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Preface

First, we will mainly follows the paper [8] and the Chapter 6 in the book draft [4] which
gives the general theory of moduli theory in the modern way.

Second, we will use these to construct the moduli space of semistable sheaves and
complexes with Bridgeland stability and so on.
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Chapter 1

General Theory of Good Moduli
Space

Here we will introduce some basic background about good moduli theory and the theory
of Θ-complete and S-completedue to J. Alper in [6] and [8]. These will play an important
role in our foundamental theory.

We will give the main properties, theorems and their motivations and some idea of
proofs. For the detailed proof we refer reader to the original paper [6][8] or the book
draft [4] of J. Alper.

1.1 Properties of Good Moduli Spaces
As we all know, in the modern construction of the moduli space of stable curves follows
from the following way:

(a) Construct the stack M g,n and show that it is a Deligne-Mumford stack;
(b) show the stable-reduction of stable curves and find that M g,n is proper;
(c) use Keel-Mori theorem to construct the coarse moduli space M g,n → Mg,n and

show that it is projective.

But in our case, we can not use Keel-Mori theorem to the moduli stack of semistable
sheaves because the inertia stack IX → X is not finite. In order to this the similar
modern way (instead of GIT-construction), J.Alper developed a nice similar (but much
more complicated) theory to solve this problem – the theory of good moduli space ([6]
and [8]) for linear reductive groups and the theory of adequate moduli spaces ([5]) for
geometric reductive groups.

For now, the theory of good moduli space plays a central role in the construction of
moduli spaces, such as the Hassett-Mori program M g,n(α) → M(α) in [SecondHMP],

9
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moduli stack of semistable sheaves CohH−ss
P (X), moduli of G-torsors andK-moduli stack

X Kss
n,V which aim to construct a good moduli space of Fano varieties (see the [book draft]

due to C. Xu).
Of course we will just introduce some of them and there are many beautiful results we

will not introduce, such as the Section 6.6 and 6.7 in [4] which gave us many applications
and examples.
Definition 1.1.1 (Good moduli space). For an algebraic stack X , its good moduli
space is an algebraic space X together with a qcqs morphism π : X → X such that
(i) the natural map OX → π∗OX is an isomorphism;
(ii) the functor π∗ : QCoh(X )→ QCoh(X) is exact.

Note that the condition in (ii) is called cohomologically affine.
The definition of good moduli space is inspired from the GIT-quotient of linear

reductive group G (that is, V 7→ V G is exact. Hence G is linear reductive if and only if
BG is cohomologically affine)

[X/G] 99K [Xss/G]→ X //G = Proj
⊕
d≥0

Γ(X,OX(d))G.

Or locally, the map [SpecA/G]→ SpecAG. Of coarse, a tame coarse moduli space is a
good moduli space by the local structure of coarse moduli spaces.

Here we state several basic properties of cohomologically affine morphisms.
Lemma 1.1.2. Consider a cartesian

X ′ X

Y ′ Y
g

g′

ππ′
p

of algebraic stacks, then:
(i) If g is faithfully flat and π′ is cohomologically affine, then π is cohomologically

affine.
(ii) If Y has quasi-affine diagonal and π is cohomologically affine, then π′ is cohomo-

logically affine.
If we consider a cartesian

X ′ X

X ′ X
g

g′

ππ′
p

of algebraic stacks where X,X ′ are quasi-separated algebraic spaces, then:

http://math.princeton.edu/~chenyang/Kstabilitybook.pdf
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(iii) If g is faithfully flat and π′ is a good moduli space, then π is a good moduli space.
(iv) If π is a good moduli space, so is π′.
(v) Let π is a good moduli space. For F ∈ QCoh(X) and G ∈ QCoh(X), the

adjunction map π∗F ⊗ G ∼= π∗(F ⊗ π∗G ) is an isomorphism. In particular, the
adjunction map G ∼= π∗π

∗G is an isomorphism.
(vi) For F ∈ QCoh(X), then g∗π∗F ∼= π′∗(g

′)∗F .
(vii) For a quasi-coherent sheaf of ideals J ⊂ OX , the natural map J ∼= π∗(π

−1J ·
OX ) is an isomorphism.

If π : X → X be a good moduli space with X quasi-separated, then

(viii) If A is a quasi-coherent sheaf of OX -algebras, then Spec
X

A → Spec
X
π∗A is a

good moduli space.
(ix) If Z ⊂X is a closed substack and ImZ ⊂ X is the scheme-theoretic image, then

Z → ImZ is a good moduli space.

Proof. See section 4 in fundamental paper [6].

Now some important properties of good moduli spaces and give some comments.
Actually these are similar as the properties of GIT.

Theorem 1.1.3. Let π : X → X be a good moduli space where X is a quasi-separated
algebraic stack defined over an algebraic space S. Then

(i) π is surjective and universally closed (and universally submersive);
(ii) for closed substacks Z1,Z2 ⊂X , we have Im(Z1 ∩Z2) = Im(Z1) ∩ Im(Z2). For

geometric points x1, x2 ∈ X (k), π(x1) = π(x2) ∈ X (k) if and only if {x1} ∩
{x1} 6= ∅ in |X ×S k|. In particular, π induces a bijection between closed points
in X and closed points in X;

(iii) if X is noetherian, so is X. If X is of finite type over S and S is noetherian,
then X is of finite type over S and π∗ preserves coherence;

(iv) If X is noetherian, then π is universal for maps to algebraic spaces.

Proof. Here we give some idea. The proof we refer the Theorem 4.16 in [6].
For (i), by Lemma 1.1.2 (iv) we know that X ×X Spec k → Spec k is good moduli

space. Hence Γ(X ×X Spec k,OX ×XSpec k) = k and |X ×X Spec k| 6= ∅. Hence π is
surjective. Again by Lemm 1.1.2 (ix) we know that if Z ⊂ X is a closed substack
and ImZ ⊂ X is the scheme-theoretic image, then Z → ImZ is a good moduli space.
Hence it is surjective and hence π is closed. By Lemma 1.1.2 (iv) we know that it is
universally closed.



12 CHAPTER 1. GENERAL THEORY OF GOOD MODULI SPACE

For (ii), let ideal sheaves be I1,I2, then by the exactness of π∗ we have

π∗I2

0 π∗I1 π∗(I1 + I2) π∗I2/π∗(I1 ∩I2) 0

Hence the inclution π∗(I1 + I2)→ π∗(I1 + I2) is surjective.
For (iii), X is noetherian follows from Lemma 1.1.2 (vii). We omit others and

(iv).

There is an interesting result which we will use it:

Proposition 1.1.4. Let f : X → Y be a cohomologically affine morphism of algebraic
stacks where Y has quasi-affine diagonal. If f is representable (that is, IX /Y →X is
trivial, or equivalently, ∆∆f

is an isomorphism), then f is affine.

Proof. Trivial by faithfully flat descent and Serre’s Criterion.

1.2 Luna’s Results and Étale Local Structure of Alge-
braic Stacks

1.2.1 Luna’s Fundamental Lemma and Luna’s Étale Slice Theorem
Luna’s results are classical and you can find them even in [45].

Theorem 1.2.1 (Luna’s Fundamental Lemma). Consider a commutative diagram:

X ′ X

X ′ X
g

ππ′

f

where f is a separated and representable morphism of noetherian algebraic stacks, each
with affine diagonal, and where π and π′ are good moduli spaces. Let x′ ∈X ′ be a point
such that

(a) f is étale at x′;
(b) f induces an isomorphism of stabilizer groups at x′, and
(c) x′ ∈X ′ and x = f(x′) ∈X are closed points.

Then there is an open neighborhood U ′ ⊂ X ′ of π′(x′) such that U ′ → X is étale and
such that U ′ ×X X ∼= (π′)−1(U ′).
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Sketch. Using limit-argument, we may let X = SpecA, where A is a strictly henselian
local ring. After shrink X ′, we may let f is étale. Then by Zariski main theorem we
get X ′ → X̃ = Spec

X
A →X . Hence X̃ → X̃ = Spec

X
π∗A is a good moduli space

with X̃ → X finite. Hence we can let X̃ =
∐

i SpecAi of henselian local rings. Take
U ′ = SpecAi contains image of x′. Well done.

Hence we have an very important corollary we will use:

Corollary 1.2.2. With the same hypotheses, suppose that f is étale and that for all
closed points x′ ∈X ′ we have

(a) f(x′) closed;
(b) f induces an isomorphism of stabilizer groups at x′.

Then g : X ′ → X étale and that commutative diagram is cartesian.

This is our main motivation to define the Θ-completeness and S-completeness. We
will discuss this deeply later.

Next we introduce Luna’s étale slice theorem which was motivated the étale local
structure of algebraic stacks.

Lemma 1.2.3 (Luna Map). Let G be a linearly reductive group over an algebraically
closed field k and let X be an affine scheme of finite type over k with an action of G. If
x ∈ X(k) has linearly reductive stabilizer Gx, there exists a Gx-equivariant morphism
(Luna map)

f : X → TX,x := SpecSymmx/m
2
x

sending x to the origin. If X is smooth at x, then f is étale at x.

Proof. Letting X = SpecA, then mx and mx/m
2
x are Gx-representations and we see

that Gx acts naturally on the tangent space TX,x := SpecSymmx/m
2
x. Since Gx is

linearly reductive, the surjection mx → mx/m
2
x of Gx-representations has a section

mx/m
2
x → mx. This induces a Gx-equivariant ring map Symmx/m

2
x → A and thus a

Gx-equivariant morphism f : X → TX,x sending x to the origin. If x is smooth, then
since f induces an isomorphism of tangent spaces at x, we conclude that f is étale at
x.

Theorem 1.2.4 (Luna’s Étale Slice Theorem). Let G be a linearly reductive group over
an algebraically closed field k and let X be an affine scheme of finite type over k with
an action of G. If x ∈ X(k) has linearly reductive stabilizer Gx, then there exists a
Gx-invariant, locally closed, and affine subscheme W ⊂ X such that the induced map

[W/Gx]→ [X/G]
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is affine étale. If in addition Gx ⊂ X closed (then by Matsushima’s theorem Gx is
linearly reductive), then there is a cartesian

[W/Gx] [X/G]

W //Gx X //G

p

where W //Gx → X //G is also étale.
Moreover, if x ∈ X is a smooth point and if we denote by Nx = TX,x/TGx,x the

normal space to the orbit, then it can be arranged that there is an Gx-invariant étale
morphism W → Nx which is the pullback of an étale map W //Gx → Nx //Gx of GIT
quotients.

Proof. Pick a finite G-representation V and a G-equivariant closed immersion X ⊂
A(V ). Then using this we can reduce to the case where x ∈ X is smooth.

Hence we have Luna map f : X → TX,x is Gx-equivariant and étale at x. The
subspace TGx,x ⊂ TX,x is Gx-invariant and again since Gx is linearly reductive, the
surjection TX,x → Nx has a section Nx → TX,x. We define W as

W Nx

X TX,x
f

p

Then [W/Gx] → [X/G] and [W/Gx] → [Nx/Gx] induce an isomorphism of tangent
spaces and stabilizer groups at w, they are both étale at x. Hence we have commutative
diagram

[Nx/Gx] [W/Gx] [X/G]

Nx //Gx W //Gx X //G

Hence using Luna’s fundamental lemma 1.2.1 twice and well done.

1.2.2 Coherent Tannaka Duality and Coherent Completeness
Here we introduce some very importent results aiming to extend to morphisms.

Theorem 1.2.5 (Coherent Tannaka Duality). For noetherian algebraic stacks X and
Y with affine diagonal, the functor

MOR(X ,Y )→ MOR⊗(Coh(Y ),Coh(X )), f 7→ f∗
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is an equivalence of categories where the latter category denote the right exact additive
tensor functors Coh(Y ) → Coh(X ) of symmetric monoidal abelian categories where
morphisms are tensor natural transformations.

Proof. This follows from a nice observation of Lurie in [39]. For the proof we refer [4]
Theorem 6.4.1.

Definition 1.2.6. A noetherian algebraic stack X is coherently complete along a closed
substack X0 if the natural functor

Coh(X )→ lim←−Coh(Xn), F 7→ (Fn)

is an equivalence of categories, where Xn denotes the n-th nilpotent thickening of X0.

Remark 1.2.7. (i) This motivated by the Grothendieck’s Existence Theorem asserts that
if X is a proper scheme over a complete local ring (R,m) and X0 = X ×R R/m, then
X is coherently complete along X0.

Actually this is right even for proper algebraic stack over some I-adically complete
noetherian ring. We refer [49].

(ii) Let k be an algebraically closed field and R be a complete noetherian local k-
algebra with residue field k. Let G be a linearly reductive group over k acting on an
affine scheme SpecA of finite type over R. Suppose that AG = R and that there is a
G-fixed k-point x ∈ SpecA. Then [SpecA/G] is coherently complete along the closed
substack BG defined by x. See the Theorem 6.4.11 in [4] for the proof.

We will use the follows corollary many times:

Corollary 1.2.8. Let X and Y be noetherian algebraic stacks with affine diagonal.
Suppose that X is coherently complete along X0. Then there is an equivalence of
categories

MOR(X ,Y )→ lim←−MOR(Xn,Y ), f 7→ (fn).

Proof. This is directly:

MOR(X ,Y ) ∼= MOR⊗(Coh(Y ),Coh(X ))
∼= MOR⊗(Coh(Y ), lim←−Coh(Xn))

∼= lim←−MOR⊗(Coh(Y ),Coh(Xn))

∼= lim←−MOR(Xn,Y )

and well done.
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1.2.3 Some Deformation Theory
Proposition 1.2.9. Consider a commutative diagram

W X

W ′ Y

f

of noetherian algebraic stacks with affine diagonal where X → Y is smooth and affine-
and W → W ′ is a closed immersion defined by a square-zero sheaf of ideals J . If W
is cohomologically affine, there exists a lift in the above diagram.

Proof. As the case of schemes, the set of liftings is a torsor under Hom(f∗ΩX /Y ,J ).
Hence let F := f∗Ω∨

X /Y ⊗J . Consider

(U/W )2 U W X

(U ′/W ′)2 U ′ W ′ Y

p f ′
U

f ′

where (U/W )2 = U ×W U is affine. Because X → Y is representable, to check
that f ′U descends to a morphism f ′, we need to arrange that f ′U ◦ p1 = f ′U ◦ p2. As
f ′U ◦ p1 − f ′U ◦ p2 ∈ Γ((U/W )2, q∗2F ), this follows from the W is cohomologically affine
and exact sequences. Omitted and see [4] Proposition 6.5.8.

There is another way, one can show that the obstruction to this deformation problem
lies in Ext1OW

(f∗ΩX /Y ,J ) ∼= H1(W ,F ) which vanishes since W is cohomologically
affine.

Proposition 1.2.10. Let W → W ′ be a closed immersion of algebraic stacks of finite
type over k with affine diagonal defined by a square-zero sheaf of ideals J . Let G be
an affine algebraic group over k. If W is cohomologically affine, then every principal
G-bundle P → W extends to a principal G-bundle P ′ → W ′.

Proof. Similar as the proof above and we need to take F = g⊗J from the deformation
theory of principal G-bundles in [4] D.2.9.

There is also another way. Note that this is equivalent to the deformation of f :
W → BG to W ′ → BG which is the same problem in Proposition 1.2.9 to BG→ Spec k
which is not affine. See the arguments in Remark 6.5.11 in [4], we can see the obstruction
lies in H2(W , g⊗J ) which vanishes since W is cohomologically affine.

Remark 1.2.11. All these results are the special case in Theorem 1.5 in [48].
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1.2.4 Étale Local Structure of Algebraic Stacks
There is a fundamental theorem about algebraic stacks as follows:
Theorem 1.2.12 (Minimal Presentations). Let X be a noetherian algebraic stack and
let x ∈ |X | be a finite type point with smooth stabilizer Gx. Then there exists a scheme
U with a closed point u ∈ U and a smooth morphism (U, u) → (X , x) of relative
dimension dimGx such that the diagram

Specκ(u) U

Gx X

p

is cartesian.
Proof. This is easy in Theorem 3.6.1 in [4]. Let (U, u)→ (X , x) be a smooth morphism
of relative dimension n, hence we have

O(u) U

Gx X

p

As dimGx = − dimGx, then O(u) is a regular scheme of dimension c := n − dimGx.
By Nakayama’s lemma, we pick a reguler sequence f1, ..., fc ∈ OU and consider W =
V (f1, ..., fc) and then W ∩ O(u) = Specκ(u). By the local criterion for flatness and
smooth descent to U×X U ⇒X , we know thatW →X is flat. Checking on the fibers
we can conclude the result.

Before giving the statement of the étale local structure of algebraic stacks, we will
give a useful criteria for morphisms to be closed immersions or isomorphisms.
Lemma 1.2.13. Let f : X → Y be a representable morphism of algebraic stacks
of finite type over an algebraically closed field k with affine diagonal. Assume that
|X | = {x} and |Y | = {y} consist of a single point and that f induces an isomorphism
of residue gerbes X0 := Gx = BGx with Y0 := Gy = BGy. Let mx,my be the ideal
sheaves defining them, and let f1 : X1 → Y1 be the induced morphism between the first
nilpotent thickenings.
(i) If f1 is a closed immersion, then so is f .
(ii) If f1 is a closed immersion and there is an isomorphism⊕

n≥0

mn
y/m

n+1
y
∼=
⊕
n≥0

mn
x/m

n+1
x

of graded OX0-modules, then f is an isomorphism.
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Proof. By Theorem 1.2.12, we may choose a minimal smooth presentations V = SpecB →
Y such that V ×Y Y0

∼= Spec k. Hence B is an artinian local ring, then so is U =
SpecB ∼= V ×Y X . Hence we can let f : SpecA → SpecB is a morphism of local
artinian rings.

For (i), this follows from [27] Lemma II.7.4. For (ii), this is trivial.

Lemma 1.2.14. Let X be an algebraic stack of finite type over an algebraically closed
field with affine diagonal. Let f : W := [SpecA/G]→X be a finite type morphism with
G linearly reductive. If w ∈ SpecA has closed G-orbit and f induces an isomorphism
of stabilizer groups at w, then there exists a G-invariant, affine, and open subscheme
U ⊂ SpecA containing w such that f |[U/G] is affine.

Proof. Let π : W → SpecAG. We may let F : W →X is quasi-finite as it is quasi-finite
over some open set.

Choose a smooth presentation V = SpecB →X , then

WV V = SpecB

W X
f

p

As X with affine diagonal, the map V → X is affine. Hence WV is cohomologically
affine. By Proposition 6.3.28 in [4] we have:

• Suppose Z is a noetherian algebraic stack with affine diagonal and a good moduli
space π : Z → Z. If the diagonal ∆π is quasi-finite, then it is finite.

Hence WV → V is separated. From descent W → X is also separated and that the
relative inertia IW /X → W is finite. Since the fiber over w is trivial, there is an
open neighborhood over which the relative inertia is trivial. Hence replace this we may
let IW /X → W is trivial. Hence it is representable. By Serre’s criteria we get the
result.

Theorem 1.2.15 (Étale Local Structure of Algebraic Stacks). Let X be an algebraic
stack of finite type over an algebraically closed field k with affine diagonal. For every
point x ∈ X(k) with linearly reductive stabilizer Gx there exists an affine étale morphism

f : ([SpecA/Gx], w)→ (X , x)

which induces an isomorphism of stabilizer groups at w.
If x ∈X is a smooth point, then there is also an étale morphism

f : ([SpecA/Gx], w)→ ([TX ,x/Gx], 0).
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Proof of the Smooth Case. Here we only give the proof of smooth case and tell you the
difficulties of proof the general case in the remark.

Since x is locally closed, we may let it is closed. Hence X0 := BGx ⊂X defined by
I . Let Xn to be the n-th nilpotent thickening of it. The Zariski tangent space TX ,x can
be identified with the normal space (I /I 2)∨, hence with a Gx-representation. Hence
we can define T = [TX ,x/Gx] with T0 := BGx and the n-th nilpotent thickening Tn.

By Proposition 1.2.10 we get an affine Xn → BGx. By Proposition 1.2.9 inductively
we have lifts:

Xn T

Xn+1 BGx

By some easy commutative algebra via smooth descent, we have X1
∼= T1. Hence by

Lemma 1.2.13(ii) we have Xn
∼= Tn.

Consider π : T → T := TX ,x // Gx and T̂ := Spec ÔT,π(0) ×T T = [SpecB/G]

where B is of finite type over the noetherian complete local k-algebra BG = ÔT,π(0).
By Remark 1.2.7 (ii) we know that T̂ is coherently complete along T0 and by coherent
Tannaka duality we get

MOR(T̂ ,X )→ lim←−MOR(Tn,X ).

Hence we have
X

Xn
∼= Tn T̂ T

SpecOT,π(0) T

p

Now by Artin Approximation, there exists an étale morphism (U, u)→ (T, 0) where U
is an affine scheme with a k-point u ∈ U and a morphism (U ×T T , (u, 0)) → (X , x)

agreeing with (T̂ , 0) → (X , x) in the first order. As U ×T T is smooth at (u, 0) and
X is smooth at x, and as U ×T T →X induces an isomorphism of tangent spaces and
stabilizer groups at (u, 0), hence the morphism U ×T T →X is étale at (u, 0). Finally,
by Lemma 1.2.14 we get the result.

Remark 1.2.16. We refer Section 6.5.5 in [4] for the proof of the general case. Now
we point out that in the general case we also have X1

∼= T1. But we can only use the
Lemma 1.2.13(i) to get a closed immersion Xn → Tn. Also in the general case we can
not deduce U ×T T → X is étale from the isomorphism of tangent spaces! In order
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to solve this, we need a more general fact called equivariant Artin algebraization theorem.
See Theorem 6.5.14 in [4] for the statement and the proof.

Remark 1.2.17. Actually the property in some more general setting we only have the
following (which we will not use):

• Let S be a quasi-separated algebraic space. Let X be an algebraic stack lo-
cally of finite presentation and quasi-separated over S, with affine stabilizers.
If x ∈ |X | is a point with image s ∈ |S| such that the residue field extension
κ(x)/κ(s) is finite and the stabilizer of x is linearly reductive, then there exists
f : ([SpecA/GLN ], w) → (X , x) induces an isomorphism of stabilizer groups
(such kind of maps called quotient presentation). If X has separated (resp. affine)
diagonal, then there exists a such representable (resp. affine), étale quotient pre-
sentation.

See [2] Theorem 1.1. In our case, this is proved in [3].

1.3 Existence of Good Moduli Space
Here we give a strategy for constructing good moduli spaces in 6.8.1 in [4].

Our main goal is to glue the étale local GIT quotient [SpecA/Gx] → SpecAGx via
the groupoid representations. Let f : W := [SpecA/Gx] → X is affine étale with
W := SpecAGx . Let R := W ×X W which is of form [SpecB/Gx] as f is affine. Let
R = SpecBGx and consider

R W X

R W
q1

q2

p1

p2

f

Hence if q1, q2 defines an étale equivalence relation, the algebraic space quotient W/R
is a good moduli space of f(W ). Then we have some chance to glue them.

By Luna’s fundamental lemma 1.2.1 (its Corollary 1.2.2), in order to make q1, q2 as
an étale equivalence relation, we need that for all closed points r ∈ R we have

(a) p1(r), p2(r) are closed;
(b) p1, p2 induces isomorphisms of stabilizer groups at r.

As f(w) is is closed and f induces an isomorphism of stabilizer groups. We just
want to show that there is an open neighborhood U of w such that

(i) f |U sends closed points map to closed points and stable under base change;
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(ii) f |U induces isomorphisms of stabilizer groups at closed points and stable under
base change.

We will see that the Θ-completeness implies Θ-surjectivity which will implies (i); and
S-completeness will implies (ii).

1.3.1 Basic Properties of Θ-Complete and S-Complete
Definition 1.3.1 (Θ-Completeness). Define Θ = [A1/Gm] over SpecZ and ΘR :=
Θ× SpecR for any DVR R with fracion field K and residue field κ. We can describe it
as following cartesians:

SpecR BGm,R

SpecK ΘR BGm,κ

ΘK Θκ

x 6=0

π 6=0

π=0

x=0

p
p

Hence ΘR\0 = SpecR ∪SpecK ΘK . Hence ΘR\0 → X is the data of morphisms
SpecR → X and ΘK → X together with an isomorphism of their restrictions to
SpecK.

Then a locally noetherian algebraic stack X is called Θ-complete if for any DVR R,
every diagram

ΘR\0 X

ΘR

of solid arrows can be uniquely filled in.

Here is the figures of our stacks look like, see Remark 1.3.4:

Θ

0
1

φ

Figure 1.1: Θ and φ looks like
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Definition 1.3.2 (S-Completeness). For any DVR R with fracion field K and residue
field κ, we define

φR := [Spec(R[s, t]/(st− π))/Gm]

where s and t have Gm-weights 1 and −1, respectively. Now we have

φR|s 6=0 = [Spec(R[s, t]s/(t− π/s))/Gm] = [Spec(R[s]s)/Gm] ∼= SpecR

and similar for t 6= 0. Hence we can describe it as following cartesians:

SpecR Θκ

SpecK φR BGm,κ

SpecR Θκ

t 6=0

s 6=0

s=0

t=0

p
p

Hence φR\0 = SpecR∪SpecK SpecR→X is the data of two morphisms ξ, ξ′ : SpecR→
X together with an isomorphism ξK ∼= ξ′K over SpecK.

Then a locally noetherian algebraic stack X is called S-complete if for any DVR R,
every diagram

φR\0 X

φR

of solid arrows can be uniquely filled in.

Remark 1.3.3. In the original paper [8], they introduce the Θ-completeness and S-
completenes for morphisms of algebraic stacks, but we won’t use them.

Remark 1.3.4. There is an interesting fact that the symbols Θ and φ is used because
they look like the stacks they represent! See figure 1.1.

There are many properties of Θ-completeness and S-completeness, here we introduce
some of them.

Proposition 1.3.5. We have the following properties:

(i) A locally noetherian algebraic stack with affine diagonal is Θ-complete (resp. S-
complete), if and only if these diagrams, there exists a lift after an extension of
DVRs R ⊂ R′. In particular, Θ-completeness and S-completeness can be verified
on complete DVRs with algebraically closed residue fields.
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(ii) Let f ;X → Y be an affine morphism of locally noetherian algebraic stacks. If Y
is Θ-complete (resp. S-complete), so is X .

(iii) If G is a reductive group over an algebraically closed field k, then every quotient
stack [SpecA/G] is Θ-complete and S-complete.

(iv) Let X be an algebraic stack of finite type over an algebraically closed field k with
affine diagonal. If π : X → X be a good moduli space, then X is Θ-complete.
Moreover, X is S-complete if and only if X is separated.

(v) Let X be a noetherian algebraic stack with affine and quasi-finite diagonal. Then

– If R is a complete DVR, every map ΘR → X (resp. φR → X ) factors
through ΘR → SpecR (resp. φR → SpecR).

– X is Θ-complete. Moreover, X is S-complete if and only if it is separated.

(vi) If X be an algebraic stack locally of finite type over an algebraically closed field k
with affine diagonal, then to verify that X is Θ-complete or S-complete, it suffices
to check the lifting criterion for DVRs R essentially of finite type over k.

Some Comments of Proofs. We will not give the whole proofs, but we will give some
comments on it. The proofs we refer [8] or [4].

For (i), this follows from the fpqc descent.
For (ii), since ΘR is regular and 0 ∈ ΘR is codimension 2, the pushforward of the

structure sheaf along ΘR\0→ ΘR is the structure sheaf. Then by the definition we can
get the result.

For (iii), first show the case ofBGLn. Indeed this follows from 0 ∈ ΘR is codimension
2 and ΘR is regular, then vector bundles have unique extension. For general case, pick
a faithful representation G ⊂ GLn By the reductivity of G we get GLn/G is affine by
Matushima’s result. As

GLn/G Spec k

BG BGLn

p

and smooth descent we get BG→ BGLn is affine. Hence the result follows from (ii).
For (iv), by the étale local structure of algebraic stacks and (i) we can show that

the Θ-completeness follows from the local case (iii). For S-completeness, this from some
arguments of valuative criterions.

For (v), the first one follows from deformation theory and coherent Tannaka duality.
The second one follows from the first one and the valuative criterion.

For (vi), see Proposition 3.18 and Proposition 3.42 in [8].

Actually the S-completeness also have some relation to the reductivity of groups:
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Theorem 1.3.6 (Cartan Decomposition and S-Completeness). Let G be a smooth affine
algebraic group over an algebraically closed field k. Then the following are equivalent:

(a) G is reducible.

(b) BG is S-complete.

(c) For any complete DVR R over k with residue field κ and fracion field K and for
any g ∈ G(K), there exists elements h1, h2 ∈ G(R) and a 1-PS λ : Gm → G such
that g = h1λ|Kh2

In particular, if X is an S-complete algebraic stack and x ∈ X is a closed point with
smooth affine stabilizer Gx, then Gx is reductive.

Proof. We omitted the proof. Actually the equivalence of (a) and (c) is classical in [45].
For the complete proof we refer Proposition 6.8.45 in [4].

Proposition 1.3.7 (Stacky Destabilization Theorem). Let X be an algebraic stack of
finite type over an algebraically closed field k with affine diagonal. Let x  x0 be a
specialization of k-points such that the stabilizer Gx0 is linearly reductive. Then there
exists a morphism [A1/Gm]→X representing the specialization x x0.

Proof. Here we will use a classical destabilization theorem, see Page 53 in [45] or The-
orem 6.6.28 in [4]:

• Let G be a reductive algebraic group over an algebraically closed field k acting
on an affine scheme X of finite type over k. Given x ∈ X(k), there exists a 1-PS
λ : Gm → G such that x0 := limt→0 λ(t) · x exists and has closed G-orbit.

Back to our proof. By the Theorem 1.2.15, we have étale morphism f : ([SpecA/Gx0 ], w0)→
(X , x0) which induces an isomorphism of stabilizer groups at w0. After possibly replac-
ing SpecA with a Gx0-invariant affine subscheme, we can assume that w0 is a closed
point. The specialization x  x0 lifts a specialization w  w0 in SpecA, and we can
choose a representative w̃ ∈ SpecA of the orbit corresponding to w. The Destabilization
Theorem gives a 1-PS λ : Gm → Gx0 such that w̃0 := limt→0 λ(t)·w̃ exists and has closed
orbit. By the affine version of Theorem 1.1.3 we get there is a unique closed orbit in
Gw̃, and thus w̃0 ∈ SpecA maps to w0. Hence the extension of λ induce Gm-equivariant
morphism A1 → SpecA. Hence we get [A1/Gm]→ [SpecA/Gx0 ]→X representing the
specialization x x0.
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1.3.2 Θ-Surjectivity and Θ-Complete
Definition 1.3.8 (Θ-surjective). Let f : X → Y be a morphism of algebraic stacks
and X (k) be a geometric point. We say f is Θ-surjective at x if every diagram:

Spec k X

Θk Y

f1

x

has a lift. We say that f is Θ-surjective if it is Θ-surjective at every geometric point.

Remark 1.3.9. This condition is table under base change as it is equivalent to the
surjectivity of

ev(f)1 : MOR(Θ,X )→X ×Y ,ev(f)1 MOR(Θ,Y ).

If f : X → Y of noetherian algebraic stacks where Y with affine and quasi-finite
diagonal, then by Propostion 1.3.5(v) we know that f is Θ-surjective.

Lemma 1.3.10. Let f : X → Y be a separated, representable, and finite type morphism
of noetherian algebraic stacks, then the lift in the definition of Θ-surjectivity is unique
and the Θ-surjectivity is not depend on the fields represent the same point.

Proof. The first one follows from descent and valuative criterion. The second one follows
from some limit result, we omit it.

Proposition 1.3.11. Let f : X → Y be a morphism of algebraic stacks, each of finite
type over an algebraically closed field k with affine diagonal. Let the closed points of
Y have linearly reductive stabilizers. If f is Θ-surjective, then f sends closed points to
closed points.

Proof. Let x ∈ |X | closed and f(x)  y0 be a specialization to a closed point. By
Proposition 1.3.7, we haveΘ→ Y sends 1 7→ f(x), 0 7→ y0. Hence by Theta-surjectivity,
we get a lift g : Θ→X sends 1 7→ x. As x closed, this map g is trivial. So is Y . Well
done.

Proposition 1.3.12. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal such that the closed points of X have linearly re-
ducetive stabilizers. Let x ∈ X be a closed point with affine étale morphism f :
([SpecA/Gx], w) → (X , x) inducing an isomorphism of stabilizers at w. Let π :
[SpecA/Gx] → SpecAGx. Then if X is Θ-complete, then there exists an open affine
U ⊂ SpecAGx of π(w) such that f |π−1(U) : π

−1(U)→X is Θ-surjective.
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Proof. We omit the proof and refer Propisition 6.8.31 in [4] or Proposition 4.3(i) in [8]
for more general case.

Here we have a topology like GIT:

Proposition 1.3.13. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Assume that X is Θ-complete and that the closed
points of X have linearly reductive stabilizer. Then the closure of every k-point contains
a unique closed point.

Proof. If we have two of them, we then have two Θ→X . Then we can glue them into
[A2/Gm]\0 → X . Consider the diagonal action and Θ-completeness, we get extension
Ψ : [A2/Gm] → X . Hence Ψ(0, 0) is a common specialization of x = Ψ(1, 0) and
x′ = Ψ(0, 1). Since x and x′ are closed points, we have that x = Ψ(0, 0) = x′.

1.3.3 Unpunctured Inertia and S-Complete
We will only give a sketch of these because the proof of this main theorem is very
complicated.

Definition 1.3.14 (Unpunctured Inertia). We say that a noetherian algebraic stack
X has unpunctured inertia if for every closed point x ∈ |X | and every formally smooth
morphism p : (T, t)→ (X , x) where T is the spectrum of a local ring with closed point
t, every connected component of the inertia group scheme AutX (p)→ T has non-empty
intersection with the fiber over t.

Proposition 1.3.15. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Let x ∈ |X | be a closed point which have linearly
reducetive stabilizers. Pick an affine étale morphism f : ([SpecA/Gx], w) → (X , x)
inducing an isomorphism of stabilizers at w. and let π : [SpecA/Gx] → SpecAGx.
Then if X has unpunctured inertia, then there exists an open affine U ⊂ SpecAGx of
π(w) such that f |π−1(U) : π

−1(U)→X induces isomorphisms of stabilizers at all points.

Proof. Let W := [SpecA/Gx]. We just need to find an open U ⊂ W of w such that
f |U : U →X induce an isomorphism IU

∼= U ×X IX . Consider

IW W ×X IX

W W ×X W

p

As f is affine étale, then IW → W ×X IX is finite étale. Let Z ⊂ W ×X IX

be the locus that is not an isomorphism. Then Z is closed and open substack. Let
p1 : W ×X IX → W and then w /∈ p1(Z ).
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Let a formally smooth morphism p : (T, t) → (X , x) where T is the spectrum of a
local ring with closed point t. Since X has unpunctured inertia, hence the preimage of
Z in W ×X IX ×X T is empty. Then w /∈ p1(Z ), hence pick U := W \p1(Z ) and
well done.

Theorem 1.3.16. Let X be an algebraic stack of finite type over an algebraically
closed field k with affine diagonal. Assume that the closed points have linearly reductive
stabilizers. If X is S-complete, then X has unpunctured inertia.

Proof. Omitted since this is very complicated. For our case we refer the proof of Theo-
rem 6.8.40 in [4] and the general case we refer Theorem 5.3 in [8].

1.3.4 The Finally Statement and the Proof
Theorem 1.3.17. Let X be an algebraic stack of finite tyoe over an algebraically
closed field k of characteristic 0 with affine diagonal. There exists a good moduli space
π : X → X with X a separated algebraic space if and only if X is Θ-complete and
S-complete.

Moreover, X is proper if and only if X satisfies the existence part of the valuative
criterion for properness.

Remark 1.3.18. Here we follows the proof in [4] which I talked before. In paper [8]
Theorem 5.4, we have a more general form which is characteristic independent:

• Let X be an algebraic stack of finite presentation over a quasi-separated and locally
noetherian algebraic space S, with affine stabilizers and separated diagonal. Then
X admits a good moduli space X separated over S if and only if we have

(1) every closed point of X has linearly reductive stabilizer;
(2) X → S is Θ-complete;
(3) X → S is S-complete.

If X is locally reductive and has affine diagonal, then X admits an adequate
moduli space X separated over S if and only if (2) and (3) hold. In both cases,
if S is locally excellent and X → S has affine diagonal, it suffices to check the
filling conditions of Θ-completeness and S-completeness only for DVRs that are
essentially finite type over S.
Furthermore, in both cases X → S is proper if and only if X → S satisfies the
existence part of the valuative criterion for properness.

But we will not use this.
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Proof of Theorem 1.3.17. If X has a good moduli space X which is a separated alge-
braic space, then X is Θ-complete and S-complete by Proposition 1.3.5(iv). Hence we
just need to consider the converse.

By Theorem 1.3.6, as X is S-complete and over characteristic zero, then stabilizers of
every closed points are linearly reductive. For any closed x ∈ |X | there is an affine étale
morphism ([SpecA/Gx], w)→ (X , x) which is Θ-surjective and stabilizer preserving at
all points since X is Θ-complete and S-complete by Proposition 1.3.12, Proposition
1.3.15 and Theorem 1.3.16. Since X is quasi-compact, we can choose finitely many
closed points xi ∈ X and morphisms fi : [SpecAi/Gxi ] → X . Pick an embedding
GXi ↪→ GLN . Since [SpecAi/Gxi ]

∼= [SpecAi ×Gxi GLN/GLN ], let A =
∏

i(Ai ×Gxi

GLN ) and we get a surjective, affine, and étale morphism

f : X1 := [SpecA/GLN ]→X

which is Θ-surjective and stabilizer preserving at all points. As the characteristic of k
is zero, then GLN is linear reductive. Hence we have a good moduli space X1 → X1 :=
SpecAGLN .

Let X2 := X1 ×X X1 with two affine, étale, Θ-surjective and stabilizer preserving
projections p1, p2 : X2 →X1. As f affine, then X2

∼= [SpecB/GLN ] with good moduli
space X2 → X2 := SpecBGLN . Hence we have two cartesian diagrams by Luna’s
fundamental lemma 1.2.1:

X2 X1

X2 X1

p1

p2

q1

q2

By the universal property of good moduli space, q1, q2 : X2 ⇒ X1 is an étale groupoid.
We claim that q1, q2 : X2 ⇒ X1 is an étale equivalence relation. Pick any x1 ∈ X1(k)

and let x2, x′2 ∈ X2 are two points in the preimage of (x1, x1) in (q1, q2) : X2 → X1×X1.
Let x̂2, x̂′2 be the unique closed points in their preimages by Proposition 1.3.13. As f
is Θ-surjective, then p1(x̂2), p2(x̂2), p1(x̂

′
2) and p2(x̂

′
2) are closed over x1 ∈ X1. Hence

they are all identified with the unique closed point x̂1 over x1. On the other hand,
since f is stabilizer preserving, the stabilizer groups of x̂2 and x̂′2 are the same as the
stabilizer groups of x̂1 and of its image in X . Let this stabilizer group by G. It follows
that the fiber product of (p1, p2) : X2 → X1 ×X1 along the inclusion of the residual
gerbe G(x̂1,x̂1) = BG × BG → X1 ×X1 is isomorphic to BG and thus identified with
the residual gerbe of a unique closed point. Therefore x2 = x′2. Hence we get the claim.
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Now pick X = X1/X2 as an algebraic space. From étale descent, we have

X2 X1 X

X2 X1 X

p1

p2

q2

q1

f

By the descent of good moduli space we know X → X is a good moduli space. As it
is S-complete and Proposition 1.3.5(iv), we get X is separated.

1.4 Semistable Reduction and Θ-Stability
1.4.1 Preliminaries: Θ-Stratification
Here we first define two stacks arising from the stack of coherent sheaves, see Proposition
3.1.2 for the similar argument.

Definition 1.4.1. For an algebraic stack X over S, we define two notations:

• By definition for any stack X and point Spec k → S a map BGm,k → X is a
point x ∈ X (k) together with a cocharacter Gm,k → AutX(x). As the action of
Gm on a vector space is the same as a grading on the vector space, we often think
of a morphism BGm → X as a point of X equipped with a grading. Hence we
define the stack of graded points in X to be Grad(X ) := Map

S
(BGm,X ) .

• By definition for any stack X and point Spec k → S a map f : Θk → X is a
point x1 ∈ X (k) (as f(1)) together with a filtration of x1 and as x0 = f(0) as
the associated graded object. Hence we define the stack of filtrations in X to be
Filt(X ) := Map

S
(Θ,X ) .

Definition 1.4.2. Let X be an algebraic stack locally of finite type over a noetherian
scheme S.

(i) A Θ-stratum in X consists of a union of connected components Z + ⊂ Filt(X )
such that ev1 : Z + →X is a closed immersion.

(ii) A Θ-stratification of X indexed by a totally ordered set Γ is a cover of X by open
substacks X≤c for c ∈ Γ such that X≤c ⊂X≤c′ for c < c′, along with a Θ-stratum
Z +

c ⊂ Filt(X≤c) in each X≤c whose complement is
⋃

c′<c X≤c′.
We require that for any x ∈ |X | the subset {c ∈ Γ : x ∈ X≤c} has minimal
element. We assume for convenience that Γ has a minimal element 0 ∈ Γ.

(iii) We say that a Θ-stratification is well-ordered if for any point x ∈ |X |, the totally
ordered set {c ∈ Γ : ev1(Z +

c ) ∩ {x} 6= ∅} is well-ordered.
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Definition 1.4.3. Let X be an algebraic stack locally of finite type over a noetherian
scheme S. Given a Θ-stratification, we refer to the open substack X ss := X ≤0 as
the semistable locus. For any unstable point x ∈ X (k)\X ss(k), the Θ-stratification
determines a canonical filtration f : Θk → X with f(1) ∼= x, which we refer to as the
HN-filtration.

Remark 1.4.4. The map BGm ↪→ Θ induce gr : Filt(X ) → Grad(X ) and projection
Θ → BGm induce σ : Grad(X ) → Filt(X ) as a section of gr. By Lemma 1.3.8 in
[25], these maps define a canonical A1-deformation retract of Filt(X ) to Grad(X ).In
particular induce bijections on connected components and we say they are the center Z
of the Θ-stratum Z +.

1.4.2 Semistable Reduction: Langton’s Algorithm
Theorem 1.4.5 (Langton’s Algorithm). Let X be an algebraic stack locally of finite
type over an algebraically closed field k with affine diagonal. Assume that for any
x ∈X (k) the stabilizers Gx are smooth (for example, k is of characteristic zero).

Let Z + ⊂ X be a Θ-stratum. Let R be a DVR with fraction field K and residue
field κ. Let ξR : SpecR→X such that the general point ξK is not mapped to Z +, but
th special point ξκ is mapped to Z +:

SpecK SpecR Specκ

X \Z + X Z +ιj

ξRξK ξκ

Then there exists an extension R → R′ of DVRs with K → K ′ = Frac(R′) finite and
an elementary modification (that is, h : φR → X such that ξR′ ∼= h|s 6=0) ξ′R′ of ξR′ such
that ξ′R′ lands in X \Z +.

Remark 1.4.6. This theorem holds for much general conditions (Theorem 6.3 in [8]): if
X be an algebraic stack locally of finite type and quasi-separated, with affine stabilizers,
over a noetherian algebraic space S. But we will not use that. In order to prove the
general case, we will apply the non-local slice theorem 2.8 in [8]. But in our case we
just need to use the Theorem 1.2.15.

Sketch of Theorem 1.4.5. We have several steps:

• Step 1. Reduce to the case where X is quasi-compact.

Proof of Step 1. Let σ : Z → Z + be the center of the Θ-stratum ev1 : Z + ↪→X .
Then for any point x ∈ |Z | and any open substack U ⊂ X containing σ(x), we
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just need to show that there is another open substack with σ(x) ∈ V ⊂ U such
that Z + ∩ V is a Θ-stratum in V .
Hence we only need to find a substack V ⊂X containing σ(x) such that for any
f : Θk′ → X , where k′ is a field, with f ∈ Z + and f(1) ∈ V , we have f(0) ∈ V
as well. Indeed, let U ′ = (ev1 ◦σ)−1 ⊂ Z , and let Z ′ = Z \U ′. Then the open
substack

V = U \(U ∩ ev1(gr−1(Z ′))) ⊂X

satisfies the condition.

• Step 2. Consider a map ξ : SpecR → X as in the statement of the theorem.
Assume that there is a smooth map p : Y → X such that Z + induces a Θ-
stratum p−1(Z +) in Y and the image of p contains the image of ξ. If we know
the conclusion of the theorem holds for Y , then show that the conclusion holds
for X as well.

Proof of Step 2. As after an extension of R we may lift ξ to a map ξ′ : SpecR′ →
Y , this is trivial.

• Step 3. Let Z + with center σ : Z → Z +, and let x0 ∈ Z (k) be a point and let
x := σ(x0). Then there is a smooth representable morphism p : [SpecA/Gm]→X
whose image contains x and such that

p−1(Z +) = [Spec(A/I+)/Gm] ↪→ [SpecA/Gm]

where I+ generated by the positive weight elements under Gm.

Proof of Step 3. Since this need to analyse the properties of normal cone to Θ-
stratum, we refer Lemma 6.9 and 6.10 in [8] and just give a sketch.
The point x0 has Gm → AutZ (x0) which induce a 1-PS λ : Gm → Gx. WLOG
let λ injective, then by Theorem 1.2.15 we get a smooth representable morphism

p : [SpecA/Gm]→X .

By some result (Lemma 6.9 in [8]) we can show that Z +
A := [Spec(A/I+)/Gm]

satisfies Z +
A
∼= p−1(Z +) after shrink A.

• Step 4. The theorem holds for X = [SpecA/Gm] and Z + = [Spec(A/I+)/Gm].

Proof of Step 4. This follow from an elementary calculation. See Lemma 6.7 in
[8] for details. We will omit it for now.
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• Step 5. Finish the proof.

Proof of Step 5. By the Step 1–Step 4, we conclude the theorem.

Well done.

Theorem 1.4.7 (Semistable Reduction). Let X be an algebraic stack locally of finite
type over an algebraically closed field k with affine diagonal. Assume that for any
x ∈ X (k) the stabilizers Gx are smooth (for example, k is of characteristic zero). Let
X with a well-ordered Θ-stratification. Then for any morphism Spec(R) → X , after
an extension R → R′ of DVRs with K → K ′ = Frac(R′) finite there is a modification
(that is, another ξ′ : SpecR→ X such that ξ|K ∼= ξ′|K) Spec(R′)→ X , obtained by a
finite sequence of elementary modifications, whose image lies in a single stratum of X .

Remark 1.4.8. This theorem also holds for much general conditions (Theorem 6.5 in
[8]): if X be an algebraic stack locally of finite type and quasi-separated, with affine
stabilizers, over a noetherian algebraic space S. But we will not use that. The general
version follows from the same proof induced by the general version of the Langton’s
Algorithm.

Proof of Theorem 1.4.7. Actually this follows from Theorem 1.4.5 directly. Consider a
map ξR : SpecR → X such that ξκ ∈ Z +

c0 and ξK ∈ Z +
c for c0 > c, we may apply

Theorem 1.4.5 iteratively to obtain a sequence of finite extensions of R and elementary
modifications of ξ with special point in Z +

ci for c0 > c1 > · · · . Each Z +
ci meets ξK ,

so the well-orderedness condition guarantees that this procedure terminates, and it can
only terminate when ci = c.

1.4.3 Comparison Between a Stack and Its Semistable Locus
Here is an easy consequence of the semistable reduction:

Proposition 1.4.9. Let X be an algebraic stack locally of finite type over an alge-
braically closed field k with affine diagonal with smooth stabilizers for any x ∈ X (k).
Let X =

⋃
c∈Γ X≤c be a well-ordered Θ-stratification. If X → Spec k satisfies the

existence part of the valuative criterion for properness with respect to DVRs, then so
does X≤c for every c ∈ Γ. In particular, if the semistable locus X ss is quasi-compact,
then X ss → Spec k is universally closed.

Proof. Using Theorem 1.4.7, we find the following process:

SpecK ′′ SpecK ′ SpecK X≤c X

SpecR′′ SpecR′ SpecR Spec k
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where SpecR′′ → SpecR′ is a sequence of elementary modifications. As φR → SpecR is
a good moduli space and by the universal property of good moduli space, any elementary
modification of a map SpecR → Spec k is trivial for some DVR R. It follows that our
modified map SpecR′ →X≤c is a lift of the original map Spec(R)→ Spec k. The final
statement follows from that a finitely presented morphism of noetherian algebraic stacks
A → B is universally closed by checking that A ×An → B×An is closed for all n (see
[26] Lemma 2.4.6). Well done.

Now we will introduce the Θ-stability and its properties which is very important.

Definition 1.4.10. Given a cohomology class ` ∈ H2(X ,R), we say that a point
p ∈ |X | is unstable with respect to ` if there is a filtration f : Θk → X with f(1) = p
and such that f∗(`) ∈ H2(Θk,R) ∼= R is positive. The Θ-semistable locus X ss is the set
of points which are not unstable.

Remark 1.4.11. We don’t care the maining of the cohomology here. If X is over
k ⊂ C, we consider the betti cohomology. If over other field we consider the Chow
cohomology. If in general we consider the Neron-Severi group.

Proposition 1.4.12. Let X be an algebraic stack locally of finite type with affine
diagonal over an algebraically closed k, and let X ss be the Θ-semistable points with
respect to a class ` ∈ H2(X ,R). Suppose that either

(a) X ss is the open part of a Θ-stratification of X , i.e., X ss = X≤0, such that for
each HN-filtration g : Θk →X of an unstable point one has g∗(`) > 0, or

(b) X ss ⊂X is open and X is Θ-complete.

Then

(i) if X is S-complete, so is X ss;
(ii) if X is Θ-complete, so is X ss.

Proof. We will use a result in Lemma 6.15 in [8]:

• Lemma A. Under the hypotheses of the propositon, given a filtration f : Θk →X
such that f(1) is semistable with repsect to `, then f∗(`) = 0 if and only if f(0)
is semistable as well.

For S-completeness, consider a DVR R and

SpecR ∪SpecK SpecR X ss X

φR Spec k
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Then we can have a lift φR → X . As X ss is open in both cases, we just need to
show the unique closed point maps into X ss. As (π, s, t) = (0, 1, 0), (0, 1, 1) maps to
X ss, restricting the map φR → X to the locus Θκ

∼= {s = 0} and Θκ
∼= {t = 0} give

filtrations f1 and f2 in X with fi(1) ∈ X ss. If one has f∗i (`) < 0 then the other has
f∗j (`) > 0 for i 6= j, which would contradict the fact that fi(1) ∈X ss. Hence f∗i (`) = 0
and by Lemma A we get f(0) ∈X ss.

For Θ-completeness, by the similar reason of the S-completeness we get f : ΘR\0→
X ss with f∗K(`) = 0. Let the extenion is F : ΘR →X . As the function f 7→ f∗(`) ∈ R,
regarded as a function on Filt(X ), is locally constant, then we get the result.

As a summary of this section we have:

Theorem 1.4.13. Let X be an algebraic stack locally of finite type with affine diagonal
over a algebraically closed field k with smooth stabilizers for any x ∈ X (k), and let
` ∈ H2(X ,R) be a class defining a semistable locus X ss ⊂ X which is part of a
well-ordered Θ-stratification of X compatible with `. Then if X is either Θ-complete,
S-complete, or satisfies the existence part of the valuative criterion for properness, then
the same is true for X ss.

In particular, if in addition k is of characteristic 0, X is S-complete and Θ-complete,
and X ss is quasi-compact, then there exists a separated good moduli space of X ss

(and proper if X → Spec k satisfies the existence part of the valuative criterion for
properness).

Remark 1.4.14. Note that the Theorem 1.3.17, Theorem 1.4.5 (or Theorem 1.4.7)
and Theorem 1.4.13 (or the propositions it represent) form the main results (Theorem
A,B,C) of the paper [8].

Again, the original results in [8] is much general in our case. But we will only use
the case here so I omit these.



Chapter 2

Good Moduli Spaces for Objects
in Abelian Categories

2.1 Moduli Problem for Objects in Abelian Categories
In this section we study the moduli functor for objects in a k-linear abelian category A.
The first paper about this in [10] due to Artin and Zhang, who explained that many of
the results known for categories of quasi-coherent sheaves on a scheme can be carried
out in an abstract setting.

This general setup is very useful as it include the case of moduli of coherent sheaves
and moduli of complexes. This setup also leads to moduli problems in which the condi-
tions of Θ-completeness, S-completeness, and unpunctured inertia can be checked rather
easily.

Here we mainly follows the Section 7 in paper [8] and we assume k to be a algebraically
closed field, althrough this is true for any commutative ring.

2.1.1 Special Objects in Abelian Categories
First we need to introduce some definitions in the abelian categories.

Definition 2.1.1. Let A be a k-linear cocomplete abelian category.

• We say E ∈ A is finitely presentable (or compact) if the canonical map

lim−→
α∈I

Hom(E,Fα)→ Hom(E, lim−→
α∈I

Fα)

is an isomorphism for any small filtered system {Fα}α∈I in A. Let Afp be the full
subcategory consisting of finitely presentable objects.

35
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• We say E ∈ A is finitely generated if the same map is an isomorphism for any
filtered system of monomorphisms, or equivalently, if E =

⋃
αEα for a filtered

system of subobjects, then E = Eα for some α ∈ I.
• We say E ∈ A is noetherian if every ascending chain of subobjects of E terminates,
or equivalently, if every subobject of E is finitely generated.

Definition 2.1.2. Hence we say a k-linear cocomplete abelian category A:

• A is locally of finite type if every object in A is the union of its finitely generated
subobjects.

• A is locally finitely presented if very object in A can be written as the filtered colimit
of finitely presentable objects, and Afp is essentially small.

• A is locally noetherian if it has a set of noetherian generators.

Remark 2.1.3. If A is locally noetherian, then finitely generated, finitely presentable,
and noetherian objects coincide, and the category Afp is closed under kernels and hence
abelian. Our main results will assume that A is locally noetherian.

2.1.2 Functors in Abelian Categories
Definition 2.1.4 (Tensor Product). For a k-linear cocomplete abelian category A, there
is a canonical k-bilinear tensor functor

(−)⊗k (−) : Modk ×A → A

defined by the formula

HomA(M ⊗k E,F ) = HomModk(M,HomA(E,F ))

for objects E,F ∈ A and a k-module M .

Remark 2.1.5. Actually if M = coker(kI → kJ), then M ⊗k E = coker(EI → EJ) by
the same matrix.

This tensor functor commutes with filtered colimits and is right exact in each variable.
If M is flat and A is locally noetherian then M ⊗k (−) is exact. See [10].

Definition 2.1.6. We say E ∈ A is flat if (−)⊗k E : Modk → A is exact.

Definition 2.1.7. For a commutative k-algebra R, let AR denote the category of R-
module objects in A, i.e., pairs (E, ξE) where E ∈ A and ξE : R → EndA(E) is a
morphism of k-algebras, and a morphism (E, ξE) → (E′, ξE′) in AR is a morphism
E → E′ in A compatible with the actions of ξE and ξE′.
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For a commutative k-algebra R, AR is an R-linear abelian category and Ak = A.
Given a homomorphism of commutative rings φ : R1 → R2, the forgetful functor φ∗ :
AR2 → AR1 is faithfully exact, commutes with filtered colimits and faithful, and φ∗ is
fully faithful if φ is surjective. Moreover, φ∗ admits a left adjoint φ∗ : R2 ⊗R1 (−) :
AR1 → AR2 .

Note that if A is locally noetherian and if R→ S is a faithfully flat map of commu-
tative k-algebras then AR is equivalent to the category of objects in AS equipped with
a descent datum. Also we note that we only consider the locally noetherian case.

Definition 2.1.8. Hence if A is locally noetherian, then we have a stack A in the fppf
topology on k-Alg.

Hence we can define that for any algebraic stack X over k we can define

AX := MapFibered−Cat/k−alg(X ,A).

Remark 2.1.9. If X is the quotient stack for a groupoid of affine schemes X =
[X1 ⇒ X0] with Xi = SpecRi, then descent implies that the category AX is naturally
equivalent to the category of objects of AX0 equipped with a descent datum. We will use
this description for the stacks Θ and φR.

Faithfully flat descent also allows one to extend the functor R2⊗R1 (−) : AR1 → AR2

above to a functor f∗ : AY → AX for any morphism of stacks f : X → Y .

Lemma 2.1.10 (Pushforward). Suppose that A is locally noetherian. If f : X → Y
is a quasi-compact morphism with affine diagonal of algebraic stacks then the functor
f∗ : AY → AX admits a right adjoint f∗ which commutes with filtered colimits and flat
base change.

Proof. Actually this is easy to see if we consider the groupoid in affine schemes. Then
by faithfully flat descent we can get the result. See Lemma 7.6 in [8].

2.1.3 Moduli Functor of Abelian Categories
Definition 2.1.11. Let k be an algebraically closed field and let A be a locally noetherian,
cocomplete, and k-linear abelian category. Then we define the category MA fibered in
groupoids over k-alg by assigning the groupoid

MA(R) := 〈objects E ∈ AR which are flat and finitely presented〉 .

Proposition 2.1.12. The category fibered in groupoids MA is a stack in the big fppf
topology on k-alg and extends naturally to a stack on the big fppf topology on schemes
over k.

Proof. This is just from some flat descent results and we will omit them, see [10] The-
orem C8.6 and [8] Lemma 7.9.
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2.2 Valuative Criteria for the Stack MA

2.2.1 Description of MA(ΘR) and MA(ϕR)

Here we will consider the Θ-completeness and S-completeness of MA. First we need to
describe MA([SpecA/Gm]).

Definition 2.2.1. Let k be an algebraically closed field and let A be a locally noetherian,
cocomplete, and k-linear abelian category. Let AZ = Fun(Z,A) be a category of Z-graded
objects.

Pick a Z-graded k-algebra A, a Z-graded A- module object is an object of AZ whose
underlying object E =

⊕
n∈ZEn ∈ A is equipped with an A-module structure such that

multiplication A⊗k E → E maps An ⊗k Em into En+m. We denote AZ
A be the category

of Z-graded A-module objects.

Remark 2.2.2. By [10] Proposition B7.5, we have the category AZ
A is abelian and

locally noetherian if AA is.

We first need to describe A[SpecA/Gm].
Now we encode the Z-grading of a graded k-algebra A by a morphism of k- algebras

σA : A→ A[t±1] by a =
⊕

n an 7→
∑

n ant
n.

Now objects in A[SpecA/Gm] are objects E ∈ AA together with a cocycle, which can
be encoded by a coaction morphism

σ : E → E[t±1] := A[t±1]⊗A E.

We can write σ =
∑

n σnt
n for σn : E → E, morphisms in A.

The cocycle condition on σ amounts to the condition that the following diagrams in
A must commute:

E E[t±1] E E[t±1]

E[t±1] E[t±1, (t′)±1] E

∑
σntn

∑
σntn

∑
σn(t′)n

t 7→tt′

∑
σntn

t 7→1idE

Proposition 2.2.3. Let k be an algebraically closed field and let A be a locally noethe-
rian, cocomplete, and k-linear abelian category. Let A be a Z-graded k-algebra. Then
there is a natural equivalence AZ

A → A[SpecA/Gm] that maps E ∈ AZ
A to the object

of A[SpecA/Gm] defined by the coaction morphism σ =
∑

n σnt
n : E → E[t±1], where

σn : E → E is the k-linear.
This restricts to an equivalence between MA([SpecA/Gm]) and the groupoid of ob-

jects in AZ
A whose underlying non-graded A-module object is flat and finitely presented.
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Proof. This is very trivial. Actually the cocycle diagram above is
∑

m,n σmσnt
m(t′)n =∑

n σn(tt
′)n and

∑
n σn = id. This implies that σn are a collection of mutually or-

thogonal idempotent endomorphisms of E that induce a direct sum decomposition
E =

⊕
nEn in A, where En is the image of σn. Converse is trivial.

For the claim of MA([SpecA/Gm]) follows from the fact that MA([SpecA/Gm]) is
a stack for fppf topology.

Use this general fact, we can describe it for ΘR and φR.

Corollary 2.2.4. Let k be an algebraically closed field and let A be a locally noetherian,
cocomplete, and k-linear abelian category. Let R be a k-algebra then the category AΘR

is equivalent to the category of sequences of morphisms

E : · · · → En+1
x→ En → · · ·

in AR such that

• along SpecR ↪→ ΘR is lim−→i
Ei, and

• along BGm,R ↪→ ΘR is
⊕

n∈ZEn/xEn+1.

This equivalence restricts to an equivalence between MA(ΘR) and the groupoid of Z-
weighted filtrations · · · ⊂ En+1 ⊂ En ⊂ · · · of an object E∞ in AR such that En/En+1 ∈
AR is flat and finitely presented, En = E∞ for n� 0 and En = 0 for n� 0.

Proof. The description of AΘR
follows directly from Proposition 2.2.3 as E is just a

Z-graded R[x]-module. Along SpecR ↪→ ΘR, this is E ⊗R[x] R[x
±1] and follows from

the fact
R[x±1] = lim−→(· · · x→ R[x]

x→ R[x]
x→ · · · ).

Along BGm,R ↪→ ΘR, this is E ⊗R[x] R[x]/x = E/xE. Well done. The flatness and
finitly presented one omitted. See Corollary 7.13 in [8].

Corollary 2.2.5. Let k be an algebraically closed field and let A be a locally noetherian,
cocomplete, and k-linear abelian category. Let R be a DVR over k with uniformizing
parameter π and residue field κ. The category AϕR

is equivalent to the category of
diagrams in AR:

satisfying st = ts = π. Under this equivalence the restriction of E
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• along SpecR s 6=0
↪→ φR is lim−→n

(· · · s→ En−1
s→ En

s→ · · · ),

• along SpecR t 6=0
↪→ φR is lim−→n

(· · · t← En−1
t← En

t← · · · ),

• along Θκ
s=0→ φR is the object corresponding to the sequence

(· · · t← En/sEn−1
t← En+1/sEn

t← · · · ),

• along Θκ
t=0→ φR is the object corresponding to the sequence

(· · · s→ En−1/tEn
s→ En/tEn+1

s→ · · · ).

This equivalence restricts to an equivalence between MA(φR) and the groupoid consisting
of objects E such that: (a) s and t are injective, (b) s : En−1/tEn → En/tEn+1

is injective for all n, (c) each En is finitely presentable, (d) s : En−1 → En is an
isomorphism for n� 0, and (e) t : En → En−1 is an isomorphism for n� 0.

Proof. The description of AϕR
follows directly from Proposition 2.2.3. Moreover, we

can show that flatness is characterized by conditions (a) and (b). And (c)–(e) to be flat
and finitely presentable. These are boring and we refer Corollary 7.14 in [8].

2.2.2 Θ-Completeness and S-Completeness
Lemma 2.2.6. Let j : U ↪→ X be an open subscheme of a regular noetherian scheme
of dimension 2 whose complement is 0-dimensional. Then j∗ : AU → AX maps flat
objects to flat objects, and induces an equivalence between the full subcategory of flat
objects over X and over U , with inverse given by j∗ : AX → AU .

Proof. Just need to show that j∗ preserves flat objects, and that both the unit and
counit of the adjunction between j∗ and j∗ are equivalences on flat objects. By descent
we may assume that X = SpecR is affine and U is the complement of a single closed
point. Localizing further it suffices to consider the case of X = SpecR for a regular ring
R of dimension 2 and U the complement of the closed point p whose maximal ideal is
generated by a regular sequence x, y. In particular U = SpecRx ∪ SpecRy.

Then in this case it is trivial that the unit and counit of the adjunction between j∗
and j∗ are equivalences on flat objects as j∗E = ker(E|Rx ⊕ E|Ry → E|Rxy).

Finally we must show that j∗ preserves flat objects. We just need to show that
TorR1 (R/p, j∗E) = 0 for any p ∈ SpecR. If p ∈ U this follows from the flatness, so we
just need to show Tor1(κ, j∗E) = 0 where κ = R/(x, y). We need to show that tensoring
j∗EE with the Koszul complex 0→ R→ R⊕R→ R→ κ→ 0 gives an exact sequence

o→ j∗E → j∗E ⊕ j∗E → j∗E.

This follows from j∗ left exact.
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Proposition 2.2.7. Let k be an algebraically closed field and let A be a locally noethe-
rian, cocomplete, and k-linear abelian category. Then MA is S-complete with respect to
any DVR R that is essentially of finite type over k.

Proof. Let j : φR\0 ↪→ φR and take E ∈MA(φR\0), then by Lemma 2.2.6 j∗E is flat.
Hence we need to show that it is finitely presentable, i.e., we have to check conditions
(c)–(e) of Corollary 2.2.5.

Let js : SpecR ↪→ φR and jt : SpecR ↪→ φR and jst : SpecK ↪→ φR. As E is flat,
it is defined by an object F ∈ AK and two R-module subobjects E1, E2 ⊂ F such that
K ⊗R Ei

∼= F .
Now we have ???

Proposition 2.2.8. Let k be an algebraically closed field and let A be a locally noethe-
rian, cocomplete, and k-linear abelian category. Then MA is Θ-complete with respect
to any DVR R that is essentially of finite type over k.

Proof. Let j : U := ΘR\0 ↪→ ΘR and E ∈MA(U ). Again by Lemma 2.2.6 j∗E is flat.
Hence we need to show that it is finitely presentable.

Let the presentation A1
R → ΘR, where the open subset U ⊂ A1

R corresponding to U
is covered by the two affine subschemes defined by R[x] ⊂ K[x] and R[x] ⊂ R[x±1]. Now
E ∈ AU corresponds to an object F ∈ AK , a R-submodule object E1 ⊂ F such that
K ⊗R E1

∼= F , and a weighted descending filtration · · ·Fn+1 ⊂ Fn ⊂ · · · ⊂ F satisfying
the hypotheses of Corollary 2.2.4, then j∗E corresponds to the graded R[x]-module
object ???

2.3 Good Moduli Space of Semistable Objects
2.3.1 Some Basic Properties
Lemma 2.3.1. Let f : X → Y be a quasi-compact morphism of algebraic spaces locally
of finite type over a field. Then f satisfies the valuative criterion for properness for
DVRs if and only if it satisfies the lifting criterion for DVRs essentially of finite type
over k.

Proof. We refer Lemma A.11 in [8] for the proof.

Proposition 2.3.2. Let k be an algebraically closed field and let A be a locally noethe-
rian, cocomplete, and k-linear abelian category. Then the stack MA satisfies the val-
uative criterion for universal closedness with respect to DVRs which are essentially of
finite type over k.
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Proof. If R is a DVR, as in commutative algebra, an object E ∈ AR is flat if and
only if it is torsion free follows from [10] Lemma C1.12 as the condition is equivalent
to the vanishing of Tor1. Let j : Spec(K) → Spec(R), then for any E ∈ AK , we can
write j∗E =

⋃
α Fα as a directed union of finitely generated (hence finitely presentable)

subobjects which must be torsion free. If E is finitely generated then E =
⋃

α Fα⊗RK
must stabilize, so there is some flat and finitely presentable object Fα extending E.

Lemma 2.3.3. Let k be an algebraically closed field and let A be a locally noetherian,
cocomplete, and k-linear abelian category. If MA is an algebraic stack with affine
stabilizers, κ is a field over k, and E ∈ MA(κ) represents a closed point, then E is a
semisimple object in Aκ.

Proof. As E is finitely presented, it can not be expressed as an infinite sum of non-
zero objects. Therefore, we only have to show that every finite filtration of E splits.
Now by Corollary 2.2.4 any finite filtration of E corresponds to a map Θκ → MA
mapping 1 7→ E. Since E is a closed point, the resulting map must factor through a
map Θκ → BκAutMA(E). We know from the classification of torsors ([25] Proposition
A.0.1) on Θκ that any such map factors through the projection Θκ → BκGm, and thus
the corresponding filtration of E is split.

Proposition 2.3.4. Let k be an algebraically closed field and let A be a locally noethe-
rian, cocomplete, and k-linear abelian category. If MA is an algebraic stack locally of
finite presentation over k, then MA has affine diagonal.

Proof. If R is a valuation ring over k with fraction field K and E,F ∈ MA(R), then
F → F ⊗R K is injective and hence so is the restriction map

HomR(E,F )→ HomR(E,K ⊗R F ) ∼= HomK(K ⊗R E,K ⊗R F ).

Hence by the valuative criterion we get the diagonal of MA is separated.
Next we claim that for any ring R over k and E,F ∈MA(R), the functor R′/R 7→

HomR′(R′ ⊗R E,R
′ ⊗R F ) is a separated algebraic space HomR(E,F ) locally of finite

presentation over R. Indeed, observe that the subfunctor P ⊂ AutR(E ⊕ F ) classifying
automorphisms of the form

(
A 0
C D

)
is representable by a closed subspace, because it

is the preimage of the closed identity section under the map of separated R-spaces

AutR(E ⊕ F )→ AutR(E ⊕ F ),
(
A B
C D

)
7→
(
1 B
0 1

)
.

Next observe that we have a group homomorphism P → AutR(E) × AutR(F ) over R
given by (

A 0
C D

)
7→
(
A D

)
.
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Hence the preimage of closed identity section is the subgroup classifying automorphisms
of the form

(
1 0
C 1

)
, which is HomR(E,F ). Hence we get the claim.

Now let X := HomR(E,F ) be that separated algebraic space locally finitely pre-
sented over R. Then the natural action of Gm on X with unique extension to A1.
Hence X = X+ ev0→ XGm is affine (even is an affine fibration) by Theorem 6.6.7 in [4].
Moreover we can see that XGm ∼= SpecR ↪→ X as a zero section. Hence X is affine.

Finally, the algebraic R-space IsomR(E,F ) is the closed subspace of HomR(E,F )×
HomR(F,E) which is also affine as well. Hence the MA has affine diagonal.

Theorem 2.3.5. Let k be an algebraically closed field of characteristic 0 and let A be
a locally noetherian, cocomplete, and k-linear abelian category. Assume that MA is an
algebraic stack locally of finite type over k. Then any quasi-compact closed substack
X ⊂ MA admits a proper good moduli space, and in this case points of X must
parameterize objects of A of finite length.

Proof. Except the final assertion, this Theorem follows directly from Proposition 1.3.5(vi),
Theorem 1.3.17, Proposition 2.2.7, Proposition 2.2.8, Proposition 2.3.2 and a easy result
in Proposition 3.48 in [8] for the properness.

For the final fact, by Lemma 2.3.3 the closed points of X are represented by semisim-
ple objects in Aκ for fields κ of finite type over k.

2.3.2 Stability Condition and Good Moduli Spaces
Definition 2.3.6. We denote by π0(MA) the set of connected components of the stack
MA. For any v ∈ π0(MA), we let M v

A ⊂ MA be the corresponding open and closed
substack.

Now let a locally constant function on |MA| as

pv : |MA| → π0(MA)→ V

where V is a totally ordered abelian group, such that pv(E) = 0 for any E ∈M v
A, and

pv is additive in the sense that pv(E ⊕ F ) = pv(E) + pv(F ).

Definition 2.3.7. We will say that a point of M v
A represented by E ∈ Aκ for some

algebraically closed field κ over k, is pv-semistable if for any subobject F ⊂ E, pv(F ) ≤ 0
and pv-unstable otherwise.

Remark 2.3.8. Here are two points we will consider.

• This definition is unaffected by embedding V in a larger totally ordered group,
so we may assume that V is a totally ordered vector space over R by the Hahn
embedding theorem.



44CHAPTER 2. GOODMODULI SPACES FOR OBJECTS IN ABELIAN CATEGORIES

• As Map(Θ,M v
A)×ev1,M v

A,[E] Specκ is an algebraic space locally of finite type over
κ, if there is a destabilizing subobject of E after base change to an arbitrary
field extension κ′/κ, then there is a destabilizing subobject for E over κ, so this
definition does not depend on the choice of representative.

Definition 2.3.9. Using Corollary 2.2.4 to identify maps f : Θκ → MA with Z-
weighted descending filtrations · · · ⊂ Ew+1 ⊂ Ew ⊂ · · · in Aκ, we define a locally
constant function ` : |Map

k
(Θ,M v

A)| → V as

`(· · · ⊂ Ew+1 ⊂ Ew ⊂ · · · ) :=
∑
w

wpv(Ew/Ew+1).

Lemma 2.3.10. A point x ∈ |M v
A| is pv-unstable if and only if there is some f ∈

|Map
k
(Θ,M v

A)| such that f(1) = x and `(f) > 0.

Proof. If F ⊂ E is a destabilizing subobject, then we consider the filtration F : · · · ⊂
E2 = 0 ⊂ E1 = F ⊂ E0 = E = · · · . This filtration has `(F ) = pv(F ) > 0.

Conversely, given a filtration such that `(Ei) :=
∑

w wpv(Ew/Ew+1) > 0 and
pv(E) =

∑
w pv(Ew/Ew+1) = 0 it follows that for some index i we have

pv(Ei) =
∑
w≥i

pv(Ew/Ew+1) > 0

so one of the filtration steps will be destabilizing.

Remark 2.3.11. We know that in Definition 1.4.10 we have another stability condition.
The stability condition here is some kind of generalization as we see in Lemma 2.3.10.
Actually Proposition 1.4.12 is hold in our case as the proof of Lemma A in it applies
verbatim. Remark 6.16 in [8] gives the general condition over this and we omitted.

Theorem 2.3.12. Let k be an algebraically closed field of characteristic 0 and let A be
a locally noetherian, cocomplete, and k-linear abelian category. Assume that MA is an
algebraic stack locally of finite type over k. Let v ∈ π0(MA) be a connected component,
and let pv : π0(MA) → V be an additive function defining a notion of pv-semistability
on M v

A, as above.
If the substack of pv-semistable points M v,ss

A ⊂M v
A is open and quasi-compact, then

M v,ss
A admits a separated good moduli space. If in addition M v,ss

A is the open piece of a
Θ-stratification of M v

A, then M v,ss
A admits a proper good moduli space.

Proof. We have seen that M v
A has affine diagonal, and with respect to essentially fi-

nite type DVRs M v
A is Θ-reductive, S-complete and satisfies the existence part of the

valuative criterion for properness.
By Remark 2.3.11 and Proposition 1.3.5(vi) we know that M v,ss

A is Θ-reductive and
S-complete. As M v,ss

A is quasi-compact, we find that by Theorem 1.3.17 there is a
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separated good moduli space M v,ss
A → M . Then by Proposition 1.4.9 and Proposition

2.3.2 applied to the Θ-stratification of M v
A imply that M v,ss

A satisfies the existence part
of the valuative criterion for properness with respect to essentially finite type DVRs and
hence M is proper over Spec k by Lemma 2.3.1.
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Chapter 3

Good Moduli Space of
Semistable Sheaves

3.1 Moduli Stack of Coherent Sheaves
3.1.1 Construction of the Moduli Stack of Coherent Sheaves
Now we consider the moduli space of coherent sheaves over some smooth projective
variety X over C. Then we have the Chern character map

γ : K(X)
ch−→ CH∗(X)Q

cl−→ H2∗(X,Q).

(or we can use `-adic cohomology) Let Γ be the image of this map.
By Grothendieck-Riemann-Roch theorem (see Chapter 15 in [22]),

P (F ,m) = χ(F (m)) =

∫
X
ch(F (m))td(TX),

then we find that the information of v ∈ Γ is equivalent to the information of the Hilbert
polynomial χ. So we can use both of them when X is smooth. If X is just a projective
scheme, then we will only to use the Hilbert polynomial.

Theorem 3.1.1. Let X be a connected projective k-scheme for some field k, we let
CohP (X) the category fibred in groupoid over Sch/C sending a k-scheme T to the
groupoid of T -flat families E ∈ Coh(X × T ) such that any restriction Et ∈ Coh(X) has
the Hilbert polynomial P , the morphisms in the above groupoid are given by isomorphisms
of E .

Then CohP (X) is an algebraic stack locally of finite type over k of affine diagonal.
Also, we have the algebraic stack Coh(X) =

∐
P CohP (X).

47



48 CHAPTER 3. GOOD MODULI SPACE OF SEMISTABLE SHEAVES

Proof. Easy to see that CohP (X) is actually a stack, we first claim that it is an algebraic
stack in a natural way.

For each integer N , we claim there is an open substack UN ⊂ CohP (X) pa-
rameterizing coherent sheaves E such that E (N) generated by global sections and
H i(X, E (N)) = 0 for any i > 0. Actually this is trivial by some application of co-
homology and base change. As CohP (X) =

⋃
N UN , we just need to show UN is an

algebraic stack locally of finite type over k.
For each N , we consider the quotient scheme

QN := QuotP
X
(OX(−N)P (N)).

Again by some application of cohomology and base change, we find that there is an
open subscheme Q′

N ⊂ QN parameterizing quotients q : OX(−N)P (N) � F such that
H0(q(N)) is surjective and H i(X,F (n)) = 0 for all i > 0.

We have a natural map Q′
N → UN maps [OX(−N)P (N)] to F . We observe that Q′

N

is also GLP (N)-invariant, then this map descends to

Ψpre : [Q′
N/GLP (N)]

pre → UN

which is fully faithful since every automorphism of a coherent sheaf E on X×S induces
an automorphism of p2,∗E (N) = O

P (N)
S i.e. an element of GLP (N)(S), and this element

acts on OX(−N)P (N) preserving the quotient E .
After stackification, we have another fully faithful map Ψ : [Q′

N/GLP (N)] → UN

which is also essentially surjective by the constructions. Hence we have

UN
∼= [Q′

N/GLP (N)], CohP (X) =
⋃
N

[Q′
N/GLP (N)].

Hence CohP (X) is an algebraic stack locally of finite type over k.

3.1.2 Basic Facts of the Moduli Stack of Coherent Sheaves
Proposition 3.1.2. Let X be a projective scheme over an algebraically closed field k.
For a noetherian k-algebra R, MORk(ΘR,Coh(X)) is equivalent to the groupoid of pairs
(E ,E∗) where E is a coherent sheaf on XR flat over R and

E∗ : 0 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ · · · ⊂ E

is a filtration such that E i = 0 for i � 0, Ei = E for i � 0, and each factor Ei/Ei−1

is flat over R. A morphism is an isomorphism E → E ′ of coherent sheaves compatible
with the filtration.

Under this correspondence, the morphism ΘR → Coh(X) sends 1 to E and 0 to the
associated graded grE∗ =

⊕
i Ei/Ei−1.



3.1. MODULI STACK OF COHERENT SHEAVES 49

Proof. A morphism ΘR → Coh(X) correspond to a coherent sheaf F on X × ΘR flat
over ΘR. By smooth descent, this corresponds to a coherent sheaf on X × A1

R flat
over A1

R together with a Gm-action. Pushing forward F along the affine morphism
X×ΘR → X×BGm,R, we see that F also corresponds to a graded OXR

[x]-module flat
over R[x]. Then F =

⊕
i Ei with each Ei a coherent sheaf on XR, then multiplication

by x induces maps x : Ei → Ei+1 which are necessarily injective as F is flat over R[x],
hence torsion free. Since F is finitely generated as a graded R[x]-module, there exists
finitely many homogeneous generators with bounded degree. Thus Ei = E for i � 0.
On the other hand, considering the OXR

[x]-module E≥d :=
⊕

i≥d Ei ⊂ F , the ascending
chain

· · · ⊂ E≥d ⊂ E≥d−1 ⊂ · · · ⊂ F

must terminate as F is noetherian. It follows that Ei = 0 for i � 0. Since F is flat
as an R[x]-module, the quotient F/xF =

⊕
i Ei/Ei−1 is flat as an R-module and thus

each factor Ei/Ei−1 is flat over R. The converse is similar and we omit it.

Theorem 3.1.3. For every projective scheme X over an algebraically closed field k,
the algebraic stack Coh(X) (and hence CohP (X)) is Θ-complete and S-complete.

Remark 3.1.4. We remark that a map φR → Coh(X) is the same data as two opposite
filtration E∗ and F ∗ (that is, Ei/Ei−1

∼= F i/F i+1) such that Ei = 0 and Fi = F for
i � 0, and Ei = E and Fi = 0 for i � 0. In this case, under this map (1, 0) 7→ E ,
(0, 1) 7→ F and (0, 0) 7→ grE∗.

Proof. Here we just give an idea. For the entire proof we refer Proposition 6.8.23 in [4].
For Θ-completeness, by Proposition 3.1.2 we know that a map ΘR\0 → Coh(X)

corresponds to a coherent sheaf E on XR flat over R and a Z-graded filtration F∗ :
· · ·Fi−1 ⊂ Fi ⊂ · · · ⊂ EK such that Fi = EK for i � 0 and Fi = 0 for i � 0, and
Fi/Fi−1 is flat over R. Viewing E is a subsheaf of EK , we define Ei := Fi ∩ E . Then
Ei/Ei−1 is torsion-free, hence flat over R. This defines ΘR → Coh(X).

For S-completeness, given a map φR\0→ Coh(X) corresponding to coherent sheaves
E and F flat over R and an isomorphism α : EK

∼= FK . Let j : φR\0 ⊂ φR, js, jt :
SpecR→ φR (with s 6= 0 and t 6= 0), and jst : SpecK → φR (with st 6= 0). We compute
the pushforward as the equalizer

0→ (id× j)∗M → (id× js)∗E ⊕ (id× jt)∗F → (id× jst)∗FK

where the last map is (a, b) 7→ a − α(b). We can compute the last two sheaves and
show that j∗M is coherent and flat over φR like Proposition 2.2.7. Hence we get the
result.

Theorem 3.1.5. For every projective scheme X over an algebraically closed field k, let
U ⊂ Coh(X) be an open substack.
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(i) The substack U is Θ-complete if and only if for every DVR R (with fraction field
K and residue field κ), coherent sheaf E on XR flat over R, and Z-graded filtration
E∗ with Ei = 0 for i � 0, Ei = E for i � 0 and with each Ei/Ei−1 flat over R,
then if E and gr(E∗|K) are in U , so is gr(E∗|κ).

(ii) If for every pair of opposite filtrations E∗ and F ∗ of E ,F ∈ U (k), we have the
associated graded grE∗ ∈ U (k), then the substack U is S-complete.

Proof. These are easy. As by Theorem 3.1.3, Coh(X) is Θ-complete and S-complete,
the valuative criteria for U are equivalent to the existence of lifts for all commutative
diagrams:

ΘR\0 U φR\0 U

ΘR Coh(X) φR Coh(X)

Hence we need to show that the images of 0 under the unique fillings ΘR → Coh(X)
and φR → Coh(X) are contained in U . Hence theese two results are follows from this
and the description as above.

3.2 Basic Theory of Semistable Sheaves
Our aim is to find a moduli space of sheaves which is of finite type! Actually CohP (X)
is never of finite type and one can show that even on the smooth projective curves,
CohP (X) has no good moduli space. Consider {O(n) ⊕ O(−n)} on P1, then this can
not parametrized by a scheme of finite type. Hence we need some more conditions.

3.2.1 Basic Properties
Fix X be a projective scheme over a field k with H = O(1). Now if F be a coherent
sheaf of dimension d = dimX with Hilbert polynomial P (F ,m) =

∑d
i=0 αi(F )m

i

i! , then
we can define rank(F ) := αd(F )

αd(OX) . If X is integral, this is the usual definition.
For polynomials fi ∈ Q[m] for i = 1, 2, we define f1 < (≤)f2 if f1(m) < (≤)f2(m)

for m� 0.

Definition 3.2.1. Fix (X,H) as above and F be a coherent sheaf of dimension d.

(i) We define the slope µH(F ) := c1(F )·Hd−1

rank(F ) ;

(ii) we call F is µH -(semi)stable if for any 0 ⊂ E ⊂ F with 0 < rankE < rankF we
have Td−2(F ) = Td−1(F ) and µH(E ) < (≤)µH(F );
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(iii) we consider the Hilbert polynomial P (F ,m) =
∑d

i=0 αi(F )m
i

i! , then we have
αd(F ) = rank(F ) ·Hd and αd−1(F ) = 1

2 rank(F ) degTX +degF . We define the
reduced Hilbert polynomial is

p(F ,m) =
P (F ,m)

αd(F )
=
md

d!
+

1

Hd

(
1

2
degF + µH(F )

)
md−1

(d− 1)!
+ lower terms.

(iv) Define F is H-(semi)stable if it is pure and for any 0 ⊊ E ⊊ F , we have
p(E ,m) < (≤)p(F ,m).

(v) Define F is geometrically H-stable if for any base field extension XK = X ×k

Spec(K) the pull-back FK is stable.

Remark 3.2.2. Here we have some remarks.

• As the Harder-Narasimhan filtration is unique (Theorem 3.2.9) and stable under
field extension (Proposition 3.2.10), we don’t need the geometrically H-ss.

• We can define F is µH-(semi)stable if for any 0 ⊊ E ⊊ F with 0 < rankE <
rankF , we have rank(F ) deg(E ) < (≤) rank(E ) deg(F ). This is obviously the
same definition except that it does not require explicitly that Td−2(F ) = Td−1(F ).
But this can be easy to be deduced.

• Similarly, we can define F is H-(semi)stable if for any 0 ⊊ E ⊊ F , we have
αd(F )P (E ,m) < (≤)αd(E )p(F ,m). This is obviously the same definition except
that it does not require explicitly that F is pure. But applying the inequality to
E = Td−1(F ) (maximal subsheaf of dimension ≤ d−1), this implies Td−1(F ) = 0,
i.e. it is pure.

• If F is pure of dimension d, then we also can use saturated subsheaves, proper quo-
tient sheaves with αd > 0 and even proper purely d-dimensional quotient sheaves
to define the H-(semi)stable!
The proof is trivial by using the trivial exact sequence. See Proposition 1.2.6 in
[29] for the proof.

Remark 3.2.3. • Easy to see that when it is pure, then

µH-stable⇒ H-stable⇒ H-ss⇒ µH-ss;

• if dimX = 1, then µH-(semi)stable iff H-(semi)stable.

Lemma 3.2.4. Let F ,G are H-ss of dimension d. Then

(i) if p(F ) > p(G ), then Hom(F ,G ) = 0;
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(ii) let p(F ) = p(G ). If F is moreover H-stable, then any φ : F → G either zero or
injection. Similarly if G is moreover H-stable, then any φ : F → G either zero
or surjection.

(iii) If p(F ) = p(G ) and αd(F ) = αd(G ), then any non-trivial homomorphism f :
F → G is an isomorphism provided F or G is H-stable.

Proof. For (i), let nontrivial f with image E , then p(F ) ≤ p(E ) ≤ p(G ) which is
impossible. Hence Hom(F ,G ) = 0.

For (ii), this is the similar reason in the proof of (i).
For (iii), this is the similar reason in the proof of (i).

Corollary 3.2.5. If E is a H-stable sheaf, then End(E ) is a finite dimensional division
algebra over k. In particular, if k is algebraically closed, then k ∼= End(E ), i.e. E is a
simple sheaf.

Example 3.2.1. (i) Any line bundles over smooth projective curves are H-stable.
See Example 1.2.10 in [29].

(ii) For an algebraically closed field k of zero characteristic, the bundle ΩPn is H-stable.
See Section 1.4 in [29].

3.2.2 The Harder-Narasimhan Filtration
We consider a classical result due to Grothendieck as a motivation of the Harder-
Narasimhan filtration.

Theorem 3.2.6 (Grothendieck). Let E be a vector bundle of rank r on P1, then there
is a uniquely determined decreasing sequence of integers a1 ≥ · · · ≥ ar such that E ∼=
O(a1)⊕ · · · ⊕ O(ar).

Proof. For r = 1 this is trivial. Let the theorem holds for all vector bundles of rank < r
and that E is a vector bundle of rank r.

Take any saturation of any rank 1 subsheaf of E . As P1 is a smooth curve, then it is
a line bundle of form O(a). Let a1 be the maximal number with this property. Hence
E /O(a1) ∼=

⊕r
i=2 O(ai) with a2 ≥ · · · ≥ ar. We claim that a1 ≥ a2. Indeed, consider

0→ O(−1)→ E (−1− a1)→
r⊕

i=2

O(ai − a1 − 1)→ 0.

Since Γ(E (−1 − a1)) = Hom(O(1 + a1),E ) and a1 be the maximal number with non-
trivial Hom(O(a),E ), then Γ(E (−1 − a1)) = 0. By the long exact sequence we get
H0(O(ai − 1− a1)) = 0 for all i. Hence ai < a1 + 1. Hence we get the claim.
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Next we claim the sequence 0→ O(a1)→ E →
⊕r

i=2 O(ai)→ 0 split. This follows
from the Serre duality

Ext1
(

r⊕
i=2

O(ai),O(a1)

)∨
∼=

r⊕
i=2

Hom(O(a1),O(ai − 2)) = 0.

Finally, the uniqueness is not hard to prove. We omit it.

Again we let X be a projective scheme over some field k with a fixed ample line
bundle H.

Definition 3.2.7. Fix E ∈ Coh(X) is pure of dimension d. A Harder-Narasimhan
filtration (or HN-filtration) of E is

0 = HN0(E ) ⊂ HN1(E ) ⊂ · · · ⊂ HNl(E ) = E

such that grHN
i (E ) := HNi(E )/HNi−1(E ) which areH-ss of dimension d and p(grHN

i (E )) >
p(grHN

i+1(E )) for all i. We define pmax(E ) := p(grHN
1 (E )) and pmin(E ) := p(grHN

l (E ));

Lemma 3.2.8. If F ,G is pure of dimension d with pmin(F ) > pmax(G ), then Hom(F ,G ) =
0.

Proof. If f : F → G is non-trivial. Let i > 0 be the minimal with f(HNi(F )) 6=
0 and j > 0 the minimal with f(HNi(F )) ⊂ HNj(G ). Hence we get a non-trivial
f̄ : grHN

i (F ) → grHN
j (G ). But this is impossible by pmin(F ) > pmax(G ) and Lemma

3.2.4(i).

Theorem 3.2.9. Let E be a pure coherent sheaf of dimension d. Then there always
exists a unique Harder-Narasimhan filtration.

Proof. Here we will use a result (see Lemma 1.3.5 in [29]):

• Let E be a purely d-dimensional sheaf. Then there is a subsheaf F ⊂ E such
that for all subsheaves G ⊂ E one has p(F ) ≥ p(G ), and in case of equality
F ⊃ G . Moreover, F is uniquely determined and semistable. It is called the
maximal destabilizing subsheaf of E .

Let E1 be its maximal destabilizing subsheaf. By induction we may assume E /E1 has a
Harder-Narasimhan filtration

0 ⊂ G0 ⊂ G1 ⊂ · · · ⊂ Gl−1 = E /E1.

Let Ei+1 ⊂ E be the preimage of Gi. Just need to show that p(E1) > p(E2/E1). If this
were false, we would have p(E2) ≥ p(E1) contradicting the maximality of E1.
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For the uniqueness, consider two Harder-Narasimhan filtrations E∗,E ′
∗. Let p(E ′

1) ≥
p(E1). Let j be minimal with E ′

1 ⊂ Ej . Then we have

p(Ej/Ej−1) ≥ p(E ′
1) ≥ p(E1) ≥ p(Ej/Ej−1).

Hence p(E ′
1) = p(E1) and j = 1 and E ′

1 ⊂ E1. Similarly we get E ′
1 ⊃ E1, hence E ′

1 = E1.
Using induction again we get the result.

Proposition 3.2.10. Let E be a pure sheaf of dimension d and let K/k be a field
extension. Then

HN∗(E ⊗k K) = HN∗(E)⊗k K.

In particular, the H-ss sheaves stable under base field extension.

Proof. We do not care about this. We refer the proof of Theorem 1.3.7 in [29].

3.2.3 The Jordan-Hölder Filtration
As we all know, the Harder-Narasimhan filtration shows that the H-ss sheaves form
the building blocks for all the coherent sheaves. But the Jordan-Hölder filtration shows
that the H-stable sheaves form the building blocks for all H-ss sheaves.

Again we let X be a projective scheme over some field k with a fixed ample line
bundle H.

Definition 3.2.11. Fix E ∈ Coh(X). Let E is H-ss, a Jordan-Hölder filtration (or
JH-filtration) of E is

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

such that grJHi (E ) := Ei/Ei−1 are H-stable and p(grJHi (E )) = p(E ) for all i. We define
grJH(E ) :=

⊕l
i=1 grJHi (E ).

Remark 3.2.12. Unlike the Harder-Narasimhan filtration, the Jordan-Hölder filtration
is NOT unique. For example we let the direct sum of two line bundles of the same degree
one.

Theorem 3.2.13. Jordan-Hölder filtrations always exist. Up to isomorphism, the sheaf
grJH(E ) =

⊕l
i=1 grJHi (E ) does not depend on the choice of the Jordan-Hölder filtration.

Proof. Any filtration of E by semistable sheaves with reduced Hilbert polynomial p(E )
has a maximal refinement, whose factors are necessarily stable. The uniqueness of
grJH(E ) is not hard to show. We refer 1.5.2 in [29].

Definition 3.2.14. Two H-ss sheaves E1 and E2 with the same reduced Hilbert polyno-
mial are called S-equivalent if grJH(E1) ∼= grJH(E2).
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Definition 3.2.15. If E is H-ss, we call E is H-polystable if it is the direct sum of
stable sheaves. In this case grJH(E ) = E .

Remark 3.2.16. We will show that the good moduli space of moduli stack of H-ss
sheaves actually parametrizes only S-equivalence classes of H-ss sheaves! As we saw
above, every S-equivalence class of H-ss sheaves contains exactly one polystable sheaf
up to isomorphism. Thus, the good moduli space of H-ss sheaves in fact parametrizes
polystable sheaves. See Theorem 3.4.3.

Actually the S stands for Seshadri as S-completeness is a geometric property remi-
niscent of how the S-equivalence relation on sheaves implies separatedness of the moduli
space.

Remark 3.2.17. (i) By the similar arguments of Jordan-Hölder filtrations, on can
show that every semistable sheaf E contains a unique non-trivial maximal H-
polystable subsheaf of the same reduced Hilbert polynomial. This sheaf is called the
socle of E .

(ii) One can use some basic properties of socles to find that if E is a simple sheaf,
then it is H-stable if and only if it is geometrically H-stable. Hence in particular
if k is algebraically closed and E is a H-stable sheaf, then E is also gemetrically
H-stable. See 1.5.10 and 1.5.11 in [29].

(iii) For µH-ss, they define Cohd,d′(X) = Cohd(X)/Cohd′−1(X) and consider the µ-ss
on it using µ̂(E ) =

αd−1(E )
αd(E ) . And when d′ = d−1, this is just the definition before.

In this space there also have the Harder-Narasimhan filtrations and Jordan-Hölder
filtrations. For the general arguments we refer Section 1.6 in [29].

(iv) For µ, there are several properties for torsion-free sheaves F ,G on the normal
variety ([29] Page 29):

– µ(E (a)) = µ(E ) + a degX, similar for µmin, µmax;
– µmin(E ⊕F ) = min(µmin(E ), µmin(F )), similar for µmax;
– µmin(F ) ≥ µmin(E ) for E � F ;
– µmax(E ) ≤ µmax(F ) for E ↪→ F .

3.3 Moduli Stack of Semistable Sheaves
3.3.1 The Mumford-Castelnuovo Regularity and Boundedness
In this section we will give some useful criterion about boundedness of families of sheaves.

Let X be a projective scheme over k with very ample H = OX(1).
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Definition 3.3.1. Let m be an integer. A coherent sheaf F is said to be m-regular , if
for all i > 0 we have H i(X,F (m− i)) = 0.

The Mumford-Castelnuovo regularity of a coherent sheaf F is the number

reg(F ) = inf{m ∈ Z : F is m-regular}.

Lemma 3.3.2. There are universal polynomials Pi ∈ Q[T0, ..., Ti] such that the following
holds: Let F be a coherent sheaf of dimension ≤ d and let H1, ..., Hd be an F -regular
sequence of hyperplane sections. If χ(F |∩

j≤i Hj
) = ai and h0(F |∩

j≤i Hj
) ≤ bi, then

reg(F ) ≤ Pd(a0 − b0, ..., ad − bd).

Proof. See [30] for the original proof.

Lemma 3.3.3. The following properties of a flat family of sheaves F on X → S are
equivalent:

(i) The family is bounded.
(ii) There is a uniform bound reg(Fs) ≤ ρ for all s ∈ S.

Proof. See [23] for the original proof.

Then we have two nice criterion about boundedness of sheaves.

Theorem 3.3.4 (Kleiman Criterion). Let flat family of sheaves F on X → S with the
same Hilbert polynomial P . Then this family is bounded if and only if there are constants
Ci, i = 0, ..., d = degP such that for every Fs there exists an Fs-regular sequence of
hyperplane sections H1, ..., Hd, such that

h0(Fs|∩
j≤i Hj

) ≤ Ci.

Proof. Follows from Lemma 3.3.2 and Lemma 3.3.3.

Theorem 3.3.5 (Grothendieck). Let P be a polynomial and ρ an integer. Then there
is a constant C depending only on P and ρ such that the following holds:

• If X be a projective scheme on k with very ample divisor H and if E ∈ Coh(X)
is a d-dimensional sheaf with Hilbert polynomial P and Mumford-Castelnuovo
regularity reg(E ) ≤ ρ and if F ∈ Coh(X) is a purely d-dimensional quotient sheaf
of E then µ̂(F ) ≥ C.

Moreover, the family of purely d-dimensional quotients F with µ̂(F ) bounded from
above is bounded. In particular the set of Hilbert polynomials of pure quotients with
fixed µ̂(F ) is finite.
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Proof. After embedding them into the projective space Pd, we may consider X = Pd.
Hence we have G := V ⊗O(−ρ)� E where rankV = P (ρ), so we just need to consider
G . Pick a quotient q : G → F of rank s, then

s∧
q :

s∧
V ⊗ O(−sρ)→ detF = O(degF )

gives degF ≥ −sρ. Hence

µ̂(F ) =
degF + rankFαd−1(OX)

αd(F )
≥ −ρ+ αd−1(OX).

For the final part, we let µ̂ ≤ C ′. It is enough to show that the family of pure quotient
sheaves F of rank 0 < s ≤ rank(G ) = P (ρ) and with l = degF = s(C ′ − αd−1(OX)) is
bounded. Consider ψ : G ⊗

∧s−1 G
∧→
∧s G

det q→ O(l) and ψ∨ : G → O(l) ⊗
∧s−1 G ∨.

Let U denote the dense open subscheme where F is locally free. Then ker(ψ∨)|U =
ker(q)|U . Since the quotients of G corresponding to these two subsheaves of G are
torsion free and since they coincide on a dense open subscheme of Pd, we must have
ker(ψ∨) = ker(q) everywhere, i.e. F ∼= Imψ∨. Now, the family of such image sheaves
certainly is bounded.

3.3.2 Basic Construction and Openness of Semistable Sheaves
Definition 3.3.6. We define the stack CohH−ss

P (X) send a scheme T to a families of
H-ss sheaves on X × T → T . Similarly we define CohH−s

P (X) send a scheme T to a
families of geometrically H-stable sheaves on X × T → T .

Proposition 3.3.7. The following properties of coherent sheaves are open in flat fam-
ilies: being simple, of pure dimension, H-ss, or geometrically H-stable.

Proof. Let f : X → S be a projective morphism of Noetherian schemes (as the property
is local) and let OX(1) be an f -very ample invertible sheaf on X. Let F be a flat family
of d-dimensional sheaves with Hilbert polynomial P on the fibres of f . For each s ∈ S,
a sheaf Fs is simple iff homκ(s)(Fs,Fs) = 1. Thus openness here is an immediate
consequence of the semicontinuity properties for relative Ext-sheaves.

Next we consider pure dimension (P1), H-ss (P2), and geometrically H-stable (P3)
which can be characteristics by the Hilbert polynomials of quotient sheaves. Consider
the following several sets:

A =
{
P ′′ : deg(P ′′) = d, µ̂(P ′′) ≤ µ̂(P ) and there is a geometric point s ∈ S

and a surjection Fs → F ′′ onto a pure sheaf with P (F ′′) = P ′′} ;
A1 = {P ′′ ∈ A : deg(P − P ′′) ≤ d− 1}; A2 = {P ′′ ∈ A : p′′ < p};
A3 = {P ′′ ∈ A : p′′ ≤ p and P ′′ < P}.
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By Theorem 3.3.5 we get the set A is finite. For each polynomial P ′′ ∈ A we consider
π : Q(P ′′) = Quot

X/S
(F , P ′′) → S be the projective morphism. Hence π(Q(P ′′)) is

closed. As Fs has (Pi) if and only if s /∈
⋃

P ′′∈Ai
π(Q(P ′′)) ⊂ S. Well done.

Corollary 3.3.8. We have open substacks

CohH−s
P (X) ⊂ CohH−ss

P (X) ⊂ CohP (X)

which parameterizing H-ss sheaves and geometrically H-stable sheaves, are all algebraic
stacks locally of finite type.

Proof. Follows from the Theorem 3.3.7.

3.3.3 Boundedness I: The Grauert-Mülich Theorem
In this sections we will assume the base field k is an algebraically closed field of charac-
teristic zero!

In 2004, Langer in [34] and [33] proved the positive and mixed characteristic of the
boundedness of semistable sheaves and also gives a generalized Le Potier-Simpson type
bound for the number of global sections. See also [24] for a modern proof.

Since I don’t care about the fields either not algebraically closed or not of charac-
teristic zero, so we just introduce the characteristic zero case which is more easier.

We may use the Theorem 3.3.4 to show the boundedness. Hence we need to investi-
gate the behavior of sheaves resticted to the intersections of hyperplanes. Actually the
Grauert-Mülich theorem and the Le Potier-Simpson estimate are what we want.

Before we discuss the notations and main results, we will introduce a family-version
of the Harder-Narasimhan filtration:

Theorem 3.3.9 (The Relative Harder-Narasimhan Filtration). Let S be an integral k-
scheme of finite type, let f : X → S be a projective morphism and let H be an f -ample
invertible sheaf on X. Let F be a flat family of d-dimensional coherent sheaves on the
fibres of f . There is a projective birational morphism g : T → S of integral k-schemes
and a filtration

0 = HN0(F ) ⊂ HN1(F ) ⊂ · · ·HNl(F ) = FT

such that

(a) HNi(F )/HNi−1(F ) are T -flat;
(b) there is a dense open subscheme U ⊂ T such that HN∗(F )t = g∗XHN∗(Fg(t)) for

all t ∈ U .

Moreover, (g,HN∗(F )) is universal in the sense that if g′ : T ′ → S is any dominant
morphism of integral schemes and if F ′

∗ is a filtration of FT ′ satisfying these two
properties, then there is an S-morphism h : T ′ → T with F ′

∗ = h∗XHN∗(F ).
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Proof. See [44] for the original proof. Also in Theorem 2.3.2 in [29].

Now let X be a normal projective variety over k of dimn ≥ 2 with very ample
H = OX(1). Let Va := H0(X,OX(a)) and Πa := P(V ∨

a ) = |OX(a)|. Let

Za = {(D,x) ∈ Πa ×X : x ∈ D} X

Πa

q

p

The scheme-structure of Za is easy: consider K be the kernel of Va ⊗ OX → OX(a),
then Za = P(K ∨).

Let (a1, ..., al) be a fixed finite sequence of positive integers, 0 < l < n. Let Π =∏
iΠai with pi : Π→ Πai and Z = Za1 ×X · · · ×X Zal and

Z X

Π

q

p

with qi : Z → Zai .

Lemma 3.3.10. Let E be a torsion free coherent sheaf on X and F := q∗E .

(i) There is a nonempty open subset S′ ⊂ Π such that the morphism pS′ : ZS′ → S′

is flat and such that for all s ∈ S′ the fibre Zs is a normal irreducible complete
intersection of codimension l in X;

(ii) There is a nonempty open subset S ⊂ S′ such that the family FS = q∗E |Zs is flat
over S and such that for all s ∈ S the fibre Fs

∼= E |Zs is torsion free.

Proof. Lemma 3.3.1 in [29]. Just an easy Bertini-type lemma.

By the relative Harder-Narasimhan filtration 3.3.9, we have

0 = F0 ⊂ · · ·Fj = FS

such that Fi/Fi−1 are S-flat and there is a dense open subscheme S0 ⊂ S such that
for all s ∈ S0 the fibres (F∗)s form the Harder-Narasimhan filtration of Fs = E |Zs .

WLOG we let S0 = S. Now S connected, we let µi = µ((Fi/Fi−1)s) with µi > µi+1.
Define the number

δµ = max{µi − µi+1 : i = 1, ..., j − 1}.

Remark 3.3.11. Then δµ = δµ(E |Zs) for a general point s ∈ Π, and δµ vanishes if
and only if E |Zs is µH-ss for general s.
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Theorem 3.3.12 (Generalized Grauert-Mülich Theorem). Let E be a µH-ss torsion
free sheaf. Then there is a nonempty open subset S ⊂ Π such that for all s ∈ S the
following inequality holds:

0 ≤ δµ(E |Zs) ≤ max{ai} degX ·
∏
i

ai.

Proof. WLOG we let δµ > 0. Let i such that δµ = µi − µi+1. Let F ′ = Fi,F ′′ =
F/F ′ and for all s ∈ S the sheaves F ′

s,F
′′
s are torsion-free. And µmin(F ′

s) = µi and
µmax(F ′′

s ) = µi+1. Pick Z0 be a maximal open set of ZS such that F |Z0 and F ′′|Z0 are
locally free of rank r, r′′. Then F |Z0 → F ′′|Z0 defines φ : Z0 → GrassX(E , r′′).

Consider dφ : TZ/X |Z0 → φ∗TGrassX(E ,r′′)/X . As

φ∗TGrassX(E ,r′′)/X = H om(F ′,F ′′)|Z0 ,

we get dφ correspond to Φ : (F ′ ⊗ TZ/X)|Z0 → F ′′|Z0 .
We claim that Φs were not zero for a general point s ∈ S. If it is, making S smaller

if necessary, this supposition would imply that Φ is zero. As q : Z → X is a bundle, we
have X0 := q(Z0) is open and codim(X\X0, X) ≥ 2 and E |X0 is locally free. Hence we
have

Grass(E |X0 , r
′′)

Z0 X0

ZS Z X

S Π

q

ppS
p

q0

ϕ ρ

Now q0 is smooth of connected fibers and φ is constant on the fibres of q0 and hence
factors through a morphism ρ (here we need chark = 0). But such ρ corresponds to a
locally free quotient E |X0 → E ′′ of rank r′′ with the property that E ′′|Zs∩X0 is isomorphic
to F ′′|Zs∩Z0 for general s. Since by assumption F ′′

s is a destabilizing quotient of Fs,
any extension of E ′′ as a quotient of E is destabilizing. This contradicts the assumption
that E is µH -ss.

Hence Φs is nonzero for general s ∈ S, that is, Φs is a non-trivial element in
HomC(F

′
s⊗TZ/X |Zs ,F

′′
s ) where C := Cohn−l,n−l−1(Zs). By the similar result of Lemma

3.2.8, we have
µmin(F

′
s ⊗ TZ/X |Zs) ≤ µmax(F

′′
s ).
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The Koszul complex associated to the evaluation map e : Va ⊗ OX → OX(a) provides
us a surjection

∧2 Va ⊗ OX(−a)→ ker e ∼= K and hence a surjection

⊕
i

2∧
Vai ⊗k q

∗OX(−ai)⊗ p∗O(1)→
⊕
i

q∗Kai ⊗ p∗O(1)→ TZ/X .

Hence a surjection (⊕
i

2∧
Vai ⊗k q

∗OX(−ai)

)∣∣∣∣∣
Zs

→ TZ/X |Zs .

Hence we get

µmin(TZ/X |Zs ⊗F ′
s) ≥ µmin

(⊕
i

2∧
Vai ⊗k q

∗OX(−ai)⊗F ′|Zs

)
= min

i
{µmin(OZs(−ai)⊗F ′

s)}

= µmin(F
′
s)−max{ai} · degZs.

Hence combining these two inequality, we have

δµ = µmin(F
′
s)− µmax(F

′′
s )

≤ max{ai} · degZs = max{ai} degX ·
∏
i

ai.

Hence we get the result.

Theorem 3.3.13. Let X be a normal projective variety over an algebraically closed
field of characteristic zero. If F1 and F2 are µH-ss sheaves, then F1 ⊗F2 is µH-ss
too.

Proof. Omitted, see Section 3.2 in [29].

Remark 3.3.14. As a corollary of this theorem, we have µmin(F1⊗F2) = µmin(F1)+
µmin(F2) by tensoring their HN-filtrations, similar for µmax and µ.

Corollary 3.3.15. Let X be a normal projective variety of dimension n and let H =
OX(1) be a very ample line bundle. Let F be a µH-ss coherent OX-module of rank r.
Let Y be the intersection of s < n general hyperplanes in the linear system |OX(1)|.
Then

µmin(F |Y ) ≥ µ(F )− r − 1

2
deg(X)

and
µmax(F |Y ) ≤ µ(F ) +

r − 1

2
deg(X).
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Proof. WLOG we let F is a torsion free sheaf. Pick µ1, ..., µj and r1, ..., rj be the slopes
and ranks of µH -HN filtration of F |Y . By Theorem 3.3.12 we have 0 ≤ µi − µi+1 ≤
degX. Hence µi ≥ µ1 − (i− 1) degX. Hence we have

µ(F ) =

j∑
i=1

riµi
r
≥ µ1 −

j∑
i=1

(i− 1)
ri
r
degX

≥ µ1 −
degX
r

r∑
i=1

(i− 1) = µmax(F |Y )− degXr − 1

2
.

Similar for µmin(F |Y ).

3.3.4 Boundedness II: The Le Potier-Simpson Estimate
In this sections we will assume the base field k is an algebraically closed field of charac-
teristic zero!
Lemma 3.3.16. Suppose that X is a normal projective variety of dimension d and that
F is a torsion free sheaf of rank(F ). Then for any F -regular sequence of hyperplane
sections H1, ..., Hd and Xv = H1 ∩ · · · ∩ Hd−v the following estimate holds for all
v = 1, ..., d:

h0(Xv,F |Xv)

degX · rankF
≤ 1

v!

[
µmax(F |X1)

degX + v

]v
+

where for any x ∈ R we define [x]+ := max{0, x}.
Proof. Let Fv := F |Xv . Using induction on v.

Let v = 1. Since we have h0(X1,F1) ≤
∑

i h
0(X1, grHN

i (F1)) and the right hand
side of the estimate in the lemma is monotonously increasing with µ, we may assume
WLOG that µ(F1) = µmax(F1), i.e. that F1 is µH -semistable. Hence

h0(x1,F1) ≤ h0(x1,F1(−l)) + rank(F ) · l degX.

By Lemma 3.2.4(i), we find that h0(x1,F1(−l)) = hom(OX1(l),F1) = 0 if l > µ(F1)/ degX.
Now pick l = bµ(F1)/ degXc+ 1 and well done.

Now let this is right for v − 1. Consider

0→ Fv(−k − 1)→ Fv(−k)→ Fv−1(−k)→ 0, k = 0, 1, · · · .

Hence inductively derives estimates

h0(Xv,Fv) ≤ h0(Xv,Fv(−l)) +
l−1∑
i=0

h0(Xv−1,Fv−1(−i))

≤
∞∑
i=0

h0(Xv−1,Fv−1(−i)).
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By induction hypothesis one has

h0(Xv,Fv)

rank(F ) degX ≤
1

(v − 1)!

∫ C

−1

[
µmax(F1)

degX + (v − 1)− t
]v−1

+

dt

where C is the maximum of −1 and the smallest zero of the integrand. Evaluating the
integral yields the bound of the lemma.

Theorem 3.3.17 (The Le Potier-Simpson Estimate). Suppose that X is a projective
variety over an algebraically closed k of characteristic zero. For any purely d-dimensional
coherent sheaf F of multiplicity αd(F ) = r(F ) there is an F -regular sequence of
hyperplane sections H1, ..., Hd and Xv = H1 ∩ · · · ∩ Hd−v the following estimate holds
for all v = 1, ..., d:

h0(Xv,F |Xv)

r(F )
≤ 1

v!

[
µ̂max(F ) + r(F )2 +

1

2
(r(F ) + d)− 1

]v
+

.

Proof. First we claim that when W is a normal projective variety of dimension d and
that K is a torsion free sheaf of rank(K ), there is an K -regular sequence H1, ..., Hd

such that the following estimate holds for all v = 1, ..., d:

h0(Wv,K |Wv)

degW · rank(K )
≤ 1

v!

[
µmax(K )

degW +
rank(K )− 1

2
+ v

]v
+

.

Indeed,
Now we can use this claim to reduce to the general case. Let i : X ↪→ PN be the

closed embedding induced by H = OX(1). Let F as i∗F on PN , let Z = supp(F )
and choose a linear subspace L of dimension N − d − 1 which does not intersect Z
(right for infinite field). Consider projection π : Z ↪→ PN\L → Y ∼= Pd which is a
finite map with OZ(1) = π∗OY (1). As F is pure, we know that π∗F is torsion-free and
rank(F ) = rank(π∗F ). Hence

µ̂(F ) = µ̂(π∗F ) = µ(π∗F ) +
d+ 1

2
.

A π∗F -regular sequence of hyperplanes H ′
i in Y induces an F -regular sequence of

hyperplane sections Hi on X. Let Yv = H ′
1 ∩ · · · ∩H ′

d−v, then π∗F |X = π∗(F )|Xv and
hence h0(F |Xv) = h0(π∗(F )|Xv).

• Lemma 3.3.17.A. The sheaf A := π∗OZ is a torsion free sheaf with

µmin(A ) ≥ − rank(A ) ≥ − rank(π∗F )2 = −r(F )2.
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Proof of Lemma 3.3.17.A. As π∗F is an A -module,we have algebra homomor-
phism A → E nd(π∗F ) which is injective since Z is the support of F . Hence A
is torsion free with rank less or equal to rank(π∗F )2 = r(F )2.
Actually we have PN\L ∼= Spec

Y
SymOY (−1)⊕(N−d), let W := OY (−1)⊕(N−d).

Then this induce a surjection φ : SymW → A . Consider the filtration FpA :=
φ
(⊕p

i=0 SymiW
)
. As A is coherent the filtration is bounded. Moreover, since

the multiplication W ⊗ grFp A → grFp+1 A is surjective, hence if grFp A is torsion,
the same is true for all grFp+i A , i ≥ 0. In particular, if grFp A is not torsion then
p ≤ rank(A ). Hence the cokernel of φ :

⊕rank(A )
i=0 SymiW → A is torsion. Hence

µmin(A ) ≥ µmin(Symrank(A )W ) = − rank(A ).

• Lemma 3.3.17.B. We have

µmax(π∗F ) ≤ µ̂max(F ) + r(F )2 − d+ 1

2
.

Proof of Lemma 3.3.17.B. Let G be the maximal destabilizing submodule of π∗F ,
and let G ′ be the image of the multiplication map A ⊗G → π∗F . Then G ′ = π∗G ′′

for some OZ-submodule G ′′ ⊂ F . It follows that

µ̂max(F ) ≥ µ̂(G ′′) = µ̂(G ′) = µ(G ′) + µ̂(OY )

≥ µmin(A ⊗ G ) + µ̂(OY )

= µ(G ) + µmin(A ) + µ̂(OY )

≥ µmax(π∗F )− r(F )2 +
d+ 1

2

using Theorem 3.3.13 and Lemma 3.3.17.A.

Now by Lemma 3.3.17.B, we have

µmax(π∗F ) + v +
rank(π∗F )− 1

2
≤ µ̂max(F ) + r(F )2 +

r(F )− 1

2
+
d− 1

2
.

By the claim for π∗F and this inequality, we get the result.

3.3.5 Boundedness III: The Main Results
In this sections we will assume the base field k is an algebraically closed field of charac-
teristic zero!
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Theorem 3.3.18. Let f : X → S be a projective morphism of schemes of finite type
over k and let OX(1) be an f -ample line bundle. Let P be a polynomial of degree d,
and let µ0 be a rational number. Then the family of purely d-dimensional sheaves on
the fibres of f with Hilbert polynomial P and maximal slope µ̂max ≤ µ0 is bounded. In
particular, the family of H-ss sheaves with Hilbert polynomial P is bounded.

Proof. Covering S by finitely many open subschemes and replacing H by an appropriate
high tensor power, if necessary, we may assume that f factors through an embedding
X ↪→ S × PN . Thus we may reduce to the case S = Spec(k), X = PN . By Theorem
3.3.17, we can find for each purely d-dimensional coherent sheaf F a regular sequence
of hyperplanes H1, ..., Hd such that h0(F |H1∩···∩Hi) ≤ C for all i = 0, ..., d, where C is
a constant depending only on the dimension and degree of X and the multiplicity and
maximal slope of F . Since these are given or bounded by P and µ0, respectively, the
bound is uniform for the family in question. Hence the result follows from this and the
Kleiman Criterion 3.3.4.

Corollary 3.3.19. The open moduli substack CohH−ss
P (X) ⊂ CohP (X) of H-ss sheaves

is an algebraic stack of finite type.

3.3.6 Harder-Narasimhan Stratification
In order to use Theorem 2.3.12, we need to find a Θ-stratification on Coh(X). We will
follows [46] and give some idea.

Definition 3.3.20. Consider Q[t] be the polynomial ring in the variable t. An element
f ∈ Q[t] is called a numerical polynomial if f(Z) ⊂ Z. Let the set of all Harder-Narasimhan
types, denoted by HNT, be the set consisting of all finite sequences (f1, . . . , fp) of
numerical polynomials in Q[t], where p is allowed to vary over all integers ≥ 1, such
that the following three conditions are satisfied:

(a) We have 0 < f1 < · · · < fp in Q[t].
(b) The polynomials fi are all of the same degree, say d.
(c) The following inequalities are satisfied

f1
rd(f1)

>
f2 − f1

rd(f2)− rd(f1)
> · · · > fp − fp−1

rd(fp)− rd(fp−1)
.

Remark 3.3.21. By Theorem 3.2.9, for any coherent sheaf E on X, a projective scheme
over a field k, we have the unique Harder-Narasimhan filtration of E . That is, we have

0 = HN0(E ) ⊂ HN1(E ) ⊂ · · · ⊂ HNl(E ) = E
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such that grHN
i (E ) are H-ss of dimension d and for all i we have p(grHN

i (E )) >
p(grHN

i+1(E )). Hence the ordered l-tuple
HN(E ) := (P (HN1(E )), . . . , P (HNl(E ))) ∈ HNT

is called the Harder-Narasimhan type of E .
Now we will use the relative version of Harder-Narasimhan filtration again. Note

that in Theorem 3.3.9 we know after a modification we have such thing.
Now consider such f : X → S and E flat over S, then we can consider the Harder-

Narasimhan function of E is the function
|S| → HNT, s 7→ HN(Es).

One can show (see [52]) that it is upper-semicontinuous w.r.t. the partial order in our
usual meaning.
Remark 3.3.22. In this case, for any τ ∈ HNT, the corresponding level set

|S|τ (E ) = {s ∈ |S| such that HN(Es) = τ}

is locally closed in |S|, the subset |S|≤τ (E ) =
⋃

α≤τ |S|α(E) ⊂ |S| is open in |S|, and
|S|τ (E ) is closed in |S|≤τ (E ).

Here is our main theorem in this section and also the main theorem of [46]:
Theorem 3.3.23. Let X → S be a projective morphism over a locally noetherian
scheme S, with an f -ample line bundle H. Let E be a coherent sheaf on X which is flat
over S, such that the restriction Es is a pure-dimensional sheaf on Xs for each s ∈ S.
Let τ = (f1, ..., fl) ∈ HNT. Then we have the following.
(i) Each Harder-Narasimhan stratum |S|τ (E ) of E has a unique structure of a locally

closed subscheme Sτ (E ) of S, with the following universal property: a morphism
T → S factors via Sτ (E ) if and only if the pullback ET on X×ST admits a relative
Harder-Narasimhan filtration of type τ .

(ii) A relative Harder-Narasimhan filtration on E , if it exists, is unique.
(iii) For any morphism f : T → S of locally noetherian schemes, the schematic stratum

T τ (ET ) equals the schematic inverse image of Sτ (E ) under f .
Proof. See Theorem 5 in [46] for the proof.

Corollary 3.3.24 (Harder-Narasimhan Stratification). Let X be a projective scheme
over a field k. The stack of all flat families of pure-dimensional coherent sheaves on X
with fixed Harder-Narasimhan type τ form an algebraic stack Cohτ (X) over k, which
is a locally closed substack of the algebraic stack Coh(X). Similarly, we have the open
substack Coh≤τ (X) ⊂ Coh(X). These data form a Θ-stratification.
Proof. See Theorem 8 in [46] for the proof. These form a Θ-stratification by the fact
Remark 3.3.22 and Theorem 3.3.23(i).
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3.4 Good Moduli Space of Semistable Sheaves
3.4.1 Existence of Good Moduli Space of Semistable Sheaves
Theorem 3.4.1. If X is a projective scheme over an algebraically closed field k of
characteristic zero, then the stack CohH−ss

P (X) is Θ-complete and S-complete and has a
proper good moduli space

CohH−ss
P (X)→ CohH−ss

P (X).

Proof. We define a map pP : Coh(X)→ Vd where Vd be the vector space of polynomials
of degree ≤ d with the totally order we have used and P is a fixed (Hilbert-)polynomial.
Let P =

∑d
i=0 αi(P )

ti

i! as before, then we let pP (G ) := αd(P )P (G ) − αd(G )P where
P (G ) be the Hilbert polynomial. As pP is just

pP : |Coh(X)| = π0(Coh(X))→ Vd

which satisfies the condition in Theorem 2.3.12. As be definition pP -semistability is just
H-semistability, by Theorem 2.3.12, Corollary 3.3.19 and Corollary 3.3.24 we get the
proper good moduli space

CohH−ss
P (X)→ CohH−ss

P (X).

Well done.

3.4.2 Points In the CohH−ss
P (X)

Here we follows the idea in [7] and Lemma 4.1.2 in [29]. The paper [7] consider the
moduli stack of µ-ss vector bundles over projective curves instead of our case, but the
proofs are similar.

Proposition 3.4.2. Let X is a projective scheme over an algebraically closed field k.

(i) If E is a H-ss sheaf, then the corresponding k-point [E ] ∈ CohH−ss
P (X)(k) contains

the point [grJH E ] in its closure.
(ii) A point [E ] ∈ CohH−ss

P (X)(k) is closed if and only if E is polystable.

Proof. For (i), if E is a H-ss but not H-stable, there exists a non-split extension 0 →
E ′ → E → E ′′ → 0 of H-ss sheaves of the same reduced Hilbert polynomial follows
from a Jordan-Hölder filtration. Let G be the universal family over the affine line
in Ext1(E ′′,E ′) spanned by this extension, then G is a family of H-ss sheaves on X
parameterized by A1 such that Gt

∼= E if t 6= 0 and G0
∼= E ′ ⊕ E ′′. Hence we get

[G ] : A1 → CohH−ss
P (X), 0 7→ [E ′ ⊕ E ′′], t 7→ [E ] for t 6= 0.
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It follows that [E ′ ⊕ E ′′] is contained in the closure of [E ]. Iterating this construction
for E ′ and E ′′ shows that [grJH E ] is in the closure of [E ].

For (ii), if [E ] ∈ CohH−ss
P (X)(k) is closed, then E is H-polystable directly by (i).

Conversely, if E is polystable which is not closed, then take another [F ] in its closure.
By (i) we know that [grJH F ] is in the closure of [F ] and since no two points can be in
the closure of each other, we must have E ≇ grJH F . On the other hand, if Ei is stable
with the same reduced Hilbert polynomial as E , then Ei appears as a direct summand
of E with multiplicity homX(Ei,E ) and similarly for grJH(F ). For any Ei, the function
homX(Ei,−) is upper semicontinuous in the second variable, since [grJH(F )] is in the
closure of [E ], so we have homX(Ei,E ) ≤ homX(Ei, grJH(F )). This means that any
stable summand of E appears in grJH(F ) with at least the same multiplicity. But E
and F have the same rank, so we must have E ∼= grJH(F ), a contradiction. Thus, [E ]
is closed.

Theorem 3.4.3. Let X is a projective scheme over an algebraically closed field k of
characteristic zero. Then the good moduli space CohH−ss

P (X) → CohH−ss
P (X) induce

bijections between the k-points of the good moduli space and S-equivalence classes of
H-ss sheaves.

In particular the good moduli space of H-ss sheaves CohH−ss
P (X) parameterizing the

H-polystable sheaves.

Proof. By Theorem 1.1.3(ii), two k-points [E ], [E ′] ∈ CohH−ss
P (X) map to the same point

in CohH−ss
P (X) if and only if the closures of {[E ]} and {[E ′]} in CohH−ss

P (X) intersect.
On the one hand, if E is any H-ss vector bundle, then by Proposition 3.4.2(i) E

contains grJH(E ) in its closure, so both points map to the same point in CohH−ss
P (X).

On the other hand, if E and E ′ areH-polystable and nonisomorphic, then by Proposition
3.4.2(ii), the corresponding points in CohH−ss

P (X) are closed and distinct, hence map to
distinct points in CohH−ss

P (X).

3.4.3 Projectivity

Now we have the good moduli space CohH−ss
P (X) → CohH−ss

P (X) and CohH−ss
P (X) is a

proper algebraic space. Hence by Tag 0D36 to show CohH−ss
P (X) is a projective scheme

we just need to show there is an ample line bundle on it.
Let X is a projective scheme over an algebraically closed field k of characteristic 0.

Construction 1 (draft) –Modern Method

May we use the similar method of section 4,5 in [7]?

https://stacks.math.columbia.edu/tag/0D36
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Pick universal coherent sheaf Euniv over X × CohH−ss
P (X).

X × CohH−ss
P (X)

X CohH−ss
P (X)

q p

For any G on X define

LG := (det(Rp∗(q∗G ⊗ Euniv)))
∨ .

Proposition 3.4.4. Descend this into LG over CohH−ss
P (X)?

Theorem 3.4.5. In this case CohH−ss
P (X) is a projective scheme over k.

Proof. Some vanishing theorem to get that LG semiample which induce a quasi-finite
(hence finite) f : CohH−ss

P (X) → PM . Hence CohH−ss
P (X) will be a proper scheme. Let

H = f∗OPM (1) which is ample. Hence CohH−ss
P (X) is a projective scheme.

Construction 2–GIT Method
Here we follows chapter 4 in [29] and section 6.7 in [4].

Actually from Theorem 3.3.18, there is an integer N such that for any H-ss sheaf
F with Hilbert polynomial P , F is N -regular. Hence F (N) is globally generated and
h0(F (N)) = P (N). Hence by the proofs of Proposition 3.3.7 and above, there is an
open subscheme U of the Quot scheme Quot

X,P
(OX(−N)P (N)) parameterizing H-ss

sheaves and inducing an isomorphism k⊕P (N) = H0(O
P (N)
X ) ∼= H0(F (N)) which is

invariant under the natural action of GLP (N) on Quot
X,P

(OX(−N)P (N)). Hence

CohH−ss
P (X) ∼= [U/GLP (N)].

As for any such F in U , Aut(F ) ↪→ GLP (N) is just the stabilizer at [OX(−N)P (N) �
F ]. Hence the the scalar matrixes are contained in the stabilizer of any point in
Quot

X,P
(OX(−N)P (N)). Instead of the action of GLP (N) we will therefore consider

the actions of PGLP (N) and SLP (N). We will use the SLP (N) as it is easier to find an
SLP (N)-linearization ample line bundle as below.

Consider

Quot
X,P

(OX(−N)P (N))×X

X Quot
X,P

(OX(−N)P (N))

q p
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Pick Funiv be the universal quotient sheaf on Quot
X,P

(OX(−N)P (N)) ×X. For l � 0

we define
Ll := det(p∗(q∗O(l)⊗Funiv)).

By the construction of quotient scheme, Ll is very ample for l � 0 which also have a
natural GLP (N)-linearization. We fix such l� 0.

Consider the closure U ⊂ Quot
X,P

(OX(−N)P (N)) of U and fix Ll on it for l � 0

with SLP (N)-linearization.

Theorem 3.4.6. In this case we have U = U
GIT−ss

(Ll) and U s = U
GIT−s

(Ll) where
U s are the locus of geometrically H-stable sheaves.
Proof. See Theorem 4.3.3 in [29].

Hence by the basic theory of GIT (one can see Theorem 6.7.6 in [4] or [45]), we get:
Corollary 3.4.7. The good moduli space CohH−ss

P (X) is a projective scheme.

3.4.4 Dimension of Moduli Space of Semistable Sheaves
Let X be a projective scheme over an algebraically closed field of characteristic zero.
Here we follows [29] section 4.5 and Appendix D in [4].
Proposition 3.4.8. The first order deformations of a coherent sheaf E on X up to
isomorphism are bijective to the group Ext1(E ,E ).
Proof. Pick a first order deformation E1 of a coherent sheaf E . Then E1 is flat over k[ε].
Hence tensor 0→ k → k[ε]→ k → 0 we get

0→ E → E1 → E → 0

which gives an element of Ext1(E ,E ). Conversely, given a such extension, then we have
a such flat family over k[ε] by Remark A.2.7 in [4].

Definition 3.4.9. Consider a functor D : Artopk → (Sets) such that D(k) is a single
emelent. The functor D is said to have an obstruction theory with values in a finite
dimensional k-vector space U , if the following hold:
(a) For each small extension A′ → A with kernel J , there is a map of sets ob : D(A)→

U ⊗ J such that the sequence D(A′)→ D(A) ob→ U ⊗ J is exact.
(b) Different small extensions is natural with respective to ob.
Proposition 3.4.10. Consider the deformation functor DF : Artopk → (Sets) by

A 7→ {FA ∈ Coh(XA) : FA ⊗A k ∼= F and flat over A}/ ∼= .

Then DF have an obstruction theory with values in Ext2(F ,F ).
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Proof. This is easy by the injective resolutions and the definitions. For details we refer
[29] 2.A.6.

Theorem 3.4.11. Let F is H-stable over X as a point [F ] ∈ CohH−ss
P (X), then

ÔCohH−ss
P (X),[F ] pro-represents the deformation functor DF : Artopk → (Sets) by

A 7→ {FA ∈ Coh(XA) : FA ⊗A k ∼= F and flat over A}/ ∼= .

Proof. There is a natural map of functors DF → ÔCohH−ss
P (X),[F ] by the openess of H-

stability. In this locus we have the geometric quotient U s → CohH−s
P (X). By the Luna’s

étale slice theorem 1.2.4, let q ∈ U s be a point in the fibre over [F ], then there exists
q ∈ S ⊂ U s open such that ÔS,[q]

∼= ÔCohH−ss
P (X),[F ]. The universal family on U s × X,

restricted to S ×X, induces a map ÔS,[q] → DF which yields the required inverse.

Corollary 3.4.12. Let F be a H-stable point. Then the Zariski tangent space of
CohH−ss

P (X) at [F ] is canonically given by

T[F ]CohH−ss
P (X) ∼= Ext1(F ,F ).

If Ext2(F ,F ) = 0, then CohH−ss
P (X) is smooth at [F ]. In general, there are bounds

ext1(F ,F ) ≥ dim[F ] CohH−ss
P (X) ≥ ext1(F ,F )− ext2(F ,F ).

Proof. Here we will use a conclusion of pure commutative algebra (see the detailed proof
at Proposition 2.A.11 in [29]):

• Suppose that such functor D is pro-represented by a couple (R, ξ) and has an
obstruction theory with values in an r-dimensional vector space U . Let d =
dim(mR/m

2
R), then

d ≥ dimR ≥ d− r.

Moreover if r = 0, then R is isomorphic to a ring of formal power series in d
variables.

Now by this result, Proposition 3.4.8, Proposition 3.4.10 and Theorem 3.4.11, we get
the result.

Remark 3.4.13. When X is a smooth projective variety, using det : CohH−ss
P (X) →

Pic(X) and its differential at a H-stable sheaf F , which is

Tr : T[F ]CohH−ss
P (X) ∼= Ext1(F ,F )→ H1(OX) ∼= T[det(F )]Pic(X),

then one can show that:
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• Let M(Q) be the fibre of the morphism det : CohH−ss
P (X)→ Pic(X) over the point

[Q]. Then for any H-stable F with detF = Q we have

T[F ]M(Q) ∼= Ext1(F ,F )0.

If Ext2(F ,F )0 = 0, then CohH−ss
P (X) andM(Q) are all smooth at [F ]. Moreover

we have

ext1(F ,F )0 ≥ dim[F ]M(Q) ≥ ext1(F ,F )0 − ext2(F ,F )0.

Here Exti(F ,F )0 means the kernel of trace.

We refer the books [21] and Theorem 4.5.4 in [29].



Chapter 4

Bridgeland Stability and Its
Good Moduli Space

4.1 Moduli Stack of Universally Gluable Complexes
Here we will follows papers [25] and [38] (or Tag 0DLB and Tag 0DPV) Here many
results hold for algebraic spaces. But we only care about the schemes.
Definition 4.1.1. Let (X,OX) be a ringed space. Let E ∗ be a complex of OX-modules.
We say E ∗ is strictly perfect if E i is zero for all but finitely many i and E i is a direct
summand of a finite free OX-module for all i.
Definition 4.1.2. Let X be a scheme. An object E ∈ D(OX) is pseudo-coherent if it
is represented by E ∗ such that there exists an open covering X =

⋃
i Ui and for each i a

morphism of complexes αi : E ∗
i → E ∗|Ui where E ∗

i is strictly perfect on Ui and Hj(αi)
is an isomorphism for all j.
Definition 4.1.3. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. An object E ∈ D(OX) is perfect relative to S or S-perfect if E is
pseudo-coherent and E locally has finite tor dimension as an object of D(f−1OS).
Definition 4.1.4. Let f : X → S be a flat morphism of schemes. An S-perfect complex
E ∈ D(OX) is gluable if Rf∗RH om(E,E) ∈ D(OX)≥0. It is universally gluable if this
remains true upon arbitrary base change T → S.
Definition 4.1.5. Let S be a scheme. Let f : X → B be a proper, flat, and of finite
presentation morphism of schemes over S. Let Db

pug(X/B) be the fibred category over
(Sch/S) of bounded universally gluable complex with coherent cohomology.
Theorem 4.1.6. Let S be a scheme. Let f : X → B be a proper, flat, and of finite
presentation morphism of schemes over S. Then Db

pug(X/B) is an algebraic stack locally
of finite presentation over S which has affine diagonal.

73

https://stacks.math.columbia.edu/tag/0DLB
https://stacks.math.columbia.edu/tag/0DPV
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Proof. This require some more advanced stack theory and deformation theory. Actually
we don’t care this proof. We refer Tag 0DLN or [38] Theorem 4.2.1.

We only show that Db
pug(X/B) has affine diagonal. We just need to show: given a

scheme T over B and objects E,E′ ∈ D(OXT
) such that (T,E) and (T,E′) are objects

of the fibre category of Db
pug(X/B) over T , then Isom(E,E′) → T is affine. Here we

need use a part of the proof of the algebraicity (Tag 0DLC):

• In this case the functor H = Hom(E,E′) is an algebraic space affine over T .

Take functors H ′ = Hom(E′, E), I = Hom(E,E) and I ′ = Hom(E′, E′). Then these are
all algebraic spaces affine over T . We find that we have the cartesian

Isom(E,E′) T

H ′ ×T H I ×T I
′c

σ
p

where c(ϕ′, ϕ) = (ϕ ◦ ϕ′, ϕ′ ◦ ϕ) and σ = (id, id). Hence Isom(E,E′)→ T is affine.

4.2 Basic Facts of t-Structures
4.2.1 Basic Definitions of t-Structures
Here we give a basic introduction of t-structures. We follows the lecture notes [17].
Given a triangulated category D .

Definition 4.2.1. Pick two full subcategories D≤0,D≥0 of D , We call the pair (D≤0,D≥0)
to be a t-structure over D if

(a) Let D≤n := D≤0[−n],D≥n := D≥0[−n], then D≤−1 ⊂ D≤0,D≥1 ⊂ D≥0.
(b) We have Hom(D≤0,D≥1) = 0.
(c) For any X ∈ D , there exists Y ∈ D≥0 and Z ∈ D≥1 filled the following distin-

guished triangle:
Y → X → Z → Y [1].

Define D♥ = D≤0 ∩D≥0 to be the heart of this t-structure. If
⋂

n D≥n =
⋂

n D≤n = 0,
then we call this t-structure non-degenerate.

Example 4.2.1. (i) Given any triangulated category D . we have the trivial t-
structure D≤0 = D ,D≥0 = 0.

https://stacks.math.columbia.edu/tag/0DLN
https://stacks.math.columbia.edu/tag/0DLC
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(ii) Given an abelian category A and its derived category D := D(A ). Let

D≤0 = {K ∈ D : H i(K) = 0, i > 0};
D≥0 = {K ∈ D : H i(K) = 0, i < 0}.

One can see the first condition of t-structure holds trivially. The third condition
we just need to consider:

τ≤0(X)→ X → τ≥1(X)→ τ≤0(X)[1].

For the second, consider K ∈ D≤0, L ∈ D≥1, pick f : K → L and its representa-
tion:

τ≤0K ′

K K ′ Lqis

β,qisα,qis g

where we replace K ′ to be τ≤0K ′. As g = 0, we have f = 0. Hence we get a
t-structure.

Hence the t-structure is some kind of generalization of derived categories.

4.2.2 Canonical Functors about t-structures
Lemma 4.2.2. Let D be a triangulated category, for i ∈ {1, 2} we consider two distin-
guished triangle:

X → Y → Z
di−→ X[1],

Then if Hom(X[1], Z) = 0, we have d1 = d2.

Proof. Consider:
X Y Z X[1]

X Y Z X[1]
d2

d1

idX idY idXc

where c follows from the definition of triangulated category. By some diagram chase we
get idZ = c, well done.

Proposition 4.2.3. Let (D≤0,D≥0) be a t-structure of D .

(i) The inclusion D≤n → D has a right adjoint τ≤n : D → D≤n given by a canonical
τ≤n(X)→ X.
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(ii) The inclusion D≥n → D has a left adjoint τ≥n : D → D≥n given by a canonical
τ≥n(X)→ X.

(iii) For any X ∈ D , there exists a unique δ : τ≥n+1(X) → τ≤n(X)[1] such that we
have the distinguished triangle:

τ≤n(X)→ X → τ≥n+1(X)
δ−→ τ≤n(X)[1]

(standard triangle) and δ is functorial.

Proof. By shifting n times we can let n = 0. By the definition (c) of t-structure we
can get (i)(ii). Again (iii) follows from definition (c) of t-structure and the uniqueness
follows from Lemma 4.2.2 and definition (b) of t-structure.

Corollary 4.2.4. About τ≤n, τ≥n, we have the following:

(i) We have τ≤n(X[m]) = (τ≤n+m(X))[m] and τ≥n(X[m]) = (τ≥n+m(X))[m].
(ii) X ∈ D≤n if and only if τ≤n(X) ∼= X if and only if τ>n(X) = 0; and X ∈ D≥n if

and only if τ≥n(X) ∼= X if and only if τ<n(X) = 0.
(iii) For distinguished triangle X → Y → Z → X[1], if X,Z ∈ D≤n, then Y ∈ D≤n; if

X,Z ∈ D≥n, then Y ∈ D≥n.
(iv) If a < b, then τ≤a ◦ τ≤b = τ≤a = τ≤b ◦ τ≤a and τ≤a ◦ τ≥b = 0 = τ≥b ◦ τ≤a, and

τ≥a ◦ τ≥b = τ≥b = τ≥b ◦ τ≥a.
(v) Fir any a, b ∈ Z we have canonical τ≤a ◦ τ≥b ∼= τ≥b ◦ τ≤a.

Proof. (i)(ii)(iv) follows from the definitions and adjointness. (iii) is easy to verity. (v)
is complicated and we refer [28] Proposition 8.1.8.

4.2.3 The Properties of Heart D♥

Fix a triangulated category D .

Definition 4.2.5. Define H0 : D → D♥ as X 7→ (τ≤0 ◦ τ≥0)(X) and Hn(−) :=
H0((−)[n]).

Lemma 4.2.6. We have:

(i) For any X ∈ D , we have

Hn(X)[−n]→ τ≥n(X)→ τ≥n+1(X)→ Hn(X)[−n+ 1],

In particular, if X ∈ D≥a then X ∈ D≥n if and only if H i(X) = 0 for any i < n.
(ii) For distinguished triangle X → Y → Z → X[1], if X,Z ∈ D♥, then Y ∈ D♥.
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Proof. (i) using standard triangle of τ≥n(X). (ii) use Corollary 4.2.4(iii) twice.

Remark 4.2.7. For (ii), if X,Y ∈ D♥, then Z may not in heart. Consider:

Z 0−→ Z i−→ Z⊕ Z[1] pr2−→ Z[1].

Theorem 4.2.8. D♥ is an abelian category.

Proof. Additive follows from Corollary 4.2.4(iii). Now let X,Y ∈ D♥ and f : X → Y .
Pick a distinguished triangle

X
f−→ Y → Z → X[1].

Easy to see that Z ∈ D≤0 ∩D≥−1.
•Claim 1. Y → Z → H0(Z)is the cokernel of f and H−1(Z) → Z[−1] → X is the
kernel of f .

Fix W ∈ D♥, taking Hom(−,W ) we get the exact sequence

0→ Hom(H0(Z),W )→ Hom(Y,W )→ Hom(Z,W ).

By definition we get the claim 1.
•Claim 2. We have coim(f) ∼= Im(f).

For canonical map α : Y → coker(f), β : ker f → X we have coim(f) = cokerβ =
cone(β). Similarly Im(f) = kerα = cone(α)[−1]. So we just need to show cone(β) ∼=
cone(α)[−1]. By octahedral axiom we have the exact diagram:

H−1(Z) X cone(β)

Z[−1] X Y

H0(Z)[−1] 0 Q

β

idX

Then all the elements in D♥. By the final row we have Q ∼= H0(Z). It’s not hard to
see that Y → Q and Y → H0(Z) are the same. Hence by the right column we get the
claim.

Remark 4.2.9. Actually the heart of t-structure determined the t-structure itself: since
the heart determined H0, then we get the t-structure after shifting.

Corollary 4.2.10. Let X,Y, Z ∈ D♥, then 0→ X
a→ Y

b→ Z → 0 exact if and only if
there is a distinguished triangle X a→ Y

b→ Z → X[1].
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Proof. ⇐ from cokera = H0(Z) = Z, ker a = H−1(Z) = 0.
⇒. As a injective if and only if ker a = 0 if and only if H−1(cone(a)) = 0 if and only

if we have
cone(a) ∼= H0(cone(a)) = cokera = Z.

Hence we have the distinguished triangle X a→ Y
b→ Z → X[1]. The uniqueness follows

from Lemma 4.2.2.

Corollary 4.2.11. Let X,Z ∈ D♥, then

Ext1D♡(Z,X) ∼= HomD(Z,X[1]) =: Ext1D(Z,X).

Here Ext1D♡(Z,X) means extension.

Proof. Pick (0 → Y → Y → Z → 0) ∈ Ext1D♡(Z,X), by the previous corollary we get
an element in HomD(Z,X[1]); conversely pick δ ∈ HomD(Z,X[1]), filled as:

Z
δ→ X[1]→ cone(δ)→ Z[1].

Hence we have X → cone(δ)[−1] → Z
δ→ X[1]. Since X,Z ∈ D♥, by Lemma 4.2.6(ii)

we get cone(δ)[−1] ∈ D♥. By the previous corollary we get the result.

Remark 4.2.12. (i) In general D(D♥) 6= D , but Beilinson in perverse sheaf and
constructable sheaf we have D(D♥) ∼= D .

(ii) This false for higher Ext. For example consider X = S2 and D := DLoc(X).
Then the canonical D≤0 and D≥0 forms a t-structure. Then D♥ ∼= Loc(X). As
π1(X) = 0, by monodromy representation we know that it is equivalent to the
category of abelian groups. Hence

Ext2D♡(Z,Z) = Ext2Ab(Z,Z) = 0,

Ext2D(Z,Z) = H2(X,Z) = Z,

Well done.
(iii) Furthermore, whether D♥ ↪→ D can be extended to a exact functor Db(D♥)→ D?

It’s unknown in general, but in special we have more: Beilinson shows this is
right for fibred derived categories; Lurie shows this is right for ∞- categories. The
situation of perverse t-structure follows from Beilinson fundamental lemma.

Theorem 4.2.13. The functor H0 : D → D♥ is a cohomology functor.

Sketch of the proof. Pick a distinguished triangle X → Y → Z → X[1] in D , we just
need to show H0(X) → H0(Y ) → H0(Z) is exact. We omit the diagram chase and
consider the main diagrams. For details we refer [28] Proposition 8.1.11.
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•Step 1. If X,Y, Z ∈ D≥0, then 0→ H0(X)→ H0(Y )→ H0(Z) is exact.
For any A ∈ D♥, acting Hom(A,−) on X → Y → Z → X[1] we get the long exact

sequence:

0 = Hom(A,Z[1])→ Hom(A,H0(X))→ Hom(A,H0(Y ))→ Hom(A,H0(Z)).

By Yoneda’s lemma we get the result.
•Step 2.If Z ∈ D≥0,then 0 → H0(X) → H0(Y ) → H0(Z) is exact; if X ∈ D≤0, then
H0(X)→ H0(Y )→ H0(Z)→ 0 is exact.

Just need to consider the first case. By the definnition (b) of t-structure we have
τ<0(X) = τ<0(Y ). By octahedral axiom we get

τ<0(X) τ<0(Y ) 0

X Y Z

τ≥0(X) τ≥0(Y ) Z

Now using Step 1 at the bottom row.
•Step 3.Finish the proof.

By octahedral axiom again we get

τ≤0(X) Y W

X Y Z

τ>0(X) 0 Q

Hence Q ∼= (τ>0(X))[1]. Now using Step 2.

Definition 4.2.14. Let F : D1 → D2 be a triangulated functor. Let (D≤0
1 ,D≥0

1 ) and
(D≤0

2 ,D≥0
2 ) are their t-structures.

(a) We call F is left t-exact if F (D≥0
1 ) ⊂ D≥0

2 .
(b) We call F is right t-exact if F (D≤0

1 ) ⊂ D≤0
2 .

(c) We call F is t-exact if it is both left t-exact and right t-exact.

We some times let pF := H0 ◦ F ◦ ι : D♥
1 → D♥

2 .
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4.3 Moduli Stack of Objects in t-Structures
Through out this section we will assume that k is a field and X is a projective scheme
over k.

4.3.1 Families of t-Structures
Definition 4.3.1. Given a t-structure on Db(X) and a k-algebra R, the induced t-
structure on Dqc(XR) is the unique t-structure for which

Dqc(XR)
≤0 :=


The smallest full subcategory of Dqc(XR)

containing R� E, ∀E ∈ Db(X)≤0 and that
is closed under small colimits, extensions


and Dqc(XR)

≥0 is the category of E ∈ Dqc(XR) such that Hom(F,E) = 0, ∀F ∈
Dqc(XR)

≤0. The truncation functors commute with filtered colimits.

Proof. This holds since the category Dqc(XR) is a presentable stable ∞-category and
the Proposition 1.4.4.11 and Proposition 1.4.4.13 in [40].

Remark 4.3.2. Hence R generated by Dqc(ModR)≤0 under colimits and Db(X)≤0

generates Dqc(X)≤0 under extensions and colimits. So Dqc(X)≤0 = Ind(Db(X)≤0).
Hence Dqc(X)♥ = Ind(Db(X)♥).

Lemma 4.3.3. For any ring map R → S, the induced map φ : XS → XR has the
following properties with respect to the t-structure we have constructed:

(i) φ∗ : Dqc(XR)→ Dqc(XS) is right t-exact,
(ii) φ∗ : Dqc(XS)→ Dqc(XR) is t-exact,
(iii) any E ∈ Dqc(XS) lies in Dqc(XS)

♥ (respectively Dqc(XS)
≤0 or Dqc(XS)

≥0) if
and only if φ∗(E) does,

(iv) if R→ S is flat then φ∗ is t-exact, and
(v) if {R → Sα}α∈I is a flat cover of Spec(R) then E ∈ Dqc(XR) lies in the heart if

and only if φ∗α(E) ∈ Dqc(XSα)
♥ for all α ∈ I.

Proof. (i) is trivial and (ii) using an equivalence of stable ∞-categories which we omit-
ted. (iii) follows formally from the fact that φ∗ is t-exact and conservative. (iv) follows
from (ii) and the fact that φ∗φ∗E ' S⊗L

RE, so if R→ S is flat then S is a filtered colimit
of free R-modules. (v) follows from (iv) and the fact that

∏
α φ

∗
α is conservative.

Remark 4.3.4. Hence Dqc(XR)
[a,b] = {E ∈ Dqc(XR) : p∗(E) ∈ Dqc(X)[a,b]} where

p : XR → X.
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Remark 4.3.5. By some theory of simplicial scheme and ∞-categories, we have:
For any algebraic k-stack Y , there is a canonical t- structure induced on Dqc(XY )

in which Dqc(XY )≤0 (respectively Dqc(XY )≥0) is the full subcategory of complexes E
such that for any smooth map SpecR → Y we have E|XR

∈ Dqc(XR)
≤0 (respectively

Dqc(XR)
≥0). It suffices to check if E ∈ Dqc(XY )≤0 or E ∈ Dqc(XY )≥0 after restricting

to a smooth cover of Y by affine schemes. See [25] Corollary 6.1.3 for the proof.

Proposition 4.3.6. Assume the t-structure on Db(X) is noetherian and nondegener-
ate, and let R be an algebra that is essentially of finite type over k. Then the trunca-
tion functors on Dqc(XR) preserve Db(XR), and the induced t-structure on Db(XR) is
noetherian.

Proof. See Lemma 6.1.5 and Proposition 6.1.4 in [25].

4.3.2 Moduli Stack of Objects in t-Structures
Definition 4.3.7. Given a t-structure on Db(X) and a k-algebra R, we say that a
complex E ∈ Dqc(XR) is R-flat if E ⊗L

R M ∈ Dqc(XR)
♥ for all R-module M .

We define the moduli of flat families of objects in Db(X)♥ to be the fibred category
MInd(Db(X)♡) that assigns to an affine k-scheme SpecR the groupoid

{E ∈ Db(XR) : E is R-perfect and R-flat}.

Lemma 4.3.8. For E ∈ Dqc(XR) the following are equivalent:

(i) E is R-flat.
(ii) φ∗E ∈ Dqc(XS)

♥ for any map φ : XS → XR induced by a map of k-algebras
R→ S.

(iii) E ⊗L
R R/I ∈ Dqc(XR)

♥ for all finitely generated ideals I ⊂ R.

If the t-structure on Db(X) is non-degenerate, these are equivalent to

(iv) E ∈ Dqc(XR)
♥ and the functor

E ⊗R (−) = H0(E ⊗L
R (−)) : ModR → Dqc(XR)

♥

is exact.

Furthermore, if R is Noetherian and E ∈ Dqc(XR)
≤0 and is pseudo-coherent, then these

are equivalent to

(v) E|R/m ∈ Dqc(XR/m)
♥ for all maximal ideals m ⊂ R.
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Proof. By Lemma 4.3.3, φ∗E ∈ Dqc(XS)
♥ if and only if φ∗(φ∗E) = E⊗L

RS ∈ Dqc(XR)
♥.

So (i)⇒ (ii)⇒ (iii) tautologically. For (iii)⇒ (i), asDqc(XR)
♥ is closed under filtered

colimits and ModR is compactly generated by finitely presented modules, we just need
to show E ⊗L

R M ∈ Dqc(XR)
♥ for all finitely presented R-module M . Actually this is

the same as the case in commutative algebra (Tag 00HD).
We omit the proof about (v) althrough the proof is easy, but it needs the Grothendieck

existence theorem for the stable ∞-category (see the proof in Lemma 6.2.2 in [25]). We
now show that (i)⇔ (iv).

We can easy to see that E ⊗L
R (−) : Dqc(R) → Dqc(XR) is right t-exact for any

E ∈ Dqc(XR)
♥, by presenting any connective complex of R-modules as a complex of

free modules M∗ in cohomological degree ≤ 0, then observing that E ⊗L
R M∗ lies in

the category generated by E under extensions, left shifts, and filtered colimits. The
implication (i)⇒ (iv) follows from this observation and the long exact sequence for the
cohomology of an exact triangle.

To show (iv) ⇒ (i), one considers for any M ∈ ModR a presentation 0 → K →
RS →M → 0. The exactness of H0(E⊗L

R (−)) and the long exact cohomology sequence
implies that H−1(E ⊗L

R M) = 0, and H−i(E ⊗L
R M) ∼= H−i−1(E ⊗L

R M) for all i > 0.
Because this holds for all R-modules simultaneously, it follows that H−i(E ⊗L

R M) = 0
for all i > 0. Assuming the t-structure is non-degenerate, i.e.,

⋂
n≥0Dqc(X)≤−n = 0,

this implies that E ⊗L
R M ∈ Dqc(XR)

♥ by Lemma 4.2.6(i).

Corollary 4.3.9 (Open Heart Property). Let R be a finite type k-algebra and let
E ∈ Db(XR). The set of prime ideals

U := {p ∈ SpecR : E|Rp ∈ Db(XRp)
♥}

is open, and it contains those primes for which E|κ(p) ∈ Dqc(Xκ(p))
♥.

Proof. As the restriction along the map XRp → XR is t-exact, the subset U is the
complement of the image under the projection XR → SpecR of the closed subsets
supp(τ≤−1(E)) and supp(τ≥1(E)). Therefore SpecR\U is closed since the projection
XR → SpecR is proper. Finally, by Lemma 4.3.8(v), if E|κ(p) ∈ Dqc(Xκ(p))

♥ then
E|Rp ∈ Dqc(XRp)

♥ (???).

Definition 4.3.10. A t-structure on Db(X) has the generic flatness property if given a
domain R of finite type over k with fraction field K and an object E ∈ Db(XR) such
that EK ∈ Db(XR)

♥, there is an f ∈ R such that E|SpecRf
∈ Db(XRf

) is flat.

Example 4.3.1. By Tag 052A the usual t-structure of Db(X) has the generic flatness
property.
Remark 4.3.11. Note that when char(k) = 0, then generic flatness is equivalent to the
following condition: for every smooth k-algebra R and every E ∈ Db(XR)

♥, there is a
dense open subset U ⊂ SpecR such that E|U is flat.

https://stacks.math.columbia.edu/tag/00HD
https://stacks.math.columbia.edu/tag/052A


4.3. MODULI STACK OF OBJECTS IN t-STRUCTURES 83

Indeed, asDb(XR)→ Db(XK) is t-exact, then E ∈ Db(XR)
♥ implies E ∈ Db(XK)♥.

Hence the result follows from the generic flatness. Conversely, consider an integral k-
algebra R and E ∈ Db(XR). If EK ∈ Db(XR)

♥, then by Corollary 4.3.9 we can find a
dense open U ⊂ SpecR such that E|U ∈ Db(XU )

♥. By generic smoothness for reduced
k-algebras we can pass to a smaller open subset U ′′ ⊂ U that is smooth over k. Hence
the result follows.

Note that the only step we use char(k) = 0 is the generic smoothness. This holds
for perfect fields. We refer Tag 020I and Tag 056V.
Theorem 4.3.12. Given a noetherian t-structure on Db(X) that satisfies the generic
flatness condition, the stack MInd(Db(X)♡) is an open substack of Db

pug(X), hence it is
an algebraic stack locally of finite type over k with affine diagonal.
Proof. By the definition of t-structure, any object in the heart of a t-structure is gluable.
Hence by Lemma 4.3.8(ii), any complex E ∈ MInd(Db(X)♡)(R) is universally gluable.
Hence MInd(Db(X)♡) is a full substack of Db

pug(X). We just need to show that for any
k-algebra R and any E ∈ Db

pug(X)(R), there is an open subset U ⊂ SpecR such that
for any homomorphism of k-algebras φ : R → S, we have φ∗(E) ∈ MInd(Db(X)♡)(S) if
and only if the image of SpecS → SpecR lies in U . Now we use a finiteness result as
follows in [38] Proposition 2.2.1:

• As E is relatively perfect, there is a subalgebra R′ ⊂ R of finite type over k and
a relatively perfect complex E′ ∈ Db(XR′) such that E = E′ ⊗R′ R.

Hence we may assume that R is of finite type over k by taking preimage.
Now we will show that if R is finite type and the generic flatness property holds,

then the set of prime ideals

U := {p ∈ SpecR : E|R/p ∈ Db(XR/p)
♥}

is open and satisfies the desired condition.
A simple inductive argument reduces one to the case where R is integral, so we

will assume this. By Corollary 4.3.9, the property E|R/p /∈ Db(XR/p)
♥ is closed under

specialization, hence if K is the field of fractions of R and EK /∈ Db(XK)♥ then Z = ∅.
On the other hand, if EK ∈ Db(XK)♥ then by generic flatness we know that there is an
f such that E|Rf

is flat, hence Z ⊂ SpecR/(f) which is closed by noetherian induction.
Hence U is open.

Finally by Lemma 4.3.8(v), the restriction E|U is U -flat (???) and relatively perfect,
so φ∗(E) is S-flat for any morphism φ : SpecS → SpecR landing in U . Conversely for
any morphism φ : SpecS → SpecR such that there is some point p ∈ SpecS lying over
Z, φ∗(E)|p /∈ Dqc(Xκ(p))

♥, so φ∗(E) is not flat by Lemma 4.3.8(ii).

Remark 4.3.13. Actually in this case the stack MInd(Db(X)♡) agrees with other similar
descriptions of moduli functors in the following ways:

https://stacks.math.columbia.edu/tag/020I
https://stacks.math.columbia.edu/tag/056V
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(a) On finite type k-algebras R, MInd(Db(X)♡)(R) is naturally equivalent to the moduli
functor:

{E ∈ Db(XR) : Li∗mE ∈ Db(Xκ(m)) ∈ Db(Xκ(m))
♥}.

(b) If the t-structure on Db(X) is bounded with respect to the usual t structure, then
for any k-algebra R, MInd(Db(X)♡)(R) is naturally equivalent to

{E ∈ Dqc(XR) : E is pseudo-coherent and R-flat}.

(c) If the t-structure on Db(X) is noetherian and bounded with respect to the usual
t-structure, then MInd(Db(X)♡)(R) is naturally equivalent to the moduli functor
associated to Dqc(X)♥:

{E ∈ ModR(Dqc(X)♥) : finitely presented and R-flat}

where R-flatness here means that the (non-derived) tensor product functor E ⊗R

(−) : ModR → ModR(Dqc(X)♥) is exact.

See the proof of the second part of Proposition 6.2.7 in [25]. Then all these stacks are
algebraic stacks locally of finite type over k with affine diagonal. Note that (c) is our
special case of Definition 2.1.11 when A = Dqc(X)♥ = Ind(Db(X)♥).

Corollary 4.3.14. Fix a t-structure on Db(X) that is noetherian, bounded with respect
to the usual t-structure, and satisfies generic flatness. Then the stack MInd(Db(X)♡) is
Θ-complete and S-complete with respect to DVR’s essentially of finite type over k.

Proof. This follows from Remark 4.3.13(c), Proposition 2.2.7 and Proposition 2.2.8.

4.4 Bridgeland Stability Condition
We will follow the paper [19] and the lecture note [43].

4.4.1 Stability of Abelian Categories
Definition 4.4.1. Let A be an abelian category. Let Z : K0(A) → C be an additive
homomorphism which is called a stability function if for all nonzero E ∈ A we have:

(a) =(Z(E)) ≥ 0.
(b) =(Z(E)) = 0 implies <(Z(E)) < 0.

Define R(E) := =(Z(E)) to be the generalized rank of E, and D(E) := −<(Z(E)) is
called the generalized degree of E. Then M(E) = R(E)/D(E) is called the generalized
slope of E.



4.4. BRIDGELAND STABILITY CONDITION 85

Remark 4.4.2. We call Z : K0(A)→ C a weak stability function if it satisfies Z(E) ∈
H ∪ R≤0 instead of H ∪ R<0.

Definition 4.4.3. An object E ∈ A is Z-stable (resp. Z-semistable) if for all nonzero
F ⊊ E, M(F ) < M(E) (resp. M(F ) ≤M(E)).

Definition 4.4.4. The pair (A, Z) as above is called a stability condition if any nonzero
object has a Harder-Narasimhan filtration much like before: a filtration 0 = E0 ⊂ · · · ⊂
En = E such that Ei/Ei−1 is Z-semistable and M(Ei+1/Ei) > M(Ei/Ei−1) for all i.

Remark 4.4.5. Similar as before, the Harder-Narasimhan filtration is unique up to
unique isomorphism if it exists. We also call E is torsion if Z(E) ∈ R≤0 and torsion free
if =(Z(E)) > 0.

As the stability of sheaves before we have:

Lemma 4.4.6. Let A,B ∈ A be Z-semistable objects with M(A) > M(B). Then
HomA(A,B) = 0.

Proof. The same proof of Lemma 3.2.4.

Proposition 4.4.7. Let A be an noetherian abelian category. Let Z : K0(A)→ C be a
stability function. Assume that the generalized rank R : K0(A)→ R has discrete image.
Then for any E ∈ A, the generalized degrees of subobjects of E are bounded above.
Finally the Harder-Narasimhan filtrations exist, i.e. (A,Z) is a stability condition.

Proof. We refer [M392cBrSt] Lemma 8.10 and Proposition 8.18 for the proof.

4.4.2 Basic Properties of Bridgeland Stability
Definition 4.4.8. A slicing P of a triangulated category D is a collection of full additive
subcategories P(φ) for each φ ∈ R satisfying:

(a) P(φ+ 1) = P(φ)[1].
(b) For all φ1 > φ2 we have Hom(P(φ1),P(φ2)) = 0.
(c) For each 0 6= E ∈ D there is a sequence φ1 > · · · > φn of real numbers and a

sequence of distinguished triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

where Ai ∈ P(φi) for each i (Harder-Narasimhan filtration).

https://web.ma.utexas.edu/users/a.debray/lecture_notes/m392c_BrSt_notes.pdf
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Remark 4.4.9. We have the following remarks:

(a) We call the objects in P(φ) semistable of phase φ.
(b) Given the slicing P, the sequence of φ and the Harder-Narasimhan filtration are

automatically unique! Sometimes we set φ+P(E) = φ1 and φ1P(E) = φn.
(c) If P(φ) 6= 0 only for φ ∈ Z, then the slicing is equivalent to the datum of a bounded

t-structure with heart φ(0).
(d) More generally, given a slicing P, it’s easy to see that (P(> a),P(≤ a + 1))

and (P(≥ a),P(< a + 1)) are t-structures. Their hearts are P((a, a + 1]) and
P([a, a + 1)). In other words, a slicing is always a refinement of a bounded t-
structure.

(e) Let D♥1 ,D♥2 be two hearts of bounded t-structures, if D♥1 ⊂ D♥2 then D♥1 =
D♥2; similarly if P1 and P2 are two slicings such that P1(φ) ⊂ P1(φ) for all φ ∈ R,
then P1 = P2.

Definition 4.4.10. For a triangulated category D . We fix a finite-rank lattice Λ and a
surjective group homomorphism v : K0 � Λ. Then the Bridgeland stability condition on
D with respect to Λ and v is a pair σ = (P, Z) where P is a slicing and Z : Λ→ C is a
group homomorphism called the central charge such that:

(a) For every 0 6= E ∈ P(φ) we have

Z(v(E)) ∈ R>0e
iπϕ.

(b) (support property)

Cσ := inf
{
|Z(v(E))|
‖v(E)‖

: E ∈ P(φ)\0, φ ∈ R
}
> 0.

Here the objects in P(φ) the σ-semistable of phase φ .

Remark 4.4.11. (a) The stability condition without the support property we will call
it the Bridgeland prestability condition. But in the original [19] this property wasn’t
part of the definition. But was added by Kontsevich-Soibelman in [31].

(b) The support property is equivalent to Bridgeland’s notion of a full locally-finite
stability condition in [20] Definition 4.2. There is an equivalent formulation: There
is a symmetric bilinear form Q on ΛR such that

– all σ-semistable objects E satisfy the inequality Q(v(E), v(E)) ≥ 0;
– all non zero vectors v ∈ ΛR with Z(v) = 0 satisfy Q(v, v) < 0.
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The first condition can be viewed as some generalization of the classical Bogo-
molov inequality for vector bundles. We refer [M392cBrSt] Lemma 13.15 for the
detailed proof.

(c) Bridgeland stability came out of physics, more precisely, homological mirror sym-
metry. Douglas wrote some stuff about it, and Bridgeland stability came out of
Bridgeland’s work to make everything mathematically precise.

Remark 4.4.12. Let D be a triangulated category with a heart of a bounded t-structure
D♥ ⊂ D . Consider homomorphisms (Corollary 4.2.10)

i : K0(D
♥)→ K0(D)

induced by inclusion and

F : K0(D)→ K0(D
♥), [X] 7→

∑
n∈Z

(−1)n[Hn
D♡(X)].

Then we can show that these are inverse to each other.
In a special case, let A be an abelian category and Db(A) be its bounded derived

category. Then for any heart of a bounded t-structure Db(A)♥ ⊂ Db(A) there is a
natural identification between Grothendieck groups

K0(Db(A)♥) = K0(Db(A)) = K0(A)

as A here is just a special heart.

Remark 4.4.13. Here we discuss a typical choice of Λ.
Let D be a triangulated category linear over a field k. Let D is of finite type,

that is, for every pair of objects E and F of D the vector space
⊕

i HomD(E,F [i])
is finite-dimensional. We define the Euler pairing on K0(D) defined as χ(v, w) :=∑

i(−1)i dimk HomD(v, w[i]).
We define the numerical Grothendieck group Knum

0 (D) is defined as K0(D)/T where
T ⊂ K0(D) consist of v ∈ K0(D) such that χ(v, w) = 0 for all w ∈ K0(D).

We call D is numerically finite if Knum
0 (D) has finite rank. In this case the Bridgeland

stability condition on D with respect to Knum
0 (D) is called the numerical Bridgeland

stability.
Even D is not numerically finite, we sometimes will consider the surjection K0(D)�

Knum
0 (D)� Λ for a finite rank Λ.

Remark 4.4.14. If we consider D := Db(X) for a projective smooth variety X of
dimension d over an algebraically closed field k, we claim that Db(X) is numerically
finite.

https://web.ma.utexas.edu/users/a.debray/lecture_notes/m392c_BrSt_notes.pdf
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By HRR formula we have

χ(v, w) =

∫
X
ch(v∨)ch(w)td(X).

By [22] Example 15.2.16 we know that ch : K0(X)Q → CH∗(X)Q is an isomorphism.
Then we get ch : Knum

0 (X)Q ∼= CH∗
num(X)Q by HRR again. Hence we just need to show

CH∗
num(X) is of finite rank.
Pick a Weil cohomoloty theory H∗, for example, take algebraic de Rham cohomology

for characteristic zero and take crystalline cohomology for positive characteristic. We
just need to prove that dimQ CHi

num(X)Q ≤ dimH2i(X) =: b2i(X). For simplicity we
take étale cohomology H∗

ét(X,Qℓ) of Qℓ-coefficient with ` 6= char(k). This is classical.
Choose α1, ..., αm ∈ Zd−i(X) whose classes in H2d−2i

ét (X,Qℓ) form a maximal set of
Qℓ-linearly independent elements in the image of the cycle class map clX : Zd−i(X)→
H2d−2i

ét (X,Qℓ). Clearly m ≤ b2d−2i(X) = b2i(X). Consider the linear map

λ : CHi(X)→ Zm, β 7→
(∫

X
β · α1, ...,

∫
X
β · αm

)
.

We claim kerλ = Zi
num(X). Trivially Zi

num(X) ⊂ kerλ. Conversely, set α ∈ CHd−i(X)
and clX(α) =

∑
νjclX(αj) where νj ∈ Qℓ. Then∫

X
β · α = tr(clX(α) ∪ clX(β))

=
∑
j

νjtr(clX(αj) ∪ clX(β))

=
∑
j

νj

∫
X
β · αj .

Hence if β ∈ kerλ, then β ∈ Zi
num(X). Hence we get the claim. By the claim we get

Bi(X) ↪→ Qm. Hence well done.

Proposition 4.4.15. If σ = (P, Z) is a Bridgeland stability condition, then P(φ) is a
finite-length abelian category, that is, it is both noetherian and artinian.

Proof. As P(φ) ⊂ P((a, a+ 1]) for some a ∈ R, then we just need to show that P(φ) is
closed under kernels and cokernels. This is trivial.

Now we will just show that P(φ) is noetherian since there is a similar proof about
P(φ) is artinian. Given E ∈ P(φ) and an ascending chain E0 ⊂ E1 ⊂ · · · ⊂ E, let
Ai := Ei/Ei−1, then for each n ≥ 0 we have

Z(v(E)) = Z(v(E/En)) +
n∑

i=1

Z(v(Ai)).
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Since all Z(v(Ai)) and Z(E/En) lie on the same ray, then

|Z(v(E))| = |Z(v(E/En))|+
n∑

i=1

|Z(v(Ai))|

≥
n∑

i=1

|Z(v(Ai))|.

Set sn :=
∑n

i=1 |Z(v(Ai))|. As sn is monotonically increasing in n and bounded, so
it converges. Hence limi→∞ |Z(v(Ai))| = 0. The support property says that there’s a
constant C such that |Z(v(Ai))| ≥ C‖v(Ai)‖ for all i, and therefore limi→∞ ‖v(Ai)‖ = 0
too. But v(Ai) ∈ Λ ⊂ ΛR, so since it converges in a discrete space, we have v(Ai) = 0
for i large enough, which means Z(v(Ai)) = 0 for i large enough, which means Ai = 0
for i large enough.

Definition 4.4.16. A σ-stable object of phase φ is a simple object of P(φ).
Hence in this case we can define the Jordan-Hölder filtrations. Two objects E,E′ ∈

P(φ) are S-equivalent if their Jordan-Hölder filtrations have the same factors.

Although the definition we gave is short and good for abstract argumentation, but
it is not very practical for finding concrete examples. The following result will give us
a nice equivalent formulation.

Proposition 4.4.17. Let D be a triangulated category. Then, specifying a Bridgeland
stability condition σ = (P, Z1) on D is equivalent to specifying a stability condition
Z2 : K0(D♥)→ C of D♥ which is a heart of a bounded t-structure on D as in Definition
4.4.4, such that

inf
{
|Z(v(E))|
‖v(E)‖

: E ∈ D♥\0 is Z2-semistable
}
> 0.

Proof. We follows [19] Proposition 5.3.
By Remark 4.4.9(d), P((0, 1]) is the heart of a bounded t-structure on D , so call it

D♥. By definition, Z1 maps D♥ to complex numbers with argument π/2 ≤ θ ≤ π, so
Z1 restricts to a stability condition on D♥.

Coversely, suppose Z2 : K0(D♥)→ C is a stability condition on D♥. For φ ∈ (0, 1],
define

P(φ) = {E ∈ D♥ : E is Z2-semistable of phase φ}.
Then for φ ∈ R, let n := dφe−1 and P(φ−n)[n]. Then (and we can check here) (P, Z2)
is a Bridgeland stability condition.

Example 4.4.1. When we consider a nonsingular projective curve X over an alge-
braically closed field k of characteristic zero. Then define a stability function Z(E) =
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− degE + i rankE on Coh(X). Hence we defined gives a Bridgeland stability condition
on the Db(X).

Example 4.4.2. The semistability of quiver representation is also a special case.

Finally we will give some famous results about deformations of Bridgeland stability.
The first step is to equip topology on its space.

Definition 4.4.18. Let D be a triangulated category. We define Slice(D) the set of
slicings on D and StabΛ(D) denote the set of stability conditions on D factoring through
a map v : K0(D)→ Λ (chosen but not specified in the notation).

Here we need to equip Stab(D) and Slice(D) with some canonical topologies. Define
a pre-metric d : Slice(D)× Slice(D)→ [0,∞] as:

d(P1,P2) := sup{|φ+P1
(E)− φ+P2

(E)|, |φ−P1
(E)− φ−P2

(E)| : E ∈ D}

which is reflexive and symmetric, and satisfies the triangle inequality, so the only reason
this isn’t an actual metric is that it can attain∞. But this is enough to define a topology
on Slice(D).

We also define the topology on StabΛ(D) is the coarsest topology such that two
projections StabΛ(D)→ Slice(D) and StabΛ(D)→ Hom(Λ,C) are continuous, that is,
its topology defined by pre-metric d : StabΛ(D)× StabΛ(D)→ [0,∞] as:

d(σ1, σ2) := sup{|φ+σ1
(E)− φ+σ2

(E)|, |φ−σ1
(E)− φ−σ2

(E)|, ‖Z1 − Z2‖ : E ∈ D}

where σi = (Pi, Zi) for i = 1, 2.

Theorem 4.4.19 (Bridgeland’s Deformation Theorem). The projection StabΛ(D) →
Hom(Λ,C) is a local homeomorphism, and in particular induces the structure of a
complex manifold on (the all connected components of) StabΛ(D).

Proof. We omit this boring proof and we refer [19] or the sketch [43] Theorem 5.15 or
more shorter proof [12].

Remark 4.4.20. Note that in this proof we will use a group actions on StabΛ(D), here
we will give two canonical group actions on it:

(a) The universal cover G̃L+
(2,R) of GL+(2,R) which consist of (T, f) where f : R→

R increasing with f(φ + 1) = f(φ) + 1 and T ∈ GL+(2,R) such that f |R/2Z =
T |(R2\0)/R>0

. Then (T, f) acts on (P,Z) as

(T, f) · (P, Z) = (P ◦ f, T−1 ◦ Z).

The proof will use this action.
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(b) The group of exact autoequivalences AutΛ(D), whose action on K0(D) is compat-
ible with the map v : K0(D)→ Λ, acts on the left of StabΛ(D).

Proposition 4.4.21. Assume that σ = (P, Z) ∈ StabΛ(D) satisfies the support property
with respect to a quadratic form Q on ΛR as Remark 4.4.11(b). Consider the open subset
of Hom(Λ,C) consisting of central charges on whose kernel Q is negative definite, and
let U be the connected component containing Z. Let U ⊂ StabΛ(D) be the connected
component of the preimage Z−1(U) containing σ. Then:

(i) The map U → U is a covering map.
(ii) Any stability condition σ′ ∈ U satisfies the support property with respect to the

same quadratic form Q.

Proof. See [14] Proposition A.5.

4.5 Good Moduli Space of Bridgeland Stability
Here we give a introduction of abstract moduli space of Bridgeland (Pre-)Stability. We
will follows [8] Example 7.26 and Example 7.29 and section 6.5 in [25].

Recall that we have a special case of Proposition 4.4.17:

Proposition 4.5.1. Let D be a triangulated category. Then, specifying a Bridgeland
pre-stability condition σ = (P, Z1) on D is equivalent to specifying a stability condition
Z2 : K0(D♥)→ C of D♥ which is a heart of a bounded t-structure on D as in Definition
4.4.4.

Now we will fix a projective scheme X over an algebraically closed field k of charac-
teristic 0. We will also consider Db(X) with a heart of a bounded t-structure Db(X)♥

with Dqc(X)♥ = Ind(Db(X)♥) in Definition 4.3.1.
Hence we have defined the moduli stack MInd(Db(X)♡) in Definition 4.3.7 which is an

algebraic stack locally of finite type over k with affine diagonal. By Remark 4.3.13, we
know that MInd(Db(X)♡) is just special case of Definition 2.1.11 when A = Dqc(X)♥ =

Ind(Db(X)♥).
Hence we may wish to using the Bridgeland pre-stability in the sense of Proposition

4.5.1 to find a proper good moduli space of components of MInd(Db(X)♡) since we have
the Theorem 2.3.12.

Lemma 4.5.2. Let X be a projective scheme over a field k. Let T be a connected
k-scheme of finite type, and let E ∈ Db(XT ) be relatively perfect. For any finite type
point t ∈ T , consider the class

v :=
1

deg(κ(t)/k) [Eκ(t)] ∈ Knum
0 (X)Q
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where we regard Eκ(t) as a complex on X via pushforward along the map Xκ(t) → X.
Then v is independent of the choice of t, and we may write Db

pug(X) (respectively
MInd(Db(X)♡)) as a disjoint union of open and closed substacks Db

pug(X)v (respectively
M v

Ind(Db(X)♡)
) parameterizing families of a fixed class v ∈ Knum

0 (X)Q.

Proof. Let p : XT → T denotes the projection, by the semicontinuity theorem we find
that p∗((OT � F )⊗ E) ∈ Perf(T ) for any F ∈ Perf(X). Hence the Euler characteristic
(hence the mukai pairing)

χ(Xκ(t), Eκ(t) ⊗ (κ(t)⊗k F )) = deg(κ(t)/k)χ(X,Eκ(t) ⊗k F )

does not depend on the finite type point t ∈ T , and the claim follows. Finally, this
direct;y implies Db

pug(X)v =
∐

v Db
pug(X)v and hence MInd(Db(X)♡) =

∐
v M v

Ind(Db(X)♡)
.

Well done.

If Db(X)♥ is noetherian, then for any finite extension k′/k, one can define a Bridge-
land pre-stability condition (Db(X)♥k′ , Zk′) where Db(X)♥k′ ⊂ Db(Xk′) defined as in
Definition 4.3.1. And Zk′(E) = Z(p∗(E)), where p∗ : Db(Xk′)→ Db(X) which satisfied
Harder-Narasimhan property by Theorem 6.4.13(3) in [25].

Proposition 4.5.3. Let X be a projective scheme over field k, and let σ = (Db(X)♥, Z)
be a Bridgeland pre-stability condition on Db(X) such that Z factored as Z : K0(X)→
Knum

0 (X)→ Λ for a finite rank Λ. Assume that:

(a) Z(Db(X)♥) ⊂ Q+Qi (that is, σ is an algebraic stability).
(b) Db(X)♥ satisfies the generic flatness property in Definition 4.3.10.
(c) σ satisfies the Boundedness of Quotients condition: if for any E ∈ Db(X)♥ and

any φ ∈ (0, 1), the set of points of MInd(Db(X)♡) that parameterize a torsion-free
object E′ ∈ Fk′ ⊂ Db(X)♥k′ over a finite extension k′/k of phase ≤ φ that admits
a surjection E ⊗k k

′ → E′ is bounded.

We define that for any finite type k-scheme T , the groupoid of flat families of torsion-free
objects of class v ∈ Λ ∈ Knum

0 (X) in Db(X)♥:

M v
F (T ) := {E ∈M v

Ind(Db(X)♡)|Ep ∈ Fκ(p) ⊂ Db(X)♥κ(p), ∀ closed p ∈ T};

and the groupoid of flat families of semistable objects of class v in Db(X)♥:

M v,ss
Ind(Db(X)♡)

(T ) := {E ∈M v
Ind(Db(X)♡)|Ep ∈ Db(X)♥κ(p) is semistable, ∀ closed p ∈ T}.

Then these can extend uniquely to open substacks

M v,ss
Ind(Db(X)♡)

⊂M v
F ⊂M v

Ind(Db(X)♡)
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on the étale site of all k-schemes.
Moreover, there is a numerical invariant µ induce a Θ-stratification of the algebraic

stack M v
F such that

(i) M v,ss
Ind(Db(X)♡)

⊂M v
F is the µ-semistable locus.

(ii) the µ-HN filtration of any unstable point in the sense of Definition 1.4.3 corre-
sponds to a canonical weighting of the Harder-Narasimhan filtration in our sense.

In this case, one can extend the Θ-stratification of M v
F to a Θ-stratification of M v

Ind(Db(X)♡)

which is also satisfies the similar properties.

Proof. We omit it and we refer [25] Theorem 6.5.3 and Remark 6.5.6.

Now we will construct the moduli space. For any v ∈ Knum
0 (X), we define the

function:
pv(E) := deg(E) rank(v)− deg(v) rank(E)

of generalized degree and rank correspond to the stability function Z. Hence the pv-
semistable if and only if Bridgeland pre-semistable!

Theorem 4.5.4. Let X be a projective scheme over an algebraically closed field k of
characteristic zero. Let σ0 = (Db(X)♥0 , Z0) be a Bridgeland pre-stability condition on
Db(X) such that Z factored as Z0 : K0(X) → Knum

0 (X) → Λ for a finite rank Λ (that
is, σ0 ∈ PreStabΛ). Assume that:

(a) σ0 is an algebraic stability.
(b) Db(X)♥0 satisfies the generic flatness property in Definition 4.3.10.
(c) σ0 satisfies the Boundedness of Quotients condition, hence M v,ss

Ind(Db(X)♡0 )
is bounded.

Let PreStab∗Λ be a connected component of PreStabΛ containing σ0, then for any σ =
(Db(X)♥, Z) ∈ PreStab∗Λ the corresponding moduli stack M v,ss

Ind(Db(X)♡)
has a proper good

moduli space.

Proof. We know that by [1] Proposition 5.0.2 we know that if a Bridgeland pre-stability
condition σ = (Db(X)♥, Z) on Db(X) is algebraic, then Db(X)♥ is noetherian.

Next, by Proposition 4.12 in [50] these (b)(c) are true for any algebraic stability
condition in PreStab∗Λ. Hence for any algebraic stability condition σ = (Db(X)♥, Z) ∈
PreStab∗Λ the corresponding moduli stack M v,ss

Ind(Db(X)♡)
has a proper good moduli space

by Theorem 2.3.12 and Proposition 4.5.3.
Finally we claim that for arbitrary pre-stability condition σ ∈ PreStab∗Λ, one can find

an algebraic pre-stability condition σ′ which defines the same moduli stack M v,ss
Ind(Db(X)♡)

.
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To show this claim, fix a class v ∈ Λ. For any v′ ∈ Λ which is linearly independent of
v over Q, consider the real codimension 1 subset (numerical walls, by Theorem 4.4.19)

Wv′ := {σ = (Db(X)♥, Z) ∈ PreStab∗Λ : Z(v′) ∈ R>0 · Z(v)}.

If one restricts to a small compact neighborhood B ⊂ PreStab∗Λ containing σ, then
there is a finite subset S ⊂ Λ such that for any S′ ⊂ S the moduli stack M v,ss

Ind(Db(X)♡)

is constant for all σ ∈ CS′ ∩ B where

CS′ :=

( ⋃
v′∈S′

Wv′

)
\
⋃

v′ /∈S′

Wv′

by the similar proof of Wall-Chamber structure which we will see (such as [53] Propo-
sition 2.8 or original [20] Proposition 9.3). Now σ ∈

⋃
v′∈S′Wv′ if and only if that

if W ⊂ ΛQ is the span of v and the v′ ∈ S′, then dimQ(Z(W )) = 1. We can write
Z = Z1 ⊕ Z2 under a splitting ΛQ ∼= W ⊕ U , and the condition now amounts to
rank(Z1) = 1. Hence the claim follows from that the rational points are dense in the
space of rank 1 real matrices. Well done.

Conjecture 1. Let X be a smooth projective variety over C. Let σ0 = (Db(X)♥0 , Z0)
be a numerical Bridgeland stability condition on Db(X) (that is, σ0 ∈ Stab(X)). Then
the moduli stack M v,ss

Ind(Db(X)♡0 )
is an Artin stack of finite type, and is an open substack

of Db
pug(X)v.

If it is, we can again get the proper good moduli space such that the stable locus is
a Gm-gerbe.

Remark 4.5.5. This is true for smooth projective surfaces, smooth projective 3-fold
with ρ(X) = 1 satisfying Conjecture 3.

Note that in Proposition 3.26 of [47], they shows that ifX is a smooth projective 3-fold
with ρ(X) = 1 satisfying Conjecture 3 and fix a chern character v, then M v,ss

Ind(Db(X)♡0 )
∼=

CohH−ss
v (X) and similar for stable locus.

4.6 Wall and Chamber Structure
Theorem 4.6.1 (Wall-Chamber). Let D be a triangulated category with surjective group
homomorphism K0(D)� Λ is a finite-dimensional lattice. Fix a primitive class v0 ∈ Λ,
and an arbitrary set S ⊂ D of objects of class v0. Then there exists a collection of walls
WS

v (v0) for v ∈ Λ, with the following properties:

(i) Every wall WS
v (v0) is a closed submanifold with boundary of real codimension one.
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(ii) The collection {WS
v (v0)} is locally finite, that is, every compact subset meets only

a finite number of walls.
(iii) For every stability conditions (Z,P) ∈ WS

v (v0), there exists a phase φ and an
inclusion Fv ↪→ Ev0 in P(φ) with [Fv] = v and some Ev0 ∈ S.

(iv) If C ⊂ Stab(D) is a connected component of the complement of
⋃

v∈ΛW
S
v (v0) and

σ1, σ2 ∈ C, then an object Ev0 ∈ S is σ1-stable if and only if it is σ2-stable.
Proof. For a class v ∈ Λ, define V S

v (v0) be the set of stability conditions satisfies the
condition (iii). Define the numerical wall W num

v (v0) be the locus of (Z,P) such that
=
(

Z(v)
Z(v0)

)
= 0. Since v0 is primitive, we can easy to see V S

v (v0) ⊂ W num
v (v0) where

W num
v (v0) is of real codimension 1 by Theorem 4.4.19.
The first step is to show that there only finitely many v for which V S

v (v0) intersects
a small open ball U(σ) of small diameter d around a stability condition σ = (Z,P).
This follows the support property and we refer [13] Proposition 3.3 or [43] Proposition
5.27. More precisely, let Iσ(S) ⊂ Λ be the set of all classes v for which there exists
φ ∈ R with Z(v0) ∈ R>0e

iπϕ and a strict inclusion Fv ↪→ E in the quasi-abelian
category P((φ− d, φ+ d)) with [Fv] = v and E ∈ S. They showed Iσ(S) is finite and if
V S
v (v0) ∩ U(σ) 6= ∅, then v ∈ Iσ(S).

Now we know that an object E of class v0 is (Z ′,P ′)-semistable for (Z ′,P ′) ∈ U(σ)

if and only if =
(

Z′(v)
Z′(v0)

)
≤ 0 for every v ∈ Iσ({E}) and it is stable if and only if

the inequalities are strict. Repeating this argument for every possible subobject Fv, it
follows that inside the codimension one subset =

(
Z′(v)
Z′(v0)

)
= 0, the set V S

v (v0) is a finite
union of subsets, each of which is cut out by a finite number of inequalities of the form
=
(

Z′(v′)
Z′(v0)

)
≤ 0 for some v′ ∈ Iσ(S). We let WS

v (v0) be the union of all codimension-one
components of V S

v (v0).
It remains to prove claim (iv) and we only need to consider the situation appear in

U(σ) ∩ C. Pick any σ1, σ2 ∈ U(σ) ∩ C and we let E ∈ S is σ1-stable but not σ2-stable.
Pick a path γ : [0, 1]→ U(σ) ∩C connecting σ1, σ2, then there is a point γ(t) on which
E is strictly semistable, i.e., γ(t) ∈ V S

v (v0) ∩ C for some v ∈ Iσ(S) and t ∈ (0, 1].
Now since the codimension of V S

v (v0) ∩ C at least two, we can choose γ such that for
t ∈ (0, 1), it avoids all of the finitely many non-empty subsets V S

v (v0)∩C for v ∈ Iσ(S),
in other words we have that E is γ(t)-stable for t ∈ (0, 1), and σ2 ∈ V S

v (v0)∩C for some
v ∈ Iσ(S).

Hence σ2 is contained in the set =
(

Z(v)
Z(v0)

)
= 0 and E will not be stable in the

subset of U(σ) ∩ C with =
(

Z(v)
Z(v0)

)
≥ 0. On the other hand, the set C\

⋃
V S
v (v0)

is path-connected, and by the previous argument E is stable on all of it. This is a
contradiction.

Remark 4.6.2. We have some remarks:
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σ1

σ2

γ(t)

C

U(σ)

σ

V
S

v
(v0)

W1W2

(a) In this proof we showed in the last step that higher-codimension components of
V S
v (v0) always come from objects Ev0 that are semistable on this component, and

unstable at any nearby point.
(b) If v0 is not primitive, then these WS

v (v0) may have higher codimension! In this
case the wall-crossing may not work since we can connect some lines in chambers
without passing through the walls as in the proof of (iv).

(c) Some easy arguments can show that the the semistablility can be divided by the
numerical walls W num

v (v0) as in [20] Proposition 9.3.
This is used in the proof of Theorem 4.5.4, which shows that if one restricts to a
small compact neighborhood B ⊂ Stab∗Λ containing σ, then there is a finite subset
S ⊂ Λ such that for any S′ ⊂ S the moduli stack M v,ss

Ind(Db(X)♡)
is constant for all

σ ∈ CS′(v) ∩ B where

CS′(v) :=

( ⋃
v′∈S′

W num
v′ (v)

)
\
⋃

v′ /∈S′

W num
v′ (v).

This gives us a nice intuitive explanation.

4.7 Tilting of t-structures
Definition 4.7.1. Let A be an abelian category and for two additive full subcategories
T, F ⊂ A , we call α = (T, F ) is a torsion pair if:

(a) Hom(T, F ) = 0.
(b) For any X ∈ A there exists Y ∈ T,Z ∈ F such that we have the exact sequence

0→ Y → X → Z → 0.

Remark 4.7.2. Using (a) one can show that the objects in (b) are unique.
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Example 4.7.1. Let X be a smooth projective variety, then T = {torsion sheaves} and
F = {torsion-free sheaves} forms a torsion pair of Coh(X).

Proposition 4.7.3 (Tilting of t-structures). Let D be a triangulated category and D♥

be the heart of a bounded t-structure on D . Let α = (T, F ) be a torsion pair for D♥.
Then

αD♥ := {K ∈ D : for i 6= 0,−1 we have H i
D♡(K) = 0,H0

D♡(K) ∈ T,H−1
D♡(K) ∈ F}

is the heart of a bounded t-structure on D .

Proof. See the proof of Lemma 6.3 in [43] or Lemma 20.28 in [M392cBrSt] or [17] Claim
9.3.

Remark 4.7.4. Some remarks:

(a) Actually αD♥ is the smallest extension-closed additive subcategory of D containing
both T and F [1], that is, αD♥ = 〈T, F [1]〉.

(b) Let A and B be hearts of two t-structures on a triangulated category D , and
suppose A ⊂ 〈B,B[1]〉. If we define T := A∩B and F := B ∩A[−1], then (T, F )
is a torsion pair of B Hence A is a tilt of B.

4.8 Construction I–Surfaces
Here we just consider the projective smooth varieties over C.

4.8.1 Twisted Chern Character and Twisted Stability
LetX be a smooth projective variety over C of dimension n ≥ 2. We fix an ample divisor
class ω ∈ N1(X) and another divisor class B ∈ N1(X). Here N1(X) := NS(X)R.

Definition 4.8.1. We define the B-twisted Chern character as

chB := ch ·e−B.

Remark 4.8.2. Hence chB0 = rank, chB1 = ch1−B ·ch0 and chB2 = ch2−B ·ch1+B2

2 ch0.

Definition 4.8.3 (Gieseker-Maruyama-Simpson Stability). Let E ∈ Coh(X) be a pure
sheaf of dimension d.

(a) The B-twisted Hilbert polynomial is

P (E , B; t) =

∫
X
chB(E ) · etω · td(TX) =

∑
i

ai(E , B)ti.

https://web.ma.utexas.edu/users/a.debray/lecture_notes/m392c_BrSt_notes.pdf
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(b) We say that E is B-twisted Gieseker (semi)stable if, for any proper non-trivial
subsheaf F ⊂ E , the inequality P (F ,B;t)

ad(F ,B) < (≤)P (E ,B;t)
ad(E ,B) holds for t� 0 as before.

Definition 4.8.4 (Twisted Slope and Stability). Let E ∈ Coh(X).

(a) The B-twisted slope is

µω,B(E ) :=
ωn−1 · chB1 (E )

ωn · chB0 (E )
=
ωn−1 · ch1(E )

ωn · ch0(E )
− ωn−1 ·B

ωn

where dividing by 0 is interpreted as +∞.
(b) is called B-twisted slope (semi)stable if for all proper subsheaves F ⊂ E the

inequality µω,B(F ) < (≤)µω,B(E /F ) holds.

Remark 4.8.5. Note that:

(a) Our definition of slope (semi)stability coincides with the classical definition if E
has positive rank.

(b) The B-twisted slope function satisfies the weak see-saw property, i.e., for any exact
sequence 0 → F → E → E /F → 0 in Coh(X) with F ,E /F 6= 0, one of the
following conditions holds:

µω,B(F ) ≤ µω,B(E ) ≤ µω,B(E /F );

µω,B(F ) ≥ µω,B(E ) ≥ µω,B(E /F ).

which follows from that if chB0 (F ) = 0, then n−1 chB1 (F ) ≥ 0, and similarly for
E /F .

(c) For B-twisted Gieseker stability and B-twisted slope stability, we also have the
Harder-Narasimhan filtration.

4.8.2 Main Construction and Results for Surfaces
Coherent sheaves will never work in dimension ≥ 2 as follows.

Proposition 4.8.6. Let X be a smooth projective variety with d = dimX ≥ 2. Then
there is no numerical Bridgeland stability condition (Z,Coh(X)) on Db(X).

Proof. We will follows [54] Lemma 2.7 with some corrections. If there is such stability
condition Z : K0(X)→ C, we may assume that it is of form

Z(E ∗) =
d∑

j=0

∫
X
(uj + ivj) chj(E ∗)
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where uj + ivj ∈ CH2d−2j(X)C. After choose a smooth subvariety S ⊂ X of dimension
2, we may assume d = 2. Let C be a smooth curve over X such that it has positive
self-intersection (by Bertini’s theorem) and consider a divisor D = mC support on C,
then as Z is a stability function we have

=Z(OC(D)) =

∫
X
(v1 ch1(OC) + v2(ch2(OC) + ch1(OC)c1(OX(D))))

=

∫
X
v1c1(O(C)) +

∫
X
v2(ch2(OC) +mc1(O(C))2)

= v1 · [C] +
∫
X
v2(ch2(OC) +mc1(O(C))2) ≥ 0.

Let m→ ±∞ we get v2 = 0. Again as =Z(OX(D)) = m
∫
X v1 · c1(OX(C)) +

∫
X v0 ≥ 0

we have ∫
X
v1 · c1(OX(C)) = 0.

Hence =Z(OC(D)) = 0. Hence

<Z(OC(D)) = u1 · [C] +
∫
X
u2(ch2(OC) +mc1(O(C))2) < 0.

By m→ ±∞ again we get u2 = 0.
Then for any ι : x ∈ X, by Grothendieck-Riemann-Roch we get

ch(ι∗Ox)td(TX) = ι∗(ch(Ox)td(T{x})) = [x].

As ch0(ι∗Ox) = 0 by trivial reason, we find that ch(ι∗Ox) = [x]. Hence

Z(ι∗Ox) =

∫
X
(u2 + iv2) ∩ [x] = 0

which is impossible as Im(Z) ∈ H ∪ R<0.

Remark 4.8.7. Some interesting remarks:

(a) Hence we find that skyscraper sheaves are the very strong obstruction to find a
stability condition.

(b) In the final step we may not using the GRR. We can show it directly as in the
proof of GRR: Pick a very ample divisor H on X we define two sections which
determined c1(OX(H))2 ∩ [X] = [S] for S ∈ Z0(X). Hence we have the Koszul
resolution

0→
2∧

OX(−H)⊕2 → OX(−H)⊕2 → OX → OS → 0.
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Hence ch(OS) = c1(OX(H))2 and we get

Z(OS) =

∫
X
(u2 + iv2)c1(OX(H))2 = 0

which is impossible as Im(Z) ∈ H ∪ R<0.

Hence instead, we will look for other abelian categories inside Db(X) using tilt
of hearts above. Fix an ample divisor class ω ∈ N1(X) and another divisor class
B ∈ N1(X) on the smooth projective surface X over C. For Coh(X) we define: B-
twisted slope stability

Tω,B = {E ∈ Coh(X) : any semistable factor F of E satisfies µω,B(F ) > 0}
= {E ∈ Coh(X) : µ−ω,B(E ) > 0};

Fω,B = {E ∈ Coh(X) : any semistable factor F of E satisfies µω,B(F ) ≤ 0}
= {E ∈ Coh(X) : µ+ω,B(E ) ≤ 0},

where for any E ∈ Coh(X) we have a unique Harder-Narasimhan filtration with rep-
sected to µω,B :

E0 ⊂ E1 ⊂ · · · ⊂ En = E

where E0 is the torsion part and Ei/Ei−1 is a torsion-free ω-Gieseker-semistable sheaf of
slope µω,B,i which are strictly descending with respect to i. We hence define µ+ω,B(E )

and µ−ω,B(E ) as before.

Remark 4.8.8. (a) Note that Tω,B contains all torsion sheaves.
(b) For any B, the µω,B define the same stability which the only difference is a constant

ω·B
ω2 of slopes.

Proposition 4.8.9. Now (Tω,B , Fω,B) is a torsion pair of Coh(X) which induce the
tilted heart Cohω,B(X) = 〈Tω,B , Fω,B [1]〉.

Proof. By the samilar argument in Lemma 3.2.4(i) we can see that Hom(Tω,B , Fω,B) = 0.
Next pick any E ∈ Coh(X), we need to find T ∈ Tω,B and F ∈ Fω,B filling the exact
sequence

0→ T → E → F → 0.

Actually by the unique Harder-Narasimhan filtration

E0 ⊂ E1 ⊂ · · · ⊂ En = E

we can find i such that µω,B(Ei/Ei−1) > 0 but µω,B(Ei+1/Ei) ≤ 0. Hence we can choose
T = Ei and F = E /Ei and well done.
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Now for any E ∈ Db(X) we set

Zω,B(E) = −
∫
X
eiω · chB(E) =

(
− chB2 (E) +

ω2

2
chB0 (E)

)
+ iω · chB1 (E)

and the corresponding slope function

νω,B(E) =
chB2 (E)− ω2

2 chB0 (E)

ω · chB1 (E)
.

We will set Λ = Knum
0 (X) by Remark 4.4.13 and 4.4.14. Note that in the case of surface

here, Λ = Knum
0 (X) is the image of

ch : K0(X)→ CH∗(X)→ H∗(X,Q),

hence v : K0(X)→ Λ is just ch.

Lemma 4.8.10. Let ω ∈ N1(X) be an ample real divisor class. Then there exists a
constant Cω ≥ 0 such that, for every effective divisor D ⊂ X, we have

Cω(ω ·D)2 +D2 ≥ 0.

Proof. Fix a norm ‖ ∗ ‖ on N1(X), then there is A ≥ 0 such that −(D/‖D‖)2 ≤ A.
Hence −D2 ≤ A‖D‖2. On the other hand, as the ample cone is open we find that there
is Bω ≥ 0 such that ω · (D/‖D‖) ≥ Bω. Let Cω = A/B2

ω we get

Cω(ω ·D)2 ≥ A‖D‖2 ≥ −D2

and well done.

Definition 4.8.11. Let ω,B ∈ N1(X) with ω ample. We define the discriminant function
as

∆ := (chB1 )2 − 2 chB0 chB2 = (ch1)2 − 2 ch0 ch2 .

We define the ω-discriminant as

∆
B
ω := (ω · chB1 )2 − 2ω2 chB0 chB2 .

Choose a rational non-negative constant Cω as in Lemma 4.8.10 above. Then we define
the (ω,B,Cω)-discriminant as

∆Cω
ω,B := ∆ + Cω(ω · chB1 )2.

Now the following two theorems are our main results in this section.
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Theorem 4.8.12 ([20],[13],[9]). Let X be a smooth projective surface over C. Fix an
ample divisor class ω ∈ N1(X) and another divisor class B ∈ N1(X). Then the pair
σω,B = (Cohω,B(X), Zω,B) gives a Bridgeland stability condition on X. Moreover, the
map

Ample(X)R ×N1(X)→ Stab(X), (ω,B) 7→ σω,B

is a continuous embedding.

The following theorem is just the support property:

Theorem 4.8.13. Let X be a smooth projective surface over C. Let ω,B ∈ N1(X)
with ω ample. Assume that E is σω,B-semistable. Then

∆Cω
ω,B(E) ≥ 0, ∆

B
ω (E) ≥ 0.

4.8.3 Sketch of the Proof
Lemma 4.8.14 (Bogomolov Inequality). Let X be a smooth projective surface over C.
Let ω,B ∈ N1(X) with ω ample, and let E be a µω,B-semistable torsion-free sheaf. Then

∆(E ) = chB1 (E )2 − 2 chB0 (E ) chB2 (E ) ≥ 0.

Proof. Since the µω,B-stability and ∆ are both not depend on B, we may assume B = 0.
By Lemma 4.C.5 in [29] the slope stability with respect to an ample divisor changes only
at integral classes. Hence we can assume ω = H is a very ample integral divisor. The
the remains are classical and we refer [29] Theorem 3.4.1 and [43] Theorem 6.14.

Remark 4.8.15. Let E be a torsion sheaf. Then ∆C
ω,B(E ) ≥ 0. Indeed, in this case

ch0(E ) = 0 and hence this follows from the definition of Cω and ∆C
ω,B.

Lemma 4.8.16. Let T ∈ Tω,B and F ∈ Fω,B be nonzero.

(i) We have ω · chB1 (F ) ≤ 0 and ω · chB1 (T ) ≥ 0.
(ii) If ω · chB1 (F ) = 0, then F is µω,B-semistable and chB2 (F ) ≤ 0.
(iii) If ω · chB1 (T ) = 0, then dim supp(T ) = 0; in particular, chB0 (T ) = chB1 (T ) =

ch1(T ) = 0, and chB2 (T ) = ch2(T ) > 0.

Proof. For (i), as T ∈ Tω,B then µω,B(T ) ≤ 0 and hence ω·chB1 (F ) ≤ 0 since ω2 chB0 (T ) >
0. Next we will show ω · chB1 (T ) ≥ 0. If chB0 (T ) = 0, then the supp(T ) has class chB1 (T )
with some points. In this case chB1 (T ) = ch1(T ) which is effective by GRR, hence
ω · chB1 (T ) ≥ 0. If chB0 (T ) > 0, then µω,B(T ) > 0 by definition. Hence ω · chB1 (T ) > 0.

For (iii), if ω · chB1 (T ) = 0 then by the proof of (i) we find that chB0 (T ) = chB1 (T ) =
ch1(T ) = 0. Hence in this case supp(T ) are some points on chB2 (T ) = ch2(T ) and hence
dim supp(T ) = 0. As T 6= 0, then chB2 (T ) = ch2(T ) > 0 by GRR for i : supp(T ) ⊂ X.
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For (ii), we know that now µω,B(F ) = 0. But by definition we find that µω,B(F ) =
0 ≤ µ+ω,B(F ) which shows F is µω,B-semistable. Finally by Bogomolov Inequality 4.8.14
we have

∆(F ) = −2 chB0 (F ) chB2 (F ) ≥ 0,

hence chB2 (F ) ≤ 0 and we get the results.

Proposition 4.8.17. The group homomorphism

Zω,B(E) = −
∫
X
eiω · chB(E) =

(
− chB2 (E) +

ω2

2
chB0 (E)

)
+ iω · chB1 (E)

is a stability function on Cohω,B(X).

Proof. By definition we know that =Zω,B(E) ≥ 0 for any E ∈ Cohω,B(X). Now let
E ∈ Cohω,B(X) such that =Zω,B(E) = 0, we will show that <Zω,B(E) < 0.

Actually we have a distinguished triangle

H−1(E)[1]→ E → H0(E)→

where H−1(E) ∈ Fω,B and H0(E) ∈ Tω,B. As =Zω,B(E) = 0 we find that

0 ≥ ω · chB1 (H−1(E)) = ω · chB1 (H0(E)) ≥ 0

by Lemma 4.8.16(i). Hence by Lemma 4.8.16(ii)(iii) we get H−1(E) is µω,B-semistable
and chB2 (H−1(E)) = 0 and dim supp(H0(E)) = 0; in particular, chB1 (H0(E)) = 0 and
chB2 (H0(E)) > 0.

To show <Zω,B(E) < 0, we just need to show that <Zω,B(H−1(E)[1]) < 0 and
<Zω,B(H0(E)) < 0 by additivity. Now as dim supp(H0(E)) = 0, we have

<Zω,B(H0(E)) = − chB2 (H0(E)) < 0.

On the other hand, by the Hodge Index Theorem and ω · chB1 (H−1(E)) = 0 we have
chB1 (H−1(E))2 ≤ 0. Hence by Bogomolov Inequality 4.8.14 we have chB2 (H−1(E)) ≤ 0.
Hence

<Zω,B(H−1(E)) = − chB2 (H−1(E)) +
ω2

2
chB0 (H−1(E)) > 0.

Hence <Zω,B(H−1(E)[1]) < 0 and well done.

Next we need to show the Harder-Narasimhan filtration exist for Zω,B in Cohω,B(X)
and they satisfies the support property.
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For Rational Coefficient Case

We now let B ∈ NS(X)Q and ω = αH for α ∈ R>0 and H is an integral ample divisor
class. For the existence of Harder-Narasimhan filtration this is pure categorial:

Lemma 4.8.18. For an abelian category A with a stability function Z : K0(A) → C
such that A noetherian. If the image of =Z is discrete in R, then Harder-Narasimhan
filtrations exist in A with respect to Z.

Proof. Pure categorial and we omit it. We refer [43] Proposition 4.10.

Proposition 4.8.19. In our case, the category Cohω,B(X) is noetherian and the Harder-
Narasimhan filtration exist for Zω,B in Cohω,B(X).

Proof. Actually by definition the image of =Zω,B is discrete in R. Now the category
Cohω,B(X) is noetherian follows from a boring argument. It was first observed in the
case of K3 surfaces in Proposition 7.1 of [20] and the proof in general case we refer [50]
Lemma 2.17.

Lemma 4.8.20. Let ω,B ∈ N1(X) with ω ample. If E ∈ Cohω,B(X) is σα·ω,B-
semistable for all α� 0, then it satisfies one of the following conditions:

(a) H−1(E) = 0 and H0(E) is a µω,B-semistable torsion-free sheaf.
(b) H−1(E) = 0 and H0(E) is a torsion pure sheaf.
(c) H−1(E) = 0 is a µω,B-semistable torsion-free sheaf and H0(E) is either 0 or a

torsion sheaf supported in dimension zero.

Proof. Note that by the similar proof of Lemma 4.8.16 we can easy to see that if ω ·
chB1 (E) = 0 this is trivial. For other condition we omitted and we refer Lemma 6.18 in
[43].

Proof of Rational Case of Theorem 4.8.13 (and hence 4.8.12). Here we will just give a
sketch. As =Zω,B is discrete, we could use the induction on H · chB1 as ω = αH for an
ample integral class H where α ∈ R>0.

Let E ∈ Cohω,B(X) be σα0ω,B-semistable for some α0 > 0 such that H · chB1 (E) > 0
is minimal. Use the following result:

• In this case we have

c := min
{
H · chB1 (F ) : F ∈ Cohω,B(X),H · chB1 (F ) > 0

}
> 0

exists. Let E ∈ Cohω,B(X) satisfy H · chB1 (E) = c and Hom(A,E) = 0 for all
A ∈ Cohω,B(X) with H · chB1 (A) = 0, then E is σω,B-stable.
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Then E is σαH,B-stable for α � 0. Hence by Lemma 4.8.20 and Bogomolov inequality
the Theorem holds.

The induction step is not easy. If E ∈ Cohω,B(X) is also σαH,B-stable for α � 0,
then we again get the result. If not, let α′ denote the largest value of α such that E is
σα′H,B-semistable. We get the short exact sequence in Cohω,B

0→ A→ E → B → 0

such that να′H,B(A) = να′H,B(E) and ναH,B(A) > ναH,B(E) for α > α′. But one can
show that in this case H · chB1 (A),H · chB1 (B) < H · chB1 (E), hence by induction they
satisfy the desired inequality. Then by the similar argument of wall-crossing structure
we can get the result.

For General Coefficient Case

Lemma 4.8.21. Let X be a quasi-projective scheme of finite type over C and E ∈
Db(X). If Exti(E,Ox) = 0 for all x ∈ X and i < 0 and i > s ∈ Z. Then E is
quasi-isomorphic to a complex F ∗ of locally free sheaves such that F i = 0 for i > 0 and
i < −s.

Proof. One omitted and we refer the original [18] Proposition 5.4.

Theorem 4.8.22 (Bridgeland). Let σ = (A, Zω,B) be a numerical Bridgeland stability
condition on X such that all skyscraper sheaves are σ-stable. Then A = Cohω,B(X).

Proof. Let E ∈ A and we first claim that E ∈ 〈Coh(X),Coh(X)[1]〉. Notice that E
is an iterated extension of σ-stable objects, so we can assume that E is σ-stable. As
Ox ∈ Cohω,B(X) for all x ∈ X which is also σ-stable, we may assume E 6= Ox for any
x ∈ X. Hence by Serre duality we get Exti(E,Ox) = 0 for all i 6= 0, 1. Hence by Lemma
4.8.21 we get E is quasi-isomorphic to a complex 0 · · · → F−1 → F 0 → 0 where F i are
all locally free. Hence we get the claim and A ⊂ 〈Coh(X),Coh(X)[1]〉. Moreover one
shows that H−1(E) is torsion free.

By Remark 4.7.4(b) we know that A = 〈T, F [1]〉 is a tilting of Coh(X) where
T = A ∩ Coh(X) and F = A[−1] ∩ Coh(X). To show A = Cohω,B(X) we just need to
show Tω,B ⊂ T and Fω,B ⊂ F .

Let E ∈ Coh(X) be µω,B-semistable, then we just need to show that if µω,B ≤ 0,
then E ∈ F , and if µω,B > 0, then E ∈ T . Choose TE ∈ T and FE ∈ F such that

0→ TE → E → FE → 0.

As FE [1] ∈ F [1] ⊂ A, we know that FE = H−1(FE [1]) is torsion free.
When E is torsion, then FE = 0 and E = TE ∈ T .
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When E is torsion-free, then FE [1] ∈ A, implying =Zω,B(FE [1]) = −ω chB1 (FE) ≥ 0.
Similarly TE ∈ A implying =Zω,B(TE) = ω chB1 (TE) ≥ 0. This implies by definition that
µω,B(FE) ≤ 0 and µω,B(TE) ≥ 0. This is a contradiction to E being µω,B-semistable
unless either FE = 0 or TE = 0. Hence E ∈ T or E ∈ F .

Hence we can see that if µω,B(E) > 0, then E ∈ T . If µω,B(E) < 0, then E ∈ T . If
µω,B(E) = 0, we claim that E ∈ F . Indeed if not, then E ∈ T . Hence Zω,B(E) ∈ R<0

and E is σ-semistable which is a sheaf. Hence there is a skyscraper sheaf Ox together
with a surjective morphism of coherent sheaves E � Ox with kernel K. Since Ox is
stable of slope ∞ this morphism is also surjective in A. Hence K ∈ A ∩ Coh(X) = T .
Then Zω,B(K) = Zω,B(E) + 1. Iterating this procedure will lead to an object K with
Z(F ) ∈ R≥0, a contradiction. Well done.

Proof of Theorem 4.8.12. As Q is dense in R, then this follows from Theorem 4.6.1 and
Theorem 4.8.22.

4.8.4 An Example of Wall-Crossing
Fix H be a integral ample class and B0 ∈ NS(X)Q. Consider the (α, β)-plane consist of
σα,β := σαH,B0+βH for all α ∈ R>0 and β ∈ R. Then we will consider the wall structure
in it.

Proposition 4.8.23. Fix a class v ∈ Knum
0 (X) with ∆H(v) ≥ 0.

(i) All numerical walls are either semicircles with center on the β-axis or vertical
rays.

(ii) Two different numerical walls for v cannot intersect.
(iii) For a given class v ∈ Knum

0 (X) the hyperbola <Zα,β(v) = 0 intersects all numerical
semicircular walls at their top points.

(iv) If ch0(v) 6= 0, then there is a unique numerical vertical wall defined by the equation
β =

H chB0
1 (v)

H2 chB0
0 (v)

.

(v) If ch0(v) 6= 0, then all semicircular walls to either side of the unique numerical
vertical wall are strictly nested semicircles.

(vi) If ch0(v) = 0, then there are only semicircular walls that are strictly nested.
(vii) If a wall is an actual wall at a single point, it is an actual wall everywhere along

the numerical wall.

Proof. The proof of (i) is very long but very easy since it doesn’t use any deep ideas or
indeed any algebraic geometry. The proof of (iii)-(iv) are all high-school algebra. The
proof of (ii) will use some linear algebra. For the detailed proof we refer [41].

Here is a diagram of it:
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β

α

4.8.5 Some Examples of Bridgeland Stable Objects
Proposition 4.8.24. For such σω,B, the skyscraper sheaves and objects with minimal
H · chB1 (or with H · chB1 = 0) are all σω,B-stable where ω = αH for an ample integral
class H.

Proof. As the skyscraper sheaves are minimal objects in the category Cohω,B(X), this
is trivial. For the second one, see the proof of the rational case of Theorem 4.8.13.

Proposition 4.8.25. Let E be a µω,B-stable vector bundle. If∆C
ω,B(E) = 0 or∆B

H(E) =
0, then E is σω,B-stable.

Proof. See [43] Lemma 6.28, follows from wall structure in (α, β)-plane as we discussed
above with the following lemma:

• Let 0 6= v ∈ Knum
0 (X) with ∆

B0

H (E) ≥ 0. For fixed β0 ∈ Q there are only finitely
many walls intersecting the vertical line β = β0.

See Lemma 6.24 in [43] for the proof. Note that this lemma can show that a largest
wall exists and we will also be able to prove that walls are locally finite in this case.

4.9 Construction II–Threefolds, an Introduction
For the basic construction we follows [11]. Let X is a smooth projective threefold over
C. We first introduce the classical Bogomolov-Gieseker inequality and Hodge index
theorem:
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Lemma 4.9.1 (Bogomolov-Gieseker). Let X be a n-dimensional smooth projective va-
riety over C and let ω be an ample divisor on X. For any torsion free µω,B-semistable
sheaf E , we have the following inequality

ωn−2(chB1 (E )2 − 2 chB0 (E ) chB2 (E )) ≥ 0.

Lemma 4.9.2 (Hodge Index Theorem). Let X be a n-dimensional smooth projective
variety over an algebraically close k. Let D be a divisor on X and D1, ..., Dk are nef
divisors on X. Let n1 + · · ·nk = n− 1 ≥ 1 and n1 ≥ 1, then

(D ·Dn1
1 · · ·D

nk
k )2 ≥ (D2 ·Dn1−1

1 · · ·Dnk
k )(Dn1+1

1 ·Dn2
2 · · ·D

nk
k ).

Furthermore, if A1, ..., Ak are nef divisors on X and m1 + · · ·mk = n, then
(A1 · · ·Ak)

n ≥ (An
1 )

n1 · · · (An
k)

nk .

Proof. We refer [15] and [35].

Now pick again

Zω,B := −
∫
X
e−iω chB = − chB3 +

1

2
ω2 chB2 +i

(
ω chB2 −

1

6
ω3 chB0

)
for ample ω and any B in N1(X)Q. If we again consider the pair (Zω,B(E),Cohω,B(X)),
we can not control the sign of =Zω,B(E) for E ∈ Cohω,B(X), hence this does not give
a Bridgeland stability condition.

The idea in [11] is to define a now slope and give a second tilt. They find that
in this case the tuple (ω2 chB1 (E),=Zω,B(E),−<Zω,B(E)) on Cohω,B(X) behaves like
(rank, ch1, ch2) on surfaces (see Remark 4.8.5(b)):
Lemma 4.9.3. For any nonzero E ∈ Cohω,B(X), one of the following conditions holds:
(a) ω2 chB1 (E) > 0.
(b) ω2 chB1 (E) = 0 and =Zω,B(E) > 0.
(c) ω2 chB1 (E) = =Zω,B(E) = 0 and −<Zω,B(E) > 0.

Proof. Similar argument in Lemma 4.8.16. By definition of Cohω,B(X) we have ω2 chB1 (E) ≥
0. Let ω2 chB1 (E) = 0, then H0(E) ∈ Coh≤1X and H−1(E) is µω,B-semistable torsion
free sheaf with µω,B(H−1(E)) = 0. By Hodge index theorem and Bogomolov-Gieseker
inequality above we have

0 ≥ ω chB1 (H−1(E))2 ≥ 2ω chB0 (H−1(E)) chB2 (H−1(E))

which implies ω chB2 (H−1(E)) ≤ 0. As chB0 (E) ≤ 0 and ω chB2 (H0(E)) ≥ 0, we get
=Zω,B(E) ≥ 0.

Finally if ω2 chB1 (E) = =Zω,B(E) = 0, the above argument shows that H−1(E) = 0
and E = H0(E) has zero-dimensional support; hence the inequality −<Zω,B(E) > 0
holds.
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Hence similar as µω,B , we define a new slope on Cohω,B(X):

νω,B(E) :=
=Zω,B(E)

ω2 chB1 (E)
=
ω chB2 (E)− 1

6ω
3 chB0 (E)

ω2 chB1 (E)
.

Definition 4.9.4. An object E ∈ Cohω,B(X) is νω,B-(semi)stable if, for any non-zero
proper subobject F ⊂ E in Cohω,B(X), we have νω,B(F ) < (≤)νω,B(E/F ).

Remark 4.9.5. Note that by Lemma 4.9.3 the slope νω,B also satisfies the weak see-saw
property as in Remark 4.8.5(b). Also we have Harder-Narasimhan filtration of νω,B in
Cohω,B(X).

Definition 4.9.6. For Cohω,B(X), we define a torsion pair on it:

T ′
ω,B = {E ∈ Cohω,B(X) : ν−ω,B(E) > 0};

F ′
ω,B = {E ∈ Cohω,B(X) : ν+ω,B(E) ≤ 0}.

Hence we get a tilt A ω,B(X) =
〈
T ′
ω,B , F

′
ω,B [1]

〉
of Cohω,B(X).

Remark 4.9.7. Another construction uses the perverse coherent sheaves rather than
sheaves, and uses polynomial stability conditions rather than slope-stability. In [11] they
discused this construction and shows that these two construction are the same.

Conjecture 2. If X is a smooth projective threefold over C, then (A ω,B(X), Zω,B) ∈
Stab(X).

Definition 4.9.8. We say that the tuple (X,ω,B) as above satisfies the BG-type inequal-
ity if for any non-zero νω,B-semistable object E ∈ Cohω,B(X), we have the inequality

(ω2 chB1 (E))2 − 2ω3 chB0 (E) · ω chB2 (E)

+ 12(ω chB2 (E))2 − 18ω2 chB1 (E) · chB3 (E) ≥ 0.

Proposition 4.9.9. The tuple (X,ω,B) satisfies the BG-type inequality if and only if
for any νω,B-semistable object with νω,B(−) = 0 we have chB3 ≤ 1

18ω
2 chB1 .

Moreover, if a tuple (X,ω,B) satisfies the BG-type inequality with ρ(X) = 1, then
the Conjecture 2 holds.

Proof. See [14] Theorem 4.2 and Theorem 8.2.

Remark 4.9.10. Some remarks:

(i) Note that chB3 (E) ≤ 1
18ω

2 chB1 (E) implies Zω,B(E) ∈ H.
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(ii) If a tuple (X,ω,B) satisfies the BG-type inequality with ρ(X) > 1, then (Zω,B ,A
ω,B(X))

is just a stability condition which is not strong enough to prove the support prop-
erty. Moreover, the support property when X is an abelian threefold with ρ(X) > 1
was proved using Fourier-Mukai transforms in [47].

In [11] they conjectured that the BG-type inequality always hold. However we later
find that it is not true in general, e.g. a blowing-up at a point of P3, see [51]. Note that
the exceptional divisor is not nef in this case, so we can make the following conjecture:

Conjecture 3. Let X be a smooth projective threefold such that any effective divisor
on it is nef. Then any tuple (X,ω,B) satisfies the BG-type inequality.

Remark 4.9.11. Some remarks:

(a) If there is a non-nef effective divisor, it seems that we need to add some modification
term of the BG-type inequality, for the Fano case we refer [16].

(b) This conjecture was proved for Fano 3-fold with ρ(X) = 1 ([11][37]), abelian 3-fold
([14][42]), X with nef tangent bundle ([32]) and X is a quintic 3-fold ([36]).
For the final case, C. Li shows that let X ⊂ P4 is a quintic 3-fold and let ω =

√
3αH

and B = βH for H = OX(1) for (α, β) ∈ R2, if

α2 +

(
β − bβc − 1

2

)2

>
1

4
,

then the tuple (X,ω,B) satisfies the BG-type inequality.
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elementary modification, 30

111



112 INDEX

equivariant Artin algebraization
theorem, 20

Euler pairing, 87
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good moduli space, 10
Grauert-Mülich Theorem, 60
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Harder-Narasimhan filtration, 53
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Harder-Narasimhan stratum, 66
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Jordan-Hölder filtration, 54

Langton’s Algorithm, 30
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Luna’s étale slice theorem, 13
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Mumford-Castelnuovo regularity, 56
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numerical Bridgeland stability, 87
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numerical wall, 95

obstruction theory, 70

pseudo-coherent, 73

reduced Hilbert polynomial, 51
relative Harder-Narasimhan filtration,

58
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socle, 55
stability function, 84
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