〈
ΣαU ∨ : αp < (n− k)(k − p)/k, 1 ≤ p ≤ k − 1

〉
,

Proposition 1.6.3. Let Q ⊂ Pn+1
k be a smooth quadric hypersurface where chark 6= 2,

then there is a full exceptional collection

Db(Q) =

{
〈S,OQ,O(Q)(1), ...,O(Q)(n− 1)〉 ,n odd;〈

S−, S+,OQ,O(Q)(1), ...,O(Q)(n− 1)
〉
,n even;

where S, S± are the spinor bundles.

Remark 1.6.4. This is also right for the family version, that is, consider a flat fibration
in quadrics f : X → S. In other words, assume that X ⊂ PS(E ) is a divisor of relative
degree 2 where E is of rank n + 2 on a scheme S corresponding to a line subbundle
L ⊂ Sym2E ∨. For each i there is a fully faithful functor Φi : Db(S) → Db(X) given by
F 7→ f∗F ⊗ OX/S(i). Then we have a S.O.D

Db(X) =
〈
Db(S,C `0),Φ0(Db(S)), ...,Φn−1(Db(S))

〉
where C `0 is the sheaf of even parts of Clifford algebras on S associated with the quadric
fibration X → S.

1.7 Example IV – Curves
Here we will follows [33]. Let C be a smooth projective curve over C.
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Proposition 1.7.1. When g(C) = 0, then C ∼= P1 and we have S.O.D

Db(C) = 〈OC ,OC(1)〉 .

Proof. Special case of Proposition 1.4.1.

Now we consider g(C) ≥ 1 and show a lemma.
Lemma 1.7.2. Let g(C) ≥ 1. Suppose E ∈ Coh(C) is included in a triangle

Y → E → X → Y [1]

with Hom≤0(Y,X) = 0, then X,Y ∈ Coh(C).
Proof. Almost the pure homological algebra, using the fact that degKC ≥ 0 here. See
[14] Lemma 7.2.

Corollary 1.7.3. Let g(C) ≥ 1 and Db(C) = 〈A ,B〉 be an S.O.D. Then for any
E ∈ Coh(C), there exist coherent sheaves B ∈ B ∩ Coh(C) and A ∈ A ∩ Coh(C), and
an exact sequence of sheaves

0 → B → E → A → 0.

Proposition 1.7.4. When g(C) ≥ 1, then Db(C) admits no non-trivial S.O.Ds.
Proof. LetDb(C) = 〈A ,B〉 be an S.O.D. By Corollary 1.7.3, for any closed point x ∈ C
there exist B ∈ B ∩Coh(C), A ∈ A ∩Coh(C) such that both of them are sheaves and
there exists an exact sequence

0 → B → Ox → A → 0.

Hence Ox is contained in only one of A or B. Hence C(SpecC) = CA t CB by this
fact.

By Proposition 3.17 in [15] we know that the set of closed points forms a spanning
class, hence if CB = ∅ or CA = ∅, then B or A is trivial. Hence we may let both CB

and CA are not empty.
We now claim that any coherent sheaf in B must be torsion. Indeed, otherwise the

support of the sheaf coincides with the whole variety C, hence there exists a non-trivial
morphism from the sheaf to a closed point which belongs to A . This is a contradiction.

Next we claim that any torsion free sheaf belongs to A . Indeed, let E be a torsion
free sheaf. As before, we have an exact sequence

0 → B → E → A → 0.

Since E is torsion free, so is B. Combined with the first claim, we see B must be zero,
hence A = E .

By Corollary 3.19 in [15] we know that the set of torsion free sheaves forms a spanning
class of Db(C). Hence B must be trivial. Well done.
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Remark 1.7.5. Actually the only thing we use the g(C) ≥ 1 is Corollary 1.7.3. So any
smooth projective variety satisfies Corollary 1.7.3 admits no non-trivial S.O.Ds.

1.8 Example V – Other Examples
Proposition 1.8.1. Let X be a smooth projective variety with ωX

∼= OX , then Db(X)
admits no non-trivial S.O.Ds.
Proof. Let there exists an S.O.D Db(X) = 〈A ,B〉. Hence for any A ∈ A and B ∈ B
and for any i we have Hom(B,A[i]) = 0. Hence by Serre duality we have

Hom(B,A[i]) = Hom(A[i], B[n])∨ = Hom(A, b[n− i])∨ = 0.

Hence Db(X) = 〈B,A 〉 is also an S.O.D. Hence A ,B forms an orthogonal decompo-
sition. Hence by Proposition 3.10 in [15] and the fact that X is connected, this S.O.D
must be trivial.

Lemma 1.8.2. Let X be a smooth projective variety and F ∈ Db(X) is non-trivial,
and L be a globally generated line bundle. Then

HomX(F, F ⊗ L ) 6= 0.

Proof. Here we follows [33]. Let m = min{i : Hi(F ) 6= 0} and consider the following
standard distinguished triangle

τ≤mF → F → τ≥m+1F → τ≤mF [1].

Since τ≤mF is isomorphic to a shift of a sheaf, we can find s ∈ H0(X,L ) which induce
a non-trivial τ≤mF → L ⊗ τ≤mF . Consider

τ≥m+1F [−1] τ≤mF F τ≥m+1F

τ≥m+1F ⊗ L [−1] τ≤mF ⊗ L F ⊗ L τ≥m+1F ⊗ L

σσ≥m+1[−1] σ≤m σ≥m+1

where these four vertical arrows are defined by taking tensor products with the section s.
Hence here σ≤m 6= 0. Suppose that σ = 0. Then σ≤m 6= 0 factors through a morphism
from to τ≥m+1F ⊗L [−1], which is zero since τ≥m+1F ⊗L [−1] has trivial cohomologies
up to degree m+ 1. Thus we obtain a contradiction, well done.

Proposition 1.8.3. Let X be a smooth projective variety whose canonical line bundle
is globally generated. Then Db(X) has no exceptional objects.
Proof. This follows from Lemma 1.8.2 and the duality

Hom(F, F [dimX]) = Hom(F, F ⊗ ωX)∨ 6= 0.

Well done.
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Chapter 2

Non-Commutative Smooth
Projective Varieties

Here we will follows the fundamental paper [23] and a nice survey [26].

2.1 Basic Definition
Definition 2.1.1. Let D be a triangulated category linear over C. We say that D is a
(geometric) non-commutative smooth projective variety if there exists a smooth projective
variety X over C and a fully faithful C-linear exact functor D → Db(X) having left and
right adjoints.

Remark 2.1.2. Actually there is another more general non-commutative smooth pro-
jective variety (without geometric), but we will just consider these case. Note that by
identifying D with its essential image in Db(X), then the definition is only asking that
D is an admissible subcategory.

2.2 Functors of Fourier-Mukai Type
Before introduce this, we will introduce the products of the non-commutative smooth
projective varieties. Note that there is a generalization – gluing of categories, but we
will omit it and we refer [34].

Proposition 2.2.1. If D1 ⊂ Db(X1) and D2 ⊂ Db(X2) are non-commutative smooth
projective varieties, we can define D1 ⊠ D2 as the smallest triangulated subcategory of
Db(X1 ×X2) which is closed under taking direct summands and contains all objects of
the form F1 ⊠ F2, with Fi ∈ Di. Then D1 ⊠ D2 ⊂ Db(X1 ×X2) is admissible.

25
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Proof. By Remark 1.1.5(c), we just need to show that there is an S.O.D:

Db(X1 ×X2) =
〈
D1 ⊠ D2,

⊥D1 ⊠ D2,D1 ⊠ ⊥D2,
⊥D1 ⊠ ⊥D2

〉
.

The first condition is trivial by Künneth formula. The second condition follows from
the finite locally free resolution and stupid truncations. See [26] Proposition 2.15 for
details.

Definition 2.2.2. Let X1, X2 be algebraic varieties. Let D1 ↪→ Db(X1) and D2 ↪→
Db(X2) be admissible categories. A functor F : D1 → F2 is called of Fourier-Mukai type
if the composite functor

Db(X1)
δ1→ D1

F→ D2 ↪→ Db(X2)

is equivalent to a Fourier-Mukai transform where δ1 is the left adjoint of D1 ↪→ Db(X1).

Proposition 2.2.3. Let X be a smooth projective variety with an S.O.D

Db(X) = 〈D1, ...,Dn〉 .

Then the induced projection δi : Db(X) → Di is of Fourier-Mukai type whose kernel is
unique up to an isomorphism.

Proof. There is a more general case in [20] Theorem 7.1. But in our case this is very easy.
By Proposition 2.2.1 the subcategories Di⊠Db(X) are admissible. Hence consider Ki ∈
Db(X×X) as the projection of the structure sheaf of the diagonal ∆∗OX ∈ Db(X×X)
onto the category Di ⊠Db(X) Then easy to see that there are just the Fourier-Mukai
kernel here. The uniqueness follows from Theorem 1.1.10.

Remark 2.2.4. In the case of the Proposition, if we let

Bi :=
⊥ 〈D1, ...,Di−1,Di+1, ...,Dn〉 ,

then the kernel Pi of δi will be contained in Di ⊠B∨
i . This is easy but we will omit the

proof and we refer [22] Proposition 3.8. From this we find that Ext∗(Pi, Pj ◦ SX) = 0
for any i 6= j. See Corollary 3.10 in [22].

Note that the Serre functor play a vital role in the whole theory. Here we will state
some facts about it.

Proposition 2.2.5. Some basic facts about the Serre functor:

(i) If a Serre functor exists, then it is unique up to unique isomorphism and it is an
exact functor of triangulated categories.
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(ii) If j : C ↪→ D is an admissible subcategory and D has a Serre functor SD , then C
also has a Serre functor as:

SC
∼= j! ◦ SD ◦ j, j! ∼= SC ◦ j∗ ◦ S−1

D .

Furthermore, a Serre functor on C⊥ exists as well and satisfies

SC⊥ ∼= SD ◦RC , S−1
C⊥

∼= LC ◦ S−1
D .

In particular any non-commutative smooth projective variety has a Serre functor.
(iii) The Serre functor and its inverse of any non-commutative smooth projective va-

riety are both of Fourier-Mukai type.
(iv) If A → B be a C-linear equivalence with A ,B are all have a Serre functor such

that the Homs are all of finite dimension, then this equivalence commute with the
Serre functors.

(v) If F : A → B be a C-linear functor with A ,B are all have a Serre functor
SA , SB such that the Homs are all of finite dimension, then if G is a left adjoint
of F , then F has a right adjoint SA ◦G ◦ S−1

B . Similar for another side.
(vi) Given two non-commutative smooth projective varieties D1 ⊂ Db(X1) and D2 ⊂

Db(X2), let us denote by PSD1
∈ Db(X1 ×X1), respectively PSD2

∈ Db(X2 ×X2),
kernels representing the Serre functors. Then the Serre functor of the product
D1 ⊠ D2 ⊂ Db(X1 ×X2) is representable by PSD1

⊠ PSD2
.

Proof. See Tag 0FY6 for (i). See Lemma 1.30 in [15] for (iv). See Remark 1.31 in [15]
for (v). Now we will prove (ii)(iii)(vi).

For (ii), this directly follows from the definitions and the Yoneda’s lemma. When
D = Db(X) where X is a smooth projective variety, then SD exists by Serre duality.

For (iii), consider the admissible j : D ↪→ Db(X) for some smooth projective variety.
By using (ii) and (v) we know that

S−1
D

∼= j∗ ◦ S−1
X ◦ j.

By Proposition 2.2.3 and the fact that SX is of course a Fourier-Mukai transform, we
find that S−1

D is of Fourier-Mukai type. Hence j ◦S−1
D ◦ j∗ is a Fourier-Mukai transform.

As its inverse is just j ◦ SD ◦ j∗, then it is an equivalence and hence a Fourier-Mukai
transform. Hence SD is of Fourier-Mukai type.

For (vi), this can be showed directly. We omit it.

2.3 Hochschild homology and cohomology
Definition 2.3.1. Let D ⊂ Db(X) be a non-commutative smooth projective variety and
P ∈ D(X ×X) the Fourier-Mukai kernel of the projection functor onto D and let SX

https://stacks.math.columbia.edu/tag/0FY6


28 CHAPTER 2. NON-COMMUTATIVE SMOOTH PROJECTIVE VARIETIES

is the Fourier-Mukai kernel of the Serre functor on X. Then we define the Hochschild
cohomology and Hochschild homology of D as:

HH∗(D) := Ext∗(P, P ), HH∗(D) := Ext∗(P, P ◦ SX).

More generally, the Hochschild cohomology of X with support in T and coefficients in E
is defined as

HH∗
T (X,E) := Ext∗(E,E ◦ T )

for any kernels E, T ∈ Db(X × X). In case of T = ∆∗OX we call it the Hochschild
cohomology of X with coefficients in E. Similarly, in case of T = SX we call it the
Hochschild homology of X with coefficients in E. Hence when (E, T ) = (P,∆∗OX) and
(P, SX), this is just the Hochschild cohomology and Hochschild homology of D .

Remark 2.3.2. Some important remarks:

(a) We can see that HH∗(D) is a graded right module over HH∗(D) by Yoneda’s lemma.
Moreover, by the definition of Serre functor, the graded structure is given by

HHi(D)× HHj(D) → HHi+j(D).

(b) We can define a perfect pairing

HH∗(D)× HH−∗(D) → C

which called a Mukai pairing. This follows from

HHi(D) = Exti(P, P ◦ SX) = Exti(P, P ◦ SX×XSX)

= Ext−i(P ◦ S−1
X , P )∨ = HH−i(D)∨

by Serre duality.

Lemma 2.3.3. Let D ⊂ Db(X) be a non-commutative smooth projective variety and
let P ∈ D(X ×X) the Fourier-Mukai kernel of the projection functor onto D , then we
have

HH∗(D) = H∗(X,∆!P ), HH∗(D) = H∗(X,∆∗P ).

Proof. LetR be the kernel of the right projection onto ⊥D . Then we have a distinguished
triangle R → ∆∗OX → P . On the other hand, Ext∗(R,P ) = Ext∗(R,P ◦ SX) = 0 by
Remark 2.2.4. Since

∆!(P ◦ SX) = ∆!(P ◦ SX) = ∆!(P ⊗ p∗2ωX [dimX]) = ∆∗P,

we can get the result directly.
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Lemma 2.3.4. If A = 〈A1, ...,Am〉 is an S.O.D, then

HH∗(A ) = HH∗(A1)⊕ · · · ⊕ HH∗(Am)

which is orthogonal with respect to the Mukai pairing. Moreover, if D = 〈A ,B〉 is an
orthogonal decomposition, then

HH∗(D) = HH∗(A )⊕ HH∗(B).

If A 6= 0, then HH0(A ) 6= 0.

Proof. See [22] or [26] Proposition 2.25 for the proof.

Example 2.3.1. Let E be an exceptional object, then HH∗(〈E〉) = HH∗(〈E〉) = C.
Let E1, ..., Em be an exceptional collection and let D = 〈E1, ..., Em〉. Then HH∗(D) =

C⊕m, concentrated in degree 0.

Theorem 2.3.5. Let C ⊂ Db(X),D ⊂ Db(Y ),E ⊂ Db(Z) be non-commutative smooth
projective varieties.

(i) Any Fourier-Mukai functor Φ : C → D induces a morphism of graded k-vector
spaces ΦHH : HH∗(C ) → HH∗(D) such that idHH = id and, given another functor
Ψ : D → E , we have (Ψ ◦ Φ)HH = ΨHH ◦ ΦHH.

(ii) If (Ψ,Φ) is a pair of adjoint Fourier-Mukai functors, then

(−,ΦHH(−)) = (ΨHH(−),−)

according to the Mukai pairing.
(iii) There is a Chern character ch : K0(D) → HH0(D) such that, for all F,G ∈ D ,

(chE, chF ) = χ(E,F ) :=
∑
i

(−1)i dimExtiY (E,F ).

(iv) The Hochschild structure is invariant under exact equivalences of Fourier-Mukai
type.

Proof. For (i), we first consider the case of Fourier-Mukai functor ΦE : Db(X) → Db(Y )
of kernel E. Then its left and right adjoint are of kernels EL := E∨ ⊗ p∗Y ωY [dimY ]
and ER := E∨ ⊗ p∗XωX [dimX], respectively. In our language, these are EL = E∨ ◦ SY

and ER = SX ◦ E∨. Hence this induce ΦE ◦ ΦER
→ idY and idY → ΦE ◦ ΦEL

. In our
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language, these are ∆∗OY → E ◦EL and E ◦ER → ∆∗OY . Hence for any µ ∈ HHi(X),
we induce

∆∗OY → E ◦ EL = E ◦ E∨ ◦ SY

' E ◦ S−1
X ◦ SX ◦ E∨ ◦ SY

µ→ E ◦ SX ◦ E∨ ◦ SY [i]

= E ◦ ER ◦ SY [i] → SY [i].

Hence we get an element in HHi(Y ). This induce ΦE,HH : HHi(X) → HHi(Y ). In general
case, this follows from this special case and Lemma 2.3.4.

For (ii) this follows from the direct calculation and we omit it and refer [7] Theorem
7.3. For (iii) this also follows from the direct calculation and we omit it and refer [7]
Theorem 7.1 and Theorem 7.6. For (iv) we refer [22] Section 7.

Now we consider a special case: D = Db(X) for a smooth projective variety X of
dimension n. In this case by Lemma 2.3.3 we have

HH∗(X) := HH∗(Db(X)) = H∗(X,∆!∆∗OX),

HH∗(X) := HH∗(Db(X)) = H∗(X,∆∗∆∗OX).

Consider the universal Atiyah class At ∈ Ext1(∆∗OX ,∆∗ΩX) correspond to

0 → I∆/I
2
∆
∼= ∆∗ΩX → OX×X/I2∆ → ∆∗OX → 0.

Repeat this we get

Atp : ∆∗OX → ∆∗Ω
p
X [p], Atp : ∆∗Ω

n−p
X [n− p] → ∆∗ωX [n]

which by adjunction we get

∆∗∆∗OX → Ωp
X [p],

p∧
TX [−p] → ∆!∆∗ωX [n].

Proposition 2.3.6 (Hochschild-Kostant-Rosenberg). For a smooth projective variety
X of dimension n, then the previous maps induce isomorphisms

∆∗∆∗OX
∼=

n⊕
p=0

Ωp
X [p],

n⊕
p=0

p∧
TX [−p] ∼= ∆!∆∗ωX [n].

In particular we have

HHi(X) ∼=
⊕
p+q=i

Hq(X,

p∧
TX), HHi(X) ∼=

⊕
q−p=i

Hq(X,Ωp
X).

Proof. We refer [27] and [28].
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2.4 Calabi-Yau Categories and its General Properties
2.4.1 Fractional Calabi-Yau Categories
The definition of Calabi-Yau categories is an analogue of the Calabi-Yau varieties:
Definition 2.4.1. A triangulated category D is a fractional Calabi-Yau category if it has
a Serre functor SD and there are integers p and q 6= 0 such that Sq

D
∼= [p].

In the case of (p, q) = (n, 1), we call D is an n-Calabi-Yau category. Sometimes we
call n its dimension.

2.4.2 Indecomposability
Definition 2.4.2. A non-commutative smooth projective variety D is called connected
if HH0(D) = C.
Remark 2.4.3. When D = Db(X), by Hochschild-Kostant-Rosenberg theorem 2.3.6 we
have HH0(Db(X)) = H0(X,OX).
Proposition 2.4.4. If D ⊂ Db(X) is a Calabi-Yau non-commutative smooth projective
variety, then any S.O.D of D is completely orthogonal. In particular, if D is connected
then D is indecomposable.
Proof. Assume D = 〈A ,B〉 is an S.O.D. Then it is completely orthogonal by Serre
duality since it is Calabi-Yau. By Lemma 2.3.4 we have HH∗(D) = HH∗(A )⊕HH∗(B).
If D is connected, then we have HH∗(A ) = 0 or HH∗(B) = 0. By Lemma 2.3.4 again
we have A = 0 or B = 0.

2.4.3 Hochschild (co-)homology
Let D ⊂ Db(X) be a non-commutative smooth projective variety. Consider Db(X) =〈
D⊥,D

〉
=
〈
D ,⊥D

〉
with kernels of two projections PR

D , PL
D .

Lemma 2.4.5. If D is n-Calabi-Yau then there exists a canonical isomorphism
PL

D [n] ∼= PR
D ◦ SX .

Proof. Let f : D ↪→ Db(X) be the embedding, then PR
D = ff ! and PL

D = ff∗. By
Proposition 2.2.5(ii) we have f ! ◦ SX = SD ◦ f∗ = f∗[n]. Hence ff ! = ff∗[n], well
done.

Proposition 2.4.6. If D is n-Calabi-Yau, then for all k ∈ Z we have
HHk(D) ∼= HHk−n(D).

In particular if D 6= 0 then HH−n(D) 6= 0.
Proof. By Lemma 2.3.3 we have HH∗(D) = H∗(X,∆!PL

D ). Also, the same argument
shows that HH∗(D) = H∗(X,∆∗PR

D ). Hence by Lemma 2.4.5 we get the result!
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2.4.4 The Dimension of Calabi-Yau Subcategories
Theorem 2.4.7. Let D ⊂ Db(X) be a non-commutative smooth projective variety which
is n-Calabi-Yau, then n ≤ dimX.

Proof. By Lemma 2.3.4 and Proposition 2.4.6, we have HH−n(Db(X)) 6= 0. But by
Hochschild-Kostant-Rosenberg isomorphism 2.3.6 we have

HH−n(Db(X)) =
⊕
p∈Z

Hp−n(X,Ωp
X).

Hence if n > dimX then the right hand side is zero. Hence n ≤ dimX.



Chapter 3

Examples of Fano Varieties

We always consider the schemes and vector spaces over SpecC.

3.1 Basic Results of Fano Varieties
Theorem 3.1.1 (Fujita 1980-1984). Let X be a smooth Fano n-fold of index r ≥ n−1.
Then the general element in the fundamental divisor is smooth.

Proof. See [36] Theorem 2.3.2.

Theorem 3.1.2 (Mella 1996). Let X be a smooth Fano n-fold of index n − 2. Then
the general element in the fundamental divisor is smooth.

Proof. See [29] Theorem 2.5.

Corollary 3.1.3. Let X be a smooth Fano 3-fold of index 1 and H3 ≥ 8 and ρ(X) = 1.
Then the linear system | −KX | is very ample and X is projectively normal which is an
intersection of quadrics.

Proof. See [36] Corollary 4.1.13.

Proposition 3.1.4. Let X be a smooth Fano variety, then X is simply connected.

Proof. By Kodaira’s vanishing theorem, we find that Hm(X,OX) = 0 for all m > 0,
hence χ(X,OX) = 1. If π : X ′ → X is a connected finite étale cover, then X is also a
smooth Fano variety. Hence χ(X ′,OX′) = 1. But χ(X ′,OX′) = degπχ(X,OX). Hence
π is an isomorphism.

Proposition 3.1.5. Let X be a smooth Fano variety, then Pic(X) is finite generated
and torsion free.

33
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Proof. By exponential sequence one has

H1(X,OX) → Pic(X) → H2(X,Z) → H2(X,OX).

By Kodaira’s vanishing theorem, we find that Hm(X,OX) = 0 for all m > 0, hence
Pic(X) ∼= H2(X,Z). Hence Pic(X) is finite generated. To show Pic(X) is torsion free,
we just need to show H2(X,Z) is torsion free. By universal coefficient theorem for
cohomology, one has

0 → Ext1(H1(X,Z),Z) → H2(X,Z) → Hom(H2(X,Z),Z) → 0.

As Hom(H2(X,Z),Z) is torsion free, the only torsion ofH2(X,Z) follows fromH1(X,Z).
As H1(X,Z) = π1(X)abel = 0 by Proposition 3.1.4, hence Pic(X) is torsion free.

Remark 3.1.6. Hence any simply connected smooth projective variety over C has
torsion free Picard group.

3.2 Cubics
Proposition 3.2.1. Let X3 ⊂ P5 be a smooth cubic fourfold, then we have HH∗(X3) =
C[2]⊕ C⊕25 ⊕ C[−2].

Proof. Note that we have the exact sequence

0 → Ωp−1
X (−3) → Ωp

P5 |X → Ωp
X → 0.

Then the result can be deduced by this and Hochschild-Kostant-Rosenberg theorem
2.3.6.

3.3 Gushel-Mukai Varieties
3.3.1 Basic Definitions and Properties
Let V5 be a vector space of dimension 5 and consider the Plücker embedding Gr(2, V5) ↪→
P
(∧2 V5

)
. For any vector space K, consider the cone CK(Gr(2, V5)) ⊂ P

(∧2 V5 ⊕K
)

of vertex P(K). Choose a vector subspace W ⊂
∧2 V5⊕K and a subscheme Q ⊂ P(W )

defined by defined by one quadratic equation (possibly zero).

Definition 3.3.1. The scheme

X = CK(Gr(2, V5)) ∩ P(W ) ∩Q

is called a Gushel-Mukai intersection (GM intersection). A GM intersection X is called a
Gushel-Mukai variety (GM variety) if X is a smooth variety of dimension dimW −5 ≥ 1.
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Remark 3.3.2. Some remarks:

(a) In the original paper [8] they defined without the smoothness (but always Goren-
stein).

(b) Note that all Q and CK(Gr(2, V5)) ∩ P(W ) are Gorenstein, hence all Cohen-
Macaulay. So the dimension condition means they are dimensionally transverse,
that is, Tor>0(OQ,OCK(Gr(2,V5))∩P(W )) = 0.

(c) A GM variety X has a canonical polarization, the restriction H of the hyperplane
class on P(W ); we will call (X,H) a polarized GM variety.

The definition of a GM variety is not intrinsic. We actually have an intrinsic char-
acterization. But before giving these, we will introduce a new definition:

Definition 3.3.3. Let W be a vector space and let Y ⊂ P(W ) be a closed subscheme
which is an intersection of quadrics, i.e., the twisted ideal sheaf IX(2) on P(W ) is
globally generated.

Define VX := H0(P(W ),IX(2)), this yields a surjection VX ⊗ OP(W )(−2) ↠ IX

which induce
VX ⊗ OX(−2) ↠ IX/I 2

X = N ∨
X/P(W ).

We define the excess conormal sheaf E N ∨
X/P(W ) to be the kernel of this map.

Theorem 3.3.4. A smooth polarized projective variety (X,H) of dimension n ≥ 1 is a
polarized GM variety if and only if all the following conditions hold:

(a) Hn = 10 and KX = −(n− 2)H.
(b) H is very ample and the vector space W := H0(X,OX(H))∨ has dimension n+5.
(c) X is an intersection of quadrics in P(W ) and the vector space

V6 := H0(P(W ),IX(2)) ⊂ Sym2W∨

of quadrics through X has dimension 6.
(d) The twisted excess conormal sheaf UX := E N ∨

X/P(W )(2H) of X in P(W ) is simple.

Proof. We first need to show a smooth polarized GM variety (X,H) satisfies (a)-(d).
For (a), as deg(CK(Gr(2, V5))) = 5 and they are dimensionally transverse, then

deg(X) = 10. Let dimK = k and hence KCK(Gr(2,V5)) = −(5 + k)H by Lemma 3.3.7.
Finally we have

KX = (−(5 + k) + (10 + k)− (n+ 5) + 2)H = −(n− 2)H.

For (b), we just need to show W = H0(X,OX(H))∨. Consider the resolution

0 → O(−5) → V ∨
5 ⊗ O(−3) → V5 ⊗ O(−2) → O → OCK Gr(2,V5) → 0.
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Restrict it into P(W ) and tensor the resolution of Q as 0 → O(−2) → O → OQ, then
tensor O(1) again we get the resolution

0 → O(−6) → (V ∨
5 ⊕ C)⊗ O(−4) → (V5 ⊗ O(−3))⊕ (V ∨

5 ⊗ O(−2))

→ (V5 ⊕ C)⊗ O(−1) → O(1) → OX(H) → 0

on P(W ). Hence H0(X,OX(H)) = H0(P(W ),OP(W )(1)) = W∨.
For (c), consider the resolution again:

0 → O(−5) → (V ∨
5 ⊕ C)⊗ O(−3) → (V5 ⊗ O(−2))⊕ (V ∨

5 ⊗ O(−1))

→ (V5 ⊕ C)⊗ O → O(2) → OX(2H) → 0

Hence one can show that H0(P(W ),IX(2)) = V5 ⊕ C, hence well done.
For (d), we will use the induction of the dimension. For n = 1, this follows from

some basic fact of excess normal sheaf and the Mukai’s construction about a stable
vector bundle of rank 2 on X to show that UX is stable, and hence simple. For the
detail we refer [8] Theorem 2.3. Hence we now assume n ≥ 2. Pick a smooth hyperplane
section X ′ ⊂ X which is also irreducible since n ≥ 2 by Bertini’s theorem. Hence X ′ is
also a GM variety. One can easy to show that in this case UX |X′ = UX′ (see Lemma
A.5 in [8]). Hence we have 0 → UX(−H) → UX → UX′ → 0. Hence

0 → Hom(UX ,UX(−H)) → Hom(UX ,UX) → Hom(UX′ ,UX′).

If dim(Hom(UX ,UX)) > 1, then dim(Hom(UX ,UX(−H))) > 0. By the similar argu-
ment we get

0 → Hom(UX ,UX(−2H)) → Hom(UX ,UX(−H)) → Hom(UX′ ,UX′(−H)) = 0.

Hence Hom(UX ,UX(−2H)) 6= 0. By induction we get Hom(UX ,UX(−kH)) 6= 0 for
any k > 0. Hence for any k > 0 we have Γ(X,U ∨

X ⊗ UX(−kH)) 6= 0. But these are
vector bundles and X is integral of dimension ≥ 2, hence this is impossible.

Now we let a smooth polarized projective variety (X,H) of dimension n ≥ 1 which
satisfies (a)-(d). We need to show that (X,H) is a polarized GM variety.

We know that
detU ∨

X = det(N ∨
X/P(W )(2H)) = OX(H)

and the embedding UX ↪→ V6⊗OX . Taking wedge product, duality and global sections
we get

2∧
V ∨
6 → H0(X,OX(H)) = W∨.
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Hence we get W →
∧2 V6 which can be factored through an injection W →

∧2 V6 ⊕K
for some vector space K. Hence we have

P(W ) P
(∧2 V6 ⊕K

)

X Gr(2, V6) P
(∧2 V6

)
where X → Gr(2, V6) induced by UX ↪→ V6 ⊗ OX and is commutative since these are
the same linear system. Hence we get X ⊂ C◦

K Gr(2, V6) = CK Gr(2, V6)\P(K).
Now by some facts of excess normal sheaves (see Proposition A.3 in [8]), then excess

normal sequence induce a functorial diagram:

0 (V6 ⊗ UX)/Sym2UX
∧2 V6 ⊗ OX detV6 ⊗ µ∗N ∨

Gr(2,V6)/P(
∧2 V6)

(2) 0

0 detV6 ⊗ UX detV6 ⊗ V6 ⊗ OX detV6 ⊗ NX/P(W )(2) 0

which follows from the expression of the excess normal sheaf of Gr(2, V6) ⊂ P(
∧2 V6).

The left vertical arrow induces a morphism λ′ : V6 ⊗ UX → detV6 ⊗ UX . As UX is
simple by (d) we get λ : V6 → detV6. Since λ′ vanishes on Sym2UX , the image of UX

in 6⊗OX is contained in kerλ⊗OX . Moreover, the middle vertical map in the diagram
above is given by v1 ∧ v2 7→ λ(v1)v2 − λ(v2)v1.

We claim that λ 6= 0. If λ = 0, the middle vertical map in the diagram is zero,
which means that all the quadrics cutting out CK Gr(2, V6) contain P(W ), i.e. P(W ) ⊂
CK Gr(2, V6). In other words, P(W ) is a cone over P(W ′) ⊂ Gr(2, V6) with vertex a
subspace of K. Hence X → Gr(2, V6) factor through P(W ′). Hence the vector bundle
UX is a pullback from P(W ′) of the restriction of the tautological bundle of Gr(2, V6) to
P(W ′).

There are two types of linear spaces on Gr(2, V6): the first type corresponds to 2-
dimensional subspaces containing a given vector and the second type to those contained
in a given 3-subspace V3 ⊂ V6. IfW ′ is of the first type, the restriction of the tautological
bundle to P(W ′) is isomorphic to O⊕O(−1), hence UX

∼= O⊕O(−H) by Lemma 3.3.8.
In particular, it is not simple, which is a contradiction. If W ′ is of the second type, the
embedding UX → V6 ⊗ OX factors through a subbundle V3 ⊗ OX ⊂ V6 ⊗ OX . Recall
that V6 is the space of quadrics passing through X in P(W ). Consider the scheme-
theoretic intersection M of the quadrics corresponding to the vector subspace V3. Since
the embedding of the excess conormal sheaf factors through V3 ⊗ OX , the variety X is
the complete intersection of M with the 3 quadrics corresponding to the quotient space
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V6/V3. But the degree of X is then divisible by 8, which contradicts the fact that it is
10 by (a). Hence we conclude that λ 6= 0.

Now let V5 := ker(λ) is a hyperplane in v6 which fits in the exact sequence 0 →
V5 → V6

λ→ detV6 → 0. The composition UX ↪→ V6 ⊗OX
λ→ detV6 ⊗OX vanish, hence

we get UX ↪→ V5 ⊗ OX .
We now replace V6 with V5 and repeat the above argument, then we get a linear

map W →
∧2W5 which factor through µ : W ↪→

∧2W5 ⊕ K which induce again the
embedding X ⊂ C◦

K Gr(2, V5) = CK Gr(2, V5)\P(K). By the functorial of the excess
normal sequence (see Proposition A.3 in [8]) again we get that inside the space V6 of
quadrics cutting out X in P(W ), the hyperplane V5 is the space of quadratic equations
of Gr(2, V5), i.e., of Plücker quadrics.

As the Plücker quadrics cut out the cone CK Gr(2, V5) in P
(∧2 V5 ⊕K

)
, they cut

out CK Gr(2, V5)∩P(W ) in P(W ). Since X is the intersection of 6 quadrics by condition
(c), we finally obtain

X = CK Gr(2, V5) ∩ P(W ) ∩Q

where Q is some non-Plücker quadric corresponding to a point in V6\V5, so X is a GM
variety.

Remark 3.3.5. This is right for all normal varieties with the similar proof.
Remark 3.3.6. The twisted excess conormal sheaf UX that was crucial for the proof
will be called its Gushel sheaf. As we showed in the proof, the projection of X from the
vertex P(K) of the cone CK Gr(2, V5) defines a morphism X → Gr(2, V5) and the Gushel
sheaf UX is isomorphic to the pullback under this map of the tautological vector bundle
on Gr(2, V5). The map X → Gr(2, V5) is thus determined by UX and is canonically
associated with X. We call this map the Gushel map of X.

When X have some mild singularity, then the Gushel map is just a rational map
and UX is isomorphic to the pullback under this map of the tautological vector bundle
on Gr(2, V5) in the smooth locus.
Lemma 3.3.7. Let X ⊂ Pn be a subvariety such that KX = rH. Let C(X) ⊂ Pn+1 be
a cone over X, then KC(X) = (r − 1)H.
Proof. We know that the blow-up of of the vertex of C(X) is

X ′ = PX(OX ⊕ OX(−H))

C(X) X

π
p

Let H ′ be the relative hyperplane class of p. Then

KX′ = p∗(KX +H)− 2H ′ = (r + 1)p∗H − 2H ′.
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On the other hand, the morphism π contracts the exceptional section E ⊂ X ′ and H ′

is the pullback of HC(X). Finally E ∼lin H ′ − p∗H, hence

KX′ = (r − 1)H ′ − (r + 1)E.

Hence KC(X) = (r − 1)H.

Lemma 3.3.8. Let Zp ⊂ Gr(k, V ) be the subscheme parameterizing all k-planes con-
taining the vector p. Then Zp

∼= Gr(k − 1, n− 1) and the restriction of the tautological
subbundle SGr(k,V ) to Zp splits as the sum of O and the tautological subbundle SZp of
Zp

∼= Gr(k − 1, n− 1).

Proof. This is almost trivial. Indeed, let V1 ⊂ V be the 1-dimensional subspace gener-
ated by the vector p. Let V = V1 ⊕ V ′ be a direct sum decomposition. Then for each
k− 1-dimensional subspace U ′ ⊂ V ′ the sum V1 ⊕U ′ is a k-dimensional subspace of V .
Hence the corresponding subbundle

V1 ⊗ O ⊕ SGr(k−1,V ′) ⊂ V1 ⊗ O ⊕ V ′ ⊗ O = V ⊗ O

induces a morphism Gr(k−1, V ′) → Gr(k, V ) which is an isomorphism onto Zp and such
that the pullback of the tautological bundle is V1 ⊗ O ⊕ SZp .

3.3.2 Some Classifications
Lemma 3.3.9. Let (X,H) be a polarized variety. If it is projective normal, that is, the
canonical map SymmH0(X,OX(H)) → H0(X,OX(mH)) is surjective for any m ≥ 0,
then H must be very ample.

Proof. By the commutative diagram

PH0(X,OX(nH))

X PH0(X, SymnOX(H))

PH0(X,OX(H))

|nH|

|H| n-uple

we know that |H| also induce an immersion. Hence H is very ample.

Proposition 3.3.10. Let (X,H) be a smooth polarized variety of dimension n ≥ 2 such
that KX = −(n − 2)H and H1(X,OX) = 0. If there is a hypersurface X ′ ⊂ X in the
linear system |H| such that (X ′,H|X′) is a smooth polarized GM variety, (X,H) is also
a smooth polarized GM variety.
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Proof. First we note that for any smooth GM variety (Y,H) the resolution

0 → O(m− 7) → (V ∨
5 ⊕ C)⊗ O(m− 5) → (V5 ⊗ O(m− 4))⊕ (V ∨

5 ⊗ O(m− 3))

→ (V5 ⊕ C)⊗ O(m− 2) → O → OY (mH) → 0

can imply Y is projective normal, that is, the canonical map SymmH0(Y,OY (H)) →
H0(Y,OY (mH)) is surjective for any m ≥ 0.

Back to the result, we need to check the conditions in Theorem 3.3.4. For (a), this
follows from Hn = H ·Hn−1 = H|n−1

X′ = 10. Now we know X ′ is projective normal, so is
X by [18] Lemma (2.9). By Lemma 3.3.9 we know H is very ample. By H1(X,OX) = 0
we know that h0(X,OX(H)) = n+5 by the case of X ′. This proves (b), and [18] Lemma
(2.10) proves (c). For (d), since UX′ is simple, by the similar proof of (d) in Theorem
3.3.4 we can also show that UX is simple.

Theorem 3.3.11. Let X be a complex smooth projective variety of dimension n ≥ 1,
together with an ample Cartier divisor H such that KX ∼lin −(n− 2)H and Hn = 10.
If we assume that

• when n ≥ 3, we have Pic(X) = Z ·H;
• when n = 2, the surface X is a Brill-Noether general K3 surface (a K3 surface is
called Brill-Noether general if h0(S,D)h0(S,H −D) < h0(S,H) for all divisors D
on S not linearly equivalent to 0 or H. When H2 = 10, this is equivalent to the
fact that |H| contains a Clifford general smooth curve);

• when n = 1, the genus-6 curve X is Clifford general (that is, it is neither hyperel-
liptic, nor trigonal, nor a plane quintic).

then X is a GM variety.

Before proving this, we need some Lemmas:

Lemma 3.3.12. Let X be a complex smooth projective variety of dimension n ≥ 3 with
an ample divisor H such that Hn = 10 and KX ∼lin −(n− 2)H.

Then the linear system |H| is very ample and a smooth general X ′ ∈ |H| satisfies
the same conditions: if H ′ := H|X′, we have (H ′)n−1 = 10 and KX′ ∼lin −(n− 3)H ′.

Proof. First we need to show that h0(H) > 0. This follows from the follows result:

• Lemma 3.3.12.A. Let X be a smooth Fano variety of dimension n ≥ 3 such that
−KX ∼lin rH where H is ample. Then when r ≥ n− 2, then h0(H) > 0.

Proof of Lemma 3.3.12.A. Now we separate it as two cases.
When r ≥ n−1, use Kodaira vanishing theorem to (x+r)H+KX we have hi(xH) = 0

for all i > 0 and all x ≥ −(n − 2). Now we let h0(H) = 0 and in these cases we have
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χ(xH) = h0(xH). Hence χ(xH), as a polynomial, has roots −1,−2, ...,−(n− 2), 1. As
χ(0) = 1 and χ(xH) as the top coefficient Hn

n! , we know that

χ(xH) =
1

n!
(x+ 1)(x+ 2) · · · (x+ n− 2)(x− 1)(Hnx− n(n− 1))

=
1

n!

(
Hnxn +

(
n(n− 3)

Hn

2
− n(n− 1)

)
xn−1 + lower terms

)
.

On the other hand, by HRR we get

χ(xH) =
1

n!

(
Hnxn +

1

2
nrHnxn−1 + lower terms

)
.

Hence 1
2nrH

n = n(n− 3)H
n

2 − n(n− 1), that is, r = n− 3− 2n−2
Hn . But r ≥ n− 1, this

is impossible. Hence h0(H) > 0.
When r = n − 2, we will go through this directly. By Kodaira vanishing theorem

again we have hi(xH) = 0 for all i > 0 and all x ≥ −(n− 3). For x = −(n− 2), we only
have

hi(−(n− 2)H) = hi(KX) =

{
1, i = n;

0, 0 ≤ i < n.

Hence again we have

χ(xH) =
1

n!
(x+ 1)(x+ 2) · · · (x+ n− 3)(Hnx3 + bx2 + cx+ n(n− 1)(n− 2)).

Now as χ(−(n− 2)H) = (−1)n, we can find that b = 3
2H

n(n− 2) and c = 2n(n− 1) +
1
2H

n(n− 2)2. Hence h0(H) > 0 by taking x = 1.

Hence now |H| is non-empty. Note that in this caseH is already the fundamental divisor
since Hn = 10. Hence by Theorem 3.1.1 and Theorem 3.1.2 as in this case the index of
X is ≥ n− 2, then the general elements are smooth. Pick such X ′. Then if H ′ := H|X′ ,
we have (H ′)n−1 = 10 and by adjunction formula we have KX′ ∼lin −(n − 3)H ′. By
Kodaira vanishing theorem we have H1(X,OX) = 0. Hence the linear series |H ′| is
just the restriction of |H| to X ′ and the base loci of |H| and |H ′| are the same. Taking
successive linear sections, we arrive at a linear section Y of dimension 3 which is smooth
and KY ∼lin −HY and H3

Y = 10.
If Pic(Y ) = Z ·HY , then by Corollary 3.1.3 the pair (Y,HY ) is projectively normal.
If not, then ρ(X) ≥ 2. By the classification theory (NEED TO ADD) of the Fano

threefold, Y must be a divisor of bidegree (3, 1) in P3×P1 and the pair (Y,HY ) is again
projectively normal.

Hence in both case, we can use the [18] Lemma (2.9) repeatly which imply that
(X,H) is projectively normal. Hence by Lemma 3.3.9 we know H is very ample.
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Remark 3.3.13. Note that in Lemma 3.3.12.A, by the similar arguments we can show
that when X is a smooth Fano variety of dimension n and index r with fundamental
divisor H we have h0(H) = 1

2H
n(r−n+3)+n−1 when r > n−2 and h0(H) = 1

2H
n+n

when r = n− 2.
Lemma 3.3.14. Let (X,H) be a polarized complex variety of dimension n ≥ 2 which
satisfies the hypotheses of Theorem 3.3.11. A general element of |H| then satisfies the
same properties.
Proof. Assume first n ≥ 4. By Lemma 3.3.12 we need only to prove that a general
smooth X ′ ∈ |H| satisfies Pic(X ′) = Z · H ′ where H ′ := H|X′ . By Grothendieck-
Lefschetz theorem we have Cl(X) ∼= Cl(X ′). Hence Pic(X ′) = Z ·H ′ as Pic(X) = Z ·H.

When n = 2, this follows from definitions.
When n = 3, X is a smooth Fano 3-fold with Pic(X) = Z ·H. Then by Corollary

3.1.3X is an intersection of quadrics. Any smooth hyperplane section S ofX is a degree-
10 smooth K3 surface which is still an intersection of quadrics. A general hyperplane
section of S is still an intersection of quadrics, hence is a Clifford general curve. This
proves that S is Brill-Noether general.

Proof of Theorem 3.3.11. Induction on n. The case n = 1 was proved in Proposition
3.3.15, so we assume n ≥ 2. A general hyperplane section X ′ of X has the same
properties by Lemma 3.3.14, hence is a GM variety by the induction hypothesis. On
the other hand, we have H1(X,OX) = 0. By Proposition 3.3.10, we conclude that X is
a GM variety. Well done.

Some inverse results:
Proposition 3.3.15. A smooth projective curve is a GM curve if and only if it is a
Clifford general curve of genus 6.
Proof. Follows from the Theorem 3.3.4 and the Enriques-Babbage theorem in [2] Section
III.3.

Proposition 3.3.16. A smooth projective surface X is a GM surface if and only if X
is a Brill-Noether general polarized K3 surface of degree 10.
Proof. By Theorem 3.3.11, we just need to show that if X is a GM surface, then X is a
Brill-Noether general polarized K3 surface of degree 10. In this case, we have KX = 0
by Theorem 3.3.4(a), and the resolution

0 → O(−7) → (V ∨
5 ⊕ C)⊗ O(−5) → (V5 ⊗ O(−4))⊕ (V ∨

5 ⊗ O(−3))

→ (V5 ⊕ C)⊗ O(−2) → O → OX → 0

implies H1(X,OX) = 0, hence X is a K3 surface. Moreover, a general hyperplane
section of X is a GM curve, hence a Clifford general curve of genus 6, hence X is
Brill-Noether general.
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Proposition 3.3.17. Let (X,H) be a polarized complex smooth GM variety of dimen-
sion n ≥ 3. Then Pic(X) = Z ·H. In particular, the polarization H is the unique GM
polarization on X.
Proof. By Theorem 3.3.11, we just need to show that if (X,H) be a polarized complex
smooth GM variety of dimension n ≥ 3, then Pic(X) = Z · H. By Theorem 3.3.4,
X is a Fano variety of degree 10 and is an intersection of quadrics. When n = 3, by
the proof of Lemma 3.3.12 we know that Pic(X) = Z · H. Now consider n ≥ 4, a
general hyperplane section X ′ of X satisfies the same properties by Lemma 3.3.14 and
by Grothendieck-Lefschetz theorem again (for general case we refer Theorem 1 in [37])
we have injection Pic(X) ↪→ Pic(X ′). Hence by induction we get the result.

3.3.3 Grassmannian Hulls
Fix V5, V6,K,W ⊂

∧2 V5 ⊕K,Q ⊂ P(W ) which defines a smooth GM variety
X = CK Gr(2, V5) ∩ P(W ) ∩Q.

Definition 3.3.18. Define MX := CK Gr(2, V5) ∩ P(W ) to be the Grassmannian hull of
X. Hence X = MX ∩Q which is a quadric section of MX .

Define M ′
X := Gr(2, V5) ∩ P(W ′) to be the projected Grassmannian hull of X where

W ′ defined as the image of the projection µ : W ⊂
∧2 V5 ⊕K →

∧2 V5.
Remark 3.3.19. Note that these two schemes are canonically associated to X via GM
datas. See [8] Section 2.

Now consider the Gushel map X → Gr(2, V5).
Proposition 3.3.20. Let X be a such smooth GM variety.
(i) If µ : W →

∧2 V5 is injective, that is, µ induce W ∼= W ′, then MX
∼= M ′

X and
Gushel map X → Gr(2, V5) is an embedding which induce

X ∼= M ′
X ∩Q = Gr(2, V5) ∩ P(W ) ∩Q.

In this case we call X a ordinary GM variety. Hence in this case

dimX = dimW − 5 ≤ dim
2∧
V5 − 5 = 5.

(ii) If kerµ 6= 0, then dimkerµ = 1, Q∩P(kerµ) = ∅ and MX = CP(kerµ)M
′
X and the

Gushel map X → Gr(2, V5) induce X → M ′
X which is a double covering branched

at a quadric (which is a ordinary GM variety if dimX ≥ 2). In this case we call
X a special GM variety. Hence in this case it comes with a canonical involution
from the double covering and

dimX = dimW − 5 ≤ dim
2∧
V5 + 1− 5 = 6.
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Proof. For (i), this is trivial by the conditions.
For (ii), note that the blow up BlP(kerµ)MX at its vertex is a Pdim kerµ-bundle over

M ′
X . As X is smooth, then X ∩ P(K) = Q ∩ P(kerµ) = ∅. Hence dimkerµ = 1 as

dimQ = dimP(W )− 1. Now as Q is a quadric, then the Gushel map induce X → M ′
X

which is a double covering. We have X → M ′
X branched along Gr(2, V5) ∩ P(W ′) ∩ Q

which is a ordinary GM variety if dimX ≥ 2,

Remark 3.3.21. In (ii), if X is not smooth, then there is two more cases which from
the similar arguments:

If P(kerµ) ⊂ Q. In this case µ̃ : X̃ := BlP(kerµ)∩QX → M ′
X is generically

Pdim kerµ−1-bundle. If P(kerµ) ⊈ Q but P(kerµ)∩Q 6= ∅, then µ̃ : X̃ := BlP(kerµ)∩QX →
M ′

X is generically (dimkerµ− 1)-dim quadric bundle.
Hence in the world of singular varieties there are many bad situations. But fortu-

nately, we are living in a smooth world.

Remark 3.3.22. By (ii), we can turn the special GM variety into a ordinary GM
variety (as its branched locus). This leads to an important birational operation on the
set of all GM varieties which can be described by GM datas. This actually gives a
correspondence between special GM n-folds and ordinary GM (n− 1)-folds. For details
we refer [8] Lemma 2.33.

Remark 3.3.23. Hence in this case we know that we only need to assume dimK = 1
to construct the whole theory if we just consider the smooth GM varieties.

Proposition 3.3.24. Let X be a smooth GM variety of dimension 2 ≤ n ≤ 6, then the
Hodge diamonds as follows:

Proof. Follows from [25], [17], [30] and [9].

Proposition 3.3.25. Let X be a smooth GM variety of dimension 2 ≤ n ≤ 6, then

HH∗(X) ∼=

{
C[2]⊕ C⊕2n+18 ⊕ C[−2], n even;

C⊕10[1]⊕ C⊕2n−2 ⊕ C⊕10[−1], n odd.

Proof. Follows directly from Proposition 2.3.6 and Proposition 3.3.24.
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3.4 Debarre-Voisin Varieties
Definition 3.4.1. Let X be the smooth hyperplane section of Gr(3, V10), then we call
X a Debarre-Voisin variety.

Hence it is of dimension 20 with canonical bundle

ωX = ωGr(3,V10)|X ⊗ O(X) = OX(−9).

Hence it is a Fano variety.
This was first introduced in [10] aim of constructing new examples of locally complete

families of polarized hyperkähler fourfolds.

Theorem 3.4.2 (Debarre-Voisin). Let X be a Debarre-Voisin variety, then the only
nonzero Hodge numbers of the vainshing cohomology H20(X,Q)van are

h9,11van = h11,9van = 1, h10,10van = 20

where H20(X,Q)van = ker(H20(X,Q) → H22(Gr(3, V10),Q)).

Proof. See Theorem 2.2(1) in [10].

Corollary 3.4.3. Let X be a Debarre-Voisin variety, then the Hodge number of X
satisfies hp,q = 0 for all p 6= q, p + q 6= 20 and p < 9 or > 11 when p + q = 20 and∑

p h
p,p = 130.

Proof. As X is a hyperplane section, by the weak Lefschetz theorem we get

H40−j(X,Q) = Hj(X,Q) → Hj(Gr(3, V10),Q) = H42−j(Gr(3, V10),Q)

which is isomorphism when j < 20 and surjective when j = 20. Hence by the cohomol-
ogy of Gr(3, V10), some duality theorem and Theorem 3.4.2 we get the result.

Proposition 3.4.4. Let X be a Debarre-Voisin variety, then

HH∗(X) = C[2]⊕ C⊕130 ⊕ C[−2].

Proof. By Proposition 2.3.6 and Corollary 3.4.3 we get the result.

3.5 Iliev-Manivel Varieties
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Chapter 4

Kuznetsov Components and
Examples

4.1 The Construction of Kuznetsov Components
4.1.1 Spherical Functors
First let T1 and T2 are triangulated categories and Φ : T1 → T2 be a functor with right
and left adjoints Φ∗ a Φ a Φ!, then we define units and counits:

ηΦ,Φ∗ : idT2 → Φ ◦ Φ∗, εΦ∗,Φ : Φ∗ ◦ Φ → idT1 ;

ηΦ!,Φ : idT1 → Φ! ◦ Φ, εΦ,Φ! : Φ ◦ Φ! → idT2 .

Definition 4.1.1. A Fourier-Mukai functor Φ : Db(X) → Db(Y ) is spherical if
(a) the map ηΦ!,Φ ◦ Φ∗ +Φ! ◦ ηΦ,Φ∗ : Φ∗ ⊕ Φ! → Φ! ◦ Φ ◦ Φ∗ is an isomorphism, and
(b) the map (Φ∗ ◦ εΦ,Φ! , εΦ∗,Φ ◦ Φ!) : Φ∗ ◦ Φ ◦ Φ! → Φ∗ ⊕ Φ! is an isomorphism.
Proposition 4.1.2. Consider a Fourier-Mukai functor Φ : Db(X) → Db(Y ) which is
spherical, we define TX , TY , T

′
X , T ′

Y by the following distinguished triangles:

Φ∗ ◦ Φ
εΦ∗,Φ→ idX → TX , TY → idY

ηΦ,Φ∗
→ Φ ◦ Φ∗,

T ′
X → idX

η
Φ!,Φ→ Φ! ◦ Φ, Φ ◦ Φ!

ε
Φ,Φ!

→ idY → T ′
Y .

Then these are mutually inverse autoequivalences of Db(X) and Db(Y ).
In this case we call TX , TY are spherical twist functors. Moreover, we have

Φ ◦ TX
∼= TY ◦ Φ ◦ [2], TX ◦ Φ∗ ∼= Φ∗ ◦ TY ◦ [2].

Proof. The first statment is direct and we refer Proposition 2.13 in [23]. For the second,
we can show directly that Φ∗[1] ∼= TX ◦ Φ! and Φ∗[−1] ∼= Φ! ◦ TY . Then by these the
second statments are trivial.

47
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4.1.2 The Main Construction
Here is our fundamental theorem in this chapter due to Kuznetsov which follows [23]:

Theorem 4.1.3 (Kuznetsov, 2015). Let M and X are smooth projective varieties with
a spherical functor Φ : Db(X) → Db(M) between their derived categories. Let TM and
TX be the spherical twists. Assume we have:

(a) Db(M) has a rectangular Lefschetz decomposition

Db(M) =
〈
B,B ⊗ LM , ...,B ⊗ L

⊗(m−1)
M

〉
.

(b) There is some 1 ≤ d < m such that for all i ∈ Z we have TM (B⊗L i
M ) = B⊗L i−d

M .
(c) There is a line bundle LX on X such that: LM ◦ Φ ∼= Φ ◦ LX .
(d) Finally, assume that TX ◦ LX

∼= LX ◦ TX .

Then the functor Φ∗|B : B → Db(X) is fully faithful. If we let BX := Φ∗B ⊂ Db(X),
then they induce an S.O.D

Db(X) =
〈

Ku(X),BX ,BX ⊗ LX , ...,BX ⊗ L
⊗(m−d−1)
X

〉
where Ku(X) :=

〈
BX ,BX ⊗ LX , ...,BX ⊗ L

⊗(m−d−1)
X

〉⊥
is called the Kuznetsov com-

ponent of X associated to our data: M,Φ, and the rectangular Lefschetz decomposition
of Db(M). Finally if we consider the following autoequivalences of Db(X):

ρ := TX ◦ L d
X , σ := SX ◦ TX ◦ L m

X ,

if c = gcd(d,m) then the Serre functor of the Kuznetsov component Ku(X) can be
expressed as

S
d
c

Ku(X)
∼= ρ−

m
c ◦ σ

d
c .

In particular, if some powers of ρ and σ are shifts then Ku(X) is a fractional Calabi-Yau
category.

Proof. Note that the facts that functor Φ∗|B : B → Db(X) is fully faithful and the
existence of Kuznetsov component Ku(X) are directly by arguments of category theory.
We omit it and we refer Lemma 3.10 in [23] for details.

For the final argument, consider the degree shift functor:

OKu(X) := δKu(X) ◦ LX : Ku(X) → Ku(X).

Then we have the following properties:
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• (A) σ ◦ ρ = ρ ◦ σ.
• (B) S−1

X = L ⊗m
X ◦ TX ◦ σ−1.

• (C) All components Ku(X),BX ,BX ⊗ L i
X are preserved by ρ and σ.

• (i) OKu(X) is an autoequivalence.
• (ii) OKu(X) commute with σ, ρ.
• (iii) Oi

Ku(X) = δKu(X) ◦ L ⊗i
X for all 0 ≤ i ≤ m− d.

• (iv) S−1
Ku(X) = Om−d

Ku(X) ◦ ρ ◦ σ
−1.

• (v) Od
Ku(X) = ρ.

Proof of Properties. (A)-(C) are direct and we refer Lemma 3.11 in [23]. Property (i)
follows by either (iv) or (v). Property (ii) follows by a direct check. Property (iv) follows
from (iii), Proposition 2.2.5(ii) and (B). Hence the key results are (iii) and (v).

For (iii), observe that the formula is true for i = 0, 1. Let us assume the formula is
true for 0 ≤ i < m − d; we want to show it is true for i + 1 as well. Let F ∈ Ku(X),
consider

F ⊗ L ⊗i+1
X → δKu(X)(F ⊗ L ⊗i

X )⊗ LX = Oi
Ku(X)(F )⊗ LX

→ δKu(X)(Oi
Ku(X)(F )⊗ LX) = Oi+1

Ku(X)(F ).

Then we need to show the cone of this map is in
〈
BX ,BX ⊗ LX , ...,BX ⊗ L

⊗(m−d−1)
X

〉
.

By the octahedral axiom, this cone is an extension of two objects

G1 ⊗ LX → cone→ G2 →

where G1 ∈
〈
BX ,BX ⊗ LX , ...,BX ⊗ L

⊗(i−1)
X

〉
and G2 ∈ BX . Hence we get the

result.
For (v), the general case need many categorial calculations and we refer Corollary

3.18 in [23]. Here we show the case d ≤ m−d. Let F ∈ Ku(X), we have a distinguished
triangle

Φ∗Φ(F ⊗ L ⊗d
X ) → F ⊗ L ⊗d

X → ρ(F ) → .

As ρ(F ) ∈ Ku(X), we need to show Φ∗Φ(F ⊗L ⊗d
X ) ∈ ⊥ Ku(X). By adjointness we have

Φ(F ⊗ L ⊗d
X ) ∈

〈
B,B ⊗ LM , ...,B ⊗ L

⊗(d−1)
M

〉
. Easy to see that

Φ∗(B ⊗ L ⊗i
M ) = Φ∗(B)⊗ L ⊗i

X = BX ⊗ L ⊗i
X .

Hence

Φ∗Φ(F ⊗ L ⊗d
X ) ∈

〈
BX ,BX ⊗ LX , ...,BX ⊗ L

⊗(d−1)
X

〉
⊂ ⊥ Ku(X).

Well done!
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Now come back to the proof. By property (iv), we can express the (inverse of the) Serre
functor SKu(X) in terms of the functors OKu(X), ρ and σ. By properties (A), (i) and
(ii), all these functors commute. By raising everything to the power d/c, and by using
property (v), the statement follows.

Remark 4.1.4. Note that in this case we have

Ku(X) =
{
F ∈ Db(X) : Φ(F ) ∈

〈
B ⊗ L −d

M , ...,B ⊗ L −1
X

〉
⊂ Db(M)

}
by trivial reasons. See Lemma 3.12 in [23].

Remark 4.1.5. The same result and proof with holds if consider the more general
conditions:

(a) We could replace LM and LX by arbitrary autoequivalences.
(b) Second, we could replaceDb(X) andDb(M) by non-commutative smooth projective

varieties.

We refer Remark 3.21 in [23] to consider the case of not rectangular case.

4.2 Example I – Hypersurfaces
Proposition 4.2.1. Let M be a smooth projective variety with an rectangular Lefschetz
decomposition

Db(M) =
〈
B,B ⊗ LM , ...,B ⊗ L

⊗(m−1)
M

〉
.

Consider the map f : X → M is a divisorial embedding with the image f(X) being a
smooth divisor in the linear system L ⊗d

M for some 1 ≤ d ≤ m.
Then the Φ := f∗ : Db(X) → Db(M) is spherical. Let LX := f∗LM and, then we

satisfies conditions (a)-(d) in Theorem 4.1.3. Moreover we have ρ = TX ◦ L d
X = [2].

Hence we have S.O.D

Db(X) =
〈

Ku(X),BX ,BX ⊗ LX , ...,BX ⊗ L
⊗(m−d−1)
X

〉
where BX := f∗B and c = gcd(d,m) with

S
d/c
Ku(X)

∼= (f∗(ωM ⊗ L m
M ))d/c

[
d dimM + d− 2m

c

]
.

Finally, if ωM = L −m
M then Ku(X) is a fractional Calabi-Yau category.
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Proof. In this case f !F = f∗F ⊗ L d
X [−1]. Hence for any F ∈ Db(M) we have

f !f∗f
∗F ∼= f !(F ⊗ f∗OX) ∼= f !(F ⊗ (L −d

M

ϕ→ OM ))

∼= f∗(F ⊗ (L −d
M

ϕ→ OM ))⊗ L d
X [−1]

∼= f∗F ⊗ (L −d
X [1]⊕ OX)⊗ L d

X [−1]

∼= f∗F ⊕ f !F.

Similar for f∗ ◦ f∗ ◦ f !. Hence Φ = f∗ is spherical.
Next consider the canonical distinguished triangles

F ⊗ L −d
M → F → f∗f

∗F →, F ⊗ L −d
X [1] → f∗f∗F → F → .

Note that the first one comes from 0 → L −d
M → OM → f∗OX → 0 and the second one

as follows: let f∗f∗F → F → F ′ →, then we have

f∗f
∗f∗F → f∗F → f∗F

′ → .

By Koszul resolution we have

f∗f
∗f∗F = f∗F ⊗ f∗OX

∼= cone(f∗F ⊗ L −d
M → f∗F ) ∼= f∗F ⊕ f∗F ⊗ L −d

M [1].

As f∗f∗f∗F → f∗F is just the second projection, we get f∗F ′ ∼= f∗F ⊗ L −d
M [2], well

done as f∗ is fully faithful.
Hence we get TM = L −d

M and TX = L −d
X [2] which is commute with LX . Hence

ρ = [2] and σ = f∗(ωM ⊗ L m
M )[dimM + 1]. Well done.

Corollary 4.2.2. Let X ⊂ Pn be a smooth hypersurface of degree d ≤ n + 1 and
c = gcd(d, n+ 1). Then we have S.O.D

Db(X) = 〈Ku(X),OX ,OX(1), ...,OX(n− d)〉

and the Serre functor of Ku(X) has the property S
d/c
Ku(X) =

[
(n+1)(d−2)

c

]
. In particular,

if d|n+ 1 then Ku(X) is a Calabi-Yau category of dimension (n+1)(d−2)
d .

Proof. Follows from Proposition 1.4.1 and Proposition 4.2.1.

Corollary 4.2.3. Assume gcd(k, n) = 1 and let X ⊂ Gr(k, n) be a hypersurface of
degree d ≤ n and let c = gcd(d, n). Then there is an S.O.D:

Db(X) = 〈Ku(X),BX ,BX(1), ...,BX(n− d− 1)〉

where BX is defined in Remark 1.6.2. The Serre functor of Ku(X) has the property
SKu(X) =

[
(k(n−k)+1)d−2n

c

]
. In particular, if d|n then Ku(X) is a Calabi-Yau category

of dimension k(n− k) + 1− 2n
d .

Proof. Follows from Remark 1.6.2 and Proposition 4.2.1.
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4.3 Example II – Double Coverings
4.3.1 Some Properties of Ramified Cyclic Covers
Definition 4.3.1 (Ramified Cyclic Covers). Let X be a normal variety and let L a
line bundle on X and s ∈ H0(X,L ) a section with zero divisor D = Z(s).

The section s can be viewed as a map of sheaves s : OX → L m. We define⊕m−1
i=1 L −i as a sheaf of algebras on X where, for i+ j ≥ m, we use the multiplication

L −i ⊗ L −j ∼= L −i−j ⊗ OX
id⊗s−→ L −i−j+m.

Consider p : Z := Spec
X

⊕m−1
i=0 L −i → X which is a finite cover of degree m branched

along D.

Remark 4.3.2. Note that L m
X\D

∼= OX\D, hence p is a finite étale morphism in X\D.
Note also that D,X is smooth if and only if Z is smooth.

Proposition 4.3.3. If the map p : Z → X is a double covering branched in a divisor
in the linear system L 2 in X, then p is a cyclic cover Z = Spec

X
(OX ⊕ M ) → X

such that M 2 ∼= L −2. In particular when Pic(X) has no 2-torsion, then p is Z =
Spec

X

(
OX ⊕ L −1

)
→ X.

Proof. Note that by trace map we have p∗OZ
∼= OX ⊕ M for a line bundle M on X.

Note that as p is branched in a divisor D ∈ |L 2|, locally the branched covering is
defined by z2 = s(x0, ..., xn) for local equation s of D and local generator z ∈ Γ(M ).
Hence M 2 ∼= O(−D) = L −2. Well done.

Proposition 4.3.4. Consider a cyclic cover p : Z := Spec
X

⊕m−1
i=0 L −i → X of smooth

varieties induced by s ∈ Γ(X,L m). Then

KZ = p∗(KX + L m−1).

Proof. This is some kind of Riemann-Hurwitz formula. Note that if we consider π :
P(OX ⊕ L ) → X, know that π∗O(m) =

⊕m
i=0 L −i. Hence Z is a hypersurface of

degree m in P(OX ⊕L ). By construction, Z does not meet the hypersurface at infinity
of P(OX ⊕ L ). Therefore O(1)|Z ∼= π∗(L )|Z . Hence by some results of projective
bundles, we have

KZ = (π∗(KX ⊗ L )⊗ O(m− 2))|Z = p∗(KX + L m−1).

Well done.
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4.3.2 Kuznetsov Components of Double Coverings
Proposition 4.3.5. Let M be a smooth projective variety with an rectangular Lefschetz
decomposition

Db(M) =
〈
B,B ⊗ LM , ...,B ⊗ L

⊗(m−1)
M

〉
.

Consider the map f : X → M is a double covering branched in a divisor in the linear
system L ⊗2d

M for some 1 ≤ d ≤ m such that Pic(M) has no 2-torsion.
Then the Φ := f∗ : Db(X) → Db(M) is spherical. Let LX := f∗LM and, then

we satisfies conditions (a)-(d) in Theorem 4.1.3. Moreover if we let τ be the covering
involution, then we have ρ = TX ◦ L d

X = τ [1]. Hence we have S.O.D

Db(X) =
〈

Ku(X),BX ,BX ⊗ LX , ...,BX ⊗ L
⊗(m−d−1)
X

〉
where BX := f∗B and c = gcd(d,m) with

S
d/c
Ku(X)

∼= τ (m−d)/c(f∗(ωM ⊗ L m
M ))d/c

[
d dimM + d−m

c

]
.

Finally if ωM = L −m
M , then Ku(X) is a fractional Calabi-Yau category.

Proof. In this case f !F = f∗F ⊗L d
X and f∗OX

∼= L −d
X ⊕OX as Pic(M) has no 2-torsion

and Proposition 4.3.4, hence

f !f∗f
∗F ∼= f !(F ⊗ f∗OX) ∼= f !(F ⊗ (L −d

X ⊕ OX))

∼= f∗F ⊗ (L −d
X ⊕ OX)⊗ L d

X

∼= f∗F ⊕ f !F.

Similar for f∗ ◦ f∗ ◦ f !. Hence Φ = f∗ is spherical.
Next, we have the canonical distinguished triangles

F → f∗f
∗F → F ⊗ L −d

M →, τ∗F ⊗ L −d
X [1] → f∗f∗F → F → .

We now give an idea of this counit sequence. As f∗ and f∗ are both Fourier-Mukai
transform induced by OΓ(f), and since f is flat, it is easy to check that the convolution
of the FM kernels is given by the structure sheaf of the fiber product, so one needs to
compute cone(OX×Y X → O∆). As X ×Y X = ∆ ∪ Γ(τ), we have an exact sequence

0 → OΓ(τ)(−R) → OX×Y X → O∆ → 0

where R ∈ |L 2d
M | is the branched locus. Hence the cone is OΓ(τ)(−R)[1] = OΓ(τ)(−R)[1]

which correspond to the functor is what we want.
Hence we get TM = L −d

M [−1] and TX = τ ◦ L −d
X [1] which is commute with LX

since τ∗LX ∼= LX . Hence ρ = τ [1] and σ = τ ◦ f∗(ωM ⊗ L m
M )[dimM + 1]. Hence ρ2

and σ2 are shifts if ωM = L −m
M . Well done.
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Corollary 4.3.6. Let X → Pn be a double covering ramified in a smooth hypersurface
of degree 2d with d ≤ n + 1 and let c = gcd(d, n + 1). Let τ be the involution of the
double covering. Then we have S.O.D

Db(X) = 〈Ku(X),OX ,OX(1), ...,OX(n− d)〉

with
S
d/c
Ku(X)

∼= τ (n+1−d)/c

[
(n+ 1)(d− 1)

c

]
.

In particular, if d|n + 1 and (n + 1)/d is odd then Ku(X) is a Calabi-Yau category of
dimension (n+ 1)(d− 1)/d.

Proof. Follows from Proposition 1.4.1 and Proposition 4.3.5.

Corollary 4.3.7. Assume that gcd(k, n) = 1 and let f : X → Gr(k, n) be a double
covering ramified in a smooth hypersurface of degree 2d with d ≤ n and let c = gcd(d, n).
Let τ be the involution of the double covering. Then we have S.O.D

Db(X) = 〈Ku(X),BX ,BX(1), ...,BX(n− d− 1)〉

with BX = f∗B in Remark 1.6.2 and

S
d/c
Ku(X)

∼= τ (n−d)/c

[
(k(n− k) + 1)d− n

c

]
.

In particular, if d|n and n/d is odd then Ku(X) is a Calabi-Yau category of dimension
k(n− k) + 1− n/d.

Proof. Follows from Remark 1.6.2 and Proposition 4.3.5.

4.4 Example III – K3 categories
One of the interesting properties K3 surfaces have, is that moduli spaces of sheaves on
them carry a symplectic structure, and so when smooth and compact they are hyper-
kähler varieties. One can use K3 categories in the same way. In fact, for any K3 category
we can show that a moduli space of objects in it carries a symplectic form. This allows
constructing new examples of hyper-kähler varieties.

However, finding other examples of noncommutative K3 categories seems to be a
difficult problem. For instance, one can obtain a long list of hypersurfaces X in weighted
projective spaces with Ku(X) being a K3 category. But it looks as most of them are
equivalent to derived categories of K3 surfaces, or reduce to one of the three examples
we will introduce.

For 3-Calabi-Yau Categories, we refer section 4.5 in [23].
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4.4.1 Cubic Fourfolds
Corollary 4.4.1. Let X3 ⊂ P5 be a smooth cubic fourfold. Then we have S.O.D

Db(X3) = 〈Ku(X3),OX3 ,OX3(1),OX3(2)〉

where the Kuznetsov component Ku(X3) is a K3 category.

Proof. Follows from Corollary 4.2.2 directly.

Proposition 4.4.2. In this case we have HH∗(Ku(X3)) = C[2]⊕ C⊕22 ⊕ C[−2].

Proof. Actually by Corollary 4.4.1, we have S.O.D

Db(X3) = 〈Ku(X3),OX3 ,OX3(1),OX3(2)〉

Hence Db(X) is an S.O.D of Ku(X) and 3 exceptional objects. By Lemma 2.3.4 and
Example 2.3.1, we have

HH∗(X) = HH∗(Ku(X))⊕ C3.

By Proposition 3.2.1 we get the result!

4.4.2 Gushel-Mukai Varieties
Recall the situation of GM-varieties:

Consider the Plücker embedding Gr(2, V5) ↪→ P
(∧2 V5

)
. For any vector space K,

consider the cone CK(Gr(2, V5)) ⊂ P
(∧2 V5 ⊕K

)
of vertex P(K). Choose a vector

subspace W ⊂
∧2 V5 ⊕ K and a subscheme Q ⊂ P(W ) defined by defined by one

quadratic equation (possibly zero).
Let X = CK(Gr(2, V5)) ∩ P(W ) ∩ Q be a such smooth GM variety of dimension

dimW − 5. Let MX := CK Gr(2, V5) ∩ P(W ) to be the Grassmannian hull of X. Hence
X = MX ∩ Q which is a quadric section of MX . Let M ′

X := Gr(2, V5) ∩ P(W ′) to be
the projected Grassmannian hull of X where W ′ defined as the image of the projection
µ : W ⊂

∧2 V5 ⊕K →
∧2 V5.

Now consider the Gushel map X → Gr(2, V5) and dimX ≥ 3 which is Fano.

(i) Ordinary GM variety: If µ : W →
∧2 V5 is injective, that is, µ induce W ∼= W ′,

then MX
∼= M ′

X and Gushel map X ↪→ Gr(2, V5) is an embedding which induce

X ∼= M ′
X ∩Q = Gr(2, V5) ∩ P(W ) ∩Q.

Hence in this case dimX = dimW − 5 ≤ dim
∧2 V5 − 5 = 5.
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(ii) Special GM variety: If kerµ 6= 0, then dimkerµ = 1, Q ∩ P(kerµ) = ∅ and
MX = CP(kerµ)M

′
X and the Gushel map X → Gr(2, V5) induce X → M ′

X which
is a double covering branched at a quadric (which is a ordinary GM variety if
dimX ≥ 2). Hence in this case it comes with a canonical involution from the
double covering and dimX = dimW − 5 ≤ dim

∧2 V5 + 1− 5 = 6.

Hence in any case X is related to the projected Grassmannian hull M ′
X . So we need

to describe the derived category of M ′
X and its S.O.D. Here we let N := dimM ′

X ≥
dimW ≥ 3.

Lemma 4.4.3. In this case (dimX ≥ 3), M ′
X is smooth.

Proof. See Proposition 2.22 in [8].

Lemma 4.4.4. Let i : M ′
X ↪→ Gr(2, V5) be the embedding, then:

(i) The functor i∗ is fully faithful on B = 〈O,U ∨〉.
(ii) Let BM ′

X
:= i∗B, then we have an S.O.D

Db(M ′
X) =

〈
BM ′

X
,BM ′

X
(1), ...,BM ′

X
(N − 2)

〉
.

Note that in this case KM ′
X
= −(N − 1)H.

Proof. This is a direct application of the Theorem 1.2 in [21], we omit it. The fact
KM ′

X
= −(N − 1)H is trivial.

Corollary 4.4.5. Let X be a smooth GM variety as above of dimension n ≥ 3 with the
Gushel map f : X → M ′

X ↪→ Gr(2, V5). Then f∗ is fully faithful on B which induce an
S.O.D

Db(X) = 〈Ku(X),BX ,BX(1), ...,BX(n− 3)〉

where BX := f∗B = f∗ 〈O,U ∨〉. Moreover the Serre functor SKu(X) satisfies

• if n is even, then SKu(X) = [2], hence it is a K3 category;
• if n is odd, then SKu(X) = τ ◦ [2] when X is special; and SKu(X) = $ ◦ [2] for a
nontrivial involutive autoequivalence $ of Ku(X).

Proof. If X is special, then dimM ′
X = n is smooth. Hence by Lemma 4.4.4 we get an

S.O.D
Db(M ′

X) =
〈
BM ′

X
,BM ′

X
(1), ...,BM ′

X
(n− 2)

〉
.

By Proposition 4.2.1 we have S.O.D

Db(X) = 〈Ku(X),BX ,BX(1), ...,BX(n− 3)〉



4.4. EXAMPLE III – K3 CATEGORIES 57

with SKu(X) = τn ◦ (f∗ωM ′
X
(n− 1)) ◦ [2] = τn ◦ [2]. Hence if n is even, then SKu(X) = [2]

and if n is odd, then SKu(X) = τ ◦ [2].
If X is ordinary, then dimM ′

X = n+1 is smooth. Hence by Lemma 4.4.4 we get an
S.O.D

Db(M ′
X) =

〈
BM ′

X
,BM ′

X
(1), ...,BM ′

X
(n− 1)

〉
.

By Proposition 4.3.5 we have S.O.D

Db(X) = 〈Ku(X),BX ,BX(1), ...,BX(n− 3)〉

and let c = gcd(2, n) we have

S
2/c
Ku(X) = (f∗ωX′(n))2/c ◦

[
4

c

]
∼=
[
4

c

]
.

If n is even, then c = 2 and SKu(X) = [2]. Now we consider the case when n is odd. In
this case we have c = 1, hence S2

Ku(X) = [4]. Then SKu(X) ◦ [−2] = S−1
Ku(X) ◦ [2] =: $,

then $ is an involutive autoequivalence of Ku(X). Now if $ is trivial, then in this case
Ku(X) is a K3-category. By Proposition 2.4.6 we have HH−2(Ku(X)) 6= 0. But this is
impossible by Proposition 4.4.6.

Proposition 4.4.6. Let X be a smooth GM variety of dimension n ≥ 3. Then

HH∗(Ku(X)) ∼=

{
C[2]⊕ C⊕22 ⊕ C[−2],n even;

C⊕10[1]⊕ C⊕2 ⊕ C⊕10[−1],n odd.

Proof. Actually by Corollary 4.4.5, we have S.O.D

Db(X) =
〈
Ku(X),OX ,U ∨

X ,OX(1),U ∨
X (1), ...,OX(n− 3),U ∨

X (n− 3)
〉

Hence Db(X) is an S.O.D of Ku(X) and 2(n− 2) exceptional objects. By Lemma 2.3.4
and Example 2.3.1, we have

HH∗(X) = HH∗(Ku(X))⊕ C2n−4.

By Proposition 3.3.25 we get the result!

We can also find the Hochschild cohomology of Ku(X) as follows.
Proposition 4.4.7. Let X be a smooth GM variety of dimension n ≥ 3. Then

HH∗(Ku(X)) ∼=

{
C⊕ C⊕22[−2]⊕ C[−4], n even;
C⊕ C⊕20[−2]⊕ C[−4], n odd.

Proof. When n is even, this follows from Proposition 2.4.6 Proposition 4.4.6. When n
is odd, this is significantly harder to compute. We refer Proposition 2.12 in [24] for the
detailed proof.
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4.4.3 Debarre-Voisin Varieties
Corollary 4.4.8. Let f : X ↪→ Gr(3, V10) be a Debarre-Voisin variety, then we have

Db(X) = 〈Ku(X),BX , ...,BX(8)〉

where BX = f∗B has a strong full exceptional collection of length 12 and SKu(X) = [2].
Hence Ku(X) is a K3 category.

Proof. Trivial by Remark 1.6.2 and Proposition 4.2.1.

Proposition 4.4.9. Let f : X ↪→ Gr(3, V10) be a Debarre-Voisin variety, then

HH∗(Ku(X)) ∼= C[2]⊕ C⊕22 ⊕ C[−2].

Proof. By Proposition 3.4.4 and the same reason of Proposition 4.4.6.



Chapter 5

Equivalences of Kuznetsov
Components with K3s

5.1 Cubic Fourfolds
There is an interesting conjecture:

Conjecture 1 (Kuznetsov). A smooth cubic fourfold X ⊂ P5 is rational if and only if
there exists a K3 surface S and an exact linear equivalence Ku(X) ∼= Db(S).

Later chapters we will show the following:

Theorem 5.1.1 (Addington-Thomas, Bayer-Lahoz-Macrì-Nuer-Perry-Stellari). Let W
be a cubic fourfold. Then Ku(W ) is equivalent to the derived category of a K3 surface
if and only if there is a primitive embedding of the hyperbolic lattice U ↪→ Knum

0 (W ) in
the numerical Grothendieck group of W .

Note that this shows the Kuznetsov component of a general (in moduli) cubic four-
fold can not equivalent to the derived category of a K3 surface! But there are some
cases will hold. Now we will prove this kind of special case of cubic fourfolds.

5.1.1 Generalized Pfaffian Varieties
Fix a complex vector space W of dimension m and 0 ≤ t ≤ bm/2c. Then

Definition 5.1.2. We define the generalized Pfaffian varieties as

Pf(2t,m) = Pf(2t,W ) := P

({
w ∈

2∧
W : rank(W ) ≤ 2t

})
⊂ P

(
2∧
W

)
.

59
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Remark 5.1.3. Note that for any w ∈
∧2W , if we choose a basis e1, ..., em of W , then

w =
∑

ij aijei∧ ej. Hence rank(w) = rank(aij) where (aij) is skew-symmetric with even
rank.

Remark 5.1.4. Note also that Pf(2 bm/2c ,W ) = P
(∧2W

)
. Hence the biggest non-

trivial case is Pf(2 bm/2c − 2,W ) and we sometimes call it the Pfaffian variety.
The smallest one is Pf(2,W ) ∼= Gr(2,W ) ⊂ P

(∧2W
)
via the Plücker embedding.

Remark 5.1.5. All the intermediate Pfaffians are singular with sing(Pf(2t,W )) =
Pf(2t− 2,W ).

Proposition 5.1.6. Consider the generalized Pfaffian varieties Pf(2t,W ) ⊂ P
(∧2W

)
,

then
dimPf(2t,W ) = 2t(m− 2t) + t(2t− 1)− 1

which can be identified with the closure of the orbits of PGL(W ).

Proof. We just need to show that the open locus of constant rank 2t is of dimension
2t(m− 2t) + t(2t− 1)− 1 which is the orbits of PGL(W ).

For any v ∈ P
(∧2W

)
of rank 2t, there exists a unique V ⊂ W of dimension 2t such

that

v ∈ Im(P

(
2∧
V

)
→

(
2∧
W

)
).

Hence the locus of rank-2t bivectors is isomorphic to an open subspace of the projective
bundle PGr(2t,W )(

∧2 U ) where U is the universal bundle. Hence it is of dimension
2t(m− 2t) + t(2t− 1)− 1 which is the orbits of PGL(W ).

Corollary 5.1.7. Let dimW = 2n which is even, then Pf(2n− 2,W ) ⊂ P
(∧2W

)
is a

hypersurface of degree n.

Proof. It is a hypersurface by the previous Proposition. Actaully it is defined by
det(aij) = 0 which is a polynomial of degree n where v =

∑
ij aijei ∧ ej . Hence it

is of degree n.

5.1.2 Main Results for Pfaffian Cubic Fourfold
The basic and rich results we refer [16]. We will omit them.

Fix a complex vector space V of dimension 6. Pick a general linear subspace L ⊂
P
(∧2 V

)
of dimension 8. Then we consider

S := Pf(2, V ) ∩ L, W := Pf(4, V ∨) ∩ L⊥.
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Proposition 5.1.8. In this case S is a smooth K3 surface of degree 14 and W is a
smooth cubic fourfold.

Proof. Now S,W are smooth by Bertini’s theorem and Remark 5.1.4. By Corollary
5.1.7 we know that W is a cubic fourfold. Now we consider S.

By Proposition 5.1.6 we have dimS = 8 − 6 = 2. By some Schubert calculus (see
Proposition 4.12 in [11]) we have

degS = degPf(2, V ) = degGr(2, V ) = degσ8
1 =

8!

5!4!
= 14.

As in this case Pf(2, V ) = Gr(2, V ) ⊂ P
(∧2 V

)
, we have ωPf(2,V )

∼= O(−6). Hence by
adjunction formula we have ωS

∼= OS(−6)⊗ OS(6) ∼= OS . Finally, consider

0 → OGr(2,V )(−1) → OGr(2,V ) → OH∩Gr(2,V ) → 0.

By Kodaira vanishing theorem and repeat this process we can get H1(S,OS) = 0. Hence
S is a smooth K3 surface of degree 14.

Here we will call W be a Pfaffian cubic fourfold and S be its associated K3 surface.
Now consider the correspondence

Γ := {(s, w) ∈ S ×W : s ∩ kerw 6= 0} S ×W

S W

pS
pW

Here is our main theorem:

Theorem 5.1.9 (Kuznetsov). LetW be a Pfaffian cubic fourfold, and let S be the associ-
ated K3 surface. The ideal sheaf IΓ induces a Fourier-Mukai transform ΦIΓ⊗p∗W OW (−1) :

Db(X) → Db(S) which induce right adjoint which induce an equivalence

Φ : Db(S) ∼= Ku(W ) ⊂ Db(W ).

Proof. We will give a sketch of [1] Proposition 3, see also in Proposition 7.3.9 in [16].
Under the additional assumption that L is general (which is enough for our future
purposes). In this case, indeed, S does not contain a line and W does not contain a
plane. See Lemma 6.2.3 in [16].

By Eagon-Northcott complex, which is a locally free resolution of IΓ here, we can
restricting the complex to p× L⊥ we have a locally free resolution:

0 → OL⊥(−4)3 → OL⊥(−3)8 → OL⊥(−2)6 → OL⊥ → OΓp → 0.
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Combine the exact sequence 0 → OL⊥(−3) → IΓp/L⊥ → IΓ = IΓp/W → 0, we can
find that Φ(Db(S)) ⊂ Ku(W ). See also Lemma 7.3.10 in [16].

By the standard criterion due to Bondal and Orlov in [15] Proposition 7.1, to show
Φ is fully faithful, we just need to show

dimHom(Φ(Op1),Φ(Op2)[i]) = 0

for any p1 6= p2 ∈ S or i < 0 or i > 2 and for p ∈ S we need to show Φ(Op) is simple.
Let Γi := p−1

S (pi) which are quartic scrolls, a simple computation shows that
Φ(Opi)

∼= IΓi(−1)∨(−3)[4]. Hence we just need to consider IΓi in above claim. This is
trivial when i < 0. Hence by Serre duality in Ku(X) this is right for i > 2.

Now we consider p1 6= p2. We claim that Γ1 and Γ2 are distinct as in X with
codimension ≥ 2. Indeed, if we identify pi with the subspace it parametrizes, we have
p1 ∩ p2 = {0} because, otherwise, S would contain a line. This implies that if Γ1 = Γ2,
then the maps πi : Γi → P(pi) mapping w to pi ∩ ker(w) would define two different
rulings on Γ1 = Γ2. One can show that they are quartic scrolls. This is not possible, c.f.
Section 6.2.6 in [16]. Hence Γ1 and Γ2 are distinct. For any p, the fiber of the same map
π : Γp → P(p) over a line l ⊂ p is a linear subspace in W . But by assumption, W does
not contain a plane. Hence this fiber is at most 1-dimensional, and in turn dimΓp ≤ 2
(one can show that they are 2-dimensional reduced Cohen-Macaulay scheme of degree
4). Hence their codimension ≥ 2. Hence now Γ1 and Γ2 are distinct with codimension
≥ 2.

Hence for i = 0, we have Hom(Γ1,Γ2) = 0 by Lemma 5.1.10. Thus Serre duality
gives the claim for i = 2. Finally, Hirzebruch-Riemann-Roch gives χ(IΓ1 ,IΓ2) = 0
(see calculations in Lemma 7.3.11 in [16]), so the claim also holds in the remaining case
i = 1.

Hence now Φ is fully faithful. It is automatically essentially surjective by Proposition
2.4.4 and Proposition 4.4.2 shows HH0(Ku(W )) = HH−2(Ku(W )) = C since Ku(W ) is a
K3 category.

Lemma 5.1.10. Let X be a normal geometrically integral variety over k and W ⊂ X
be a subscheme with codimension ≥ 2. Then I ∨∨

W
∼= OX . In particular, if Y, Z ⊂ X be

subschemes both with codimension ≥ 2, then if Hom(IY ,IZ) 6= 0, then Z ⊂ Y .

Proof. The first one follows from I ∨
W is reflexive, I ∨∨

W is locally free and by Hartogs
we find that I ∨∨

W
∼= OX . For the second one, as I ∨∨

Y
∼= OX and I ∨∨

Z
∼= OX , any

non-trivial f : IY → IZ will induce the following diagram

IY IZ

I ∨∨
Y

∼= OX I ∨∨
Z

∼= OX

f

f∨∨
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As Hom(OX ,OX) = k, we know that f is just an embedding of ideals IY ⊂ IZ . Hence
Z ⊂ Y .

Remark 5.1.11. Note that in this case I ∨
W

∼= OX . Indeed, by 0 → IW → OX →
OW → 0 we have

0 → H om(OW ,OX) = 0 → H om(OX ,OX) ∼= OX

→ H om(IW ,OX) → E xt1(OW ,OX) → · · · .

Hence we just need to show E xt1(OW ,OX). In affine local, this follows from the fact that
X is S2 and depthIW OX = inf{depthOX,x : x ∈ V (IW )} with cohomological criterion
for the lengh of regualr sequence.

Now one can show that W is rational, see Corollary 6.2.27 in [16]. Hence this is one
of the motivation of the Conjecture 1.

5.1.3 Other Examples

5.2 Gushel-Mukai Varieties
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