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Abstract

In this note we introduced the basic results of algebraic curves and algebraic
stacks at the beginning, as the basis for the later theories. Then we mainly discuss
the properties and geometry of the moduli space of algebraic curves. We first
introduce the moduli stack of smooth curves and stable curves and shows that the
moduli stack of stable curves is a smooth proper Deligne-Mumford stack using
the stable reduction of stable curves. Then we use the Kollár’s Criterion to show
that its coarse moduli space is actually projective. Then we discuss the several
line bundles on it and calculate some relations of them. And we introduced
the generators and its relations in the Picard group of moduli stacks. We also
introduced many results about its Kodaira dimension and prove the moduli space
of high-genus stable curves is of general type. Then we introduce the Hassett-
Keel program of the moduli spaces of curves aiming to find out the log canonical
models of them which plays an important role in this area in this few decades.
We also give a half of proof of results. Finally we introduced some basic results
about the Chow rings and cohomology groups of moduli space of stable curves.
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1 Introduction to the moduli spaces of curves
1.1 What is a moduli space?
One of the characterizing features of algebraic geometry is that the set (or maybe a
groupoid) of all geometric objects of a fixed type (such as smooth projective curves,
subspaces of a fixed vector space, or coherent sheaves or budnels on a fixed variety or
schemes) often itself has some algebraic structure, for example, an algebraic variety
or some more general notion of algebro-geometric space, like algebraic space or stacks.
Such a spaceM is the moduli space classifying objects of the given type and in some
sense the study of all objects of the given type is reduced to the studying the geometry
of the spaceM! This self-referential nature of algebraic geometry is a crucial aspect
of the field.

More precisely, let C be some sets of all geometric objects of a fixed type. If there
exists a scheme M such that M is 1 − 1 corresponding to the isomorphisc class of
objects in C, then we will call M the moduli space of C-type objects. But this is
not enough, if we have a scheme M′ which corresponding to the objects in C (then
M∼=M′/ ∼), that is, we have a morphism

π : U →M′

such that for any S →M′ pullback along π will get a family of objects in C over S.
In this case we will callM a fine moduli space and U be a universal family.

Example 1.1. We consider the plane conic curves (both smooth and singular one)
in P2

C. Let x, y, z be its homogeneous coordinates. Then any plane conic curves
determind by a degree 2 homogeneous polynomials. So the moduli space of plane
conic curves is the moduli space of degree 2 homogeneous polynomials! As a degree 2
homogeneous polynomials has 6 coefficients, up to some invertible multiplicity. Hence
this is correspond to P5! Actually by the basic theory of Hilbert schemes, this is a fine
moduli space.

But not any moduli problem has a fine moduli space, e.g. moduli space of algebraic
curves! That is, we can not have universal family in the category of schemes. Actually
the main problem is that the objects have non-trivial automorphisms! Hence we now
have two choice in this theory:

• To extend the category of schemes (algebraic stacks);

• Consider the coarse moduli space without universal family.

We will work both two sides in moduli space of algebraic curves.

1.2 Why stacks?
To extend the category of schemes, we first need to consider the collections of families
geometric objects of a fixed type C and to find out why it is not a fine moduli problem.
This lead us to the notion of moduli functors.
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Definition 1.2. Consider the (pseudo-)functor

M : Schop → Sets (or Groupoids)

sending a scheme S to M (S), a collection of families X → S such that the geometric
fibers are of a fixed type C.

Then the existence of fine moduli space is equivalent to the representability of M
by schemes! Hence if the objects have non-trivial automorphisms, then the (pseudo-
)functor never represented by schemes since the (pseudo-)functor maps to the 2-
categories of groupoids! Hence in this case if we consider the moduli of elliptic curves,
it is never a fine moduli space.

When we module the isomorphisms, we may get a coarse moduli space M . But
this space have no informations of automorphisms and universal family.

Hence now we may give the pseudo-functor M : Schop → Groupoids some algebraic
structure to close to the schemes. Note that since the pseudo-functor is not so natural,
we may use a new objects, categories fibered in the groupoids, to replace it with the
same meaning. Now a stack is just a categoriy fibered in the groupoids with some
descent properties which can do many things better like schemes.

But this is not enough. We may equip some topology over them. If the auto-
morphisms are finite, then we can equip them étale topology to imitate the analytic
topology, then we get Deligne-Mumford stack. If the automorphisms are not finite,
we can just equip them smooth topology, then we get algebraic stack(or called Artin
stack).

By some technical results, we can also define the similar properties and theorems in
the standard scheme theory. But this is much more complicated then scheme theory.
Fortunately, here we just consider some simple results.

Another good things is that for some good enough algebraic stack X , we have a
canonical morphism to its coarse moduli space π : X → X by Keel-Mori’s theory. So
we can connect them closer.

1.3 Moduli space of algebraic curves
It has a long history to study the moduli space of algebraic curves. Here we first give
a brief history of the development of moduli space Mg of smooth genus g curves:

• Riemann (1857): Riemann surfaces of genus g depend on 3g − 3 parameters;

• Cayley (1862): A new analytic representation of curves in space: Constructs
moduli of space curves: C 7→ (all lines meeting C).

– General theory: van der Waerden,Chow,Hodge-Pedoe.

• Hilbert (1890):Uber die Theorie der algebraischen Formen, finite generation of
rings of invariants (“Theologie” according to Gordan).

– BUT: nobody seems to have taken its Proj.

6



• Hurwitz (1891): Uber Riemann’sche Flachen mit gegebenen Verzweigungspunk-
ten: Mg is irreducible.

• Fricke-Klein (1897-1912): Tg exists and is contractible: Tg= discrete, cocompact
representations π1(C) → PGL2(R) = Aut(unit disc), modulo conjugation. But
complex structure not natural, not considered much;

• Severi (1915): Sulla classificazione delle curve algebriche e sul teorema d’esistenza
di Riemann: Mg unirational for g ≤ 10 without showing the existence of moduli
space.

• Teichmüller (1940-44): complete theory of Tg with complex structure + functo-
rial aspects;

• Weil, Matsusaka (1946-56): field of definition/field of moduli Mg, Ag should be
defined over Z, so kC :=residue field of [C] ∈ Mg. Aim: finding kC from C
(without knowing Mg);

• Weil (1958): Bourbaki seminar: ”As for Mg there is virtually no doubt that it
can be provided with the structure of an algebraic variety”;

• Grothendieck (1960): Cartan Seminar, Tg represents a functor (based on Teich-
müller?) that a projective families over analytic bases;

• Mumford (1965): Construct Mg successfully using GIT.

Here Tg be the Teichmüller space to construct Mg. Hence it took more than 100 years
for us to successfully define the structure of curve moduli space algebraically.

After construct Mg, we find that this space is not compact (or proper in algebraic
geometry). So a natural question is to find a meaningful compactification M g.

Example 1.3. Actually Satake (1956-60) and Baily-Borel (1966) Compactifying Ag
to be a compact space. But the points at infinity are lower dimensional Abelian
varieties!

Hence we may have many non-natural compactifications. But fortunately, in 1969
Deligne-Mumford construct a compactification consist of stable curves with worse-
nodal singularities and ample log canonical bundles, so called Deligne-Mumford com-
pactification.

In this paper we will using the tools of algebraic stacks to construct the moduli
stacks of smooth curves and stable curves and their coarse moduli spaces. Then we
will discover its geometric properties, such as line bundles, Picard groups, Chow rings
and the log canonical models of them.
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2 The basic facts of curves
2.1 Basic facts of general curves
2.1.1 Standard results
Definition 2.1. A curve over k is a pure one-dimensional scheme C of finite type
over k. If C is proper, we define the arithmetic genus (simply the genus) of C as
g(C) := ga(C) = 1− χ(C,OC). By Review A.10, if C is geometrically connected and
geometrically reduced, this is equal to h1(C,OC).

Theorem 2.2 (St 0B5Y). Let C be a proper scheme of dimension 1 over a field k
and let L be a line bundle on it. Let Ci be the irreducible components of dimension 1.
Then L is ample if and only if deg(L|Ci

) > 0 for all i.

Theorem 2.3 (Serre duality for smooth curves). Let C be a smooth complete curve
over k with canonical bundle ωC = ΩC, then for any vector bundle F we get

H0(C,F∨ ⊗ ωC) ∼= H1(C,F )∨.

If we define the geometrical genus ge(C) = h0(C, ωC) and if C is smooth projective
curve which is geometrically connected and geometrically reduced, then h0(C,OC) =
1. Hence by serre-duality we get ge(C) = ga(C).

Theorem 2.4 (Riemann-Roch for smooth curves). Let C be a smooth complete curve
over k with a line bundle L, then

χ(C,L) = h0(C,L)− h0(C, ωC ⊗ L∨) = degL+ 1− g.

Theorem 2.5 (Positivity of divisors on smooth curves). Let C be a smooth complete
curve over k of genus g with a line bundle L, then

(a) if degL ≥ 2g, then L is base-point-free;
(b) if degL ≥ 2g + 1, then L is very ample;
(c) if degL > 0, then L is ample.
(d) if degL < 0, then h0(C,L) = 0.

Proof. See the section IV.3 of [58] for the proof when k is algebraic closed. This is
also right when k is not algebraic closed, see section 20.2 in [79].

Here we use another method to show (d) as a special case of [58] Ex.III.7.1. We
just consider the case C is integral. If degL < 0, then L−1 is ample. Let h0(C,L) > 0
and take a nonzero s ∈ H0(C,L). As H0(C,L) = Hom(OC , L), we can get − × s :
OC → L. As C integral, s must nonzero at the generic point, hence −× s : OC → L is
injective. Hence we get L−1 ⊂ OC . Let n such that L−n generated by global sections,
we get L−n ⊂ OC . Hence H0(C,L−n) ⊂ H0(C,OC). Consider hilbert polynomial
χ(L−n) = αn + β as degχ(L−n) = dim supp(L−1) = dimC = 1. By Serre’s vanishing
theorem, we get for n → ∞, we have χ(L−n) = h0(C,L−n) → ∞. This is impossible
since h0(C,OC) <∞.
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Theorem 2.6 (Riemann-Hurwtiz Theorem,St 0C1B). Let f : X → Y be a separable
morphism of smooth projective curves over a field k and if k = H0(X,OX) = H0(Y,OY )
and X and Y have genus gX and gY , then

2gX − 2 = (2gY − 2) deg(f) + degR

where R be the ramified divisor. Moreover, degR =
∑

x dx[κ(x) : k] where dx =
lengthOX,x

ΩX/Y,x. If OX,x is tamely ramified over OY,f(x), then dx = ex− 1. If not, we
only have dx > ex − 1 where ex is the ramification index.

2.1.2 Automorphisms of curves
Here we only consider smooth connected projective curves of genus g over some alge-
braically closed field k.

Proposition 2.7. For g = 0, we get Aut(P1
k)
∼= PGL2. Moreover, if we consider all

automorphisms fixed n points, then this group is finite if and only if n ≥ 3.

Proof. See [58] Example II.7.1.1, we get Aut(P1
k)
∼= PGL2. Moreover, all automor-

phisms fixed n points is finite if and only if n ≥ 3 by easy linear algebra.

Proposition 2.8. For curve C with g = 1, we get Aut(C) is infinite group. Moreover,
if we consider all automorphisms fixed n points, then this group is finite if and only
if n ≥ 1.

Proof. In this case C is actually a group scheme of dimension 1 (by Picard varisties)
and C can then act on C. Hence C ⊂ Aut(C), hence infinite. Moreover, by [58]
Corollary IV.4.7 (for char(k) 6= 2), if we fixed one point P0, then Aut(C;P0) is finite.
Indeed, let f : X → P1 such that f(P0) = ∞, branched over 0, 1, λ,∞. Let σ ∈
Aut(C;P0), then there exists an automorphism τ ∈ Aut(P1;∞) such that f ◦σ = τ ◦f .
Hence τ sends {0, 1, λ} to {0, 1, λ} in some order.

(i) If τ = id, then σ = id or interchanging two sheets of f ;
(ii) If τ 6= id, then τ permutes {0, 1, λ} and the orbit of λ is of that six forms.

In both cases is finite, well done.

Proposition 2.9 (Hurwitz). For curve C with g ≥ 2, the group Aut(C) is finite.
Moreover, if k has characteristic 0, we have #(Aut(C)) ≤ 84g − 84.

Proof. See [58] Ex.V.1.11 and Hurwitz’s Automorphism Theorem.

Lemma 2.10 (St 0E67). Let X be a smooth, proper, connected curve over k of genus
g.

(a) If g ≥ 2, then Derk(OX ,OX) = 0;
(b) If g = 1 and 0 6= D ∈ Derk(OX ,OX), then D does not fix any closed point of

X;
(c) If g = 0 and 0 6= D ∈ Derk(OX ,OX), then D can fix at most 2 closed points of

X.
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Remark 2.11. We called an element D ∈ Derk(OX ,OX) fixes x if D(I ) ⊂ Ix where
Ix be the ideal sheaf of x.

Sketch. As we have the canonical derivation d : OX → ΩX/k, taking any D ∈
Derk(OX ,OX) we get D = f ◦d where f ∈ HomOX

(ΩX/k,OX) and deg(ΩX/k) = 2g−2.
(a) If g ≥ 2, then deg(ΩX/k) > 0. Hence

HomOX
(ΩX/k,OX) = HomOX

(OX , TX/k) = Γ(X,TX/k) = 0,

hence f = 0;
(b)(c) We claim that the vanishing of f at x ∈ X is equivalent to the statement

that D fixes x. Indeed, by St 0C1E we get for the uniformizer z ∈ OX,x, dz is a basis
of ΩX,x. Since D(z) = f(dz), we conclude the claim.

If g = 1, then a nonzero f does not vanish anywhere. Hence by the claim, D does
not fix any closed point of X. If g = 0, then a nonzero f vanishes in a divisor of
degree 2. Hence by the claim, D can fix at most 2 closed points of X.

Lemma 2.12. Let X be a proper scheme over a field k of dimension ≤ 1, then the
following are equivalent

(i) Aut(X) is geometrically reduced over k and has dimension 0;
(ii) Aut(X)→ Spec(k) is unramified;
(iii) Derk(OX ,OX) = 0.

Proof. See St 0DSW and St 0E6G. Note that these two lemmas can also gives the
results about automorphism groups of smooth connected curves.

Proposition 2.13. Let C be a curve of genus g over a field k of characteristic 0,
then for any non-trivial automorphism of C fixed at most 2g + 2 points.

Proof. See I.F-4 in [9]. Now we give a sketch. Let p1, ..., pg+1 are general points and
φ ∈ Aut(C). Then there exists f ∈ K(C) with divisor (f)∞ = p1 + ... + pg+1, and
counting zeros and poles of f − φ∗f , give that φ has at most 2g + 2 fixed points.

2.2 Families of curves
2.2.1 Families of general curves
Lemma 2.14 (Dualizing sheaves of the families of curves). Let (S, f : C → S) in Mg

(or more general) for g ≥ 2.
(i) f∗OC = OS;
(ii) For k > 1 the sheaf f∗(Ω1

C/S)
⊗k is locally free of rank (2k− 1)(g− 1) on S, and

for any g : S ′ → S, we get an isomorphism g∗f∗(Ω
1
C/S)

⊗k ∼= f ′
∗(Ω

1
C′/S′)⊗k. Moreover,

Rif∗(Ω
1
C/S)

⊗k = 0, i > 0;
(iii) The sheaf f∗Ω1

C/S is locally free of rank g on S, and for any g : S ′ → S, we get
an isomorphism g∗f∗Ω

1
C/S
∼= f ′

∗Ω
1
C′/S′. Moreover, R1f∗(Ω

1
C/S) = OS and Rif∗(Ω

1
C/S) =

0, i > 1;
(iv) For k ≥ 3, (Ω1

C/S)
⊗k is relative very ample.
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Proof. (i) By definition, for all s ∈ S the Cs is proper geometrically connected and
geometrically reduced, then by Review A.10 we get H0(Cs,Os) = κ(s), hence φ0

s :
f∗OC ⊗ κ(s) → H0(Cs,Os) is surjective. By Review A.1 with i = 0, we get φ0

s is an
isomorphism and f∗OC is a line bundle. Now consider the natural map OS → f∗OC

induce a surjective fiber map κ(s)→ f∗OC ⊗ κ(s) by seen

κ(s)→ f∗OC ⊗ κ(s)→ H0(Cs,Os) = κ(s).

Thus OS → f∗OC is surjective, hence an isomorphism.
(ii) For all s ∈ S and k > 1 we getH1(Cs, (Ω

1
Cs/κ(s)

)⊗k) = H0(Cs, (Ω
1
Cs/κ(s)

)⊗(1−k))∨ =

0 as (Ω1
Cs/κ(s)

)⊗(1−k) is anti-ample. Hence H i(Cs, (Ω
1
Cs/κ(s)

)⊗k) = 0 for i > 0. Now use
Review A.1 we get Rif∗(Ω

1
C/S)

⊗k = 0, i > 0.
On the other hand, by Riemann-Roch theorem, we get

h0(Cs, (Ω
1
Cs/κ(s))

⊗k) = deg((Ω1
Cs/κ(s))

⊗k) + 1− g = (2k − 1)(g − 1).

Use Review A.1 again, we get f∗(Ω1
C/S)

⊗k is locally free of rank (2k − 1)(g − 1) on S.
(iii) By Review A.1 and the fact H i(Cs,Ω

1
C/S⊗κ(s)) = 0, i > 1 implies Rif∗Ω

1
C/S =

0, i > 1. Now we use the duality f∗H om(F,Ω1
C/S)

∼= H om(R1f∗F,OS), then let
F = Ω1

C/S. We get f∗OC
∼= (R1f∗Ω

1
C/S)

∗. Hence R1f∗Ω
1
C/S
∼= (f∗OC)

∗ = O∗
S
∼= OS.

By Review A.1(ii) with i = 1, we get φ0
s : f∗Ω

1
C/S ⊗ κ(s) → H0(Cs,Ω

1
Cs/κ(s)

) is
surjective, hence an isomorphism. Then apply Review A.1(i)-(ii) with i = 0 to imply
f∗Ω

1
C/S is locally free of rank h0(Cs,Ω1

Cs/κ(s)
) = g.

(iv) Easy to see for any s ∈ S the fiber (Ω1
Cs/κ(s)

)⊗k is very ample as deg(Ω1
Cs/κ(s)

)⊗k =

k(2g−2) ≥ 2g+1. Using noetherian approximation, we may let S is noetherian. Then
use Review A.11 and well done.

Remark 2.15. Note that we can be generalized these statements into more general
families of curves, such as nodal curves and so on, without any modification.

Proposition 2.16 (Flatness Criterion over Smooth Curves). Let C be an integral
and regular scheme of dimension 1 (e.g. the spectrum of a DVR or a smooth curve
over a field) and X → C a qcqs morphism of schemes. A quasi-coherent OX-module
F is flat over C if and only if every associated point of F maps to the generic point
of C.

2.2.2 Families of elliptic curves and j-invariant
This section are some preliminaries of the coarse moduli space of M1,1. Here we
follows [74] 13.1 and for the basic theory of single elliptic curves, we refer [58] IV.4.

Definition 2.17. Let S be a scheme, then an elliptic curve over S defined by a pair
(f : E → S; e) where f is a smooth proper morphism and e : S → E be a section of f ,
and for every geometric point x̄ : Speck → S the pullback (Ex̄, ex̄) is an elliptic curve
over k.
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Proposition 2.18. Let (f : E → S; e) be a family of elliptic curves over S, then as
f is proper the section e : S → E is a closed embedding. Let J be the ideal sheaf of
e, then J defines a Cartier divisor.

Proof. This is not hard to prove, we refer [74] section 13.1.4.

Let OE(ne) = J ⊗−n, by Review A.1 we know that f∗OE(3e) is locally free of rank
3 over S. As we can check over geometric fibers (with Riemann-Roch theorem), the
adjunction map f ∗f∗OE(3e)→ OE(3e) is surjective which induce a closed embedding
E ↪→ P(f∗OE(3e)). Now we will use this to deduce the family-version of Weierstrass
forms of elliptic curves.

By Review A.1 again we know that f∗OE(e) and f∗OE(2e) is locally free of rank
1, 2 over S, respectively. Then zariski locally we cna choose bases for these bundles:

1 ∈ f∗OE(e), 1, x ∈ f∗OE(2e), 1, x, y ∈ f∗OE(3e).

Consider f∗OE(6e) and surjection O7
S � f∗OE(6e) can induced by 1, x, x2, x3, y, y2, xy

as it can be checked over geometric fibers as in the single case in [58] Theorem IV.4.6.
Pick αi ∈ OS, i = 1, ..., 7 such that α1+α2x+ ...+α6xy+α7y

2 maps to zero under
this map. By checking fibers again we get α4, α7 ∈ O∗

S. Hence WLOG we let α4 = 1.
Pick F ∈ OS[X,Y, Z] be a homogeneous polynomial:

F := α1Z
3 + α2XZ

2 + α3X
2Z +X3 + α5Y Z

2 + α6XY Z + α7Y
2Z.

Proposition 2.19. We have E ∼= V+(F ) ⊂ P2
S and section e given by [0 : 0 : 1].

Proof. See [74] (13.1.6.2) – (13.1.6.3).

Now change Z 7→ α7Z we may let α7 = 1. Then we see that E/S given by equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Define

b2 = a21 + 4a2, b4 = a1a3, b6 = a23 + 4a6;

b8 = −a1a3a4 − a24 + a21 + a6 + a2a
2
3 + 4a2a6,

and discriminant ∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Theorem 2.20. Let E = V+(F ) ⊂ P2
S where F as above.

(i) E is smooth over S if and only if ∆ invertible in S;
(ii) Let (E, e) be the family of elliptic curves and define j-invariant j(E,e) ∈ Γ(S,OS)

by
j(E,e) :=

(b22 − 24b4)
3

∆
.

Then two elliptic curves (E, e), (E ′, e′) over S with j-invariants j, j ′ is isomorphic if
and only if j = j′.

Proof. See [74] section 13.1.7 and Proposition 13.1.13.
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2.3 Singularities of curves
2.3.1 δ-invariant
The the more details, see St 0C3Q and St 0C3Z.

Lemma 2.21 (St 0C3S). Let (A,m) be a 1-dimensional reduced local ring of finite
type over a field k. Let A′ be the integral closure of A in the total ring of fractions
of A. Then A′ is a normal with A → A′ is finite, and A′/A has finite length as an
A-module.

Definition 2.22. Let A be a reduced 1-dimensional local ring of finite type over a
field k. The δ-invariant of A defined by lengthA(A′/A) where A′ is as in Lemma.

Let X be a scheme locally of finite type over k. Let x ∈ X such that OX,x is reduced
with dimension 1. The δ-invariant of X at x is the δ-invariant of OX,x.

Proposition 2.23 (St 0C3V). Let A be a reduced 1-dimensional local ring of finite
type over a field k. Then Â has the same δ-invariant as A and A′⊗A Â is the integral
closure of Â in its total ring of fractions.

Proposition 2.24 (St 0C1R). Let X be a reduced scheme locally finite type over a field
of dimension 1 with normalization f : X̃ → X. Then OX ⊂ f∗OX̃ and f∗OX̃/OX is a
direct sum of skyscraper sheaves Qx in the singular points x and Qx = (f∗OX̃)x/OX,x

has finite length equal to the δ-invariant of X at x.

2.3.2 Some singularities of curves
Definition 2.25. Let C be a curve over k. Here we let k algebraically closed and if
not, we condier the base-change.

(a) We say that p ∈ C(k) is a node is we have ÔC,p
∼= k[[x, y]]/(xy);

(b) We say that p ∈ C(k) is a cusp is we have ÔC,p
∼= k[[x, y]]/(y2 − x3);

(c) We say that p ∈ C(k) is a tacnode is we have ÔC,p
∼= k[[x, y]]/(y2 − x4).

Definition 2.26. A curve C has locally planar singularities at p if ÔC,p
∼= k[[x, y]]/(f)

for a reduced series f ∈ k[[x, y]].

Proposition 2.27. If a curve have worst locally planar singularities, then it is Goren-
stein. Hence nodal, cuspidal and tacnodal curves are all Gorenstein.

2.4 Ramification and Plücker Formula
We will follows the sequences of exercises in [9] as Exercise I.C. Let C be a smooth
projective curve of genus g over C and we will describe the notion of ramification of
a map C → Pr, or more generally, of a linear series on C, fixed as L = (L , V ) be a
grd. We also fix a point p ∈ C(C).

Lemma 2.28. We have ]{ordpσ : σ ∈ V \{0}} = r + 1.
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Proof. There exists a basis for V consisting of sections with distinct orders of vanishing
at p. To construct this basis, replace a pair of sections with the same vanishing order
by two sections, one with the same order, and one with one higher order.

Definition 2.29. (i) If we let these r + 1 numbers as 0 ≤ aL0 (p) < · · · < aLr (p) ≤ d,
then the sequence {aL0 (p), · · · , aLr (p)} is called vanishing sequence of L at p;

(ii) Let αLi (p) := aLi (p) − i, then the sequence {αL0 (p), · · · , αLr (p)} is called ram-
ification sequence of L at p. The weight wL(p) of p with respect to L is defined
by

wL(p) =
r∑
i=0

αLi (p) =
r∑
i=0

aLi (p)−
(
r + 1

2

)
;

(iii) We say that L is unramified at p if {αL0 (p), · · · , αLr (p)} = {0, ..., 0}, else that
p is a ramification point of L. If we consider the canonical series (KC , |KC |), then
the ramification points are called Weierstrass points.

Remark 2.30. These can be also defined over some singuler curves and p be a smooth
point.

Lemma 2.31. There are only finitely many ramification points of L on C.

Theorem 2.32 (Plücker Formula). We have∑
p∈C

wL(p) = (r + 1)d+

(
r + 1

2

)
(2g + 2).

Proof. See [31] Propositon 1.1.

3 The basic facts of stacks
As the most of the proofs of the fundamental theory of stacks are very complicated,
we just give an basic introduction and without proofs. Here we follows [74].

3.1 Sites and Grothendieck topos
Definition 3.1 (Grothendieck topology and sites). Let C be a category. A Grothendieck
topology over C consist of sets {{Ui → U}i∈I} = Cov(U) where U be any object such
that

(i) If V → Xis an isomorphism, then{V → X} ∈ Cov(X);
(ii) If {Xi → X}i∈I ∈ Cov(X) and Y → X be any morphism, then the fiber product

Xi ×X Y exists and
{Xi ×X Y → Y }i∈I ∈ Cov(Y );

(iii) If {Xi → X}i∈I ∈ Cov(X) and for any i ∈ I with {Vij → Xi}j∈Ji, then

{Vij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

Category C and its Grothendieck topology called a site.
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Example 3.2 (Small Zariski site). Let X be a scheme. Consider the category Op(X)
consist of open subschemes with inclutions. Then {Ui → U}i∈I is a covering if
U =

⋃
i Ui. We denote this site XZar.

Example 3.3 (Big Zariski site). Let X be a scheme. Consider the category Sch/X,
then {Ui → U}i∈I is a covering if Ui → U are open immersions and U =

⋃
i Ui. We

denote this site XZAR.

Example 3.4 ((Small) étale site). Let X be a scheme. Consider the category Et/X
consist of étale X-schemes with étale morphisms. Then {Ui → U}i∈I is a covering if∐

i∈I Ui → U is surjective. We denote this site Xét.

Example 3.5 (Big étale site). Let X be a scheme. Consider the category Sch/X,
then {Ui → U}i∈I is a covering if Ui → U is étale and

∐
i∈I Ui → U is surjective. We

denote this site XEt.

Example 3.6 (Fppf site). Let X be a scheme. Consider the category Sch/X, then
{Ui → U}i∈I is a covering if Ui → U is flat and locally of finite presentation and∐

i∈I Ui → U is surjective. We denote this site Xfppf.

Definition 3.7. A presheaf of a site C is a functor F : Cop → Sets.

Definition 3.8. Fix a site C.
(i) A presheaf F is called a separated presheaf if for any U ∈ C and covering

{Ui → U}i∈I ∈ Cov(U), the map F (U)→
∏

i∈I F (Ui) is injective;
(ii) A presheaf F is called a sheaf if for any U ∈ C and covering {Ui → U}i∈I ∈

Cov(U), we have the following equalizer:

F (U)
∏

i∈I F (Ui)
∏

i,j∈I F (Ui ×U Uj)

where the morphisms induced by Ui ×U Uj → Ui and Ui ×U Uj → Uj.

Definition 3.9. A category is called Grothendieck Topos if it is equivalent to a category
of sheaves over some site.

Definition 3.10 (Sheafification). Fix a site C and let P be a presheaf, we call a sheaf
P♯ such that P →P♯ is the sheafification of P if for any sheaf G and P → G we
have:

P P♯

G
∃!

Theorem 3.11. Fix a site C and let P be a presheaf. For some covering U = {Ui →
U} ∈ Cov(U), we define

Ȟ0(U,P) := ker
(∏

i

P(Ui) ⇒
∏
i,j

P(Ui ×U Uj)

)
.
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Hence we have a canonical map P(U) → Ȟ0(U,P). It’s not hard to show that this
map is well defined (Tag 03NQ), so we define:

P+ : U 7→ lim−→
U

Ȟ0(U,P).

(i) The presheaf P+ is separated;
(ii) If a presheaf P is separated, then P+is a sheaf and P →P+ is injective;
(iii) If P be a sheaf, then P →P+is an isomorphism;
(iv) Presheaf P++ is a sheaf and P++ ∼= P♯.

Proof. We refer Tag 00WB.

Remark 3.12. The sheafification functor ] and forgetful functor i forms an adjoint
pair (], i) and ] is exact.

3.2 Algebraic spaces
3.2.1 Basic definitions
Roughly speaking, an algebraic spaces are the étale-version of schemes. You can stick
affine schemes together over étale topology to get the algebraic space. The definition
is similar, first we have the following result:

Proposition 3.13. Let AffS be the categories of affine S-schemes where S is a fixed
scheme, consider a functor F : AffopS → Sets and it is representable by a S-scheme if
and only if

(i) F is a sheaf over big Zariski site;
(ii) The diagonal ∆ : F → F × F is representable be separated schemes;
(iii)There exists a family {Xi} in AffS and morphisms πi : hXi

→ F which are
open embeddings such that the map of Zariski sheaves

∐
i hXi

→ F is surjective.

Proof. See [74] Proposition 1.4.11 and 1.4.13.

Similarly, we define algebraic space as follows:

Definition 3.14. Fix a scheme S. Then an algebraic space X over S is a functor
X : (Sch/S)op → Sets such that:

(i) X is a big étale sheaf;
(ii) ∆ : X → X ×S X is representable by schemes;
(iii) there exists a surjective étale morphism U → X of S-schemes.

Remark 3.15. (a) Note that the first two conditions shows that if T is a scheme, then
any morphism f : T → X are representable by schemes by some easy pure categorial
argument (see [74] Lemma 5.1.9). Hence the condition (iii) make sense.

(b) Many books will define algebraic space is a fppf sheaf instead of a big étale
sheaf. But one can show that these two objects are equivalent with some difficult
arguments (see [74] Theorem 5.5.2).
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Here we give another popular definition of algebraic space which can explain what I
said before (stick affine schemes together over étale topology): fixe a scheme S, we call
an étale equivalence relation over some S-scheme X is a monomorphism R ↪→ X×SX
such that:

(a) for every S-scheme T , the T -valued points R(T ) ⊂ X(T )×X(T ) is an equiv-
alence relation;

(b) maps s, t : R→ X induced by two projections are étale.

Proposition 3.16. Consider X/R : (Sch/S)op → Sets be an étale sheafification of
the presheaf T 7→ X(T )/R(T ). Then

(i) X/R is an algebraic space;
(ii) If Y is an algebraic space with an étale surjective morphism X → Y from a

scheme X. Let R := X ×Y X ↪→ X ×SX, then R is an étale equivalence relation with
isomorphism X/R ∼= Y .

Proof. See the proof of Proposition 5.2.5 in [74].

3.2.2 Basic properties
Proposition 3.17. The objects of algebraic spaces are closed under finite limits.

Proof. Pure categorial arguments, we refer [74] Proposition 5.4.6.

Lemma 3.18. Let S be a scheme and we work over étale topology over Sch/S.
(i) The following properties of schemes are locally on the étale topology: locally

northerian, reduced, normal, regular, Cohen-Macaulay;
(ii) The following properties of morphisms are locally on target: proper, separated,

quasi-separated, surjective, quasi-compact, universally closed, universally injective,
open immersion, closed immersion, integral, finite;

(iii) The following properties of morphisms are locally on sourse and target: locally
of finite type, locally of finite presentation, flat, étale, universally open, locally quasi-
finite, uniramified, smooth.

Proof. This is part of descent theory, we refer Tag 0238.

Definition 3.19. Let P be the property of schemes locally on the étale topology (such
as Lemma 3.18 (i)), then we call an algebraic space X has property P if there exists
an étale surjection U → X such that U has property P .

Definition 3.20. Let P be the property of morphisms locally on the target (such as
Lemma 3.18 (ii)), then we call an morphism of algebraic spaces f : X → Y has
property P if there is an étale cover V → Y such that V ×Y X → V has property P .

Moreover, let f : X → Y be an morphism of algebraic spaces with diagonal
∆X/Y : X → X ×Y X. We say f is separated (quasi-separated, locally separated) if
∆X/Y is a closed immersion (quasi-compact, immersion).
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Remark 3.21. (i) Let f : X → Y be an morphism of algebraic spaces, its diagonal
∆X/Y : X → X ×Y X is automatically representable! Indeed, for T a S-scheme with
morphism T → X ×Y X, since X ×Y X → X ×S X is monomorphism, we get

X∆X/Y ,X×YXT
∼= X∆X ,X×SXT

and hence ∆X/Y is representable.
(ii) The definition of locally separated told us that the different between schemes

and algebraic spaces since the diagonals of schemes always be an immersion.

Definition 3.22. Let P be the property of morphisms locally on the sourse and target
(such as Lemma 3.18 (iii)), then we call an morphism of algebraic spaces f : X → Y
has property P if there is an étale cover v : V → Y and u : U → X such that
U ×Y V → V has property P .

Remark 3.23. These two definitions are not conflit by trivial diagram:

U X ×Y V V

X Y
f

v

u
p

3.3 Fibered categories and stacks
Definition 3.24. (i) Let p : F → C be a functor (called F a category over C). Then
φ : u→ v in F is called cartesian if for any w ∈ F with ψ : w → v and factorization
of p(ψ):

p(w)
h−→ p(u)

p(ϕ)−→ p(v)

such that:
w

p(w) u v

p(u) p(v)
p(ϕ)

h

ψ

ϕ

∃!λ

(ii) For a category p : F → C over C, for any U ∈ C we define F (U) be a
subcategory of F consist of u ∈ F such that p(u) = U and whose morphisms consist
of f : u′ → u such that p(f) = idU .

Definition 3.25. (i) We call a category p : F → C over C to be a fibered category
over C if for any morphism f : U → V in C and v ∈ F (V ), there exists a cartesian
morphism φ : u→ v such that p(φ) = f ;

(ii) A morphism of fibered categories p : F → C, q : G → C over C is a functor
g : F → G such that q ◦ g = p and g sends cartesian maps to cartesian maps.
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Definition 3.26. (i) A fibered category p : F → C is called a category fibered in sets
if for any U ∈ C then all morphisms in F (U) are identity (that is, F (U) is a set);

(ii) a fibered category p : F → C is called a category fibered in groupoids if for any
U ∈ C the sub categories F (U) is a groupoids.

Remark 3.27. Let X ∈ C and we define Autx : (C/X)op → Groups as

(f : Y → X) 7→ AutF (Y )(f
∗x)

where f ∗x are some pullbacks and this defined up to some canonical isomorphism.
Similarly we can define Isom(x, x′).

Proposition 3.28. The functor

(presheaves on C)→ (categories fibered in sets over C)

sending a presheaf P to P where P has objects of pairs (U, x), x ∈ P(U) and mor-
phisms (U ′, x′) → (U, x) such that g : U ′ → U in C and g∗x = x′ in F (U ′), is an
equivalent.

Proof. An application of 2-Yonada lemma, we refer [74] Proposition 3.2.8.

Note that as all fibered categories over a category C form a 2-category, the dia-
grams or fiber products of them are all 2-diagrams, that is, there is always commute
up to a isomorphism of functors! For details we refer [74]. This also well used in the
diagrams of stacks.

To define the notions of stacks, we need to learn the descent theory of fibered
categories (as in chapter 4 in [74]). Here we just give a definition and some remarks.
Now let C be a category with finite fiber products and p : F → C be a fibered
category.

Definition 3.29. Let {Xi → Y }i∈I be a set of morphisms in C and we define
F ({Xi → Y }) to be the category consist of: ({Ei}i∈I , {σij}i,j∈I) where Ei ∈ F (Xi)
and isomorphism σij : pr∗1Ei → pr∗2Ej in F (Xi ×Y Xj) such that for any i, j, k ∈ I the
following diagram in F (Xi ×Y Xj ×Y Xk) commutes (cocycle condition):

pr∗12pr∗1Ei pr∗12pr∗2Ej pr∗23pr∗1Ej

pr∗13pr∗1Ei pr∗13pr∗2Ek pr∗23pr∗2Ek
pr∗13σik

pr∗12σij

pr∗23σjk

Then we call {σij} a descent data on {Ei}. Moreover, we have the canonical functor

ε : F (Y )→ F ({Xi
fi−→ Y })

by sending E0 ∈ F (Y ) to {f ∗
i E0, σij,can} where σij,can : pr∗1f ∗

i E0 → pr∗2f ∗
jE0 is the

canonical isomorphism.
The collection of morphisms {Xi → Y } is of effective descent for F if the functor

ε is an equivalence. We call it is only effective if ε essential surjective.
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Definition 3.30. Let C be a site and F → C be a category fibered in groupoids. We
call F → C is a stack if for any X ∈ C and any covering {Xi → X} they forms an
effective descent.
Remark 3.31. A category fibered in groupoids is a stack if and only if any covering
{Xi → X} effective and Isom(x, y) is a sheaf.
Proposition 3.32. (i) The fiber product of stacks is also a stack;

(ii) For any category fibered in groupoids F → C has a stackification F a over C
which is a stack and a morphism q : F → F a induce

HomC(F
a, G)→ HomC(F,G)

is an equivalence.
Proof. See [74] Proposition 4.6.4 and Theorem 4.6.5.

3.4 Algebraic stacks and Deligne-Mumford stacks
3.4.1 Basic definitions
Here we may let a scheme U to be the category (Sch/U)ét and use Proposition 3.28
such that an algebraic space X to be the corresponding category fibered in sets.
Definition 3.33. A morphism of stacks f : X → Y is called representable (by
algebraic space) if for any scheme V and morphism y : V → Y , the stack X ×Y ,y V
is an algebraic space.
Remark 3.34. For any representable f : X → Y of stacks and for any algebraic
space V with y : V → Y , the fiber product X ×Y ,y Y is an algebraic space. This can
be checked after an étale base change. Then this follows from Tag 02YS.
Definition 3.35. (i) A stack X /S is called an algebraic stack (or sometimes they
called Artin stack) if ∆ : X → X ×S X is representable and there exists a scheme
X and π : X →X , a smooth surjective morphism.

(ii) An algebraic stack X /S is called a Deligne-Mumford stack if there exists an
étale cover π : X →X with X a scheme, instead of smooth one.
Remark 3.36. (i) The condition ∆ : X → X ×S X is representable holds if and
only if for any S-scheme U and u1, u2 ∈X (U) such that the space Isom(u1, u2) is an
algebraic space. Indeed this is almost trivial as

Isom(u1, u2) ∼= X ×(u1,u2),X ×SX U.

Note that this can be replaced by algebraic spaces, using similar Tag 02YS;
(ii) The condition ∆ : X →X ×S X is representable implies any morphism from

a scheme to an algebraic stack is representable. Indeed we have the following 2-fiber
product:

U ×u,X ,t T U ×S T

X X ×S X∆

p
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where t : T →X , u : U →X are morphisms from schemes;
(iii) For any S-algebraic spaces X,Y maps to an algebraic stack X , by (i) we can

find that X ×X Y ∼= Isom(pr∗1x, pr∗2y), which is an algebraic space.

Proposition 3.37. (i) Let X/S is an algebraic space and G/S be a smooth group
scheme which act on X, define the quotient stack [X/G] to be a stack consist of
(T,P, π) where T is an S-scheme, P is a G×S T torsor over the big étale site of T
and π : P → X ×S T is a G×S T -equivariant morphism of sheaves on Sch/T . Then
stack [X/G] is an algebraic stack;

(ii) Every algebraic stack X can be written as a smooth groupoid s, t : R ⇒ U
with U →X be the smooth surjection;

(iii) Fiber product of algebraic stacks is also an algebraic stack.

Proof. See [74] Example 8.1.12 and Proposition 8.1.16.

Remark 3.38. If G/S be a smooth group scheme which acts trivially on S, then we
define classifying stack of G is BG.

3.4.2 Basic properties
Definition 3.39. Let P be some property of S-schemes which is local in the smooth
topology (such as locally noetherian, regular, locally of finite type over S, locally of
finite presentation over S). We say that an Artin stack X /S has property P if there
exists a scheme X and a smooth cover f : X →X having property P (By [74] Lemma
8.2.4, this can be replaced by algebraic space).

Definition 3.40. (i) Let f : X → Y be any morphism (may NOT representable) of
algebraic stacks over S. A call a chart for f is:

X

X ′ Y

X Y

p
p

g h

where X,Y are algebraic spaces and g, p are smooth and surjective.
(ii) Let f : X → Y be any morphism (may NOT representable) of algebraic

stacks over S. Let P be a property of morphisms of schemes which is locally on
the sourse and target with respect to the smooth topology (such as smooth, locally of
finite presentation, surjective). We say f has property P if there exists a chart of
f by schemes (means X,Y above are schemes, but by [74] Proposition 8.2.8, we can
replace this by any charts) such that the morphism h has property P .

(iii) Let f : X → Y be any representable morphism of algebraic stacks over S. Let
P be a property of morphisms of schemes which is locally on the target with respect to
the smooth topology over the category of algebraic spaces over S (such as étale, smooth
of relative dimension d, separated, quasi-separated, proper, affine, finite, unramified,

21



a closed embedding, an open embedding, an embedding). We say f has property P if
for any Y an algebraic space and Y → Y , the morphism X ×Y Y → Y has property
P .

Remark 3.41. As in the case of algebraic spaces, the diagonal∆X /Y : X →X ×Y X
is always representable.

Definition 3.42. Let f : X → Y be any morphism (may NOT representable) of
algebraic stacks over S.

(i) We say f is quasi-separated if ∆X /Y is quasi-compact and quasi-separated;
(ii) We say f is separated if ∆X /Y is proper.

Remark 3.43. Note that if f is representable, then this definition is not conflit to the
previous definitions. This follows that now ∆X /Y is proper if and only if it is closed
immersion (Tag 04YS); ∆X /Y is quasi-compact if and only if it is quasi-compact and
quasi-separated (Tag 04YT).

Definition 3.44. (i)Let X be a noetherian algebraic stack with smooth cover U →X
and corresponding smooth groupoid s, t : R ⇒ U , and let u ∈ U be a preimage of
x ∈ |X | (that is, some x : SpecK →X ). We define the dimension of X at x to be

dimx X = dimu U − dime(u)Ru ∈ Z ∪ {∞}

where Ru is the fiber of s : R→ U over u and e : U → R denotes the identity morphism
in the groupoid. We define the dimension of X is

dimX := sup
x∈|X |

dimx X ∈ Z ∪ {∞};

(ii) If X is an algebraic stack and x : Speck → X , Then Zariski tangent space
TX ,x of X at x defined as all 2-commutative diagrams module isomorphisms:

Speck

Speck[ε] X

x

Theorem 3.45. Let X be a smooth northerian algebraic stack over k and x ∈X (k)
be a point with smooth stabilizer. Then

dimx X = dimTX ,x − dimGx.

3.4.3 Results of Deligne-Mumford stacks
Here is a very important characteristic of Deligne-Mumford stacks and we will use
this many times:
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Theorem 3.46. (See [74] 8.3.3) Let X /S be an algebraic stack, then the following
statement

(a) X is a Deligne-Mumford stack;
(b) the diagonal ∆ : X →X ×S X is formally unramified;
(c) for any algebraic closed field k and any point x ∈ X (k), the group scheme

Autx is reduced finite k-scheme.
Then (a)⇔(b), and if X noetherian, then (a)⇔(b)⇔(c).

Proof. See [74] Theorem 8.3.3.
Proposition 3.47. Let X be a Deligne-Mumford stack with an étale cover X →X .
(A) Let Qcoh(X ) be the category of the quasi-coherent sheaves over X , an object F
of it defined as:

(A1) For any f : S →X where S be a scheme, a quasi-coherent sheaf Ff on Szar;
(A2) An isomorphism ρH : h∗Fg ∼= Ff for any 2-diagram

S T

X

f
g

h

of schemes;
(A3) For any pair of morphisms H1 : f1 → f2, H2 : f2 → f3 where fi : Si →X are

schemes, the diagram

h∗1(h
∗
2(Ff3)) (h2 ◦ h1)∗(Ff3)

h∗1(Ff2) Ff1

∼=

h∗1(ρH2
)

ρH1

ρH2◦H1

of isomorphisms of sheaves over S1 commutes.
(B) Let Eqcoh(X ) be the category of the extended quasi-coherent sheaves over X ,
an object F of it defined as:

(B1) A quasi-coherent sheaf Ff on Szar for any étale map f : S → X from a
scheme;

(B2) An isomorphism ρH : h∗Fg ∼= Ff for any 2-diagram

S T

X

f
g

h

of étale maps of schemes;
(B3) For any pair of étale morphisms H1 : f1 → f2, H2 : f2 → f3 where fi : Si →X

are schemes, the diagram

h∗1(h
∗
2(Ff3)) (h2 ◦ h1)∗(Ff3)

h∗1(Ff2) Ff1

∼=

h∗1(ρH2
)

ρH1

ρH2◦H1
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of isomorphisms of sheaves over S1 commutes.
(C) Let QdX(X ) be the category of the quasi-coherent sheaves over X with descent
data related to X →X .
Conclusion. Then there are equivalence

Qcoh(X ) ∼= Eqcoh(X ) ∼= QdX(X )

and their composition in any three orders is isomorphic to the appropriate identity
functor.

Proof. See [8] Proposition XIII.2.9.

Theorem 3.48 (Local structure of DM-stacks). Let X be a separated Deligne-
Mumford stack. Let x ∈ X (k) be a geometric point with stabilizer Gx. Then exists
an affine étale map

f : ([SpecA/Gx], w)→ (X , x)

where w ∈ (SpecA)(k) such that f induces an isomorphism of the stabilizer groups at
w. Moreover, it can be arranged that f−1(BGx) ∼= BGw.

Proof. See [1] Theorem 4.2.1.

3.5 Some fundamental theorems
Theorem 3.49 (Valuative Criteria). Let f : X → Y be a morphism of noetherian
algebraic stacks. Assume f is of finite type and with separated diagonals. Then
consider any DVR and its fraction field K with a 2-commutative diagram

SpecK X

SpecR Y

Then
(1) f is proper if and only if there exists an extension of DVRs R → R′ and

K → K ′ of fraction fields having finite transcendence degree and a lifting unique up
to unique isomorphism

SpecK ′ SpecK X

SpecR′ SpecR Y

(2) f is separated if and only if every two liftings of the first diagram are uniquely
isomorphic.

(3) f is universally closed if for the first diagram, there exists an extension of
DVRs R → R′ and K → K ′ of fraction fields having finite transcendence degree and
a lifting as in the second diagram.
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Proof. See [1] Theorem 3.8.5 or St 0CLY.

Here is a heart definition in the moduli theory:

Definition 3.50 (Coarse moduli space). A morphism f : X → X from an algebraic
stack to an algebraic space is a coarse moduli space if

(i) for every algebraically closed field k, the morphism X (k)/ ∼→ X(k), from the
set of isomorphism classes of objects of X over k, is bijective;

(ii) for every map g : X → Y to an algebraic space factors uniquely as

X

X Y

f
g

∃!

Now we have the famous theorem due to Keel-Mori:

Theorem 3.51 (Keel-Mori theorem). Assume S is locally noetherian and that X
is an algebraic stack separated and locally of finite presentation over S. Then there
exists a coarse moduli space f : X → X such that

(i) X/S is separated and locally of finite type;
(ii) f is proper, and the map OX → f∗OX is an isomorphism;
(iii) If X ′ → X is a flat morphism of algebraic spaces, then f ′ : X ×X X ′ → X ′

is a coarse moduli space for X ′.

Proof. This is very complicated, we refer [74] Theorem 11.1.2.

Remark 3.52. Actually for the existence of the coarse moduli space, we can remove
the noetherian hypothesis and separateness and let the inertia stack IS(X ) finite (or
has finite diagonal). This is due to B. Conrad. For non-separated algebraic stack,
we may not have the coarse moduli space. But J. Alper develops the theory of good
moduli spaces in this case and use it into several aspects, such as the Hassett-Keel
program of M g and K-moduli of Fano varieties.

Theorem 3.53 (Local structure of coarse moduli space). Let X be a Deligne-
Mumford stack separated and of finite type over a noetherian algebraic space S. Let
π : X → X be its coarse moduli space. For any closed point x ∈ |X | with geometric
stabilizer Gx, there exists a cartesian

[SpecA/Gx] X

SpecAGx Xs

π

such that s is an étale neighborhood of π(x) ∈ |X|.

Proof. Follows from the construction in the proof of the Keel-Mori theorem. See [1]
Corollary 4.3.23.
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3.6 Miscellany
Theorem 3.54 (Le Lemme de Gabber). Let X be a Deligne-Mumford stack separated
and of finite type over a noetherian scheme S. Then there exists a finite, generically
étale and surjective morphism Z →X where Z be a scheme.

Proposition 3.55. Let X be a Deligne-Mumford stack separated and of finite type
over a noetherian algebraic space S. Let π : X → X be the coarse moduli space. If
L is a line bundle on X , then for N sufficiently divisible L ⊗N descends to X.

Proof. See [1] Proposition 4.3.37.

Proposition 3.56. If G be an algebraic group acting on some scheme H, hence we
get a quotient stack [H/G]. Then we have Qcoh([H/G]) ∼= Qcoh(H,G) where the
latter is the category of the G-equivariant quasi-coherent sheaf over H.

Proof. See [8] Proposition XIII.2.19.

Corollary 3.57. We have a group isomorphism Pic([H/G]) ∼= Pic(H,G).

Proposition 3.58. A morphism X → T of schemes is called a Brauer-Severi scheme
of relative dimension r if there exists an étale cover T ′ → T such that X ×T T ′ ∼= PrT ′.
Then:

(i) The groupoids {Brauer-Severi schemes of relative dimension r over T} and
{principal PGLr-bundles over T} defines an equivalence of groupoids given by X 7→
IsomT (PrT , X) and conversely P 7→ (P × Pr)\PGLr;

(ii) Let X → S be a proper, flat, and finitely presented morphism of schemes.
Assume that for every geometric point Speck → S, the geometric fiber X ×S k is
isomorphic to P1

k. Then X → S is a Brauer-Severi scheme of relative dimension 1.

4 The basic theory of moduli space of curves
4.1 Mg be a Deligne-Mumford Stack for g 6= 1

Here we mainly consider the g 6= 1 curves.

Definition 4.1. Let Mg be the fibered category over schemes with objects of form
(S, f : C → S) where S be a scheme and f be a proper smooth morphism such
that every geometric fiber of S is a connected genus g curve. The morphisms are
base-change.

Our main result of this section is to prove that Mg is a Deligne-Mumford stack
for g ≥ 2. For g = 0 we can run the same argument and we can get M0

∼= BPGL2

and some results of M0,n. Here we follows [1].
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4.1.1 Mg be a stack for g 6= 1

Lemma 4.2 (Descent for polarized schemes). Let Pol be the category consist of
objects (f : X → Y, L) where f is a proper flat morphism and L is a relatively ample
invertible sheaf. The morphism are diagrams of cartesian with isomorphic pullback
of line bundles. Consider the fibered category Pol → (Sch), then it has effective
fppf-descent.

Proof. See [74] 4.4.10.

Theorem 4.3. For g 6= 1, the fibered category Mg is a stack.

Proof. Consider Mg → Pol sends C → S to (C → S,Ω1
C/S) when g ≥ 2 and (C →

S,Ω1,⊗−1
C/S ) when g = 0.
For a fppf covering S ′ → S, then we get

Mg(S) Pol(S)

Mg(S
′ → S) Pol(S ′ → S)

∼=

Hence every object of Mg(S
′ → S) is in the essential image of Mg(S). By the descent

of sheaves used in h− → h= making it fully faithful.

4.1.2 For g ≥ 2, Mg be a Deligne-Mumford stack
Now let LC/S = (Ω1

C/S)
⊗3. By Lemma 2.14 (iv), for any family of smooth curves

p : D → S we get a closed immersion D ↪→ P(p∗LD/S) where p∗LD/S is locally free of
rank 5g− 5. Let H = HilbPP5g−6 where P (t) = deg(L⊗t

C/S) + 1− g = (6g− 6)t+1− g be
the Hilbert polynomial of Ds ↪→ P5g−6

κ(s) . Let the universal closed subscheme:

C H × P5g−6

H

π

I Claim 1. There is a unique subscheme H ′ ⊂ H consist of h ∈ H such that
(a) Ch → Spec(κ(h)) is smooth and geometrically connected;
(b) Ch ↪→ P5g−6

κ(h) is embedded by complete linear system |LCh/κ(h)|;
(c) the line bundles LCH′/H′ and OCH′ (1) differ by a pullback of a line bundle from

H ′ (that is, there exists a line bundle N over H ′ such that LCH′/H′ ⊗ p∗N = OCH′ (1)).
Moreover, if T → H be a morphism such that (a)-(c) hold for the family CT → T ,
then T → H factors through H ′.

Since the condition that a fiber of a proper morphism (of finite presentation) is
smooth is an open condition on the target, the condition on H that Ch is smooth
is open. Consider the Stein factorization (St 03H0) C → H̃ := Spec

H
π∗OC → H
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where C → H̃ is proper with geometrically connected fibres and H̃ → H is finite. As
OH → π∗OC is a morphism between coherent sheaves, then the kernel and cokernel of
it have closed supports. Hence H̃ → H is an isomorphism over an open subscheme of
H, which is precisely where the fibers of C → H are geometrically connected. Hence
the points satiefies (a) be a open subscheme of H, denoted by H1 ⊂ H.

By Review A.2, there exists a locally closed subscheme H2 ⊂ H1 such that a
morphism T → H1 factor through H2 if and only if LCT /T and OCT

(1) differ by
a pullback of a line bundle from T . In particular, (c) holds and for all h ∈ H2,
LCh/κ(h)

∼= OCh
(1).

For (b), let π2 : C2 := CH2 → H2. Consider α : H0(P5g−6
Z ,O(1)) ⊗ OH2 →

π2,∗OC2(1) of vector bundles of rank 5g − 5 on H2 with fiber αh : H0(P5g−6
κ(h) ,O(1)) →

H0(Ch,OCh
(1)) ∼= H0(Ch, LCh/κ(h)). As they have the same rank, αh is an isomor-

phism if and only if h is not in supp(coker(α)). Let H ′ = H2\(supp(coker(α))) and it
satisfies (a)-(c) with that universal property.
IClaim 2. The group scheme PGL5g−5 = Aut(P5g−6

Z ) act onH as: for g ∈ Aut(P5g−6
S )

and [D ⊂ P5g−6
S ] ∈ H(S), we let g · [D ⊂ P5g−6

S ] = [g(D) ⊂ P5g−6
S ]. As H ′ is PGL5g−5-

invariant, we claim that Mg
∼= [H ′/PGL5g−5] be an algebraic stack. (See St 044O, St

04UV for quot stacks)
Consider H ′ →Mg as [D ⊂ P5g−6

S ] 7→ (D → P5g−6
S → S) is well defined by Claim

1. This morphism is PGL5g−5-invariant, hence descends to [H ′/PGL5g−5]
pre → Mg.

We claim that this map is fully faithful. Indeed, for a family p : D → S in H ′ given
by D ⊂ P5g−6

S , we get OD(1) ∼= LD/S ⊗ p∗M for some line bundle M on S. Use (b) we
get

H0(P5g−6
Z ,O(1))⊗ OS → p∗OD(1) ∼= p∗(LD/S ⊗ p∗M) ∼= p∗LD/S ⊗M

be an isomorphism. Then any automorphism of D → S induces an automorphism of
LD/S and thus an automorphism of p∗LD/S ⊗M , which induce an automorphism of
P5g−6
S preserving D. By Theorem 4.3, Mg be a stack, hence induce [H ′/PGL5g−5] →

Mg which is fully faithful since stackification is fully faithful. Finally we check that
[H ′/PGL5g−5] → Mg is essentially surjective. As these are all stacks, then they
satisfied effective descent of étale covering. Hence we just need to show that for any
p : D → S, there exists an étale covering {Si → S} such that each DSi

is in the
image of H ′(Si)→Mg(Si). Actually since LD/S defined D ↪→ P(p∗LD/S) and p∗LD/S

is locally free of rank 5g − 5, we let {Si} be open (zariski, hence étale) covering of S
such that (p∗LD/S)|Si

are all free. Well done.
I Claim 3. The algebraic stack Mg is a Deligne-Mumford stack.

By Theorem 3.46, we just need to show for any smooth connected proper curve
C over a algebraic closed field k, the group scheme G := Autk(C) = Aut(C) is finite
and reduced. We find that TG,e can be identified with the automorphism group of
the trivial first order deformation of C. Hence by Proposition 4.43, we get TG,e =
H0(C, TC) = 0, well done.

4.1.3 First properties of Mg for g ≥ 2

Proposition 4.4. As Mg
∼= [H ′/PGL5g−5] and H ′ is locally of finite type, then Mg

is locally of finite type over Z. As H ′ is noetherian, so is Mg. So it is finite type over
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Z.

Proposition 4.5. Mg have affine diagonal. Indeed, since we have Mg
∼= [H ′/PGL5g−5]

which is an algebraic stack, then we have cartesian square

H ′ × PGL5g−5 H ′ ×H ′

Mg Mg ×Mg

As PGL5g−5 affine, then PGL5g−5×H ′ → H ′×H ′ → H ′ affine, so is PGL5g−5×H ′ →
H ′ ×H ′.

4.1.4 Smoothness and dimension of Mg for g ≥ 2

Proposition 4.6. If C is a smooth connected projective curve of genus g ≥ 2 over k,
then dimTMg ,[C] = 3g − 3.

Proof. By Proposition 4.39, we get TMg ,[C] = H1(C, TC). As degTC < 0, we get
H0(C, TC) = 0. So by Riemann-Roch we get

dimTMg ,[C] = dimH1(C, TC) = −χ(TC) = − degTC + g − 1 = 3g − 3,

well done.

Theorem 4.7. For g ≥ 2, the Deligne-Mumford stack Mg is smooth over Z of relative
dimension 3g − 3.

Proof. Let a field k and a smooth projective connected curve C → Spec(k). Consider
the following 2-diagram:

Spec(k) Spec(A0) Mg

Spec(A) Spec(Z)
f

[C]

where A → A0 be a surjective maps of artinian local rings with residue field k with
k = ker(A → A0). The map Spec(A0) → Mg corresponds to a family of curves
C0 → Spec(A0) and a cartesian:

C C0 C ′

Spec(k) Spec(A0) Spec(A)

of solid arrows. So to find the lifting, we just need to find the dashed arrows, that is,
deformation of C along A. By Propositon 4.43(iii), there exists a cohomology class
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obC ∈ H2(C, TC) such that this happens if and only if obC = 0. Hence this is right as
C be a curve. Hence Mg is smooth. By Theorem 3.45, we get

dim[C] Mg = dimTMg ,[C] − dimAut(C).

By the final step of the proof of the DM-ness of Mg, we get dimAut(C) = 0. Hence
dim[C] Mg = dimTMg ,[C] = 3g − 3, well done.

4.1.5 For g = 0

Let M0,n be a stack parameterizing the genus 0 curves with n sections. By the same
argument we can get M0,n be a stack.

Proposition 4.8. (i) We have M0,0 = M0
∼= BPGL2 and M0,1

∼= BU2 where U2 ⊂
PGL2 is the two-dimensional subgroup of upper triangular matrices;

(ii) we have M0,2
∼= BGm;

(iii) we have M0,3
∼= SpecZ;

(iv) for n ≥ 3 we have M0,n
∼= (P1\{0, 1,∞})n−3\∆ where ∆ is the closed sub-

scheme where at least two of the n− 3 points are equal.

Proof. (i) Here we need to use some results about Brauer-Severi schemes. Actually
M0
∼= BPGL2 is directly from Proposition 3.58. We omitted for the proof of M0,1

∼=
BU2;

(ii) By Proposition A.19(ii) that for any T this is equivalent to the line bundles
over T which correspond to principal Gm-bundles. Hence M0,2

∼= BGm;
(iii) This follows directly from Proposition A.19(iii) that all families are trivial;
(iv) Given any curve (C → S, s1, ..., sn) we still have C ∼= S × P1 and there exists

a unique element B ∈ PGL2 of the automorphism group of P1 sending s1, s2, s3 to
0, 1,∞. Hence we get

(C → S, s1, ..., sn) ∼= (S × P1 → S, 0, 1,∞, s4, ..., sn)

and other sections are pairwise distinct and also distinct from 0, 1,∞ we get the
result.

Corollary 4.9. When we consider the stack over Sch/k for any algebraically closed
field k, we have M0

∼= BPGL2.

Proof. In this case we have a more direct and easy proof. Actually here we have
invertible sheaves of degree 1. Hence any proper smooth curve of genus 0 be P1

k. The
Hilbert polynomial p(t) = t+1 in P1

k and can show that it is P1
k by some tricks. Hence

M0
∼= [Hilbp(t)P1

k
/PGL2] = [Grassk(2, 2)/PGL2] = BPGL2,

well done.
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4.2 Nodal curves
4.2.1 Basic facts of nodal curves
The the more details, see St 0C46.
Definition 4.10 (Nodes). Let C be a curve over k.

(a) If k algebraically closed, we say that p ∈ C(k) is a node is we have ÔC,p
∼=

k[[x, y]]/(xy);
(b) If k need not be algebraically closed, we say a closed point p ∈ C is a node if

there exists a node p′ ∈ Ck over p.
We say C be a nodal curve if every closed point is either smooth or nodal.

Proposition 4.11. Let C be a curve over k. Consider the following statments.
(a) p ∈ C is a node;
(b) κ(p)/k is separable, there exists a nondegenerate quadratic form ax2+bxy+cy2

over κ(p) such that ÔC,p
∼= κ(p)[[x, y]]/(ax2 + bxy + cy2) as a k-algebra;

(c) κ(p)/k is separable, OC,p is reduced with δ-invariant 1.
Then we have (a)⇔(b)⇒(c).
Proof. See St 0C49 and St 0C4D.

We assume (a)⇔(b). Here by Lemma 2.23, we just need to consider the case
OC,p

∼= κ(p)[[x, y]]/(ax2 + bxy + cy2) where Q = ax2 + bxy + cy2 is a nondegenerate
quadratic form.

Case (I): If Q is split, we may let OC,p
∼= κ(p)[[x, y]]/(xy) after some coordinate

transformation. Then we get
ÕC,p

∼= κ(p)[[x, y]]/(x)× κ(p)[[x, y]]/(y);

Case (II): If not, we have c 6= 0 and b2 − 4ac 6= 0. Hence κ′ = κ(p)[t]/(a+ bt+ ct2)
is a separable extension of κ(p) of degree 2. Then t = y/x is integral over ring OC,p.
Hence we conclude that

ÕC,p = κ′[[x]]

with y mapping to tx on the right hand side.
In both cases one verifies by hand that the δ-invariant is 1, well done.

Remark 4.12. (i) As for a node p ∈ C in a nodal curve C, we have κ(p)/k is
separable. As the two cases above, if p is of case (I), then f−1(p) has two points with
residue fields κ(p). If p is of case (II), then f−1(p) has only one point with residue
field κ′, a degree 2 separable extension of κ(p);

(ii) As in (i), all closed points of C̃ is regular with separable residue fields over k.
Hence C̃ is smooth over k by St 00TV.
Proposition 4.13. If C is a curve over k and p ∈ C be a node. Then exists a finite
separable field extension K/k, a point P ∈ CK over p and ÔCK ,P

∼= K[[x, y]]/(xy).

Proof. By Proposition 4.11(b), we get κ(p)/k is separable, ÔC,p
∼= κ(p)[[x, y]]/(ax2 +

bxy+cy2) as a k-algebra where Q = ax2+bxy+cy2 is a nondegenerate quadratic form
over κ(p). If Q is split, well done. If not, let K = k[t]/(at2 + bt + c) be a separable
extension over k with Q split, well done.
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4.2.2 Genus fomula
Let k be algebraically closed field now. Let C be a connected nodal projective curve
over k. Let z1, ..., zs be its nodes and C1, ..., Ct be its irreducible components.

By Proposition A.13(1) and (4), we get C̃ =
∐t

i=1 C̃i where C̃, C̃i are normaliza-
tions. Let f : C̃ → C. By Proposition 2.24, we get a exact sequence

0→ OC → f∗OC̃ →
s⊕
i=1

Qi → 0

where Qi supported over zi. Since by Proposition 4.11(c), we get Qi = κ(zi) as the
δ-invariant are all 1, hence we get

0→ OC → f∗OC̃ →
s⊕
i=1

κ(zi)→ 0.

Hence we get long exact sequence

0→ H0(C,OC)︸ ︷︷ ︸
1

→ H0(C̃,OC̃)︸ ︷︷ ︸
t

→
s⊕
i=1

κ(zi)︸ ︷︷ ︸
s

→ H1(C,OC)︸ ︷︷ ︸
g(C)

→ H1(C̃,OC̃)︸ ︷︷ ︸∑t
i=1 g(C̃i)

→ 0

with the labels underneath indicating the dimensions.

Theorem 4.14 (Genus fomula). With the situation as above, we get

g(C) =
t∑
i=1

g(C̃i) + s− t+ 1.

Proof. Trivial by the argument above.

4.2.3 The dualizing sheaf
We have three way to see this. Consider C be a fixed nodal curve over k.
• The first way.

We find that C is locally complete intersection as we can checking locally. As for
a node p ∈ C, we have ÔC,p

∼= κ(p)[[x, y]]/(ax2 + bxy + cy2) for some nondegenerate
quadratic form. By [71] Theorem 21.2(iii), we get OC,p is a complete intersection over
k. Hence by [58] Theorem III.7.11 (adjunction formula for l.c.i), if we embedding it
into PN , then we have ωC ∼= ωPN ⊗

∧N−1(I /I 2) where I be the ideal sheaf. As this
is locally complete intersection, this is a line bundle.
• The second way.

This is an abstract way of duality theory, see St 0E31 for more details. As C is
locally complete intersection, then by St 0BVA we get C is Gorenstein. By St 0BS2,
C must have a dualizing complex ω∗

C . By 0BFQ, as C is Gorenstein, ω∗
C is invertible.

By C Cohen-Macaulay, ω∗
C = ωC [0]. Hence we win.
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• The third way.
We can explicit ωC precisely. Let Σ be the set of nodes of C and let U = C\Σ.

Let the normalization f : C̃ → C and Σ̃ := f−1(Σ), Ũ := f−1(U). Now C̃ is smooth,
then we have the dualizing sheaf (line bundle) ΩC̃ . We get

0→ ΩC̃ → ΩC̃(Σ̃)→ OΣ̃ → 0.

Actually the sections of ΩC̃(Σ̃) is the rational sections of ΩC̃ with at worst simple
poles in Σ̃. Hence for any open V ⊂ C̃ and y ∈ V ∩ Σ̃ we have the residue resy :

Γ(V,ΩC̃(Σ̃))→ κ(y).

Definition 4.15. We define the subsheaf ωC ⊂ f∗ΩC̃(Σ̃) as for any open V ⊂ C we
have

Γ(V, ωC) =

{
s ∈ Γ(f−1(V ),ΩC̃(Σ̃)) : for any zi ∈ V ∩ Σ

and f−1(zi) = {pi, qi} with respi(s) + resqi(s) = 0

}
.

Hence we get two exact sequences

0 ωC f∗ΩC̃(Σ̃)
⊕

zi∈Σ κ(zi) 0

s (respi(s)− resqi(s))

and
0 f∗ΩC̃ ωC

⊕
zi∈Σ κ(zi) 0

s (respi(s))

Proposition 4.16. Let C be a nodal curve C over k.
(a) If g : C ′ → C be an étale morphism, then g∗ωC ∼= ωC′;
(b) Conclude that ωC be a line bundle.

Proof. (a) As the normalization commutes with étale base change (see St 03GE), we
have the cartesian with normalizations

C̃ ′ C̃

C ′ C

f

g

f ′

g′

By flat base change, we have the process g∗ωC ⊂ g∗f∗ΩC̃(Σ̃)
∼= f ′

∗(g
′)∗ΩC̃(Σ̃) =

f ′
∗ΩC̃′(Σ̃′). By definition and this process, we get g∗ωC ∼= ωC′ .

(b) Use Corollary A.5 and Proposition 4.13, there exists a separable extension
K/k such that we get the common étale neighborhood as

(U, u)

(C, p) (SpecK[x, y]/(xy), 0)

F G
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Let D = SpecK[x, y]/(xy) and normalization D̃ ∼= A1
K t A1

K . Then Γ(D̃,ΩD̃) =
Γ(A1

K , ωA1
K
)× Γ(A1

K , ωA1
K
) and (dx

x
,−dy

y
) be a section of ωD. As any section is of form

(f(x)dx
x
,−g(y)dy

y
) where f(0) = g(0), which is precisely the condition for (f, g) ∈

Γ(D̃,OD̃) to descend to a global function on D. In other words, ωD ∼= OD with
generator (dx

x
,−dy

y
). By (a), we get ωU = G∗ωD, hence ωU is a line bundle. As

F ∗ωC = ωU be a line bundle, we use the descent theory and we win.

Proposition 4.17. Let C be a proper nodal curve C over k, then ωC be the dualizing
line bundle of C.

Proof. (See [8]) We may assume that k is algebraic closed. Choose a divisor D =
r1 + ··· + rh consisting of distinct smooth points of C, with the property that any
component of C contains at least one of the ri’s. We first claim that H1(ωC(D)) = 0.
Indeed, we get an exact sequence

0→ (f∗ωC̃)⊗ OC(D) = f∗(ωC̃(D))→ ωC(D)→
⊕
nodes

k → 0.

Hence deduce a surjection

H1(C, f∗(ωC̃(D))) = H1(C̃, ωC̃(D)) � H1(C, ωC(D)).

As C̃ is smooth, we get for any irreducible components and Serre duality in smooth
case, we get H1(C̃, ωC̃(D)) = 0 as D meets every irreducible components. Hence
H1(ωC(D)) = 0.

Next we deduce an exact sequence by using the claim as

H0(C, ωC(D))→ H0(C, ωC(D)/ωC)→ H1(C, ωC)→ H1(C, ωC(D)) = 0.

For any φ ∈ H1(C, ωC) we have some lifts φ′ ∈ H0(C, ωC(D)/ωC). We define the trace
map as

trC : H1(C, ωC(D))→ k, φ 7→ 2π
√
−1

l∑
i=1

resriφ′

and this is well defined by using residue theorem (of definition). Perfect pairing is
omitted.

Proposition 4.18. Let C be a nodal curve C over k and T ⊂ C be an irreducible
component and DT be the union of the intersections of T and another irreducible
components, then ωC |T = ωT (DT ).

Proof. Trivial by definition of the dualizing sheaves.

4.2.4 Local structure of nodes
Theorem 4.19 (Local structure of nodes). Let π : C → S be a flat and finitely
presented morphism such that every geometric fiber is a curve. Let p ∈ C be a node
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in Cs. Thenwe have a following diagram

(C, p) (U, u) (SpecA[x, y]/(xy − f), 0)

(S, s) (SpecA, s′)

ét

ét

ét

where each horizontal arrow is a residually-trivial pointed étale morphism and f ∈ A
is a function vanishing at s′.

Sketch. See [1] 5.2.12 or St 0CBY for more details.
Step 1. Reduce to S of finite type over Z. Using noetherian approximation.
Step 2. Reduce to the case where ÔCs,p

∼= κ(s)[[x, y]]/(xy). Just need to use
Proposition 4.13 and since separable, we can find a étale neighborhood (S ′, s′) such
that κ(s′) = K.
Step 3. Show that ÔC,p

∼= ÔS,s[[x, y]]/(xy − f) where f ∈ m̂s. Using the Sch-
lessinger’s theorem in formal deformation theory to deduce a diagram similar as what
we want at the completion level.
Step 4. Apply Artin approximation (Theorem A.4). Using Artin approxima-
tion to deduce our diagram from the completion level.

Corollary 4.20. Let π : C → S be a flat and finitely presented morphism such that
every geometric fiber is a curve, then the locus

C≤nod = {p ∈ C : p ∈ Cπ(p) either smooth or node} ⊂ C

is open.

Proof. First we know the smooth locus is open. If p ∈ Cπ(p) is a node, then by
Theorem 4.19 we get an étale morphism g : (U, u) → (C, p). Then p ∈ g(U) ⊂ C≤nod

is open.

Corollary 4.21. Let π : C → S be a proper flat and finitely presented morphism such
that every geometric fiber is a curve, then the locus S≤nod = {s ∈ S : Cs is nodal} ⊂ S
is open.

Proof. As we find that
S≤nod = S\π(C\C≤nod).

By the previous Corollary and π is proper, then S≤nod is open.

Remark 4.22. Actually later we can prove that the stack M≤nod
g is a algebraic stack.

But the main problem of M≤nod
g is that it is not separated and not of finite type. We

can see the figure below for intuitive understanding:

Corollary 4.23 (Comparison). Let’s compare ωC/Y and Ω1
C/Y where φ : C → Y are a

family of complex nodal curves. We will follows [8] X.2 and more general we can see
[69] 6.4.2. Also, we will work on the complex topology.
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Blowing up Blowing up Blowing up

0

0

0

Pick a node p in some fiber, then by Theorem 4.19 we get near p we have the
composition φ|U : U ↪→ C2 × Y → Y where U defined by F := xy − f . By adjunction
formula we get the local generator of ωC/Y is F−1dx∧dy (mod F ). Using [69] Lemma
6.4.12, we get a homomorphism

ρ : Ω1
C/Y → ωC/Y

given by id if it near smooth points and ρ(α) = F−1α′ ∧ dF (mod F ) if near the
nodes where α′ is on C2 × Y → Y restriction is α. Actually near nodes we have
ρ(dx) = xF−1dx ∧ dy and ρ(dy) = −yF−1dx ∧ dy. Now we consider

0→ ker ρ→ Ω1
C/Y

ρ−→ ωC/Y → cokerρ→ 0.

• Claim 1. ρ(Ω1
C/Y ) = I ωC/Y where I be the ideal locally generated by x, y

(locally ideal of that node).
Let S be the subspace correspond to I , then for now cokerρ = ωC/Y ⊗OS. As locally

near nodes we get xy = f and ρ(Ω1
C/Y ) generated by xF−1dx ∧ dy and yF−1dx ∧ dy,

then I be the ideal locally generated by x, y.
• Claim 2. When Y be a single point, then ker ρ is the one-dimensional
complex vector space generated by the class of xdy = −ydx.

This is trivial by this construction.
• Claim 3. When Y is integral sand generic fiber of φ is smooth, then ρ is
injective.

4.3 Stable curves
4.3.1 Basic facts of stable curves
An n-pointed curve is a curve C over a field k together with an ordered collection of
k-rational points p1, ..., pn ∈ C which we call the marked points. A point q ∈ C of an
n-pointed curve is called special if q is a node or a marked point.

Stable Curves

0 0

0

0

1
0 Not Stable Curves
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Definition 4.24. A n-pointed curve (C, p1, ..., pn) over k is prestable if it is a geomet-
rically connected, nodal and projective curve, and p1, ..., pn ∈ C(k) are distinct smooth
points.

A n-pointed curve (C, p1, ..., pn) over k is semistable if
(a) it is prestable;
(b) every smooth rational subcurve P1 ⊂ C contains at least 2 special points;
(c) C is not of genus 1 without marked points.
A n-pointed curve (C, p1, ..., pn) over k is stable if
(a) it is semistable;
(b) every smooth rational subcurve P1 ⊂ C contains at least 3 special points.

Remark 4.25. (1) Note that there are no n-pointed stable curve of genus g if 2g −
2+n ≤ 0 by Proposition 4.27. We will often impose the condition that 2g− 2+n > 0
in order to exclude these special cases;

(2) An automorphism of a stable curve (C, p1, ..., pn) is an automorphism α : C →
C such that α(pi) = pi. We denote by Aut(C, p1, ..., pn) the group of automorphisms;

(3) For some general Riemann Roch theorem (such as 0BS6) and the fact that the
prestable curves are proper geometrically connected and geometrically reduced, then
deg(ωC) = 2g − 2.

Proposition 4.26. Let (C, p1, ..., pn) be an n-pointed nodal projective curve such that
the points pi are distinct and smooth. Let π : C̃ → C be the normalization and p̃i ∈ C̃
be the unique preimage of pi and q̃1, ..., q̃m ∈ C̃ be an ordering of the preimages of
nodes. Then

(a) (C, p1, ..., pn) is stable if and only if every connected component of (C̃, {p̃i}, {q̃j})
is stable.

(b) The group scheme Aut(C, {pi}) is an algebraic group.
(c) Aut(C, {pi}) is naturally a closed scheme of Aut(C̃, {p̃i}, {q̃j}) with the same

connected component of identity.

Proof. (a) Easy to see that we just need to verify that every smooth rational subcurve
P1 ⊂ C contains at least 3 special points if and only if every connected component of
(C̃, {p̃i}, {q̃j}) have the same property. This is also trivial as we just need to consider
the rational component of (C̃, {p̃i}, {q̃j}) and using the genus formula.

We omit the proof of (b),(c).

Proposition 4.27. Let (C, p1, ..., pn) be an n-pointed prestable curve. The following
are equivalent

(i) (C, p1, ..., pn) is stable;
(ii) Aut(C, p1, ..., pn) is finite; and
(iii) ωC(p1 + ...+ pn) is ample.

Proof. (i)⇔(ii). By the results in Section 2.1.2 we get for smooth connected projective
curve, its automorphism group if finite if and only if ⇔ 2g− 2+n > 0 for (g, n). Now
consider the normalization f : (C̃, {p̃i}ni=1, {q̃j}2sj=1)→ (C, p1, ..., pn) with C̃ =

∐t
j=1 C̃j.

By Proposition 4.26 (a), we have (i)⇔ for all j, (C̃j, {p̃i ∈ C̃j}ni=1, {q̃k ∈ C̃j}2sk=1) is
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stable. As all C̃j have marked points and use Proposition 4.26 (c), (ii)⇔ for all j,
Aut(C̃j, {p̃i ∈ C̃j}ni=1, {q̃k ∈ C̃j}2sk=1) are finite. Hence by the case of smooth case, we
win.

(i)⇔(iii). By Proposition A.14, 4.18 and consider the normalization π : C̃ → C,
we get ωC(p1 + ...+ pn) is ample if and only if π∗ωC(p1 + ...+ pn) is ample if and only
if for any irreducible components T ⊂ C̃, ωC(p1 + ... + pn)|T = ωT (

∑
pi∈T pi +DT ) is

ample. This latter condition holds precisely if each P1 ⊂ C̃ contains at least three
points that lie over nodes or marked points (using Theorem 2.2) and we win.

4.3.2 Positivity of the dualizing sheaf
Theorem 4.28. For any n-pointed stable curve (C, p1, ..., pn), the bundle (ωC(p1 +
...+ pn))

⊗k is very ample for k ≥ 3.

Proof. We refer Tag 0E8X. In this proof we will use a very general fact about globally
generated bundles: Tag 0E3F. Note that we can let k be an algebraically closed since
closed immersion is locally over fpqc topology.

Remark 4.29. (a) From this we can get that π∗ω⊗n
C/S is locally free of rank (2n −

1)(g − 1);
(b)For another proof, we refer [29] Theorem (I.2) and [74] Proposition 13.2.17.

Here we give a sketch as follows and omit some details:
We just prove the case of k is algebraically closed and no marked points. In this

case we just need to show that its sections separates points and tangent vectors. As
for x, y ∈ C(k) (maybe the same points) and their ideal Ix, Iy, we have

0→ ω⊗k
C ⊗ IxIy → ω⊗k

C → ω⊗k
C ⊗ OC/IxIy → 0.

So we just need to show that H1(C, ω⊗k
C ⊗ IxIy) = 0. By Serre duality, we need to

show

H1(C, ω⊗k
C ⊗ IxIy) = H0(C, (ω⊗k

C ⊗ IxIy)
∨ ⊗ ωC)

= H0(C,H om(ω⊗k
C ⊗ IxIy, ωC)) = Hom(IxIy, ω

⊗(1−k)
C ) = 0.

We need a case analysis on whether x, y are smooth or nodal.
If x ∈ C is smooth, then Ix = OC(−x) is invertible. If x ∈ C is a node, consider

the blowing up π : C ′ → C along x with π−1(x) = {x1, x2}. Then for any line bundle
L on C we claim that

Hom(Ix, L) ∼= H0(C ′, π∗L),Hom(I2x, L)
∼= H0(C ′, π∗L(x1 + x2)).

We just prove the first statement, the second is similar. First we have

0→ OC → π∗OC′ → κ(x)→ 0,

tensoring L we get

0→ L→ π∗OC′ ⊗ L = π∗π
∗L→ L(x)→ 0.
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Hence we have
0→ Hom(Ix, L)→ Hom(π∗Ix, π

∗L)
f−→ Hom(Ix, L(x)) = Hom(Ix/I

2
x, L(x)).

On the other hand, we have a short exact sequence
0→ π∗L→ π∗L(x1 + x2)→ π∗L(x1)⊕ π∗L(x2)→ 0

inducing
0→ H0(C ′, π∗L)→ H0(C ′, π∗L(x1 + x2))

g−→ π∗L(x1)⊕ π∗L(x2).

Let J = OC′(−x1 − x2) ⊂ OC′, we get
0→ K → π∗Ix → J → 0

where supp(K) = {x1, x2} by checking locally. Since π∗L is torsion free at x1, x2, we
have Hom(K, π∗L) = 0, so this defines an isomorphism

Hom(π∗Ix, π
∗L) ∼= Hom(J, π∗L) ∼= H0(C ′, π∗L(x1 + x2)).

We also have Ix/I2x ∼= π∗(J/J
2) and Hom(Ix/I

2
x, L(x))

∼= Hom(π∗(J/J
2), L(x)). This

isomorphism identifies
ker(Hom(π∗Ix, π

∗L)→ Hom(Ix/I
2
x, L(x)))

and
ker(H0(C ′, π∗L(x1 + x2))→ H0(π∗L(x1)⊕ π∗L(x2))).

Hence we get Hom(Ix, L) = H0(C ′, π∗L), hence the claim is right.
Case (I). If x, y are all smooth points, then deg(ω⊗(1−k)

C (x+y)) = (1−k)(2g−2)+2 < 0
for k ≥ 3. Hence

Hom(IxIy, ω
⊗(1−k)
C ) = H0(C, ω

⊗(1−k)
C (x+ y)) = 0.

Case (II). If x is a node and y is a smooth point, then by the claim, we win.
Case (III.1). If x = y is a node, then by the claim we get

Hom(I2x, ω
⊗(1−k)
C ) ∼= H0(C ′, π∗ω

⊗(1−k)
C (x1 + x2)).

Consider the normalization C̃ of C (and C ′, also), we consider an irreducible compo-
nent E ⊂ C̃. Then π∗ω

⊗(1−k)
C (x1 + x2) restrict to E has degree

(1− k)(2gE − 2 +#{E ∩ Σ̃}) +#({x1, x2} ∩ E)

is negative unless k = 3, {x1, x2} ⊂ E, E is a rational curve meeting the other
components of C in exactly one other point. In this case the degree on E is zero.
So this global section is determined by its value at the point of E meeting the other
components of C. Since not every component of C̃, we win.
Case (III.2). If x 6= y are all nodes, the blowing up $ : C ′′ → C along {x, y}. We
can get similar conclusion

Hom(IxIy, ω
⊗(1−k)
C ) ∼= H0(C ′, $∗ω

⊗(1−k)
C ).

This is zero since in any irreducible of normalization has negative degree.
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4.3.3 Families of stable curves
Definition 4.30. (1) A family of n-pointed nodal curves is a flat, proper and finitely
presented morphism C → S of schemes with n sections σ1, ..., σn : S → C such that
every geometric fiber Cs is a (reduced) connected nodal curve.

(2) A family of n-pointed stable curves (resp. semistable curves, prestable curves) is
a family C → S of n-pointed nodal curves such that every geometric fiber (Cs, σ1(s), ..., σn(s))
is stable (resp. semistable, prestable).

Remark 4.31. (1) We can define the fibered category of groupoid M g,n as for any
scheme S, define M g,n(S) = {(C, σ1, ..., σn)→ S : is a family of stable curves of genus g}.
Note also that since the geometric fibers are stable curves, the image of each σi is a
divisor contained in the smooth locus and we can form the line bundle ωC/S(

∑
i σi).

(2) We can define relative dualizing line bundle ωC/S as C → S is l.c.i. By [57],
we can get the following properties: (2.a) ωC/S|Cs = ωCs; (2.b) for any f : T → S we
have f ∗ωC/S = ωC×ST/T .

Proposition 4.32. Let π : (C, σ1, ..., σn) → S be a family of n-pointed stable curves
of genus g. Let L = ωC/S(

∑
i σi). If k ≥ 3, then L⊗k is relatively very ample and

π∗L
⊗k is a vector bundle of rank (2k − 1)(g − 1) + kn.

Proof. Similar as the smooth case by using Riemann Roch and cohomology and base
change. Omitted here.

Proposition 4.33 (Openness of stability). Let π : (C, σ1, ..., σn) → S be a family of
n-pointed nodal curves. The locus of S such that (Cs, σi(s)) is stable is open.

Proof. As the locus such that σi(s) is smooth is open, we just need to let this family
is prestable. Using 4.27, we have two arguments:
Argument 1. Group scheme Aut(C/S, σi)→ S has upper semicontinuous dimension
of fibers, then as stable locus is the locus such that it is dimension 0 locus. Hence
open.
Argument 2. Using the openness of ample locus.

Proposition 4.34 (Openness of being nodal). Let f : X → S be a flat proper
morphism of C-schemes. Then the set of all s ∈ S such that Xs = f−1(s) is not a
connected nodal curve is closed in S. If, in addition, n sections σi of f are given,
then the set of all s ∈ S such that (Xs; σi(s)) is not a connected n-pointed nodal curve
is closed in S.

Sketch. We will give a sketch and for the detailed proof see [8] Proposition XI.5.1.
First we need to let the fibers of f has dimension 1 by flatness and properness.
• Step 1. Reduce to the case that fibers are connected and have no em-
bedded components. Easy to see that dimH0(Xs,OXs) = 1 for all s ∈ S if Xs is
connected and reduced. As this is the stalks of f∗OX , we consider the free resolution
K0 α−→ K1 → · · · at some open subset. Hence the locus of dimH0(Xs,OXs) > 1 is
the locus of rank(α) ≤ rank(K0)− 2. Hence is closed.
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• Step 2. Show that being neither nodal nor smooth is closed. Here we
need to represent nodes by some functions. Then we use some equivalent conditions
(see [8] Lemma X.2.3) that if f be a function over 0 and f(0) = 0, then f defines the
smooth point 0 if and only if the first-order partials of f not vanish at the origin; f
defines the node 0 if and only if the first-order partials of f vanish and the Hessian
not vanish.

4.3.4 Rational tails and bridges
Definition 4.35. Let (C, p1, ..., pn) be a n-pointed prestable curve. We say a smooth
rational subcurve E ∼= P1 ⊂ C is

(i) a rational tail if E meets other irreducible components at exactly 1 time, and
E contains no marked points;

(ii) a rational bridge if either E meets other irreducible components at exactly
2 time and contains no marked points, or E meets other irreducible components at
exactly 1 time and contains exactly 1 marked point.

E

E

E

P

Rational Tail Rational bridges

Remark 4.36. (1) C is stable if and only if it is prestable and has no rational tails
and bridges;

(2) C is semistable if and only if it is prestable and has no rational tails.

Or we can also have chain of rational tails and bridges like:

4.3.5 The stable model
• The stable model of a single curve.

Let (C, p1, ..., pn) be a n-pointed prestable curve. Let Ei ⊂ C are its rational tails
and bridges. We let Cst := C\

⋃
iEi and let π : C → Cst be the induced map. Let

p′i = π(pi), then (Cst, {p′i}) is a stable curve, which we call the stable model of (C, {pi})
and π : C → Cst the stabilization morphism. Like this:
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C

Cstπ

For the serious argument of contraction to the stable curves, we refer [11]: con-
tracting rational tails (St 0E3G), contracting rational bridges (St 0E7M), contracting
to a stable curve (St 0E7N). We omitted here.
• The stable model of a family of curves.

For a family of nodal curves, we also have the following conclusion.

Proposition 4.37. Let (C → S, σi) be a family of n-pointed prestable curves. Then
there exists a unique (up to isomorphism) morphism π : C → Cst such that

(a) (Cst → S, {σ′
i}) is a n-pointed family of stable curves where σ′

i = π ◦ σi;
(b) for each s ∈ S, (Cs, {σi(s)})→ (Cst

s , {σ′
i(s)}) is the stable model;

(c) OCst = π∗OC and R1π∗OC = 0 and this remains true after base change by a
morphism S ′ → S of schemes;

(d) If C → S is a family of semistable curves, then ωC/S(
∑

i σi) is the pullback of
the relatively ample line bundle ωCst/S(

∑
i σ

′
i).

Proof. See St 0E7B for the detailed proof.

4.4 Deformation theory of nodal and stable curves
After some basic results over arbitrary fields, we will focus on the curves over C.
We mainly follows [8] chapter XI (all results over C) and some results over arbitrary
fields we follows [1]. Some basic result and proofs we follows [77]. Here we let k[ε] :=
k[x]/(x2).

4.4.1 Elementary deformation theory and smooth objects
Definition 4.38. Let X be a scheme over k. A first order deformation of X is a
scheme X flat over k[ε] = k[ε]/(ε2) with X ∼= X ×k[ε] k.

We say X is trivial if X is isomorphic as first deformations to X×kk[ε], and locally
trivial if there exists a Zariski-cover X =

⋃
i Ui such that X|Ui

is a trivial first order
deformation of Ui, that is, Ui ×k k[ε] ∼= X|Ui

where X|Ui
⊂ X be a open subscheme

with the same topology of Ui.

We let Def(X) be the isomorphism classes of first order deformations of X and
Deflt(X) be the isomorphism classes of locally trivial first order deformations of X.

Proposition 4.39 (See [1] D.1.11). For a scheme X of finite type over k with affine
diagonal, there is a bijection

Deflt(X)↔ H1(X,TX).
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In particular, if X0 is smooth, then we have bijection

Def(X)↔ H1(X,TX),

as every first order deformations of smooth affine schemes is trivial.

Sketch. For a locally trivial first order deformation

X X

Speck Speck[ε]

let affine covering {Ui} of X such that X|Ui
be a trivial first order deformation.

Hence we get isomorphisms φi : Ui ×k k[ε] ∼= X|Ui
. Let φij := φ−1

j |Uij×kk[ε] ◦ φi|Uij×kk[ε]

are automorphisms of first order defs, hence we get φij ∈ HomOUij
(ΩUij/k,OUij

). As
they satiefies cocycle condition, we get {φij} ∈ H1(X,TX) by Čech theory (this is
independent on the choice of covering, see [77] Proposition 1.2.9). Converse is trivial.

Remark 4.40. For a locally trivial first order deformations ξ of X, we gives a class
κ(ξ) ∈ H1(X,TX) is called the Kodaira-Spencer class of ξ.

Definition 4.41. Consider a family of deformation of a smooth algebraic variety X
over k

X X Xf

Speck S Speck[ε]fs

hence we get
κX/S,s : TS,s → H1(X,TX),

we called it Kodaira-Spencer map.

Definition 4.42. Let A′ � A has square-free kernel and X → Spec(A) is flat. A
deformation of X → Spec(A) over A′ is X ′ → Spec(A′) with X ′ ×A′ A ∼= X. A
morphism of deformations over A′ is a morphism of schemes over A′ restricting to
the identity on X.

Proposition 4.43. Let A′ � A has square-free kernel J . If X → Spec(A) is a smooth
morphism of schemes where X has affine diagonal, then

(a) the group of automorphisms of a deformation X ′ → Spec(A′) of X → Spec(A)
over A′ is bijective to H0(X,TX/A ⊗A J);

(b) If there exists a deformation of X → Spec(A) over A′, then the set of isomor-
phism classes of all such deformations is a torsor under H1(X,TX/A ⊗A J);

(c) There is an element obX ∈ H2(X,TX/A⊗AJ) with the property that there exists
a deformation of X → Spec(A) over A′ if and only if obX = 0.
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Proof. See [1] Proposition D.2.6.

Back to smooth curves over C pf genus g.

Theorem 4.44. Let (C; q1, ..., qn) be a n-pointed smooth n-pointed genus g curve over
C.

(i) We have

Def(C; q1, ..., qn)↔ H1(C, TC(−
n∑
i=1

qi));

(ii) There exists a deformation

φ : C → (B, b0), σi : B → C such that χ : (C; q1, ..., qn) ∼= (φ−1(b0), σi(b0))

of (C; q1, ..., qn) such that the Kodaira-Spencer map

κ : Tb0B → H1(C, TC(−
n∑
i=1

qi))

is an isomorphism and B is a polydisc of dimension 3g−3+n+h0(C, TC(−
∑n

i=1 qi)).

Proof. See [8] Theorem XI.2.12.

4.4.2 Elementary deformations of nodal and stable curves
Lemma 4.45. Let (C, p1, ..., pn) be an n-pointed nodal, connected and projective curve
over k with each pi ∈ C smooth. Let {q1, ..., qs} be the nodes of C. Let (C̃, pi, q′j, q′′j )
be the pointed normalization π : C̃ → C and π−1(qj) = {q′j, q′′j }. Then we have the
spectral sequence

Ep,q
2 = Hp(C,E xtqOC

(ΩC(p1 + ...+ pn),OC))⇒ Extp+qOC
(ΩC(p1 + ...+ pn),OC)

such that induce the following exact sequence

0 H1(C,H omOC
(ΩC(p1 + ...+ pn),OC))

0
⊕

j Ext1ÔC,qj

(ΩÔC,qj
, ÔC,qj) Ext1OC

(ΩC(p1 + ...+ pn),OC)

Moreover, ∀j we have Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj) = k and Ext2OC

(ΩC(p1+ ...+pn),OC) = 0.

Proof. By Grothendieck spectral sequence, we have

Ep,q
2 = Hp(C,E xtqOC

(ΩC(p1 + ...+ pn),OC))⇒ Extp+qOC
(ΩC(p1 + ...+ pn),OC).

As C is a curve, Ep,q
2 = 0 for p ≥ 2.
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By [39] Propostion 2.3, we get an exact sequence

0→ E1,0
2 → Ext1OC

(ΩC(p1 + ...+ pn),OC)→ E0,1
2 → E2,0

2 → 0.

As ΩC is locally free away from nodes, E xt1OC
(ΩC(p1+ ...+pn),OC) is zero-dimensional

sheaf supported only at nodes. Hence E1,1
2 = 0 and

E0,1
2 = H0(C, E xt1OC

(ΩC(p1 + ...+ pn),OC))

=
⊕
j

Ext1OC,qj
(ΩC,qj ,OC,qj) =

⊕
j

Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj).

where Ω̂C,qj = ΩÔC,qj
. Hence we get that exact sequence.

Similarly E xt2OC
(ΩC(p1+ ...+ pn),OC) is zero-dimensional sheaf supported only at

nodes, then

E0,2
2 = H0(C,E xt2OC

(ΩC(p1 + ...+ pn),OC)) =
⊕
j

Ext2
ÔC,qj

(ΩÔC,qj
, ÔC,qj).

Write ÔC,qj = k[[x, y]]/(xy) and consider the locally free resolution

0 ÔC,qj Ô⊕2
C,qj

ΩÔC,qj
0

(yx) (dx,dy)

Hence we get Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj) = k and Ext2

ÔC,qj

(ΩÔC,qj
, ÔC,qj) = 0. Hence E0,2

2 =

E1,1
2 = E2,0

2 = 0 and Ext2OC
(ΩC(p1 + ...+ pn),OC) = 0.

Proposition 4.46. Let (C, p1, ..., pn) be an n-pointed nodal, connected and projective
curve over k with each pi ∈ C smooth. Let {q1, ..., qs} be the nodes of C. Let
(C̃, pi, q

′
j, q

′′
j ) be the pointed normalization π : C̃ → C and π−1(qj) = {q′j, q′′j }. Then we

have the following exact sequence

0→ Deflt(C)→ Def(C)→
⊕
j

Def(ÔC,qj)→ 0

and
Deflt(C) ∼= Def(C̃, pi, q′j, q′′j ) ∼= H1(C̃, TC̃(−

∑
i

pi −
∑
j

(q′j + q′′j ))),

Def(C) ∼= Ext1OC
(ΩC(p1 + ...+ pn),OC),

Def(ÔC,qj)
∼= Ext1

ÔC,qj

(Ω1
ÔC,qj

, ÔC,qj)
∼= k.

Under these identifications, this exact sequence corresponds to the exact sequence in
the Lemma.
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Sketch. WLOG again we let n = 0. If C → Speck[ε] is a locally trivial first order
deformation of C, each node qj extend to a section q̃j : Speck[ε] → C. The pointed
normalization of C along the sections q̃j is a first order deformation of the (possi-
ble disconnected) pointed normalization (C̃, pi, q

′
j, q

′′
j ). This gives a map Deflt(C) →

Def(C̃, pi, q′j, q′′j ). The inverse is provided by gluing the sections of a first order defor-
mation of (C̃, pi, q′j, q′′j ) along nodes.

If C → Speck[ε] is a first order deformation of C, then ideal sheaf I of C → C is
I = I/I2 ∼= OC . The right exact sequence

I/I2 → ΩC/k → ΩC/k → 0

is left exact at every smooth point of C. As C → Speck is generically smooth and
it follows that OC

∼= I/I2 → ΩC/k is generically injective, hence injective. Hence this
defines Ext1OC

(ΩC ,OC). This is bijective (one can see [8] section XI.3).

Remark 4.47. Hence we also have the Kodaira-Spencer map for some C → (S, s) as

κS,s : TS,s → Ext1OC
(ΩC(p1 + ...+ pn),OC).

Remark 4.48. Let C be a nodal curve over C and let p ∈ C be a node with normal-
ization N and preimages {p1, p2}.
•Claim 1. Ext1(ΩC,p,OC,p) ∼=

∧2(mp/m
2
p) ⊗µ2 τ where µ2 = {±1} and τ be the set

consisting of the two possible orderings of the branches of C at p.
I omit this, see [8] page 180.

•Claim 2. Ext1(ΩC,p,OC,p) ∼= TN,p1 ⊗ TN,p2.
Trivial by Claim 1 and mp/m

2
p = TC,p = TN,p1 ⊕ TN,p2 and

∧2 TN,p1 ⊕ TN,p2 identify
with TN,p1 ⊗TN,p2 depends on the choice of an ordering of the two summands, we win.

Remark 4.49. Let (C; p1, ..., pn) be an n-pointed nodal curve over C for simplicity,
and let W = {w1, ..., wl} be some set of nodes of C. Let f : N → C be the partial
normalization at these nodes with f−1(wi) = {ri, qi}. Let D =

∑
i pi with inverse D̃

and E =
∑

(ri + qi).
•Claim 1. H om(Ω1

C ,OC(−D)) ∼= f∗H om(Ω1
N ,ON(−D̃ − E)).

This is trivially true at points away form W , so we just need to consider the
points in W . Pick any wi ∈ W , we get Hom(Ω1

C,wi
,OC,wi

) = Hom(Iwi
ωC,wi

,OC,wi
) by

Corollary 4.23. As Iwi
ωC,wi

= ωN,ri⊕ωN,qi and Iwi
= ON,ri(−ri)⊕ON,qi(−qi), we get

Hom(Ω1
C,wi

,OC,wi
) =

⊕
p=ri,qi

Hom(ωN,p,ON,p(−p)),

hence H om(Ω1
C ,OC(−D)) ∼= f∗H om(Ω1

N ,ON(−D̃ − E)).
•Claim 2. We have

0→Ext1(Ω1
N ,ON(−D̃ − E))→ Ext1(Ω1

C ,OC(−D))→⊕
wi∈W

Ext1(Ω1
C,wi

,OC,wi
)→ 0.
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By Claim 1, we get H1(N,H om(Ω1
C ,OC(−D))) ∼= H1(N,H om(Ω1

N ,ON(−D̃ −
E))). Hence by Lemma 4.45, we get

0 H1(N,H om(Ω1
N ,ON(−D̃ − E))) Ext1(Ω1

N ,ON(−D̃ − E))

0 H1(N,H om(Ω1
C ,OC(−D))) Ext1(Ω1

C ,OC(−D))

⊕
w∈Sing(C),w/∈W Ext1(Ω1

C,w,OC,w) 0

⊕
w∈Sing(C) Ext1(Ω1

C,w,OC,w) 0

hence we get

0→Ext1(Ω1
N ,ON(−D̃ − E))→ Ext1(Ω1

C ,OC(−D))→⊕
wi∈W

Ext1(Ω1
C,wi

,OC,wi
)→ 0.

Actually the left term in it classifies first-order deformations which are locally trivial
at the nodes belonging to W , and the right term classifies first-order smoothings of
these nodes.
•Claim 3. ⊕wi∈W Ext1(Ω1

C,wi
,OC,wi

) =
⊕l

i=1 TN,ri ⊗ TN,qi.
By claims in Remark 4.48, this is trivial.

Here is a similar result as before over C via analytic GAGA.

Theorem 4.50. Let (C; p1, ..., pn) be an n-pointed nodal curve of genus g over C.
There exists a deformation

φ : C → (B, b0), σi : B → C such that χ : (C; p1, ..., pn) ∼= (φ−1(b0), σi(b0))

of (C; p1, ..., pn) such that the Kodaira-Spencer map

κ : Tb0B → Ext1OC
(ΩC(p1 + ...+ pn),OC)

is an isomorphism and B is a polydisc of dimension 3g − 3 + n+ dimHom(ΩC ,OC).
Finally, let s is the number of nodes in C. We can choose coordinates t1, ..., ts, ...

on B near b0 such that the locus parameterizing deformations which are locally trivial
at the i-th node is ti = 0. In particular, the locus parameterizing singular curves is
t1 · · · ts = 0.

Proof. See [8] Theorem XI.3.17.

Back to the general case.
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Proposition 4.51. Let (C, p1, ..., pn) be an n-pointed nodal, connected and projective
curve over k with each pi ∈ C smooth. Let A′ � A be a surjection of artinian local
k-algebras with residue field k such that J = ker(A′ → A) satiefies mA′J = 0. If
CA → Spec(A) be a family of nodal curves such that C ∼= CA ×A k, then

(a) The group of automorphisms of a deformation CA′ → Spec(A′) of CA →
Spec(A) over A′ is bijective to Ext0OC

(ΩC(p1 + ...+ pn),OC ⊗k J);
(b) If there exists a deformation of CA → Spec(A) over A′, then the set of isomor-

phism classes of all such deformations is a torsor under Ext1OC
(ΩC(p1+ ...+pn),OC⊗k

J);
(c) There is an element obCA

∈ Ext2OC
(ΩC(p1+ ...+ pn),OC ⊗k J) with the property

that there exists a deformation of CA → Spec(A) over A′ if and only if obCA
= 0.

Proof. Since nodal curves are generically smooth and local complete intersections, the
unpointed case follows from the general theorem as in [1] Proposition D.2.11.

Lemma 4.52 (St 0E68). Let k be an algebraically closed field. Let X be a proper
connected nodal scheme of dimensional 1 over k. Let f : X̃ → X be the normalization
of X and let S ⊂ X̃ be the locus where f is not a bijection. Then

Derk(OX ,OX) ∼= {D′ ∈ Derk(OX̃ ,OX̃) : D
′ fixed every x′ ∈ S}.

Proof. Let x ∈ X be a node with the preimage x′, x′′ ∈ X̃. Pick two uniformizers u, v
in OX̃,x′ and OX̃,x′′ , respectively. Hence we have

0→ OX,x → OX̃,x′ × OX̃,x′′ → k → 0,

thus u, v as elements in OX,x with uv = 0.
Since (u) is annihilator of v in OC,x and similar as (v), we have D(u) ∈ (u) and

D(v) ∈ (v). Since OC̃,x′ = k + (u), we can extend D to OC̃,x′ and the extension fixes
x′. This makes a D′ in the right hand side of the equality. Conversely, given a D′

fixing x′ and x′′ and then we can find that D′ preserves OC,x ⊂ OC̃,x′ ×OC̃,x′′ and this
is how we go from right to left in the equality.

Proposition 4.53. Let (C, p1, ..., pn) be an n-pointed stable curve of genus g over k.
Then

dimk ExtiOC

(
ΩC

(∑
i

pi

)
,OC

)
=

{
0, i = 0, 2;

3g − 3 + n, i = 1.

Proof. We let k is algebraically closed and has no marked point. Let π : C̃ → C be a
normalization and let Σ ⊂ C be the set of nodes. Let Σ̃ = π−1(Σ) ⊂ C̃.

By Lemma 4.45, we get dimk Ext2OC
(ΩC ,OC) = 0. For Ext0, we first claim that

HomO
C̃
(ΩC̃(Σ̃),OC̃)

∼= HomOC
(ΩC ,OC).

This is equivalent to show

Derk(OC ,OC) ∼= {D′ ∈ Derk(OC̃ ,OC̃) : D
′ fixes every points in Σ̃}.
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Actually this is just Lemma 4.52. This finish the claim. Hence we get

HomOC
(ΩC ,OC) ∼= HomO

C̃
(ΩC̃(Σ̃),OC̃)

∼= H0(C̃, TC̃(−Σ̃)) = 0.

For Ext1, by Lemma 4.45 we have

0 H1(C,H omOC
(ΩC ,OC)) Ext1OC

(ΩC ,OC)
⊕

j Ext1ÔC,qj

(ΩÔC,qj
, ÔC,qj)

H1(C̃, TC̃(−Σ̃)) 0

and Ext1
ÔC,qj

(ΩÔC,qj
, ÔC,qj) = k. This equality in this exact sequence is because

H1(C,H omOC
(ΩC ,OC))

be the set of locally trivial first order deformation of C preserving nodes and this is
equivalent to the set of locally trivial first order deformation of C̃ fixed Σ̃, which is
H1(C̃, TC̃(−Σ̃)).

Now let C̃ =
∐t

i=1 C̃i are connected components and Σ̃i = C̃i ∩ Σ̃. First we have

h1(C̃i, TC̃i
(−Σ̃i)) = h0(C̃i,Ω

⊗2

C̃i
(Σ̃i)) = 3g(C̃i)− 3 +#(Σ̃i),

hence

dimk Ext1OC
(ΩC ,OC) = h1(C̃i, TC̃i

(−Σ̃i)) +#(Σ)

=
t∑
i=1

(3g(C̃i)− 3 +#(Σ̃i)) +#(Σ) = 3
t∑
i=1

g(C̃i)− 3t+ 3#(Σ) = 3g − 3

by the genus formula, we win.

4.4.3 Basic concept of Kuranishi family
We will work on analytic category over C via Serre’s GAGA.

Definition 4.54. Let (C; p1, ..., pn) be an n-pointed connected nodal curve of genus
g over C. A deformation φ : C → (B, b0), σi : B → C such that χ : (C; p1, ..., pn) ∼=
(φ−1(b0), σi(b0)) of (C; p1, ..., pn) is said to be a Kuranishi family for (C; p1, ..., pn) if it
satisfies the following condition:
(Condition K). For any deformation ψ : D → (E, e0) of (C; p1, ..., pn) and for
any small enough connected neighborhood U of e0, there is a unique morphism of
deformations of n-pointed curves

D|U C

(U, e0) (B, b0)

ϕ

F

f

ψ|U
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Remark 4.55. In the algebraic case, the neighborhood U of e0 taken étale locally.
Actually this is the same as all analytic local and étale local here.
Remark 4.56 (Versal). If we just let the deformation satisfies (condition K) except
for uniqueness and the Kodaira-Spencer map at the central fiber be an isomorphism,
then we call it a versal deformation.

We will show, the Kuranishi family for (C; p1, ..., pn) exists if and only if (C; p1, ..., pn)
is stable, at next two sections.
Corollary 4.57. At the base point of a Kuranishi family, the Kodaira-Spencer map
is an isomorphism.
Proof. This is trivial as the family Cε → SpecC[ε] just has and has unique map to
φ : C → (B, b0). This defines a bijection between TB,b0 and Def(C) = Ext1OC

(ΩC(p1 +
...+ pn),OC) via κB,b0.
Corollary 4.58. consider a deformation of a stable n-pointed curve (C; p1, ..., pn)
over the pointed analytic space (E, e0) and let its Kodaira-Spencer map at e0 is an
isomorphism and E is smooth at e0. Then this deformation is a Kuranishi family for
(C; p1, ..., pn).
Proof. The proof is immediate.
Corollary 4.59. The base of the Kuranishi family of a stable n-pointed curve (C; p1, ..., pn)
of genus g is smooth of dimension 3g − 3 + n.
Proof. By the previous corollary and Theorem 4.50 and the uniqueness of the Kuran-
ishi family by the universal property.
Corollary 4.60. Let X → S be a family of stable curves with n marked points and s0
be a fixed point of S. If X → S is a Kuranishi family for Xs0, then it is a Kuranishi
family for Xs for all s in some small neighborhood U of s0.
Proof. From the previous results we know that X → S is Kuranishi for Xs if and
only if s is smooth in S and the Kodaira-Spencer map at s is an isomorphism. Hence
we just need to check these two things. The first of these conditions is clearly open.
The second condition can be induced into a rank condition for a map between vector
bundles ss the dimension of Ext1(Ω1

Xs
,OXs(−

∑
σi(s))) is independent of s. Hence it

is open.

4.4.4 The Hilbert scheme of ν-canonical curves
For any stable n-pointed genus g curve (C; pi), if we letD =

∑
i pi, then by Proposition

4.32 that for all ν ≥ 3, the ν-log-canonical bundle ωC(D)⊗ν is very ample and embeds
C into PN−1 where N = (2ν − 1)(g − 1) + νn. Let Pν(t) = (2νt− 1)(g − 1) + νnt, we
consider the Hilbert scheme HilbPν

PN−1 .
By Proposition 4.34, we get the nonempty subset U ⊂ HilbPν

PN−1 parameterizing
connected n-pointed nodal curves is open. Let the (π : Y → U, σi) be the restriction of
the universal family. As the general points of U does not correspond to an n-pointed
curve embedded by the ν-fold log-canonical sheaf, we need to define a new subscheme.
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Definition 4.61. Let F = (π∗OPN−1(1))−1 ⊗ ωπ(
∑

i σi)
⊗ν. We define Hν,g,n ⊂ U ⊂

HilbPν

PN−1 as a subscheme by

Hν,g,n(X) :=


α : X → U

∣∣∣∣∣∣∣∣∣∣∣
correspond to

Y ×U X Y

X Uα

πη

β

such

that β∗F ∼= η∗G for some G ∈ Pic(X)


.

We call Hν,g,n as the Hilbert scheme of ν-log-canonically embedded, stable, n-pointed,
genus g curves.

Lemma 4.62. Let h = (C ⊂ Pm; p1, ..., pn) be a nodal curve where p1, ..., pn be distinct
smooth points of C and D =

∑
i pi. Let H be the Hilbert scheme parameterizing the

(n + 1)-tuples (Y ; q1, ..., qn), where Y is a subscheme of C ⊂ Pm and q1, ..., qn points
on it, then we have the exact sequence

0→HomOC
(Ω1

C ,OC(−D))→ HomOPm (Ω
1
Pm ,OC)

→ ThH
β−→ Ext1OC

(Ω1
C ,OC(−D))

where β is just the Kodaira-Spencer map at h associated to the universal family over
H.

Proof. Consider

D∗ C∗ B∗ A∗

OC 0 IC/I 2
C Ω1

Pm ⊗ OC Ω1
C 0

OD 0 ID/I 2
D Ω1

Pm ⊗ OD 0

Hence we get

0→ HomOC
(A∗,D∗)→ HomOC

(B∗,D∗)→ HomOC
(C∗,D∗)→ ExtOC

(A∗,D∗).

AsA∗ → D∗ is equivalent to Ω1
C → ker(OC → OD) = OC(−D), hence HomOC

(A∗,D∗) =
Hom(Ω1

C ,OC(−D)). As B∗ → D∗ determined by B0 → D0, we get

HomOC
(B∗,D∗) = HomOC

(Ω1
Pm ⊗ OC ,OC) = HomOPm (Ω

1
Pm ,OC).

It is trivial that HomOC
(C∗,D∗) ∼= ThH. The final term is actually the isomor-

phism classes of first-order deformations of h, hence is Ext1OC
(Ω1

C ,OC(−D)) (see [8]
XI.(3.11)). Hence we win.
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Theorem 4.63. Let 2g − 2 + n > 0 and ν ≥ 3 and N = (2ν − 1)(g − 1) + νn. Then
Hν,g,n defined as above satisfied the following statements.

(i) Let h = (C; p1, ..., pn) be a stable curve in PN−1 embedded by the ν-fold log-
canonical system and D =

∑
i pi. Then we have the exact sequence

0→ H0(C,OC(1))
⊕N/H0(C,OC)→ Th(Hν,g,n)

λ−→ Ext1(Ω1
C ,OC(−D))→ 0

where λ is the Kodaira-Spencer map at h of the universal family on Hν,g,n. In partic-
ular,

dimThHν,g,n = 3g − 3 + n+N2 − 1;

(ii) Hν,g,n is smooth and quasi-projective of dimension 3g − 3 + n+N2 − 1.

Sketch. (i) By Euler sequence and Lemma 4.62, we have

0 Hom(Ω1
C ,OC(−D))

0 H0(C,OC) H0(C,OC(1))
⊕N Hom(Ω1

PN−1 ,OC) H1(C,OC)

ThH Ext1(Ω1
C ,OC(−D))

δ

γ

β

Now we will analyze several groups and morphisms above.
•The map β associates to every first-order embedded deformation of h.
(Trivial)
•The elements of Hom(Ω1

PN−1 ,OC) correspond to fiber space maps j : C ×
SpecC[ε]→ PN−1 × SpecC[ε]. (Omitted, see [8] page 200)
•The map δ associates to any such object the infinitesimal deformation
of line bundles on C given by j∗(O1

PN−1(1) ⊗ OSpecC[ε]) ⊗ (O1
C(1) ⊗ OSpecC[ε])

−1.
(Omitted, see [8] page 201)
•The elements of H0(C,OC(1))

⊕N/H0(C,OC) is the tangent space to PGL(N).
(Omitted)

Let v = Γ(α) ∈ ThH tangent to Hν,g,n where α ∈ Hom(Ω1
PN−1 ,OC). Hence v from

a fiber space map j : C × SpecC[ε]→ PN−1 × SpecC[ε] such that

j∗(O1
PN−1(1)⊗ OSpecC[ε]) = ωC(D)⊗ν ⊗ OSpecC[ε].

Then δ(α) = 0 and hence α ∈ H0(C,OC(1))
⊕N/H0(C,OC). Conversely we find that

the image ofH0(C,OC(1))
⊕N/H0(C,OC) in ThH contained in ThHν,g,n. By Proposition

4.53 we get Hom(Ω1
C ,OC(−D)) = 0, hence we have

0→ H0(C,OC(1))
⊕N/H0(C,OC)→ Th(Hν,g,n)

λ−→ Ext1(Ω1
C ,OC(−D)).

Actually λ is surjective since any infinitesimal deformations of h can be embedded via
the ν-fold log-canonical system. Hence we win.
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(ii) By the basic theory of Hilbert schemes, Hν,g,n is quasi-projective by the trivial
reason. We now will show that Hν,g,n is smooth of dimension 3g− 3+ n+N2− 1. By
(i) we get dimThHν,g,n = 3g− 3+ n+N2− 1, hence dimHν,g,n ≤ 3g− 3+ n+N2− 1.
If we have showed that dimHν,g,n ≥ 3g − 3 + n+N2 − 1, then well done.

Here we just give a sketch, details see [8] Proposition XI.5.12. By Theorem 4.50,
we get a (3g − 3 + n)-dimensional deformation φ : C → (B, b0). Let Cb = φ−1(b) and
Db =

∑
i σi(b). Consider a principle PGL(N)-bundle over B as

B :=

{
(b, F )

∣∣∣∣∣b ∈ B and F a basis of H0(Cb, ωCb(Db)
⊗ν),

modulo homotheties

}
.

Take F0 correspond to C ⊂ PN−1 and consider the family

X := B ×B C
ψ−→ B, τi : B → X .

Via some projective frame of ψ∗(ωX/B(
∑
τi)

⊗ν), we have X → PN−1×B, which induce
ξ : B → Hν,g,n. Hence we have

0 Te(G) T(b0,F0)B Tb0B 0

0 H0(C,OC(1))
⊕N/H0(C,OC) Th(Hν,g,n) Ext1(Ω1

C ,OC(−D)) 0

ρdξ

where ρ is Kodaira-Spencer map. As ρ is an isomorphism, we have dξ is also an
isomorphism. Hence locally ξ is a local isomorphism at (b0, F0). As dimB = 3g− 3 +
n+N2 − 1, well done.

4.4.5 Construction of Kuranishi families
Let ν ≥ 3 and (C; p1, ..., pn) ⊂ PN−1 be a stable n-pointed genus g curve where
N = (2ν−1)(g−1)+νn, via ν-fold log-canonical system. We consider it as x0 ∈ Hν,g,n.
Fix the universal family Y → Hν,g,n with sections σi : H → Y. Let

Hν,g,n ⊂ HilbPν

PN−1 × (PN−1)n ⊂ PM × (PN−1)n ⊂ PK

acted by G = PGL(N) ⊂ PGL(K + 1) and let Aut(C; pi) = Gx0 ⊂ G = PGL(N) be
the stabilizer of x0.

Theorem 4.64. There is a locally closed smooth subscheme X ⊂ Hν,g,n of dimension
(3g−3+n) including x0 such that the restriction of the universal family of Hν,g,n over
X is a Kuranishi family for all of its fibers and we have the following properties:

(i) X is affine and Gx0-invariant;
(ii) For any y ∈ X, we have Gy ⊂ Gx0;
(iii) For any y ∈ X, there is a Gy-invariant neighborhood U ⊂ X of y such that

Gy = {γ ∈ G : γ(U) ∩ U 6= ∅} in the analytic (etale) topology.

Proof. See [8] Theorem XI.6.5.
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Hence we get a Kuranishi family (π : C → (X, x0), σi).

Definition 4.65 (Standard algebraic Kuranishi family). Let (C; p1, ..., pn) be a stable
n-pointed curve of genus g with G = Aut(C; pi). Let (π : C → (X, x0), σi) be the
Kuranishi family in Theorem 4.64 and it is called a standard algebraic Kuranishi
family if the following conditions are satisfied:

(a) The action of Gx0 on the central fiber can extend to compatible actions on C
and X;

(b) For any y ∈ X we have Gy := Aut(Cy; σi(y)) ∼= stabGx0
(y);

(c) For any y ∈ X, there is a Gy-invariant analytic (etale) neighborhood U of y
in X such that any isomorphism of n-pointed curves between fibers over U is induced
by an element of Gy.

Definition 4.66 (Standard Kuranishi family). Let (C; p1, ..., pn) be a stable n-pointed
genus g curve with G = Aut(C; pi). We will say a Kuranishi family X → (B, b0), τi :
B → X of (C; p1, ..., pn) is called a standard Kuranishi family if the following conditions
are satisfied.

(a) B is a connected complex manifold and the family is a Kuranishi family at
every points of B;

(b) The action of G on the central fiber extends to compatible actions on X and
B;

(C) Any isomorphism (of n-pointed curves) between fibers is induced by an element
of G.

Remark 4.67. In fact, given any Kuranishi family, there is a neighborhood of the
base point such that the restriction is standard. By the uniqueness of the Kuranishi
family, it suffices to notice that this is true for a standard algebraic Kuranishi family.
By Theorem 4.64 and we win.

Corollary 4.68. Any nodal curves (C; p1, ..., pn) has a versal deformation (is unique
up to an isomorphism, which however need not be unique).

Proof. Adding some smooth marked points such that it becomes a stabel curve. Then
taking the Kuranishi family of it and ignore the added marked points.

Corollary 4.69. Any family of nodal curves can be locally embedded in a family of
nodal curves with a reduced (even smooth) base.

Proof. For any family of nodal curves η : X → S and let s0 ∈ S. By the previous
corollary we can get a versal deformation π : X → (B, b0) of η−1(s0). After shrinking S
(étale locally), we have a closed immersion S ↪→ T where T is smooth and a cartesian

X X

S B

η

α

π

β
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with b0 = α(s0). Hence we get cartesians

X S ×X T ×X

S S × B T × B

η (idS ,π) (idT ,π)
(idS ,α)

(η,β)

Clearly, T × B is smooth, and S → T × B is a closed immersion.

4.5 The stack of all curves
4.5.1 Families of all arbitrary curves
Definition 4.70. Here we redefine a curve over k is a scheme C of finite type over
k of dimension 1 (rather than pure dimension 1). The genus of C is defined as
g(C) = 1− χ(C,OC).

Remark 4.71. Why we not allow pure dimension 1? Since they may arise as defor-
mations of connected pure one-dimensional curves; without this relaxation, the stack
of all curves would fail to be algebraic. For example in [58] Example III.9.8.4, a flat
family of rational curves defined by P1 → P3 via [x : y] 7→ [x3 : x2y : xy2 : ty3] for any
t 6= 0. As t→ 0, we may get a singular non-reduced curve C0 with an embedded point
at that node, but C0 can deforms to the disjoint union of a plane nodal cuvre and a
point in P3.

C1 C0 C0

P

Q

⊃
deformation

Definition 4.72. (i) A family of curves over a scheme S is a flat, proper and finitely
presented morphism C → S of algebraic spaces such that every fiber is a curve.

(ii) A family of n-pointed curves is a family of curves C → S together with n
sections σ1, ..., σn : S → C (with no condition on whether they are distinct or land in
the relative smooth locus of C over S).

Remark 4.73. (i) When we consider a family of stable curve, since the relative
dualizing sheaf is ample, we can get it is projective, hence must be a scheme;

(ii) There are some examples such that C are not a scheme.

Proposition 4.74. If C → S is a family of curves over S, there exists an étale cover
S ′ → S such that CS′ → S ′ is projective.
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Sketch-Local to global. Consider cartesians

C0 := Cs C1 · · · Ĉ C

S0 := Specκ(s) S1 := SpecOS,s/m
2
s · · · Ŝ := SpecÔS,s S

Step 1. C0 → Specκ(s). By St 0ADD, every separated algebraic space of dimension
one is a scheme. Any one-dimensional proper κ(s)-scheme is projective by St 0A26.
In particular we get a ample line bundle L0 on C0.
Step 2. Cn → Sn. The obstruction to deforming a line bundle Ln on Cn to Ln+1

on Cn+1 lives in H2(C0,OC0) and thus vanishes as dimC0 = 1. Thus there exists a
compatible sequence of line bundles Ln on Cn. Since ampleness is an open condition
in families and L0 is ample, Ln is also ample.
Step 3. Ĉ → Ŝ with Ŝ noetherian. Use Grothendieck’s Existence Theorem we get
an equivalence Coh(Ĉ)→ lim←−Coh(Cn). As Ĉ → Ŝ is proper, then by Chow’s lemma
there exists a projective birational morphism C ′ → Ĉ of algebraic spaces such that
C ′ → S is projective. This allows one to reduce Grothendieck’s Existence Theorem
for Ĉ → Ŝ to C ′ → Ŝ using devissage. As a result, using again that ampleness is
an open condition in families we can extend the sequence of line bundle Ln to a line
bundle L̂ on Ĉ which is ample.
Step 4. S is of finite type over Z. For every closed point s ∈ S, apply Artin
Approximation to the functor

(Sch/S)→ (Sets), (T → S) 7→ Pic(CT )

to obtain an étale neighborhood (S ′, s′) → (S, s) of s and a line bundle L′ on CS′

extending L0. By openness of ampleness, we can replace S ′ with an open neighborhood
of s′ such that L′ is relatively ample over S ′.
Step 5. General S. Use noetherian approximation.

4.5.2 Algebraicity of the stack of all curves
Definition 4.75. Let M all

g,n denote the category over Schet whose objects over S
consists of families of curves C → S and n sections σi : S → C. A morphism
(C ′ → S ′, σ′

i)→ (C → S, σi) is the data of the cartesian

C ′ C

S ′ S

g

f

σi
σ′
i

with g ◦ σ′
i → σi ◦ f .

Lemma 4.76. M all
g,n is a stack over Schet.
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Proof. Handle n = 0. Let S ′ → S be an étale cover with C ′ → S ′. And α : p∗1C
′ →

p∗2C
′ is an isomorphism over S ′ ×S S ′ satisfying the cocycle condition. The quotient

of the étale equivalence relation

R := p∗1C
′ C ′ C := C ′/R

S ′ ×S S ′ S ′ S

p1

p2◦α

p1

p2

Well done.

Lemma 4.77. ∆ : M all
g,n →M all

g,n ×M all
g,n is representable.

Proof. Handle n = 0. Consider the cartesian

IsomT (C1, C2) T

M all
g,n M all

g,n ×M all
g,n

∆

(C1,C2)

We need to show IsomT (C1, C2) is an algebraic space. By Proposition 4.74, there
exists an étale cover T ′ → T such that Ci,T ′ → T ′ is projective. Hence we may let
C1, C2 are projective over T . Indeed, as

IsomT (C1, C2)×T T ′ = IsomT ′(C1,T ′ , C2,T ′),

we get IsomT ′(C1,T ′ , C2,T ′) → IsomT (C1, C2) is representable, surjective and étale.
Hence if IsomT ′(C1,T ′ , C2,T ′) is an algebraic space, so is IsomT (C1, C2).
Fact. (St 05XD) If f : X → Y are T -morphism such that X,Y are proper, flat and
locally of finite presention over T , then for any U → T such that XU

∼= YU if and only
if U → T factor through an open subscheme T0 ⊂ T .

Now we get the inclutions

IsomT (C1, C2) ⊂ MorT (C1, C2) ⊂ Hilb(C1 ×T C2/T )

where the second inclusion is (g : C1 → C2) 7→ (Γg : C1 → C1 ×T C2). The first
inclusion is representable open immersion by the above fact. The second inclusion,
we find that a subspace [Z ⊂ C1 ×T C2] ∈ Hilb(C1 ×T C2/T ) is in the image of the
inclusion if and only if Z → C1×T C2 → C1 is an isomorphism (and similarly for other
valued points). Therefore by the above fact we win.

Theorem 4.78. M all
g,n is an algebraic stack locally of finite type over Z.

Sketch. Step 1. Reduce to n = 0. Since M all
g,n+1 is the universal family over M all

g,n,
we can prove the conclusion at the case M all

g .
Step 2. Look for possible smooth cover H ′ of M all

g . Let C0 be any projective
curves C0 over k. Choosing an embedding C0 ⊂ PNk such that h1(C0,O(1)) = 0 by
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Serre’s vanishing theorem. Let P (t) be its Hilbert polynomial. Let H := HilbPPN
Z /Z be

the Hilbert scheme which is projective over Z. Consider the universal family

C PNH

H

there is a point h0 ∈ H(k) such that Ch0 = C0. By Review A.1 we can find an open
neighborhood H ′ ⊂ H of h0 such that for any s ∈ H ′ we have h1(Cs,OCs(1)) = 0. Now
consider

H ′ →M all
g , [C ↪→ PN ] 7→ [C],

and by the representability of the diagonal, this map is representable asH ′ is a scheme.
Step 3. Show that H ′ → M all

g is smooth. Using Infinitesimal Lifting Criterion
such that for all surjections A → A0 of artinian local rings with residue field k such
that k = ker(A→ A0) and for all diagrams

Speck

SpecA0 H ′

SpecA M all
g

[C0⊂PN
A0

]

C

[C⊂PN
k ]

[C⊂PN
A ]

We need to find that dotted arrow. This diagram is equivalent to

PNk PNA0
PNA

C C0 C

Speck SpecA0 SpecA

For simplifying, we let C is of locally complete intersection (general case see [51] and
[50]). Let J be the ideal sheaf of C → PNk generated by regular sequence locally and
that J /J 2 is a vector bundle on C with

0→ J /J 2 → ΩPN
k
|C → ΩC → 0.

By long exact sequence we get

HomOC
(J /J 2,OC)→ Ext1OC

(ΩC ,OC)→ Ext1OC
(ΩPN

k
|C ,OC) = H1(C, TPN

k
|C).

Consider the canonical sequence

0→ OC → OC(1)
⊕N+1 → TPN |C → 0.
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Since H2(C,OC) = 0 and H1(C,OC(1)) = 0 by [C] ∈ H ′ we get H1(C, TPN
k
|C) = 0.

Hence we get a surjection

HomOC
(J /J 2,OC) � Ext1OC

(ΩC ,OC).

Use some deformation theory we get HomOC
(J /J 2,OC) classifies embedded defor-

mations of C0 → PNA0
to C ′ → PNA and Ext1OC

(ΩC ,OC) classifies deformations of C0 over
A0 to C ′ over A. As the map is [C ′ → PNA ] 7→ C ′ and is surjective, we win.

4.5.3 Algebraicity of several stacks and boundedness of stable curves
Proposition 4.79 (Several stacks). We have inclusions

Mg,n ⊂M g,n ⊂M ss
g,n ⊂M pre

g,n ⊂M≤nodal
g,n ⊂M all

g,n

of prestacks. Then all of these are open substacks, hence all of these are algebraic
stacks locally of finite type over Z.

Proof. • By Theorem 4.78, M all
g,n is an algebraic stack locally of finite type over Z.

• M≤nodal
g,n ⊂M all

g,n is an open substack. Actually by Corollary 4.21 we get the nodal
locus is open when C is a scheme. In general for an étale cover g : C ′ → C by a
scheme, we find that a point p ∈ C ′ is a node in its fiber if and only if g(p) is a node
in its fiber. We win.
•M pre

g,n ⊂M≤nodal
g,n is an open substack. This is because for a family (C → S, {σi}) of

nodal curves, the locus {s ∈ S : σi(s) are disjoint and smooth} is open.
• M ss

g,n ⊂M pre
g,n is an open substack. This is because the nef locus is open (as the log

canonical divisor is nef if and only if semistable).
• M g,n ⊂ M ss

g,n is an open substack. Indeed the stable locus is open by Proposition
4.33.
• Mg,n ⊂ M g,n is an open substack. Indeed this is by the fact that smooth locus is
open.

Proposition 4.80. M g,n is a quasi-compact smooth Deligne-Mumford stack of di-
mension 3g − 3 + n over Z.

Proof. • M g,n is quasi-compact. Let (C, p1, ..., pn) be a n-pointed stable curve. By
Theorem 4.28, we get (ωC(p1 + ... + pn))

⊗3 is very ample, we get C ↪→ PN with
Hilbert polynomial P (t). This is independent of C. Hence consider closed subscheme
H ⊂ HilbPPN

Z /Z × (PN)n of embedded curve and n points (C ↪→ PN , pi ∈ C). Consider
a forgetful functor

H →M all
g,n, (C ↪→ PN , pi ∈ C) 7→ (C, {pi}).

Then the image of |H| → |M all
g,n| contains M g,n. As HilbPPN

Z /Z is projective, then H is
quasi-compact. Hence M g,n is quasi-compact.
•M g,n is Deligne-Mumford stack. By Proposition 4.53 for i = 0 and Proposition 4.51
(a), we get a n-pointed stable curve (C, p1, ..., pn) has no infinitesimal automorphisms,
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i.e. that the Lie algebra TeAut(C, p1, ..., pn) is trivial. Since the automorphism group
scheme Aut(C, p1, ..., pn) is of finite type, this implies that Aut(C, p1, ..., pn) is finite
and discrete, hence M g,n is a quasi-compact Deligne-Mumford stack.
• M g,n is smooth over SpecZ. Proposition 4.53 for i = 2 and Proposition 4.51 (c)
implies that there are no obstructions to deforming C. As the algebraicity of M g,n,
this will allow us to invoke the Infinitesimal Lifting Criterion to establish that M g,n

is smooth over SpecZ.
• M g,n has relative dimension 3g − 3 + n over SpecZ. Proposition 4.53 for i = 1 and
Proposition 4.51 (b) implies that isomorphism classes of deformations of (C, p1, ..., pn),
it is identified with the Zariski tangent space of M g,n at the point corresponding to
(C, p1, ..., pn). This will allow us to conclude that M g,n has relative dimension 3g−3+n
over Z.

4.6 Stable reduction: why M g,n is proper?
In this section we will using the Valuative Criterion (Theorem 3.49 (1)) to show that
M g,n is proper. The existence of extention is called stable reduction, which is our
main theorem:

Lemma 4.81. The diagonal of the stack M all
g,n is separated. In particular, M all

g,n →
Spec(Z) is quasi-separated.

Proof. Omitted. See St 0DSQ.

Theorem 4.82 (Stable reduction). Let R be a DVR with fraction field K and ∆ =
Spec(R),∆∗ = Spec(K). If (C∗ → ∆∗, s∗1, ..., s

∗
n) is a family of n-pointed stable curves

of genus g, then there exists a finite cover ∆′ → ∆ of spectrums of DVRs and a family
(C ′ → ∆′, s′1, ..., s

′
n) of stable curves extending C∗ ×∆∗ ∆′∗ → ∆′∗. As

C∗

C∗ ×∆∗ ∆′∗ C ′

∆∗ ∆

∆′∗ ∆′

s′i

s∗i

given by
∆′∗ ∆∗ M g,n

∆′ ∆

(C∗→∆∗,{s∗i })

(C′→∆′,{s′1})

After proving this and the uniqueness, we can get the following conclusion:

Theorem 4.83. If 2g − 2 + n > 0, then M g,n is a proper smooth Deligne-Mumford
stack of dimension 3g − 3 + n over Z.

60

https://stacks.math.columbia.edu/tag/0DSQ


By using the Keel-Mori Theorem, we get

Corollary 4.84. If 2g − 2 + n > 0, there exists a coarse moduli space M g,n → M g,n

where M g,n is a proper algebraic space over Z.

Example 4.85. Let ∆ = Spec(R) where R be a DVR with uniformizer t. Let C be
a smooth curve and consider C = C × ∆ with sections (σ1, σ2, σ3) = (t2,−t2, 4t) as
following diagram. The first two arrows are blowing up and the third is contracting

σ1

σ2

σ3 C

E1

E1

E2

C
C

E2

E1.

Remark 4.86. Actually there are several methods to prove this. The first proof due
to the original paper [29] by consider the Jacobians of curves and reduce the case into
the semistable reduction of abelian varieties. Our method follows [55] by using some
birational geometry of surfaces to prove the case of characteristic 0. There is another
method can deal the positive or mixed characteristic case by [10], for this we refer St
0E8C.

4.6.1 Proof of stable reduction in characteristic 0
Lemma 4.87. Let R be a DVR with uniforming t and 0 := (t). Let C → ∆ = Spec(R)
be a flat, proper and finitely presented morphisms such that each geometric fiber is a
curve. Assume that C is regular. Let p ∈ C0.

(a) If p is a smooth point in the reduced fiber (C0)red. Show that after possibly an
extension of DVRs, there exists an étale neighborhood of p (defined over R)

SpecR[x, y]/(xa − t)→ C.

(b) If p is a node in the reduced fiber (C0)red. Show that there exists an étale
neighborhood of p (defined over R)

SpecR[x, y]/(xayb − t)→ C.

Proof. This is easy to see. Or see [8] X.4.

Lemma 4.88. Let a, b,m be positive integers such that both a and b divide m.
(a) Let X = Speck[x, t]/(tm−xa) and normalization X̃ → X. Then each preimage

of the origin is locally defined by x = tk for some k.
(b) Let X = Speck[x, y, t]/(tm − xayb) and normalization X̃ → X. Then each

preimage of the origin is locally defined by tk = xy. In particular is a reduced and
nodal point in the fiber over t = 0.
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Proof. (a) We have xa − tm =
∏a−1

i=0 (x − ζ itm/a) where ζ be a primitive a-th root of
unity. Hence the origin has a preimages in X̃ locally defined by x−ζ itm/a, respectively.

(b) Similarly, see [8] Page 107.

Lemma 4.89. Let C → ∆ = Spec(R) be a family of nodal curves where R be a DVR
such that the general fiber C∗ is smooth. Then if E is a rational tail (rational bridge
with out marked points) of C0, then E2 = −1 (E2 = −2). As

0 0

E E

E
2
= −1 E

2
= −2

Proof. For any E ∼= P1 ⊂ C0, then 0 = E · C0 = E2 + E · Ec. We win.

For simplicity of notation, we assume that there are no marked points, i.e. n = 0.
Fix a spectrum of DVR ∆ = Spec(R),∆∗ = Spec(K) and t ∈ R is the uniformizer,
and 0 = (t) ∈ SpecR the unique closed point. Consider C∗ → ∆∗ be a family of stable
curve.
STEP 1. Reduce to the case where C∗ → ∆∗ is smooth. If C∗ has k nodes,
then after a finite extension of K we can arrange that each node is given by K-points
pi ∈ C∗(K). Let the pointed normalization (C̃∗, q1, ..., q2k) of it. By induction on the
genus g, we perform stable reduction on each connected component and then take the
nodal union along sections. After possibly an extension of K (and R), this produces
a family of curves C → ∆ extending C∗ → ∆∗.
STEP 2. Find some flat extension C → ∆. As ω⊗3

C∗/∆∗ is very ample, we can get
an embedding as follows

P5g−6 ×∆∗ P5g−6 ×∆

C∗ C := C∗

∆∗ ∆

f

|ω⊗3
C∗/∆∗ |

where C := C be the scheme-theoretic image of C∗ ↪→ P5g−6 ×∆. Now we focus on f .
Actually the scheme-theoretic closure does not bring more embedded points. Hence
by Proposition 2.16 we get f is flat.
STEP 3. Use embedded resolutions to find a resolution of singularities
C̃ → C so that the reduced central fiber (C̃0)red is nodal. By Theorem A.7,
there exists a finite sequence of blow-ups at closed points of C0 yielding a projective
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birational morphism
C̃0 ⊂ C̃ · · · C ⊃ C0

∆

such that C̃ is regular flat family of curves and such that the reduced central fiber
(C̃0)red is nodal. Now replace C by C̃.
STEP 4. Perform a base change ∆′ → ∆ such that the normalization of the
total family C ×∆ ∆′ has a reduced nodal central fiber with many rational
tails and bridges. By Lemma 4.87, we choose local coordinates x, y around p ∈ C0
(étale locally and formally locally) such that C → ∆ can be described as follows:

(i) If p ∈ (C0)red is a smooth point, then (x, y) 7→ xa and the multiplicity of the
irreducible component of C0 containing p is a;

(ii) If p ∈ (C0)red is a (separated) node, then (x, y) 7→ xayb and the two components
of C0 containing p have multiplicities a and b.

Let m be the least common multiple of the multiplicities of the irreducible compo-
nents of C0. Let the ramified morphism ∆′ = Spec(R) → ∆ given by t 7→ tm. Hence
we get

C̃ ′ C ′ C

∆′ ∆

where C ′ = C ×∆ ∆′ and C̃ ′ → C ′ be the normalization. Consider p ∈ (C0)red.
(a) If p is a smooth point, then the unique preimage of p in C ′ defined locally by

xa − tm. By Lemma 4.88 (a), we get each preimage of p in C̃ ′ is locally defined by
x = tk which are the smooth points in C̃ ′0;

(b) If p is a node, then the unique preimage of p in C ′ defined locally by xayb− tm.
By Lemma 4.88 (a), we get each preimage of p in C̃ ′ is locally defined by xy = tk

which are reduced and nodal points in C̃ ′0. If k > 1, C̃ ′ have Ak−1-singularity.
Hence now we replace C by C̃ ′, which has a reduced central fiber with many rational

tails and bridges.
STEP 5. After taking the minimal model, contract all rational tails and
bridges in the central fiber. Using Theorem A.6 we get a minimal resolution
C ′ → C and we get a family of prestable curves C ′ → ∆ where C ′ is regular. By
Lemma 4.89 and Corollary A.9, we can get a projective birational map C ′ → C ′min
where C ′min is semistable. So we replace C by C ′min. (This is the semistable reduction!)
Using Proposition 4.37, we can get a relative canonical stabel model C ′ → Cst.

4.6.2 Explicit stable reduction
Proposition 4.90. Let C → ∆ be a generically smooth, proper and flat family such
that (C0)red is nodal. Let C0 =

∑
i aiDi where ai is the multiplicity of Di. Let ∆′ → ∆

defined by t 7→ tp where p prime and set C ′ = C×∆∆
′. Then after taking normalization

C̃ ′ → C is branched cover ramified over
∑

i(ai (mod p))Di.
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Example 4.91 (Stable reduction of A2k+1-singularity). Let C → ∆ = Spec(R) be a
generically smooth family degenerating to a A2k+1-singularity in the central fiber where
have local equation around the singular point is y2 = x2k+1 + t. Now we will work
through the steps in the proof of stable reduction. The first two steps have already
finished, now we start at step 3.
ISTEP 3. Use embedded resolutions to find a resolution of singularities
C̃ → C so that the reduced central fiber (C̃0)red is nodal. We consider two charts
in blowing up with coordinates x′, y′ where the original coordinates are x, y, as:

E|U1 = V (x′) U1 C̃ = BlpC (x′, y′) E|U2 = V (y′) U2 C̃ = BlpC (x′, y′)

C (x′, x′y′) C (x′y′, y′)

•The first blowing up. In the first chart, the preimage of y2−x2k+1 is x′2y′2−x′2k+1 =
x′2(y′2− x′2k−1); in the second chart it is y′2− (x′y′)2k+1 = y′2(1− x′2k+1y′2k−1). Hence
the exceptional divisor E1 has multiplicity 2.
•The second blowing up. In the first chart, the preimage of x2(y2 − x2k−1) is
x′4(y′2−x′2k−3); in the second chart it is x′2y′4(1−x′2k−1y′2k−3). Hence the exceptional
divisor E2 has multiplicity 4.
•After k blowing ups. We get x2k(y2 − x) with the exceptional divisors Ei has
multiplicity 2i.
•One more blowing up. We get the preimage of x2k(y2 − x) in the second chart is

x′2ky′2k+1(y′ − x′)

with the exceptional divisor F has multiplicity 2k + 1.
•The final blowing up. We get the preimage of x2ky2k+1(y− x) in the first chart is

x′4k+2y′2k+1(y′ − 1)

with the exceptional divisor G has multiplicity 4k + 2.
The process as follows:

2
4

2

E2E1
E1

Ek

2k

2k − 2

Ek−1 24

E1

E2

F

2k + 1

2k

Ek

2k − 2

Ek−1

4

2

E1 E2

G

4k + 2

Ek

2k

2k − 2

Ek−1

E1

E2

4 2

Blowing Up Blowing Up

Blowing UpBlowing Up

Blowing Up

F 2k + 1

C
′

0

C
′

0

C
′

0

C
′

0

C
′

0

C
′

0
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ISTEP 4. Perform a base change ∆′ → ∆ such that the normalization of
the total family C×∆∆′ has a reduced nodal central fiber with many rational
tails and bridges.
•The first base change. First consider ∆′ → ∆, t 7→ t2k+1 and normalizing. After
inductively apply to the prime factorization 2k+1 and normalization, we will use the
proposition to analyze the preimage of these irreducible component. Actually we get
this 2k + 1-degree cover ramified over C ′

0 +
∑

iEi and we just need to consider F,G.
For G, its preimage G′ ramified at two points (intersects Ek, C ′

0) with index 2k. By
Riemann-Hurwitz Theorem, we get 2g(G′)−2 = (2k+1)(2g(G)−2)+4k = −2. Hence
g(G′) = 0 and G′ ∼= P1. For F , its preimage F ′ is unramified at all points, hence
F ′ =

∐2k+1
j=1 Fj are copies of F . Hence replace ∆ by ∆′, we get the central fiber as

C0 = C ′
0 + 2G′ +

∑
j Fj +

∑
i 2iEi.

•The second base change. Consider ∆′ → ∆, t 7→ t2 and normalizing. Actually we
get this 2-degree cover ramified over C ′

0 +
∑

j Fj and we just need to consider G′, Ei.
For G′, the preimage H ramified at 2k+2 points (C ′

0, Fj). Hence we get g(H) = k by
Riemann-Hurwitz Theorem. For Ei, the things become more complicated as follows:

G

2

Ek

2k

E2 E1

2
4

But we can easy to see that after this process, these things are just plenty of rational
bridges and rational tails.
•The final base changes. Here we just need to consider Ei and these have multiplic-
ity i. Consider t 7→ tk, then (many) Ek has two ramified points, hence by Riemann-
Hurwitz Theorem g(E ′

k) = 0, hence rational. Then consider t 7→ tk−1,...,t 7→ t2, we
have the same results. Hence we also get plenty of rational tails and bridges, which
are all multiplicity 1.

The whole process as follows:

G

4k + 2

Ek

2k

2k − 2

Ek−1

E1

E2

4 2

F 2k + 1

C
′

0

Ek

2k
E1

E2

4 2

C
′

0

G
′

2

2k − 2

Ek−1

F1

F2k+1

t
2k+1

← t

C
′

0

F1

F2k+1

Many rational tails

and bridges.

H

Ek

k

k − 1

Ei

i

C
′

0

F1

F2k+1

Many rational tails
and bridges.

H

Ek

Ei

t
2
← t

t
k
← t
.
.
.

t
2
← t
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ISTEP 5. Contract all rational tails and bridges in the central fiber. Now
we kill all −1-curves (many E1 and all Fj), and then (every) E2 become −1-curves.
Inductively, we kill all Ei and Fj and get a stable central fiber as follows and we win.

C
′

0

F1

F2k+1

Many rational tails
and bridges.

H

Ek

Ei

C
′

0

H

Contract

4.6.3 Separatedness of M g,n

Proposition 4.92. Let R be a DVR with fraction field K with ∆ = Spec(R),∆∗ =
Spec(K). Let (C → ∆, σ∗

1, ..., σ
∗
n) and (D → ∆, τ ∗1 , ..., τ

∗
n) are n-pointed stable curves,

then for any α∗ : C∗ → D∗ with τ ∗i = α∗ ◦σ∗
i over generic fiber can extends to a unique

isomorphism α : C → D with τi = α ◦ σi.

C∗ D∗ C D

∆∗ ∆

α∗ α

Proof. We only prove the case of n = 0 generically smooth curves. Let C ′ → C,D′ → D
be the minimal resolutions and let Γ ⊂ C ′ ×∆ D′ be the clpsure of the graph of
id × α∗ : C∗ → C∗ ×∆∗ D∗. Let Γ′ → Γ be the minimal resolution. Hence we get
birational projective maps Γ′ → C ′ and Γ′ → D′. By the same proof of [58] Theorem
II.8.19, we get

Γ(C ′, ω⊗k
C′/∆)

∼= Γ(Γ′, ω⊗k
Γ′/∆)

∼= Γ(D′, ω⊗k
D′/∆)

for all k ≥ 0. As the canonical bundle are ample, we get

C ′ ∼= Proj
⊕
k

Γ(C ′, ω⊗k
C′/∆)

∼= Proj
⊕
k

Γ(D′, ω⊗k
D′/∆)

∼= D′.

Furthermore, we know that C,D are stable models of C ′,D′, respectively. By the
uniqueness of stable models, we get α : C ∼= D extending α∗.

4.6.4 A general version of stable reduction
For simplicity, we consider the case without marked points.

Recall that we have proved the stable reduction of stabel curves over a spectrum
of DVR:

Theorem 4.93 (Stable reduction). Let R be a DVR with fraction field K and ∆ =
Spec(R),∆∗ = Spec(K). If (C∗ → ∆∗) is a family of stable curves of genus g, then
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there exists a finite cover ∆′ → ∆ of spectrums of DVRs and a family (C ′ → ∆′) of
stable curves extending C∗ ×∆∗ ∆′∗ → ∆′∗. As

∆′∗ ∆∗ M g,n

∆′ ∆

(C∗→∆∗)

(C′→∆′)

Now how can we let the DVR to be an integral scheme S? We will use a technical
lemma (le lemme de Gabber) to show the case when S is a normal integral scheme
directly. Then we will give a canonical way to construct like in le lemme de Gabber.
These are all have some same methods with de Jong’s alteration.

Theorem 4.94. Let S be a normal integral scheme with a generic point η = SpecK
and Cη be a stable curve over η. Then there exists a generically étale, generically
finite, proper and dominant morphism of integral schemes S ′ → S with generic point
η′ = SpecK ′ such that the stable curve Cη ×η η′ extends to a stable curve over S ′.

First we give some comments. Actually we find that C is already extended to the
family of stable curves in M g! So if we consider some compact neighborhood S ′ of C
in M g, then we have such S ′ extended C.

η S ′ M g

S

?

But now S ′ → S need not be proper surjective and even S ′ may not be a scheme!
Hence we need to find some finite cover of scheme over this stack to deal with this
problem.

Proof. Consider η →M g induced by Cη. By Gabber’s Lemma 3.54, we find a finite
surjective generically étale morphism from a scheme M → M g. Now M is proper
as the stack M g is proper. Hence we obtain a finite separable K-scheme η ×M g

M
and there exists a finite separable extension K ′/K such that η′ := SpecK ′ → η factor
through η ×M g

M . Hence the curve C ′
η := Cη ×η η′ induced from a family of curve

C ′
M →M by M →M g.
Hence we claim that there exists an proper,dominant and generically finite mor-

phism of integral schemes S ′ → S with generic point η′ such that the map η′ → M
factor through S ′ →M .

Now consider η → S1 = Normη′(S)→ S be the normalization. Consider S ′ be the
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closure of the image of diaganol ∆ : η′ → S1 ×SpecZ M . Hence we have:

η′

S ′ := Im(∆) M

S S1 = Normη′(S) M g

∆

Now we find that S ′ → S is generically étale, generically finite and dominant. Hence
we just need to show S ′ → S is proper. This comes from the fact that S1 → S is
finite (this follows from St 032L) and S ′ → S1 is proper as the composition of the
base change of M → SpecZ and a closed immersion. This gives us the claim. Now let
C ′ induced by C ′

M along S ′ →M , then well done.

Now we will give a canonical construction of M due to P. Deligne. Here we will
follows [28]. We all knew that the obstruction of M g to be a scheme (or algebraic
space) is that it has non-trivial automorphisms. So we need to get a `-level structure
to kill these automorphisms.

Let ` ≥ 3 is invertible on T , then we will call a family of genus g smooth curves
X → T with `-level structure if Pic0S(X)[`] ∼= (Z/`Z)⊕2g (when over some algebraically
closed field, one can let H1

ét(C,Z/`Z) ∼= (Z/`Z)⊕2g or R1
étf∗(Z/`Z) ∼= (Z/`Z)⊕2g for

families). Then we consider the stack ℓMg over SpecZ[1/`] parameterizing smooth
curves of genus g with `-level structure. Hence we have:

ℓMg

Mg M g

By Lemma 3.5.1 in [28], we get ℓMg is an algebraic space. since Deligne proved that
all automorphisms are killed after adding the `-level structure.

Let ℓM g = NormM g
(ℓMg), Deligne also proved that ℓM g is a proper algebraic

space in Corollary 3.6 in [28]. By the algebraic-space version of Chow’s lemma, one
get a projective scheme M over Z as:

ℓMg ℓM g M

Mg M g

Hence we give a canonical construction of M now!
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4.6.5 The moduli stack of elliptic curves M1,1 and M 1,1

Proposition 4.95. M1 is not a stack.

Proof. See [74] Remark 8.4.15 for the References.

Remark 4.96. If we let M ′
1 as morphisms of algebraic spaces, then this will be a

stack. This follows the Picard functor and the stack M1,1. In fact if we consider the
universal elliptic curve E →M1,1, then Picard functor gives M ′

1 →M1,1 which induce
M ′

1
∼= BE . We omitted here.

Actually we hae the following explicit expression of the moduli stacks of elliptic
curves which rely on the discussion of the families of elliptic curves before.

Proposition 4.97. (i) Let W := SpecZ[a1, a2, a3, a4, a6, 1/∆] and

H =


u2 s 0

0 u3 0
r t 1

∣∣∣∣∣∣ u unit
s, r, t arbitrary

 ⊂ GL3,Z

be a subgroup act on W naturally, then we have

M1,1
∼= [W/H];

(ii) we have
M1,1 ×Z Z[1/6] ∼= [(A2\V (δ))/Gm],

with action t · (a, b) = (t4a, t6b) and δ = 4a3 + 27b2;
(iii) we have

M 1,1 ×Z Z[1/6] ∼= [(A2\0)/Gm] ∼= P(4, 6),

with action t · (a, b) = (t4a, t6b) and P(m1, ...,mk) be the weighted projective stack.

Proof. This is very simple:
For (i), as any family of elliptic curves have the Weierstrass form, we find that

W → M1,1 is surjective. By Theorem 2.20 and the observation that S ×M1,1 W =
IsomS×W (E ×W,S × EW ) we find that W → M1,1 is an H-principal bundle. Hence
M1,1

∼= [W/H].
For (ii), we know that the family version of Weierstrass form we discribed before

is very complicated. But here if we let 6 is invertible, we can easy to see that there
exist unique x, y such that a1 = a2 = a3 = 0 at before. Hence we have a much easier
Weierstrass form y2 = x3 + a4x+ a6. In this case ∆ = −16δ = −16(4a34 +27a26) Hence
by (i) we have M1,1 ×Z Z[1/6] ∼= [(A2\V (δ))/Gm] with action t · (a, b) = (t4a, t6b) and
δ = 4a3 + 27b2.

For (iii), this is trivial by the argument of (ii).

Proposition 4.98. M1,1 M 1,1 has coarse moduli spaces M1,1
∼= A1 and M1,1

∼= P1.
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Proof. Now over Z[1/6] these are trivial by the theorem above. But we will give a
general argument.

By Keel-Mori theorem, stack M1,1 has a coarse moduli space M1,1. By Theorem
2.20 we have the j-invariant map j : M1,1 → A1. By the universal property of coarse
moduli space we have the unique map:

M1,1

M1,1 A1

j

∃!j′

We just need to claim that j′ is an isomorphism.
Now by valuative criterion, we can see that j is proper by [49]. Then j′ is also

proper. As j′ is also quasi-finite, we know that j′ is finite. Hence to prove j′ is an
isomorphism, we just need to prove j′ is birational by Zariski’s main theorem. For
any geometric point t : Speck → A1 the M1,1 ×A1 Speck is a single point as elliptic
curves over algebraically closed fields are classified by j-invariant. Hence we conclude
the proof.

4.7 Gluing and forgetful morphisms
We follows [34].

4.7.1 Gluing morphisms
Proposition 4.99. There are finite morphisms of algebraic stacks

F : M i,n ×M g−i,m →M g,n+m−2

((C, p1, ..., pn), (C
′, p′1, ..., p

′
m)) 7→ (C ∩ C ′, p1, ..., pn−1, p

′
1, ..., p

′
m),

and
G : M g−1,n →M g,n−2

(C, p1, ..., pn) 7→ (C/(pn−1 ∼ pn), p1, ..., pn−2).

As follows:

pn

p
′

m

Sketch-using pushout. By the stable reduction, these maps are of course representable
and proper. As they have the finite fibers, these maps are now finite. Now for F we
let n = m = 1 and for G we let n = 2.
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pn

pn−1

For F : Let (π : C → S, σ), (π′ : C ′ → S, σ′) are stable curves. As σ, σ′ are closed
immersions, we get the pushout exists by the theory of Ferrand (St 0ECH) and as we
have the finite cover C t C ′ → C, we get this pushout is proper and flat (omitted):

Spec(A) SpecA[y]

SpecA[x] SpecA[x, y]/(xy)

S C

C ′ C̃
σ′

σ

where SpecA[x] is an étale neighborhood of σ(s) which is the pulback of étale neigh-
borhood Spec(A) of any s ∈ S. Since an étale morphism from an affine scheme extend
over closed immersions, there is an étale neighborhood SpecA[y] is an étale neighbor-
hood of σ′(s). Then the pushout can be easy to compute as Spec(A[x] ×A A[x]) ∼=
SpecA[x, y]/(xy). By some results of pushout (in St 0D2G), we get SpecA[x, y]/(xy)→
C̃ is an étale neighborhood of s. Hence C̃ → S is nodal along S. Checking fibers we
get C̃s is stable.
For G: Let (C → S, σ1, σ2) are stable curve. Here we consider the pushout:

S t S C

S C̃

σ1⊔σ2

which is étale locally like

Spec(A× A) SpecA[t]

SpecA SpecA[x, y]/(y2 − x2(x+ 1))

(0,1)

where we find that x := t2 − 1, y = t3 − t generate A×A×A A[t], then well done.

4.7.2 Boundary divisors of M g

Consider the closed substacks

δ0 = Im(M g−1,2 →M g)

δi = Im(M i,1 ×M g−i,1 →M g)
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where i = 1, ..., bg/2c.
As these maps are finite, we get dim δ0 = dimM g−1,2 = 3(g − 1)− 3 + 2 = 3g − 4

and similar dim δi = 3g − 4. Hence these are divisors of M g.
(By analyzing the formal deformation space of a stable curve, one can show that

δ =
⋃⌊g/2⌋
j=0 δj is a normal crossings divisor.)

4.7.3 Forgetful morphisms
Proposition 4.100. By Proposition 4.37, there is a morphism of algebraic stacks

M g,n →M g,n−1, (C, p1, ..., pn) 7→ (Cst, p1, ..., pn−1).

As
pn

pn

4.7.4 Universal family M g,n+1 →M g,n

This section we follows [34] and [35]. We consider the universal family Ug,n →M g,n

of M g,n. Actually the definition of universal family as for any family of stable curves
(C → S, {σi}), we have the following universal property of cartesian

C Ug,n

S M g,n
∃!

The existence given by 2-Yoneda’s Lemma and some descent theory (omitted). Here
we express this family as follows:
Lemma 4.101 (See [35]). Ug,n(S) to be the set of families of curves (C → S, σ1, ..., σn, σ)
where (C → S, σ1, ..., σn) ∈M g,n(S) and σ is an extra section without smooth condi-
tion.
Proof. Fix π : C → S. We first let Σ(S) : Ug,n(S)→M g,n(S) as (π, σi, σ) 7→ (π, σi) be
the canonical map and Σi(S) : M g,n(S)→ Ug,n(S) as (π, σ1, ..., σn) 7→ (π, σ1, ..., σn; σi).
Finally we need to define C → Ug,n as (pr2 : C ×S C → C, si,∆) where si = (σi ◦ π, idC)
and ∆ = (idC, idC). Hence we get the following cartesian diagram of fibered categories

C Ug,n

S M g,n

π Σ Σ1,...,Σnσ1,...,σn
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Well done.

Now we consider

M g,n+1 → Ug,n, (C → S) 7→ (Cst → S, σ′
1, ..., σ

′
n, σ

′)

where this stabilization aiming to make (Cst → S, σ′
1, ..., σ

′
n) in M g,n(S).

M g,n+1 Ug,n

M g,n

Remark 4.102 (More explicit construction). Fix f : X → S in M g,n+1(S) and hence
we get

X = Proj
S

⊕
m≥0

f∗ωX/S

(
n+1∑
i=1

σi

)⊗m
 .

Now we let

c(X) := Proj
S

(⊕
m≥0

f∗ωX/S

(
n∑
i=1

σi

)⊗m)
.

with σ′
i : S

σi−→ X → c(X). Hence (c(X); σ′
1, ..., σ

′
n) be a family of n-pointed stable

curves. Hence we get M g,n+1 → Ug,n. Here we follows the proof before chapter 8 in
[23].

Proposition 4.103. The morphism M g,n+1 → Ug,n is an isomorphism over M g,n.

Sketch. Now we construct an inverse map Ug,n →M g,n+1.
Step 1. Construct that family of curves. Let (C → S, σ1, ..., σn, σ) be an element
in Ug,n(S). As σ is a closed immersion, it defined by an ideal sheaf i : Jσ ↪→ OC.
Define the coherent sheaf K by the exact sequence

0→ OC
δ−→J ∨

σ ⊕ OC(σ1 + ...+ σn)→ K → 0

where δ = (i∨, j) where j is also an embedding. Now consider C ′ = ProjSym(K)
p−→

C → S.
Step 2. Construct the section. In [34], Knudsen introduce a notion called stably
reflexive module. Knudsen separate the two cases of σ as this is local on S: (I) σ
meets a non-smooth point in the fiber; (II) σ is a divisor meets one of these sections
σi.

In both cases we find the surjections form as σ∗K → σ∗(−) or σ∗
iK → σ∗

i (−) to
getting lifts where showed that all σ∗(−) are line bundles (may using stably reflexive
module). The picture when S = Spec(k) as follows:

Hence we omitted all details and get (C ′ → S, σ′
1, ..., σ

′
n, σ

′) ∈M g,n+1(S). For this
detailed proof, we refer the original paper [34] Theorem 2.4 or the new paper [35].
One can also see [8] X.8 for more detailed proof over C.
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σ
′

σ

p

p

σ = σi

σ
′

σ
′

i

(I) (II)

4.8 Irreducibility
As M g,n is a smooth Deligne-Mumford stack, its irreducibility if and only if connect-
edness. As M g,n+1 →M g,n be a universal family, it has connected fibers. Hence by
induction, we can reduce the case of M g. Moreover, by Keel-Mori theorem we get
the coarse moduli space M g → M g which induce the homeomorphism |M g| ∼= |M g|.
Hence we can reduce the case of M g. Hence we have the following relations:

M g,n irreducible⇔M g,n connected⇔M g connected (or irreducible)
(⇔Mg connected and dense inM g)⇔M g connected.

Here the denceness of Mg in the proper Deligne-Mumford stack M g is calledDeligne-
Mumford compactification.

Remark 4.104 (Some historical remarks). (i) In 19th century, Clebsch and Hurwitz
establishing irreducibility of Mg in characteristic 0 by using the classical topological
argument;

(ii) In the appendix of the paper [56] by Fulton in [41] gives a completely algebraic
proof for this in characteristic 0 in 1982;

(iii) In the paper [29], Deligne and Mumford give two arguments of irreducibility
of M g,n in characteristic p (by reduction to characteristic 0) in 1969;

(iv) In paper [40], Fulton established the irreducibility of M g,n in characteristic p
where p > g + 1 in 1969.

4.8.1 Preliminaries–Branched coverings
Definition 4.105. Let C be a connected smooth curve on k. A branched covering of
P1
k is a separable finite morphism f : C → P1

k. We say f is simply branched if for any
branched point x ∈ P1

k, there is at most one ramification point in the fiber f−1(x) and
such a point has index 2.

Here (A) is simply branched but (B),(C) are not.

Lemma 4.106. Let C be a smooth, connected and projective curve of genus g over an
algebraically closed field k of characteristic 0. If L is a line bundle of degree d ≥ g+1,
then for a subspace V ⊂ H0(C,L) of dimension 2 we get C → P1 a simply branched.
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Proof. As h0(C,L) = d + 1 − g, we get dimGr(2, H0(C,L)) = 2(d − g − 1). Here
char(k) = 0, the map C → P1 is finite separable. So C → P1 is not a simply branched
covering if and only if one of the following conditions holds

(a) V has a base point;
(b) there exists a ramification point with index > 2;
(c) there exists 2 ramification points in the same fiber.

This is easy to see that both of these cases have dimensions smaller than dimension
of Gr(2, H0(C,L)).

Lemma 4.107. If C → P1 is a simply branched cover of degree d > 2 in characteristic
0, then Aut(C/P1) is trivial.

Proof. Any α ∈ Aut(C/P1) must fix the 2g + 2d − 2 branched points by Riemann-
Hurwtiz Theorem and simplyness. By Proposition 2.13, there are no non-trivial
automorphisms of a smooth curve fixing more than 2g + 2 points. Hence as d > 2,
Aut(C/P1) is trivial.

Remark 4.108. Here we give some notes for the proof of Clebsch and Hurwitz in
19th to show that Mg is connected over C. We define

Hd,b = {C → P1 simply branched covering of degree d over b points}

where b = 2g+2d−2. By the previous lemma, Hd,b is an algebraic space or a topological
space (if k = C, as there are no stacky issues here). Let SymbP1\∆ as the variety of
b unordered distinct points in P1 (which can also be written as the complement Pb\∆
of the discriminant hypersurface), we have a diagram

Hd,b

Mg SymbP1\∆

with the canonical maps. Then they showed that Hd,b → SymbP1\∆ is finite étale
(actually this can be showed by using deformation theory pure algebraically, see[1]
Lemma 5.7.9. We omitted here). By Lemma 4.106, we get Hd,b →Mg is surjective.
Hence we need to show that Hd,b is connected. Combining these and some properties
of monodromy theory, they proved this. For more detail, see [1] subsection 5.7.2.

4.8.2 Irreducibility over characteristic 0 using admissible covers
In this section we will use the method of admissible covers to gives a sketch algebraic
proof for the irreducibility in characteristic 0, which appears in the appendix of the
paper [56] by Fulton in [41].

Proposition 4.109. Let C be a smooth, connected and projective curve of genus g
over an algebraically closed field k of characteristic 0. There exists a connected curve
T with points t1, t2 ∈ T and a family C → T of stable curves such that Ct1 ∼= C and
Ct2 is a singular stable curve.
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Sketch of proof. By Lemma 4.106 we get for d� 0 there exists a finite cover C → P1 of
degree d simply branched over b = 2g+2d−2 distinct points p1, ..., pb in P1. This gives
a b-pointed stable curve G = [P1, {pi}] ∈ M0,b. By Remark 4.108 (Hd,b → SymbP1\∆
is finite étale), we get G ∈ M0,b in general. Then G can degenerates to (D0, q1, ..., qb)
as the following picture

q1

q2 q3 qb−1 qb

In the other words, there is a DVR R and fraction field K with ∆ = Spec(R) →
M0,n be a stable curve (D → ∆, σi) with generic fiber (P1, pi) and special fiber
(D0, q1, ..., qb). Hence we have a simply branched covering C∗ → ∆∗ and extend to
C → D by taking C as the integral closure of OD in K(C∗) as

C D ∆

C∗ D∗ ∆∗

Hence we get this diagram:

∆

Now we just need to make C be a singular stable curve. Purity of the branch locus
implies that the ramification of C → D is a divisor when restricted to the relative
smooth locus of C → D and the central fiber C0 → D0 is ramified at σi(0). By
∆′ → ∆, t 7→ tm we can replace C such that C0 → D0 is ramified only over σi(0) and
possibly over nodes of D0. By an analysis of possible extensions C → D, one can show
that C0 is a nodal curve. Therefore C → ∆ is a family of nodal curves.

Now we take C → Cst and just need to check Cst0 is singular. For any irreducible
component T ⊂ Cst0 , apply Riemann-Hurwitz to T → P1 ⊂ D0 we get 2g(T ) − 2 =
−2d+R. If P1 is the middle one, we get R ≤ 2 + d− 1; if P1 is the boundary one, we
get R ≤ 1 + 2d− 2. Hence R ≤ 2d− 1 and g(T ) = 0. Hence T is rational. Hence Cst0
is singular.

Proposition 4.110. If M g′,n′ is irreducible for all g′ < g, then δ = M g,2\Mg,2 is
connected.

Proof. Let δ = δ ∪ δ1 ∪ · · · ∪ δ⌊g/2⌋ where

δ0 = Im(M g−1,2 →M g)
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δi = Im(M i,1 ×M g−i,1 →M g)

where i = 1, ..., bg/2c. Hence δ0, δi are connected by hypotheses. Easy to see that
these divisors intersect as the points of |M g|:

i j

g − i− j

i

g − i− 1

∈ δi ∩ δj ∈ δ0 ∩ δi

where when i = j = g/2 we may remove the middle line.
Theorem 4.111. M g,n is irreducible.

Proof. By the argument at begining, we just need to show M g is connected. By
Proposition 4.109 every smooth curve degenerates to a stable singular curve in the
boundary δ = M g\Mg. By induction on g and Proposition 4.110 we get δ is con-
nected, so is M g.
Remark 4.112. For the irreducibility in positive characteristic, we omitted and we
refer the original [29], [40]. For the sketch, we refer subsection 5.7.4 in [1].

4.9 Projectivity
We will prove the coarse moduli space M g,n is projective follows [65] and [80].
Remark 4.113. Some generalizations of the projectivities:

(a) In [64] shows the moduli of stable varieties in any dimension is projective;
(b) In [22] and [82] shows the moduli of K-polystable Fano varieties is projective.

Let the universal family π : Ug →M g and we define k-th pluri-canonical bundle
as the vector bundle π∗(ω⊗k

Ug/M g
). Indeed, π∗(ω⊗k

Ug/M g
) is a coherent sheaf on the stack

M g by the coherence theorem. We need to check that it is a vector bundle. By
definition of the vector bundle over Deligne-Mumford stack, we need to show for any
S →M g the sheaf (π∗(ω⊗k

Ug/M g
))|S is a vector bundle over S. As S →M g correspond

to πS : C → S, we get
(π∗(ω

⊗k
Ug/M g

))|S ∼= πS,∗(ω
⊗k
C/S).

By some argument with Review A.1 we can show that πS,∗(ω⊗k
C/S) is a vector bundle.

Moreover, we get use the Riemann-Roch Theorem to deduce that

rank(π∗(ω⊗k
Ug/M g

)) =

{
g, k = 1;

(2k − 1)(g − 1), k > 1.

Now we consider the line bundle over M g

λk := det π∗(ω⊗k
Ug/M g

).

We will show that for k � 0, the line bundle λk descends to an ample line bundle on
M g, then we get M g is a projective scheme.
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4.9.1 Kollár’s Criteria
Lemma 4.114. Let X be a proper Deligne-Mumford stack with coarse moduli space
X → X. Suppose L line bundle over X with

(a) L is semiample (i.e. LN is basepoint-free for some N > 0);
(b) for every proper integral curve T and map f : T → X such that f(T ) ⊂ |X |

is not a single point, degL|T > 0.
Then for some N > 0, L⊗N descends to an ample line bundle over X.

Proof. This is the stack-version of the Corollary 1.2.15 in [68]. Actually we consider
the following diagram which come from (a) and the universal property of coarse moduli
space:

X

X P(H0(X , L⊗N))

π
f

g

By (b), f doesn’t contract curves, so is g. Hence g is quasi-finite and proper, hence
finite by Zariski main theorem. Hence M := g∗O(1) is ample; moreover, π∗M = L⊗N ,
we win.

Theorem 4.115 (Nakai-Moishezon Criterion). If X is a proper algebraic space, a
line bundle L is ample if and only if for all irreducible closed subvarieties Z ⊂ X,

LdimZ · Z > 0.

Proof. This is the algebraic space-version of the Theorem 1.21 in [27]. By Le Lemme
de Gabber (Theorem 3.54), there exists a finite surjection f : X ′ → X and by the
algebraic space version St 0GFB we get L is ample if and only if f ∗L is ample. Hence
by the scheme-version of Nakai-Moishezon Criterion ([27] Theorem 1.21), we win.

Let X be a proper algebraic space over k. Let W → Q be a surjection of vector
bundles of rank w and q. Suppose that W has structure group G→ GLw. There is a
classifying map

X → [Gr(q, w)/G], x 7→ [W ⊗ κ(x) � Q⊗ κ(x)]

which is well defined because these killed by G.
Here we state our main theorem in this section. For simplicity, we only state it in

characteristic 0. The criteria first appears in [65] and more general case we refer [64].

Theorem 4.116 (Kollár’s Criterion). Let X be a proper algebraic space over a field
k of characteristic 0. Let W � Q be a surjection of vector bundles of rank w and q,
where W has structure group G→ GLw. Suppose that

(a) The classifying map X(k)→ Gr(q, w)(k)/G(k) has finite fibers;
(b) W is nef.

Then detQ is ample.
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Proof. By Nakai-Moishezon criterion, for any irreducible subvariety Z ⊂ X we need
to verify det(Q)|Z is big. As (a),(b) can restrict to Z, we can let X is an integral
scheme and show that detQ is big.

By Le Lemme de Gabber (Theorem 3.54), there exists a finite projective surjection
f : Y → X of schemes. Hence we have det(f ∗Q)dimY = deg(f) det(Q)dimX and detQ
is big if and only if det(f ∗Q) is big. By taking the normalization, we can assume Y
is normal and integral. So by Lemma 4.117 we win.

Lemma 4.117. Let Y be a normal projective integral scheme over a field k of char-
acteristic 0. Let W � Q be a surjection of vector bundles of rank w and q, where W
has structure group G→ GLw. Suppose that

(a) The classifying map Y (k)→ Gr(q, w)(k)/G(k) generically has finite fibers;
(b) W is nef.

Then detQ is big.

Proof. See Proposition 5.8.9 in [1].

4.9.2 Nefness of pluri-canonical bundles
Theorem 4.118. Let π : C → T be a family of stable curves over a smooth curve T
over k, then π∗(ω⊗k

C/T ) is nef for k ≥ 2.

Proof. We following several steps:
•Step 1. Reduction to characteristic p. Now we let k is of characteristic 0.
Since C and T are finite type over k, their defining equations only involve finitely
many coefficients of k. Thus there exists a finitely generated Z-subalgebra A ⊂ k and
a cartesian diagram

C C̃

T T̃

Speck SpecA

where C̃, T̃ are schemes of finite type over A. By possibly enlarging A, we can arrange
that T̃ → Spec(A) is smooth and projective family and C̃ → T̃ is a family of stable
curves. After restricting along a morphism ∆ → SpecA from a DVR such that the
images of the closed and generic points have characteristic p and 0, respectively, we
may assume that A is a DVR. As the nef locus is open for proper flat families, it
suffices to prove the theorem when char(k) = p > 0 by Proposition A.12.
•Step 2. Second reductions. We can reduce to the case that

(a) C is a smooth and minimal surface;
(b) C → T is generically smooth;
(c) The genus of T is at least 2.

These implies C is of general type.
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•Step 3. Positive characteristic case. Let p = char(k). If π∗(ω⊗k
C/T ) is not nef,

then there exists a quotient line bundle π∗(ω⊗k
C/T ) � M∨ where d = deg(M) > 0.

Consider the absolute Frobenius

C C

T T
FrobT

FrobC

By the property of the dualizing sheaf, we get Frob∗
Tπ∗(ω

⊗k
C/T )

∼= π∗(ω
⊗k
C/T ). And

degFrob∗
TM = pd, we can let d � 0. Hence we can let M = ω⊗k

T ⊗ L where L is
very ample.

The surjection π∗(ω⊗k
C/T ) � (ω⊗k

T ⊗ L)∨ induce

π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L� OT .

As h1(T,OT ) ≥ 2, we have h1(T, π∗(ω⊗k
C/T ) ⊗ ω⊗k

T ⊗ L) ≥ 2. Use the Leray spectral
sequence

H1(T, π∗(ω
⊗k
C/T )⊗ ω

⊗k
T ⊗ L)⇒ H1(C, ω⊗k

C ⊗ π
∗L),

hence h1(C, ω⊗k
C ⊗ π∗L) ≥ 2 by some calculation. By Lemma 4.119, we win.

Lemma 4.119 (Bombieri-Ekedahl). Let S be a smooth projective surface over an
algebraically closed field k which is minimal and of general type. Let D be an effective
divisor with D2 = 0. If char(k) 6= 2, then H1(S, ω⊗n

S (D)) = 0 for all n ≥ 2. If
char(k) = 2, then h1(S, ω⊗n

S (D)) ≤ 1 for all n ≥ 2.

4.9.3 Positivity via positivity theory
For a morphism S →M g correspond to C → S. Consider an integral d, we have

Symdπ∗(ω
⊗k
C/S)→ π∗(ω

⊗dk
C/S ).

When S = Spec(K), C = C, we get

SymdH0(C, ω⊗k
C )→ H0(C, ω⊗dk

C )

with kernel consists of degree d equations cutting out the image of |ω⊗k
C | : C → Pr(k)−1.

If k ≥ 3, ω⊗k
C/S is very ample and thus C → S can be recovered from the kernel of the

multiplication map.

Proposition 4.120. For k � 0 and N sufficiently divisible, then λk = det π∗(ω⊗k
Ug/M g

)

descends to an ample line bundle on M g.

Proof. Consider C = Ug, S =M g. Choose k, d such that
(a) ω⊗k

C/S is relatively very ample and R1π∗ω
⊗k
C/S = 0;

(b) Every curve |ω⊗k
C | : C ↪→ Pr(k)−1 is cut out by equations degree d;
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(c) π∗(ω⊗k
C/S) is nef (by Theorem 4.118).

These implies surjection

W := Symdπ∗(ω
⊗k
C/S) � π∗(ω

⊗dk
C/S ) =: Q.

Let w, q be the rank of W,Q, respectively. Let W has structure group G → GLw.
Consider the classifying map

M g → [Gr(q, w)/G], x 7→ [SymdH0(C, ω⊗k
C )︸ ︷︷ ︸

Γ(Pr(k)−1,O(d))

� H0(C, ω⊗dk
C )︸ ︷︷ ︸

Γ(C,O(d))

]

is injective as the conditions on d and k imply that the kernel of the multiplication
map uniquely determines C.

By Le Lemme de Gabber we get a finite cover X → M g. By Kollár’s Criterion
(Theorem 4.116), we get the pullback of λk to X is ample for k � 0. By Proposition
3.55, we get for N sufficiently divisible, λ⊗Nk descends to a line bundle L on M g. Since
the pullback of L under the finite morphism X →M g →M g, by St 0GFB we get the
conclusion that L is ample.
Theorem 4.121. If 2g − 2 + n > 0, then M g,n is projective.
Proof. The universal family M g,n+1 →M g,n is projective by Proposition 4.32. Hence
we just consider n = 0. This is right directly by the previous proposition.
Remark 4.122. If we consider ω⊗k

Ug,n/M g,n
(Σ1 + ...+Σn) from begining, we can prove

the projectivity of M g,n directly.

4.9.4 Projectivity via GIT, a sketch
By our old way, we have M g

∼= [H ′/PGLr(k)] for some locally closed PGLr(k)-invariant
subscheme of HilbPPr(k)−1 where P (t) = χ(C, ω⊗kt

C ) and r(k) = (2k − 1)(g − 1).
Remark 4.123. In fact we have M g,n

∼= [Hν,g,n/PGL(N)] where N = (2ν − 1)(g −
1) + νn and Hν,g,n ⊂ HilbPν

PN−1 be the Hilbert scheme of ν-log-canonically embedded
n-pointed stable curves of genus g where Pν(t) = (2νt− 1)(g− 1)+ νnt for ν ≥ 3. See
[8] Theorem XII.5.6 for the proof.

Let H be the closure of H ′ in HilbPPr(k)−1 , By the proof of the representability of
the quotient scheme, we get a closed immersion for d� 0:

H HilbPPr(k)−1 Gr(P (d),Γ(Pr(k)−1,O(d)))

[C ↪→ Pr(k)−1] [Γ(Pr(k)−1,O(d)) � Γ(C,O(d))]

Next consider the Plücker embedding

Gr(P (d),Γ(Pr(k)−1,O(d))) P
(∧P (d) Γ(Pr(k)−1,O(d))

)
[Γ(Pr(k)−1,O(d)) � Γ(C,O(d))] [

∧P (d) Γ(Pr(k)−1,O(d)) �
∧P (d) Γ(C,O(d))]
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we can get Ld := OGr(P (d),Γ(Pr(k)−1,O(d)))(1)|H be the very ample line bundle over H. All
these morphisms are PGLr(k)-equivariant, hence Ld inherits a PGLr(k)-linearization.
Hence Ld can defined on [H/PGLr(k)].

Using the theory of Hilbert-Mumford criteria, we can prove the following difficult
result.

Theorem 4.124. Let k ≥ 5 and d � 0. For h = [C ↪→ Pr(k)−1] ∈ H, the curve C is
stable if and only if h ∈ H is GIT semistable with respect to Ld, that is, there exists
an equivariant section s ∈ Γ(H,L⊗N

d )PGLr(k) with N > 0 such that s(h) 6= 0. Moreover,
we have

M g
∼= Proj

(
Γ(H,L⊗N

d )PGLr(k)
)
,

hence projective.

5 More theory of the moduli of curves
5.1 Preliminaries
We now consider Mg,n and M g,n as the groupoid over the category (Sch/SpecC).
Then by the same arguments in the previous part, we can get M g,n is also a proper
smooth Deligne-Mumford stack of dimension 3g − 3 + n over C with a coarse moduli
space M g,n which is a projective variety over C. Similarly for Mg,n and Mg,n. We will
refer [8].

5.1.1 Boundary geometry I. Graphs and dual graphs
We can associate a graph to a nodal curve with marked points.

Definition 5.1. A graph Γ is the datum of:
(a) a finite nonempty set V = V (Γ) (the set of vertices);
(b) a finite set L = L(Γ) (the set of half-edges);
(c) an involution ι of L;
(d) a partition of L indexed by V , that is, each v ∈ V has a (possibly empty) subset

Lv of L such that L =
⋃
v∈V Lv with Lv ∩ Lw = ∅ when v 6= w.

A pair of distinct elements in L which can be interchanged by ι is called an edge
of the graph. The fixed points of ι is called a leg of the graph. The set of edges of
Γ is denoted by E(Γ). Define the dual graph is a graph together with a nonnegative
integer gv to each vertex v. The genus of a dual graph Γ is defined to be

gΓ =
∑

v∈V (Γ)

gv + 1− χ(Γ).

A (dual) graph with a one-to-one correspondence between a finite set P and its legs
will said to be P -marked.

Let C be a nodal curve and D be a finite set of its smooth points. Let the vertex
be the connected components of the normalization of C, and its gv is the genus of
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the components. The half-edges from a vertex are the points of the corresponding
component which are nodes of C or marked points. Easy to see that the edges of
the graph are node sof C; the legs are the marked points. This graph we denote
it Graph(C;D). (Easy to see by Theorem 4.14, we get the genus of the dual graph
associated to (C;D) is equal to the genus of C!) For example:

2

3

1

p1

p2

p3

2 1

3

2

1

3

↔

Definition 5.2. A curve is tree-like if, after deleting edges leading from a node to
itself, the dual graph becomes a tree; it is of compact type if the dual graph actually is
a tree.

Remark 5.3. Moreover, we also have some kind of localization. For such (C;D), we
fix some set S of nodes of C. We let a graph GraphS(C;D): (a) the vertices be the
connected components of the partial normalization CS of C at S; (b) gv is the genus
of corresponding component of CS; (c) the edges correspond to the nodes in S; (d)
the half-edges are the marked points or the points of CS mapping to nodes in S.

Definition 5.4. Let Γ be a P -marked graph and let I be a subgraph without legs with
all the vertices of Γ. We define ΓI to be the graph that contracting each connected
component of I to a point (see [8] page 313). Hence we have a caonincal map
cI : Γ→ ΓI . There is a bijection between vertices of ΓI and the connected components
of I, and we can let gw(ΓI) = g(Iw) where w be a vertice of ΓI and Iw be its connected
component.

A P -marked dual graph Γ′ is defined to be a specialization of Γ if Γ is isomorphic
to Γ′

I for some I ⊂ Γ′. We call c : Γ′ → Γ ∼= Γ′
I an I-contraction For example:

a

b
1 4

c
dα

β

γ

θ

δ

e

f

2

3

0
6

2

3

a

b

c

d

γ

e

f

θ

c

5.1.2 Boundary geometry II. More on gluing morphisms
• Gluing via graphs.
•• Gluing of curves.

Fix a P -marked dual graph Γ and for any v ∈ V we give a Lv-pointed nodal curve
Cv of genus gv. Let C ′ =

∐
v∈V Cv and let C = C ′/ ∼ where ∼ means two points need

to gluing together if and only if they are marked points labeled by the two halves of
an edge of Γ. Hence C ′ → C is actually a partial normalization. For example:
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1

2

1

2

3

a

b

1

2

3
3

2

1

a1

a2

a

b1

b2

b
⇐⇒

→

Here we need to note that this graph here is kind of partial diagram.
•• Gluing of families of curves.

Fix a P -marked dual graph Γ and for any v ∈ V we give a family of stable Lv-
pointed genus gv curves Fv = (fv : Xv → S, σl where l ∈ Lv). Let X ′ =

∐
vXv and we

get F ′ = (f ′ : X → S, σi) a family of L-pointed nodal curves.
For any m ∈ L, by taking residue along σm we get a surjection

ωkf ′(k
∑

σl)→ Oσm(S).

Hence we get
R

(k)
l : f∗

(
ωkf ′(k

∑
σl)
)
→ OS

by some kind of positivity (see [8] Lemma X.6.1(i)) it is surjective for all k > 1.
Consider

R(k) : f∗

(
ωkf ′(k

∑
σl)
)
→ OE

S

indexed by pairs of edges {l, l′} with components R(k)
l + (−1)k−1R

(k)
l′ . The kernel of

its fiber at s ∈ S is H0(Xs, ω
k
f ′(k

∑
p∈P σlp(s))) where Xs be the gluing of X ′

s via Γ,
hence its dimension is independent of s. Hence the kernel of R(k), which we denote
by Sk, is locally free. It is locally finitely generated (see [8] Corollary X.6.4). Let

X = Proj
S

⊕
k≥0

Sk

and hence the fibers of X → S is gluing via Γ. Let σ′
p : S → X is the composition of

σlp and X ′ → X. Hence we get F = (X → S, σ′
p)p∈P .

• Gluing functors.
Fix a P -pointed dual genus g dual graph Γ and consider a Deligne-Mumford stack

M Γ =
∏
v∈V

M gv ,Lv .

Fixed S and we let η = (ηv)v∈V ∈ M Γ(S) where ηv : Xv → S be a family of
stable Lv-pointed curves of genus gv. The morphisms are isomorphisms between these
families Hence we get a gluing map via Γ to get ξΓ(η) : X → S, a family of stable
P -pointed genus g curves. Hence we get the gluing morphism of stacks

ξΓ : M Γ →M g,P .
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Let DΓ ⊂M g,P be a closed substack as

DΓ(S) =

{
σ : X → S families of P -pointed stable curves of genus g :
fibers have dual graphs which are specializations of Γ

}
(as the image of ξΓ). It is also a Deligne-Mumford stack with a coarse moduli space
∆Γ ⊂ M g,P as a closed subvariety. We often refer to the DΓ (or the ∆Γ) as the
boundary strata of M g,P (or of M g,P ).

The simplest boundary strata are those of codimension 1 (as a divisor as before),
which correspond to the stable graphs with a single edge. If we consider the following
graphs:

P

g − 1

a

g − a

A
B

then for the first we let Γirr and the second Γa,A (or ΓP if P = {(a,A), (b = g− a,B)}
be a stable bipartition). Hence we can also define Dirr := DΓirr

and Da,A := DΓa,A
(or

DP). The coarse case are the same ∆irr,∆a,A,∆P . Moreover, in the case we get the
old gluing way:

ξirr : M g−1,P∪{x,y} →M g,P , ξa,A : M a,A∪{x} ×M g−a,Ac∪{y} →M g,P .

Definition 5.5 (Weak Γ-marking). Consider a family of stable P -pointed genus g
curves (π : C → S, τp). Let subvariety Σ ⊂ Sing(C) proper and étale over S, then for
any s ∈ S, the fiber Σs be a finite set of nodes. Hence we can consider GraphΣs(Cs).

Fix a P -marked graph Γ of genus g, if GraphΣs(Cs) ∼= Γ for any s, then we call Σ
is a weak Γ-marking. Hence we can define a stack EΓ as

EΓ(S) =

{
π : C → S families of P -pointed stable curves
of genus g : endowed with a weak Γ-marking

}
Definition 5.6 (Γ-marking). If C → S coming form (X → S) ∈ M Γ(S) by gluing
via Γ with Σ the locus of nodes produced by gluing. As Σ be a union of sections on
C, so is the preimage over X (partial normalization). Hence we can get GraphΣ(C)
with a family. Moreover Γ ∼= GraphΣ(C). If these data exist for C → S, we called it
endowed a Γ-marking.

Hence we can see that in this case we can do it conversely, hence we have M
′
Γ as

M Γ(S)⇔

{
π : C → S families of P -pointed stable curves
of genus g : endowed with a Γ-marking

}
:= M

′
Γ(S)

Hence we can find that the gluing map can be composited as

M Γ

M
′
Γ EΓ DΓ M g,P

∼=

F F ′

ξΓ
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where F, F ′ are forgetful maps.

Proposition 5.7. (i) EΓ be the normalization of substack DΓ ⊂M g,P ;
(ii) The morphism M Γ → EΓ can be identified with M Γ → [M Γ/Aut(Γ)].

Proof. See [8] Proposition XII.10.11.

Corollary 5.8. We can seen Im(ξΓ) = DΓ as before.

Proof. Trivial by the Proposition.

Corollary 5.9. Let Γ be a stable P-marked dual graph of genus g. Assume that
Aut(Γ) = {idΓ}. Furthermore, assume that, for every graph Γ′ which is a specialization
of Γ, all the elements in Aut(Γ′) are specializations of idΓ. Then ξΓ : M Γ →M g,P is
a closed immersion.

Proof. See [8] Corollary XII.10.22.

Theorem 5.10. The map ξΓ : M Γ →M g,P is representable.

Proof. I Step 1. Construct a new graph Γ̂ from Γ.
Fix an edge ` = {l, l′} ∈ E(Γ), consider the following graph Γl,Γl′ and spliting `

into l, l′ and joint Γl,Γl′ :

Γl
Γl′

l l
′l∞ l0

l1

l
′

0

l
′

∞

l
′

1

vl vl′

Repeat this operation for all edge of Γ, we get Γ̂. Hence Γ̂ is P ∪H-marked where
H the set of half-edges of Γ which are not legs.
I Step 2. Decomposite ξΓ into closed immersion and projection.

Consider maps

ιΓ : M Γ =
∏
v∈V

M gv ,Lv →

M Γ̂ =
∏
v∈V

M gv ,Lv ×
∏

{l,l′}∈E

(
M 0,{l0,l1,l∞} ×M 0,{l′0,l′1,l′∞}

)
and

ξΓ̂ : M Γ̂ =
∏
v∈V

M gv ,Lv ×
∏

{l,l′}∈E

(
M 0,{l0,l1,l∞} ×M 0,{l′0,l′1,l′∞}

)
→M g,P∪H

and πH : M g,P∪H →M g,P be the natural projection. Then

ξΓ = πH ◦ ξΓ̂ ◦ ιΓ.

As ιΓ is isomorphism and πH is representable (as a universal family) and ξΓ̂ is a
closed immersion by Corollary 5.9 and Aut(Γ̂) = {idΓ̂}.
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It is important to describe how the various boundary strata intersect. Let Γ,Γ′

are two P -marked dual graph of genus g. Consider

GΓΓ′ =


(Λ, c, c′)/ ∼=: Λ be a P -marked dual graph of genus g,
c : Λ→ Γ, c′ : Λ→ Γ′ are contractions with the
property that E(Λ) = c−1(E(Γ)) ∪ c′−1(E(Γ′))

 .

For example:

Γ

Γ
′

GΓΓ′

a b

g − 1

a− 1

b

a b− 1

(a+ b = g)

Proposition 5.11. If we let M ΓΓ′ := M Γ ×M g,P
M Γ′, then

M ΓΓ′ =
∐

Λ∈GΓΓ′

M Λ.

Proof. Fix a scheme T .
First we let ξ : C → T in M Λ = M

′
Λ, then we are given a subvariety Σ ⊂ Sing(C),

proper and étale over T , whose inverse image in the partial normalization along Σ
itself is a union of sections, plus an isomorphism γ : GraphΣ(C) ∼= Λ. Let contractions
c : Λ→ Γ, c′ : Λ→ Γ′ and

Σ1 = (c ◦ γ)−1(E(Γ)),Σ2 = (c′ ◦ γ)−1(E(Γ′))

such that Σ = Σ1∪Σ2 with isomorphisms γ1 : GraphΣ1(C) ∼= Γ and γ2 : GraphΣ2(C) ∼=
Γ′. Hence ξ is both in M Γ(T ) and M Γ′(T ). Hence in M ΓΓ′(T )

Conversely, as we have

M ΓΓ′(T ) =


(ξ, ξ′, φ) : ξ, ξ′ are families of Γ,Γ′-marking stable
P -pointed genus g curves over T with φ : ξ → ξ′

a T -isomorphism

 .

Then let (ξ, ξ′, φ) ∈M ΓΓ′(T ), hence we have γ : GraphΣ1(C) ∼= Γ and γ′ : GraphΣ2(C) ∼=
Γ′. Hence we get c, c′ : GraphΣ1∪Σ2(C)→ Γ,Γ′ and (GraphΣ1∪Σ2(C), c, c′) ∈ GΓΓ′ , hence
we win.

5.1.3 Local structure of M g,n and M g,n

We also consider the case over C. We will using the Kuranishi family and ν-log
canonical Hilbert scheme to describe the local structure of the moduli stack and
(coarse) space of the stable curves.

Recall that we have the local structure of the Deligne-Mumford stack and its coarse
moduli space, that is, the Theorem 3.53 and Theorem 3.48 as follows.
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Theorem A. Let X be a Deligne-Mumford stack separated and of finite type over
a noetherian algebraic space S. Let π : X → X be its coarse moduli space. For any
closed point x ∈ |X | with geometric stabilizer Gx, we have an étale neighborhood
SpecAGx → X of π(x) ∈ |X|.
Theorem B. Let X be a separated Deligne-Mumford stack and x ∈ X (k) be a
geometric point with stabilizer Gx. Then exists an affine and étale map

f : ([SpecA/Gx], w)→ (X , x)

where w ∈ (SpecA)(k) such that f induces an isomorphism of the stabilizer groups at
w. Moreover, it can be arranged that f−1(BGx) ∼= BGw.

But now we will get a more coarse (but useful) local structure by using the Ku-
ranishi family as follows. Actually as a set, M g,n is a set of isomorphism class of the
n-pointed stable curves. Hence by Definition 4.65, for a n-pointed stable curve we
have a standard Kuranishi family ξ : C → (X0, x0) ⊂ Hν,g,n. Hence we have a natural
map

ψ : X0/Gx0 →M g,n.

Recall some properties of X0 in Definition 4.65:
• For any y ∈ X0 we have Gy := Aut(Cy; σi(y)) ∼= stabGx0

(y);
•• For any y ∈ X0, there is a Gy-invariant analytic neighborhood U of y in X such
that any isomorphism (of n-pointed curves) between fibers over U is induced by an
element of Gy.

Theorem 5.12. The map ψ : X0/Gx0 → M g,n is étale. Moreover there are finite
many such Xi and Gi covers Hν,g,n such that the map

φ : Y :=
∐
i

Xi/Gi →M g,n

is étale and surjective.

Proof. We refer [8] Proposition XII.3.5.

Theorem 5.13. The canonical map

α : X :=
∐
i

Xi →M g,n

is étale and surjective where Xi are Kuranishi families as before covers Hν,g,n.

Proof. We refer [8] Theorem XII.8.3.

5.2 Line bundles and Picard groups of the moduli of curves
We will refer [8] chapter XIII and [5].
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5.2.1 Line bundles on the moduli stack of stable curves
Example 5.14 (Hodge bundle). For any S →M g,n which correspond to ξ = (π : C →
S), we let Eξ := π∗ωπ. Hence induce a sheaf E over M g,n called the Hodge bundle.
As the relative dualizing sheaf is functorial with respect to morphisms of families, this
is a quasi-coherent sheaf. By the cohomology and base change, it is actually a vertor
bundle of rank g as before. Let detE =

∧g E and we call it the Hodge line bundle.
Usually we denote λ := [

∧g E] ∈ Pic(M g,n).

Remark 5.15. For the canonical map M g,n →M g,n there are plenty of quasi-coherent
sheaves on M g,n which do not come by pullback from the quasi-coherent sheaves on
M g,n. For example, Hodge bundle as follows (see Remark 5.60 for more about Hodge
bundle). More precisely, the Hodge bundle and its determinant do not descend to
coherent sheaves on the moduli space M g,n except in genus zero. For this we refer [8]
Page 343-344.

Example 5.16 (Generalization of the Hodge line bundle). For any S →M g,n which
correspond to ξ = (π : C → S) and any ν ∈ Z, we let

Λ(ν)ξ :=

(max∧
R1π∗ω

⊗ν
π

)−1

⊗
max∧

π∗ω
⊗ν
π .

Hence induce a line bundle Λ(ν) over M g,n. Usually we denote λ(ν) := [Λ(ν)] ∈
Pic(M g,n).

Actually when ν = 1, by the same arguments in Lemma 2.14 we can show that
R1π∗ωπ ∼= OS. So we have Λ(1)ξ ∼=

∧g Eξ canonically, hence Λ(1) ∼=
∧g E.

Example 5.17 (Point bundles). For n > 0 and for any S →M g,n which correspond
to ξ = (π : C → S; σi), we let (Li)ξ := σ∗

i ωπ. Hence we get Li be the line bundles over
M g,n. We usually Set

ψi = [Li] ∈ Pic(M g,n), ψ =
∑
i

ψi.

Remark 5.18. As the Hodge bundle, in general, Li can’t descend to a line bundle
on M g,n.

Example 5.19 (Boundary divisors and bundles). As before, we have

∂M g,n =: D = Dirr +
∑
P

DP ,

where the sum runs through all stable bipartitions of (g, {1, ..., n}). We denote

δirr = [O(Dirr)] ∈ Pic(M g,n), δP = [DP ] ∈ Pic(M g,n).
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5.2.2 Tangent bundle, cotangent bundle and normal bundle
Proposition 5.20. Consider the moduli stack M g,P , then tangent bundle T = TM g,P

can be described as: for any F = (f : X → S, {σp}p∈P ) ∈M g,P (S), we have

TF = f∗(Ω
1
f ⊗ ωf (D))∨

where D =
∑
σp(S).

Proof. By Theorem 5.13, the Kuranishi families formed an étale covering. Hence
consider a stable P -pointed curve {C; xp} and its Kuranishi family (see Theorem
4.50) X → (U, u0), then we have

Tu0U
∼= Ext1OC

(Ω1
C ,OC(−

∑
p

xp)) ∼= H0(C,Ω1
C ⊗ ωC(

∑
p

xp))
∨.

Hence we get the conclusion.

Example 5.21 (Canonical bundle). Hence the cotangent bundle T ∨ given by T ∨
F =

f∗(Ω
1
f ⊗ ωf (D)). Hence we get the class of the canonical line bundle

KM g,P
:=

[max∧
T ∨

]
∈ Pic(M g,P ).

Now we consider the normal bundle of ξΓ : M Γ →M g,P where Γ be a stable graph
(For a map of smooth schemes f : X → Y , we let Nf = f ∗TY /TX).

Example 5.22 (Single curves). Let N be a point of M Γ with image C in M g,P . One
can consider N as a partial normalization of C at some ye. By Claim 2 in Remark
4.49 we get

0→Ext1(Ω1
N ,ON(−D̃ −R))→ Ext1(Ω1

C ,OC(−D))→⊕
e∈E(Γ)

Ext1(Ω1
C,ye ,OC,ye)→ 0.

where D =
∑
xp with preimage D̃ and R be the preimage of these ye.

Easy to see that Ext1(Ω1
N ,ON(−D̃ − R)) be the tangent space of M Γ at N and

Ext1(Ω1
C ,OC(−D)) be the tangent space of M g,P at C, hence the normal space to ξΓ

at N is ⊕
e∈E(Γ)

Ext1(Ω1
C,ye ,OC,ye) =

⊕
e∈E(Γ)

TN,y′e ⊗ TN,y′′e

by Claim 2 in Remark 4.48 (or Claim 3 in Remark 4.49).

Proposition 5.23. The normal bundle of ξΓ : M Γ →M g,P can be expreessed as

NξΓ =
⊕

{l,l′}∈E(Γ)

η∗v(l)L
∨
l ⊗ η∗v(l′)L ∨

l′

where ηv : M Γ →M gv ,Lv be the projections.
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Proof. Let F in M Γ is the datum of a family Xv → S of stable Lv-pointed curves of
genus gv for each vertex v of Γ. We let X =

∐
vXv. For each l ∈ L(E), we denote

by σl the corresponding section of X → S. The gluing construction yields a family
X ′ → S of stable P -pointed genus g curves. Then the normal

NξΓ,F =
⊕

{l,l′}∈E(Γ)

σ∗
l TX/S ⊗ σ∗

l′TX/S =
⊕

{l,l′}∈E(Γ)

L ∨
l,F ⊗L ∨

l′,F

where Li are point bundles. Hence we win.
Remark 5.24 (Excess intersection bundle). By Proposition 5.11, we consider

M ΓΓ′ =
∐

Λ∈GΓΓ′ M Λ M Γ

M Γ′ M g,P
ξΓ′

ξΓ

∐
ξΛΓ

Then the excess intersection bundle is

FΓΓ′ =
⊕

Λ∈GΓΓ′

FΛΓΓ′ :=
⊕

Λ∈GΓΓ′

ξ∗Γ(NξΓ′ )/NξΛΓ
.

We can show that (as [8] XIII.(3.8))

FΓΓ′ =
⊕

Λ∈GΓΓ′

⊕
{l,l′}∈c−1(E(Γ))∩c′−1(E(Γ′))

η∗v(l)L
∨
l ⊗ η∗v(l′)L ∨

l′ .

Corollary 5.25. We have [max∧
NξΓ

]
= −

∑
l∈H(Γ)

η∗v(l)ψl

where H(Γ) be the set of those half-edges of Γ which are not legs.

5.2.3 Determinant
• Basic linear algebra.
Definition 5.26. A Z/2-graded line bundle is a pair (L, r) where L be a line bundle
over a scheme X and r ∈ {0, 1}. We define the determinant of a finite vector bundle
F over X is a Z/2-graded line bundle

detF :=

(max∧
F, rankF (mod 2)

)
.

We say (L, r) is even/odd if r is even/odd. We define the tensor product of Z/2-
graded line bundles as (L, r)⊗ (T, s) := (L⊗T, r+ s). Let A := (L, r), B := (T, s) and
define the canonical isomorphism

τA,B : A⊗ B → B ⊗ A, l ⊗m 7→ (−1)rsm⊗ l.
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Proposition 5.27. (i) For Z/2-graded line bundles A,B,C we have

τA⊗B,C = (τA,C ⊗ id) ◦ (id⊗ τB,C);

(ii) For an exact sequence E : 0→ E → F → G→ 0 of vector bundles, we have a
canonical isomorphism φE : detE ⊗ detG→ detF ;

(iii) Define 1X := (OX , 0) and A−1 = (L∨, a) for a Z/2-graded line bundle A =
(L, a). Then A⊗ A−1 ∼= 1X , α, φ 7→ φ(α) and

SA,B : B−1 ⊗ A−1 ∼= (A⊗ B)−1, φ⊗ ψ 7→ (χ : α⊗ β 7→ φ(α)ψ(β));

(iv) We have τ∨B,A ◦ SA,B = SB,A ◦ τA−1,B−1.

Proof. Trivial by some easy linear algebra and calculation.

Definition 5.28. Let a finite complexes F ∗ of vector bundles on X, we define

detF ∗ :=
⊗
q∈Z

(detF q)(−1)q .

Proposition 5.29. (i) For a exact sequence of complexes E : 0→ E∗ → F ∗ → G∗ →
0, we also have isomorphism

φE : detE∗ ⊗ detG∗ ∼= detF ∗;

(ii) The determinant and φE are functorial in the base space X;
(iii) Consider

E1 E2 E3

0 0 0

R1 : 0 A∗ B∗ C∗ 0

R2 : 0 A′∗ B′∗ C ′∗ 0

R3 : 0 A′′∗ B′′∗ C ′′∗ 0

0 0 0

then we have φE2 ◦ (φR1 ⊗ φR3) = φR2 ◦ (φE1 ⊗ φE3) ◦ (id⊗ τC∗,A′′∗ ⊗ id);
(iv) If A∗ be a finite acyclic complex of vector bundles on X, there is a canonical

isomorphism detA∗ ∼= 1X . More generally, if f : A∗ → B∗ be a quasi-isomorphism
of finite complexes of vector bundles, then there is an isomorphism det f : detA∗ →
detB∗ which depends only on the homotopy class of f ;

(v) Consider
E : 0 A∗

1 A∗ A∗
2 0

E ′ : 0 B∗
1 B∗ B∗

2 0

f1 f f2
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then det f ◦ φE = φE ′ ◦ (det f1 ⊗ det f2);
(vi) Consider the exact sequences E : 0 → A∗ α−→ B∗ → 0 → 0 and E ′ : 0 → 0 →

B∗ β−→ C∗ → 0, then

detα = φE ◦ (a 7→ a⊗ 1), det β = φE ′ ◦ (b 7→ 1⊗ b).

Proof. These are more complicated linear algebra, we omit these here. We refer [8]
XIII.4.

• Constructions and properties.
Proposition 5.30 (Determinant of the cohomology of coherent sheaves). Aiming to
construct the relative determinant of the cohomology here.
•Claim. Let f : X → S be a flat morphism and let F be a coherent sheaf
on X which is flat over S. Let Z be the subset of X where F is not locally
free, then Z does not contain any component of any fiber of f .

We omitted this fact and refer to [8] Lemma XIII.4.13.
•Construction. Consider a family of nodal curves π : X → S. Let F is flat over
S. Let S covered by U such that there is an effective Cartier divisor D in π−1(U)
which meets all the irreducible components of every fiber and does not contain any of
them; in particular, D is relatively ample. We may replacing D with a multiple, then
let R1π∗F (D) = 0. By the Claim, we may also suppose that F is locally free at every
point of D. We say such divisor admissible.

Hence F ⊂ F (D) and let F (D)|D := F (D)/F . By some cohomology and base
change, we get π∗F (D), π∗F (D)|D are all locally free. We have

0→ π∗F → π∗F (D)→ π∗F (D)|D → R1π∗F → 0,

hence the complex E∗
D := (π∗F (D)→ π∗F (D)|D) computes the higher direct image of

F . Hence we let locally dπF = detE∗
D.

The independence on D and the gluing map are not hard to construct and we
omitted them, see [8] page 356. Hence we get the determinant dπF of the cohomology
of F (relative to π).

Remark 5.31. The flatness of F over S is unnecessary but simplifies the construction.

Proposition 5.32 (Determinant of the (hyper)cohomology of complexes). Consider
a family of nodal curves π : X → S. Similarly, Let F ∗ be a finite complex of coherent
sheaves, flat over S. Let U be a sufficiently small open subset of S, and let D be a
divisor in π−1(U) which is admissible for each one of the F i and that F i → F i+1 is
a morphism of vector bundles at each point of D for each i (this is called admissible
for F ∗). Hence we let Ei,0

D = π∗(F
i(D)) and Ei,1

D = π∗(F
i(D)|D), then we get a double

complex E∗,∗
D . Regard it as a single complex graded by total degree, and we locally

define dπF ∗ to be its determinant.

Proposition 5.33. Consider a family of nodal curves π : X → S.
(i) For a coherent F with π∗F,R1π∗F are locally free, then we have

dπF ∼= det(R1π∗F )
−1 ⊗ det(π∗F );
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(ii) For a finite complex F ∗ with Riπ∗F
∗ := H iRπ∗F

∗ are locally free, then we have

dπF
∗ =

⊗
i∈Z

det(Riπ∗F
∗)(−1)i .

Proof. I just prove (i) since (ii) is similar.
We split

0→ π∗F → π∗F (D)→ π∗F (D)|D → R1π∗F → 0

into two sequences

0→ π∗F → E0
D → Q→ 0, 0→ Q→ E1

D → R1π∗F → 0.

Then we have det(π∗F ) ⊗ detQ ∼= detE0
D and det(R1π∗F ) ⊗ detQ ∼= detE0

1 . Hence
we have locally

dπ(F ) = det(E1
D)

−1 ⊗ det(E0
D) = det(R1π∗F )

−1 ⊗ det(π∗F )

and well done.

Remark 5.34. These constructions are compatible with base change, hence for s ∈ S
we have

dπF
∗ ⊗ κ(s) ∼=

⊗
q∈Z

(detHq(Xs, F
∗
s ))

(−1)q .

Theorem 5.35. Let 0→ E∗ → F ∗ → G∗ → 0 be an exact sequence of finite complexes
of coherent sheaves on X, all flat over S, then we have

φ : dπ(E
∗)⊗ dπ(G∗) ∼= dπ(F

∗).

Proof. Not hard but it’s hard to type and I omit it here. We refer [8] XIII.(4.17).

• Determinant, relative duality and applications.

Theorem 5.36. Consider a family of nodal curves π : X → S and a coherent sheaf
F , we have

dπ(ωπ ⊗ F∨) ∼= dπ(F ).

In particular, the Hodge bundle is dπ(ωπ) = dπ(OX).

Proof. This is also not hard to prove by checking the construction of the determinant
of cohomology. Using some canonical exact sequences and diagrams this is almost
trivial. I omit these here and we refer [8] page 360.

Proposition 5.37 (Determinant and boundary of moduli). We will describe O(D)
by using the determinant of cohomology.
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Proof. Let π : X → S be a family of connected nodal curves of genus g.
•Claim 1. Ω1

π is S-flat.
WLOG we let S is smooth as these are pullbacked from a Kuranishi family. Shrink-

ing S, we may assume that there exists an effective divisor D in X which cuts an
ample divisor Ds on each fiber Xs and does not contain nodes of the fibers. We just
need to show χ(Xs,Ω

1
π(nD)⊗ κ(s)) is independent of s ∈ S for n� 0. By Corollary

4.23, we have
0→ K → Ω1

Xs

ρs−→ ωXs → Q→ 0

where supp(K), supp(Q) ⊂ {nodes}. As they both have one-dimensional stalks by
Claim 1,2 in Corollary 4.23, hence we have χ(Xs,Ω

1
π(nD)⊗κ(s)) = χ(Xs, ωXs(nDs)) =

2g − 2 + n deg(D).
•Claim 2. Let Lπ := dπ(Ω

1
π

ρπ−→ ωπ), then Lπ = dπ(ωπ)dπ(Ω
1
π)

−1 and induce
det(ρπ) : dπ(Ω1

π)→ dπ(ωπ) which is a canonical section of Lπ.
As we have an exact sequence of complexes 0→ ωπ[0]→ (Ω1

π

ρπ−→ ωπ)→ Ω1
π[1]→ 0,

we get Lπ = dπ(ωπ)dπ(Ω
1
π)

−1. The map det(ρπ) : dπ(Ω
1
π) → dπ(ωπ) can be easily

constructed step by step as the construction of dπ.
•Claim 3. Various Lπ and det(ρπ) defines a line bundle L on M g,n with a
canonical section det(ρ). As ρπ is an isomorphism on smooth fibers, we get
L ∼= O(

∑
i niDi) where Di are components of D with nonnegative integers

ni. We claim that all ni = 1 and hence L ∼= O(D).
We consider the case when S is a disk (étale locally) centered at s and all the

fibers of π are smooth except for Xs, which has a single node p. All we need is to
calculate ni, the order of vanishing of det ρπ at s. I omit it here and refer [8] page
363.

Proposition 5.38. Let Γ be a connected P -pointed genus g graph. Let H(Γ) for
the set of the half-edges of Γ which are not legs. Suppose that for each v, we are
given a family πv : Xv → S of connected nodal Lv-pointed genus gv curves. Let σl
the corresponding section of πv and Ll are point bundles on S where l ∈ Lv. Let
Dl = σl(S) and let π : X → S be the family gluing via Γ by Xv. Then

O(D)π ∼=

 ⊗
v∈V (Γ)

O(D)πv

⊗
 ⊗
h∈H(Γ)

L −1
h

 .

In particular, taking Chern classes we get

ξ∗Γδ =
∑

v∈V (Γ)

η∗vδ −
∑

h∈H(Γ)

η∗v(h)ψh

where ηΓ : M Γ →M g,P and ηv : M Γ →M gv ,Lv .

Proof. Let N =
∐

vXv
π′
−→ S with normalization ν : N → X. For e = {h, h′} ∈ E(Γ)
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and let Σe = ν(Dh) = ν(Dh′), we have

0 ωπ′ ωπ′

(∑
h∈H(Γ)Dh

) ⊕
{h,h′}∈E(Γ)(ODh

⊕ ODh′
) 0

0 ωπ ν∗

(
ωπ′

(∑
h∈H(Γ)Dh

)) ⊕
e∈E(Γ) OΣe 0

Res

Taking cohomology we get

dπ′(ωπ′) ∼= dπ(ν∗ωπ′) ∼= dπ

ν∗ωπ′

 ∑
h∈H(Γ)

Dh


dπ(ωπ) ∼= dπ

ν∗ωπ′

 ∑
h∈H(Γ)

Dh

 .

Hence
dπ(ωπ) ∼= dπ′(ωπ′) ∼=

⊗
v∈V (Γ)

dπv(ωπv).

On the other hand, we have 0→ K → Ω1
π → ν∗Ω

1
π′ → 0 which deduce

dπ(Ω
1
π)
∼=

 ⊗
e∈E(Γ)

π∗Ke

⊗ dπ′Ω1
π′ .

•Claim. We have π∗K{h,h′} ∼= Lh ⊗Lh′.
Here we give a sketch of the claim. Consider e = {h, h′} with local coordinates

x, y, then Ke locally generated by ydx(= −xdy), then we define it mapping to section
σ∗
h(dx)⊗ σ∗

h′(dy) of Lh ⊗Lh′ . We omitted the verifing.
Finally, by the Claim 2,3 in Proposition 5.37 we get

O(D)π = Lπ = dπ(ωπ)⊗ dπ(Ω1
π)

−1

=

 ⊗
v∈V (Γ)

dπv(ωπv)

⊗
 ⊗

e∈E(Γ)

π∗Ke

⊗ dπ′Ω1
π′

−1

=

 ⊗
v∈V (Γ)

O(D)πv

⊗
 ⊗
h∈H(Γ)

L −1
h

⊗ (dπ′Ω1
π′)−1 ⊗

⊗
v∈V (Γ)

dπvΩ
1
πv

=

 ⊗
v∈V (Γ)

O(D)πv

⊗
 ⊗
h∈H(Γ)

L −1
h

 ,

and we get the result.

Remark 5.39. We also get ξ∗Γλ =
∑

v∈V (Γ) η
∗
vλ.
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5.2.4 Deligne pairing, a quick tour
Definition 5.40. (a) Let C be a complete curve (need not be connected) and D =∑

p npp a divisor on C. If f is a rational function on C whose divisor (f) is disjoint
from D, we set f(D) :=

∏
p f(p)

np;
(b) Let π : X → S be a family of nodal curves and D is an effective relative Cartier

divisor not containing nodes of fibers, π∗O(D) is locally free, and there is a norm map
NormD/S : π∗O(D) → OS (as D → S is proper and quasi-finite, hence finite). We
also induce NormD/S : π∗O(D)× → O×

S .
Hence for an divisor D = D1 −D2 where Di are effective, then we define

f(D) = NormD1/S(f)NormD2/S(f)
−1

which is well defined as if E1, E2 are all effective, then f(E1 + E2) = f(E1)f(E2).

Proposition 5.41 (Weil reciprocity). (i)[Smooth case] Let C be a smooth proper
curve (need not be connected) and f, g are rational functions which are nonzero on
every component of C and with disjoint divisors. Then f((g)) = g((f));

(ii)[Nodal case] Let C be a possibly disconnected nodal curve, and let f and g be
rational functions on C which do not vanish identically on any irreducible component
of C and are regular and nonzero at all the nodes. Then, if the divisors of f and g
are disjoint, we have f((g)) = g((f));

(iii)[Relative case] Let π : X → S be a family of nodal curves and f and g are
two meromorphic functions on X not vanish identically on any component of any
fiber and be regular and nonzero at all the nodes, and their divisors be disjoint, then
f((g)) = g((f)).

Proof. For (i) we refer [9] VI.B.2. For (ii), notice that what must be proved can re-
duces to the Weil reciprocity formula for the pullbacks of f and g to the normalization
of C. For (iii), when S is reduced, we can do the same thing as single one. Otherwise,
one can use the Kuranishi family and pullback.

Definition 5.42 (Deligne pairing for single case). Let L,M are two line bundles over
a nodal curve C. Let V be a vertor space generated by pairs (l,m) where l,m are
rational sections of L,M , respectively, such that

(a) l,m are nonzero on any component of C, and regular and nonzero at the nodes
of C;

(b) the divisors (l) and (m) are disjoint.
Let 〈L,M〉 be the quotient of V modulo the equivalence relation generated by

(fl,m) ∼ f((m))(l,m), (l, gm) ∼ g((l))(l,m)

where f and g are rational functions on C. This space is the Deligne pairing of L
and M . The class of (l,m) denoted by 〈l,m〉.

Remark 5.43. (i) Actually the meromorphic section l of L defined by a data (li, Ui)
where li ∈ KC(Ui) of covering X =

⋃
i Ui such that li = ψij · lj where ψij = ψi ◦ψ−1

j are
cocycles of trivializations φi : L|Ui

∼= OUi
. In other words, l is a section of L⊗OX

KX .
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Hence we have canonically divisor (l) associated to l and we have trivially OX((l)) ∼= L
(see [62] and [47]);

(ii) Two equivalence relations are called L-move and M-move, respectively.

Proposition 5.44. For any L,M on C, then dim 〈L,M〉 = 1 be a line.

sketch. •Claim 1. We have dim 〈L,M〉 ≤ 1.
For any (l,m), (l′,m′), let µ be a meromorphic divisor of M disjoint of l, l′. Hence

let µ = gm,m′ = g′µ, l′ = fl where f, g, g′ are rational functions, then

(l′,m′) ∼ g′((l′))f((µ))g((l))(l,m),

hence dim 〈L,M〉 ≤ 1.
•Claim 2. A pair (l,m) cannot be equivalent to a strict multiple of itself (a
cycle).

This is a very intersting proof by induction on the length of the cycle. After prove
the case of 4 and 6 directly, we can let n ≥ 8 and using Weil reciprocity.

This method break a n-move cycle into two cycles of length n − 2, then one can
use the induction. This proof is not so hard and much intersting, but I omit this and
the detailed proof see [8] page 368. The main idea is the following diagram:

L M

L

M

L

M

L

M

M

L

L

which tell us the cycle of 8 moves broken up in two cycles of 6.
Definition 5.45 (Deligne pairing for the families). A family π : X → S of nodal
curves and L and M are line bundles on X. For any s ∈ S we have a rank 1 free
OS,s-module 〈L,M〉s by Proposition 5.44. For any open U ⊂ S, we define a sheaf

U 7→

{us ∈ 〈L,M〉s |s ∈ U}
∣∣∣∣∣∣∣∣∣
for every s ∈ U, there are a neighborhood
U ′and meromorphic sections l,m of L,M
over π−1(U ′) such that ut = 〈l,m〉 for
every t ∈ U ′.

 .

denoted by 〈L,M〉π. This is a line bundle on S, called the Deligne pairing of L and
M .

Proposition 5.46. Consider a family π : X → S of nodal curves and L,L1, L2, L3,M ,
M1,M2 are line bundles on X.

(i) We have canonical isomorphisms

〈L1,M〉π ⊗ 〈L2,M〉π ∼= 〈L1 ⊗ L2,M〉π
〈L,M1〉π ⊗ 〈L,M2〉π ∼= 〈L,M1 ⊗M2〉π ;

98



(ii) We have canonical isomorphisms 〈L,OX〉π ∼= OS and 〈OX ,M〉π ∼= OS;
(iii) Of course, we have the canonical isomorphism τ : 〈L,M〉π ∼= 〈M,L〉π given

by 〈l,m〉 7→ 〈m, l〉. In particular when L =M , we have τ(−) = (−1)degL · (−).

Proof. See [8] XIII (5.4),(5.5) and Propisition 5.7.

Theorem 5.47. Consider a family π : X → S of nodal curves and L,M are line
bundles on X. Then we have a canonical isomorphism

〈L,M〉π ∼= dπ(L⊗M)⊗ dπ(L)−1 ⊗ dπ(M)−1 ⊗ dπ(OX)

compatible with base change.

Proof. See [8] XIII Theorem 5.8.

Corollary 5.48. (i) Let D be any relative divisor not passing through nodes of fibers
of π : X → S. The sheaves π∗(OD) and π∗M |D are both locally free of rank equal to
the degree of D over S. We may then define a line bundle on S as by setting

NormD/S(M |D) := H om(det(π∗OD), det(π∗M |D)),

then we have
〈OX(D),M〉π ∼= NormD/S(M |D).

(ii) In particular, if we have a section σ with D = σ(S), then for any M ∈ Pic(X),
we have

〈OX(D),M〉π ∼= σ∗M.

Taking M = ωπ(D), we get

〈OX(D), ωπ〉π ∼= 〈OX(D),OX(D)〉−1
π .

(iii) We have
c1(〈L,M〉π) = π∗(c1(L) · c1(M)).

Proof. (i) This is easy if we define a norm map NormD/S : π∗(M |D)→ NormD/S(M |D)
as h 7→ det(×h : π∗OD → π∗(M |D)), then we get

〈OX(D),M〉π ∼= NormD/S(M |D), 〈1,m〉π 7→ NormD/S(m|D).

(ii) Special case of (i).
(iii) This is a hard but difficult result, we refer [8] page 376, XIII.(5.20).

Corollary 5.49 (Some kind of Riemann-Roch). Let π : X → S be a family of nodal
curves, and let L be a line bundle on X. There is a canonical isomorphism of line
bundles, compatible with base change:

dπ(L)
2 ∼=

〈
L,L⊗ ω−1

π

〉
π
⊗ dπ(OX)

2.

Proof. As 〈L,L⊗ ω−1
π 〉π ∼= 〈L,L−1 ⊗ ωπ〉−1

π by Proposition 5.46 (i)(ii), we then use
Theorem 5.47 to 〈L,L−1 ⊗ ωπ〉π and we win.

99



Example 5.50. Consider a family of curves π : X → S plus sections σi, corresponding
to divisors Di = σi(S). We denote ω̂π := ωπ(

∑
iDi) and we get 〈ω̂π, ω̂π〉π ∈ Pic(S).

As the Deligne pairing is well behaved under base change, this defines 〈ω̂, ω̂〉 on M g,n

and we denote
κ1 = [〈ω̂, ω̂〉] ∈ Pic(M g,n).

(For κa, the codimension a, can also be constructed)
Moreover, by Corollary 5.48, we get [〈ω̂π,OX(Di)〉] = ψi. More generally, we get[〈

ω̂hπ

(∑
i

aiDi

)
, ω̂lπ

(∑
i

biDi

)〉
π

]
= hlκ1 −

∑
i

aibiψi.

After this, if we let κ̃1 = [〈ω, ω〉] ∈ Pic(M g,n), we have

κ̃1 = κ1 − ψ.

Finally, like Remark 5.39 we have ξ∗Γκ1 =
∑

v∈V (Γ) η
∗
vκ1. The proof we refer [8] page

378.

5.2.5 The Picard group of moduli space of curves I
Theorem 5.51. Consider Hν,g,n ⊂ HilbPν

PN−1 be the Hilbert scheme of ν-log-canonically
embedded n-pointed stable curves of genus g where N = (2ν − 1)(g − 1) + νn and
Pν(t) = (2νt − 1)(g − 1) + νnt for ν ≥ 3. Let H ′

ν,g,n ⊂ Hν,g,n be the smooth locus.
Hence we have M g,n

∼= [Hν,g,n/PGL(N)] and Mg,n
∼= [H ′

ν,g,n/PGL(N)]. Then we have
group isomorphisms:

Pic(M g,n) ∼= Pic(Hν,g,n,PGL(N)) ∼= Pic(Hν,g,n)
PGL(N),

Pic(Mg,n) ∼= Pic(H ′
ν,g,n,PGL(N)) ∼= Pic(H ′

ν,g,n)
PGL(N).

Proof. The first isomorphisms of these two statements are trivial. The second iso-
morphism need some GIT. We refer [73] for surjectivity and [8] Proposition XIII.6.1
for injectivity.

Proposition 5.52. For π : M g,n → M g,n and ϑ : Mg,n → Mg,n we have exact
sequences:

0→ Pic(M g,n)
π∗
−→ Pic(M g,n)→ Q→ 0,

0→ Pic(Mg,n)
ϑ∗−→ Pic(Mg,n)→ R→ 0

where Q,R are torsion groups. More precisely, there is a positive integer k such that

k · Pic(M g,n) ⊂ Pic(M g,n) and k · Pic(Mg,n) ⊂ Pic(Mg,n).

In particular, one has

Pic(M g,n)⊗Q ∼= Pic(M g,n)⊗Q, Pic(Mg,n)⊗Q ∼= Pic(Mg,n)⊗Q.
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Proof. As the proof is the same at both cases, we just consider the case of Pic(M g,n)
and Pic(M g,n). As M g,n covered by Ui = Bi/Gi where Xi → Bi are (standard al-
gebraic) Kuranishi families with the automorphism groups of central fiber Gi. Let
L ∈ Pic(M g,n) pullback to M g,n is trivial hence has a nowhere vanishing global sec-
tion. Hence gives a nowhere vanishing Gi-invariant section of the pullback of L to Bi

by étale descent. Hence a nowhere vanishing section of L pullback to M g,n, hence
Pic(M g,n)→ Pic(M g,n) is injective.

Next we need to find a integer k such that for any L ∈ Pic(M g,n) we have L k

descents to a line bundle M on M g,n. Let X =
∐
Xi, B =

∐
Bi where Xi → Bi are

(standard algebraic) Kuranishi families with the automorphism groups of central fiber
Gi, then B →M g,n and

∐
Bi/Gi →M g,n are étale covers. Hence by étale descent we

may let L as line bundle L over B with descent data to B →M g,n. Now take b ∈ B
and consider Lb, then Aut(Xb) act on Lb linearly. As Lb is just a one-dimensional
vector space, hence this action is just multiplication by kb-th roots of unity where
kb := |Aut(Xb)|. Hence now we let k =

∏
i |Gi| and then for any b, we have kb|k by

the property of the standard Kuranishi family. Hence these groups act trivially over
Lk and hence L k descend to M g,n by basic étale descent.

5.2.6 The Picard group of moduli space of curves II
In this section we will mainly refer Enrico Arbarello and Maurizio Cornalba’s classical
paper [5] in the base field C. But in the positive characteristic algebraically closed field
k, we have the similar result, see [72]. Actually he prove more, that is, Pic(M g,n)⊗Qℓ

∼=
H2

ét(M g,n,Qℓ) when ` is prime and invertible in k. But we do not care about these
here.
• Some preliminaries.

Here we follows [81].
Definition 5.53 (Pencil). A pencil of hypersurfaces on a variety X is a projective
line P1 ⊂ |L|, where L is a line bundle on X.

Hence a pencil of hypersurfaces on a varietyX gives us σt ∈ H0(X,L) for all t ∈ P1,
up to a coefficient in C×. These (well-)defines the hypersurfaces Xt ⊂ X correspond
to σt. So we denote (Xt)t∈P1 as this pencil. Actually we can denote σt = σ0 + tσ∞
for t ∈ A1 ⊂ P1. Hence the base locus of the pencil is B =

⋂
t∈P1 Xt ⊂ X defined by

σ0, σ∞. Let X ′ = BlB(X) ∼= {(x, t) ∈ X × P1 : x ∈ Xt}, hence if we let f : X ′ → P1,
then f−1(t) ∼= Xt.
Definition 5.54 (Lefschetz pencil). A Lefschetz pencil (Xt)t∈P1 is a pencil of hyper-
surfaces satisfies:

(i) B is smooth with codimX(B) = 2;
(ii) Xt has at most one ordinary double point as singularity.

Remark 5.55 (Ordinary double point). Let X be an algebraic scheme over k with a
closed x ∈ X.

(i) If k = k̄, then x is called an ordinary double point if

ÔX,x
∼= k[[x1, ..., xn]]/(f)
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where f ∈ m2 such that f = Q + R where Q be a nondegenerate quadratic form and
R ∈ m3 where m be the maximal ideal of k[[x1, ..., xn]];

(ii) For general k, x ∈ X is called an ordinary double point if all points in X ⊗k k̄
lying over x are ordinary double points.

Next we will introduce something about K3 surfaces. We refer [12] chapter VIII
or more general book [63] for more detailed arguments.

Definition 5.56. A K3 surface over k is a proper nonsingular variety X of dimension
two such that

2∧
ΩX/k

∼= OX , H
1(X,OX) = 0.

Proposition 5.57 (see [12] Proposition VIII.13 or [63] Lemma II.2.1). Let X be
a K3 surface and C ⊂ S be a smooth curve of genus g, then C2 = 2g − 2 and
h0(X,OX(C)) = g + 1.

Proof. The statement C2 = 2g−2 follows from adjunction formula. Again by adjunc-
tion formula we get

ωC = ωX ⊗ OX(C)⊗ OC = OX(C)⊗ OC = OX(C)|C .

Hence H0(C,OX(C)|C) = H0(C, ωC). As H1(X,OX) = 0 and the exact sequence
0 → OX → OX(C) → OX(C)|C → 0 we get h0(X,OX(C)) = 1 + h0(C, ωC) = g +
1. By Riemann-Roch formula, we get χ(X,OX(C)) = g + 1. As h2(X,OX(C)) =
h0(X,OX(−C)) = 0, we get h0(X,OX(C)) ≥ g + 1.

Theorem 5.58 (Existence of K3 surfaces). For any g ≥ 3, there exists K3 surfaces
S of degree 2g − 2 embedded in Pg.

Proof. See [12] Theorem VIII.15. They construct K3 surfaces containing a very ample
divisor D with D2 = 2g − 2.

• J. Harer’s theorem and its corollaries.
Here we follows the paper [76] and the Appendix of the Enrico Arbarello and

Maurizio Cornalba’s paper [5]. We just summary the several results here and we refer
the original papers [53] and [54] due to J. Harer by using the Teichmüller space (the
construction one can see [48] and [8] chapter XV).

Theorem 5.59 (Harer’s theorem). (i) The group Pic(Mg)⊗Q is freely generated by
the λ;

(ii) The group Pic(M g)⊗Q is freely generated by the λ,∆irr,∆i;
(iii) The group Pic(Mg,n)⊗Q is freely generated by the λ, ψi;
(iv) The group Pic(M g,n)⊗Q is freely generated by the λ, ψi,∆irr,∆i.

Remark 5.60. Note that we have found in Remark 5.15 that the Hodge class λ defined
over M g,n can not descend to M g,n, so the Hodge class here we defined at the meaning
of Proposition 5.52.
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Proposition 5.61 (See appendix in [5]). The group Pic(M g,n) and Pic(Mg,n) has no
torsion.

Corollary 5.62. We have Pic(M g,n) generated by rational coefficients classes λ, ψi, δirr, δi
and Pic(Mg,n) generated by rational coefficients classes λ, ψi.

Proof. Follows from the Harer’s theorem 5.59 and Proposition 5.61.

• The groups Pic(M g,n)and Pic(Mg,n) for g ≥ 3.
First we deal with the case of n = 0, as follows.

Theorem 5.63. For g ≥ 3 we have Pic(M g) is freely generated by λ, δirr, δi; the group
Pic(Mg) is freely generated by λ.

The most important thing is that we need to construct some special families of
curves.
♣ Construct four kinds of familes.
I Families of type I. Λn for 2 ≤ n ≤ g.

Pick a smooth K3 surface Y ′ of degree 2n− 2 in Pn by Theorem 5.58 and consider
a Lefschetz pencil of hyperplane sections. As Y ′ is smooth, one might choose generic
pencil of hyperplane sections by Bertini’s theorem (see [81] corollary 2.10).

Let Bs be the base locus of the pencil and let Y = BlBs(Y ′). Let φ : Y → B := P1.
The curves of the pencil appear in Y as fibers of φ and the exceptional curves appear
as sections Ei of φ.

Fix a smooth curve Γ of genus g− n and a point γ on it. Construct a new surface
X = (Y t Γ × P1)/(E1 ∼ {γ} × P1). Hence we get a family Λn = (f : X → B = P1).
As we consider the Lefschetz pencil, we find that the fibers of φ : Y → B, hence the
fibers of f : X → B, are all nodal curves.
• Describe λΛn.

First we claim that
f∗ωf ∼= φ∗ωϕ ⊕ (OB)

g−n.

Second we claim that rank(φ∗ωϕ) = n. As Y ′ be a K3 surface and the fiber of φ
are the smooth curves C ⊂ Y ′ correspond to the sections of Lefschetz pencil, hence
g(C) = pa(C) = C2

2
+ 1 = n by adjunction formula as the existence of K3 surface

by Proposition 5.57 and Theorem 5.58 (hence flat by checking Hilbert polynomial.
actually by our choice of Lefschetz pencil, all fibers of φ are smooth, hence so is φ).
Hence rank(φ∗ωϕ) = n. Hence we get

λΛn =

g∧
f∗ωf =

n∧
φ∗ωϕ.

• Compute degλΛn.
First, by the Riemann-Roch of vector bundles over curves (see St 0BS6) we get

χ(B, φ∗ωϕ) = degλΛn + n(1− g(B)) = degλΛn + n.

Second, since R1φ∗ωϕ = OB we get

χ(φ!ωϕ) = χ(φ∗ωϕ)− χ(OB).
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Finally, by Leray spectral sequence Ep,q
2 = Hp(B,Rqφ∗ωϕ) ⇒ Hp+q(Y, ωϕ) we get the

E2 = E∞ page:
H0(B,R1φ∗ωϕ) 0 0

H0(B, φ∗ωϕ) H1(B, φ∗ωϕ) 0

hence by the definition of φ! we get χ(φ!ωϕ) = χ(ωϕ). By Riemann-Roch of surfaces,
we get

χ(ωϕ) = χ(OY ) +
K2
ϕ −Kϕ ·KY

2
.

As φ is smooth, we get ωY ∼= φ∗ωB ⊗ ωϕ, hence Kϕ ≡lin KY − φ∗KB. Hence

χ(ωϕ) = χ(OY )−
φ∗K2

B −KY · φ∗KB

2
.

By the construction of φ : Y → B, we get φ∗ωB ∼= O((2g(B) − 2)F ) for a fiber F by
the construction. Use the adjunction formula to F , we get 2g(F )− 2 = F 2−F ·KY =
−F ·KY . Hence we get

χ(ωϕ) = χ(OY )−
φ∗K2

B −KY · φ∗KB

2
= χ(OY )− (g(B)− 1)(2g(F )− 2)

= χ(OY ) + 2n− 2 = 2n

since Y is the blowing up of a K3 surface (hence birational to that K3 surface) which
deduce χ(OY ) = χ(OY ′) = 2 as in this case it is O-connected with vanishing higher
direct image (this is a conclusion due to Hironaka in characteristic zero, more general,
see [21]). Combining these, we get

degλΛn = χ(B, φ∗ωϕ)− n = χ(φ!ωϕ) + χ(OB)− n
χ(ωϕ) + χ(OB)− n = n+ 1.

We win!
I Families of type II. Fn for g ≥ 3, 2 ≤ 2n ≤ g − 1.

Let smooth curves C1, C2,Γ of genus n, g−n, 1 and fix points x1 ∈ C1, x2 ∈ C2, γ ∈
Γ. Let Y1 = C1 × Γ, Y2 = Bl{(γ,γ)}(Γ× Γ) with exceptional divisor E and Y3 = C2 × Γ.
Let A = {x1} × Γ, B = {x2} × Γ and ∆ be the strict transform of the diagonal in Y2
and S be the strict transform of {γ} × Γ in Y2. Let

X =
Y1 t Y2 t Y3
S ∼ A,∆ ∼ B

with f : X → Γ be the family, called Fn. The graphs of Fn and its fibers at γ′ ∈ Γ
are as follows:
• Compute degλFn.

First we have f∗ωf ∼= (H0(ωC1)⊕H0(ωC2)⊕H0(ωΓ))⊗ OΓ. Hence degλFn = 0.
• Compute deg(δi)Fn.

By the arguments in [56] page 81, we have the following general principle:
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A

C1

Γ Γ

Γ

∆

E

S

C2

Γ

B

Y1 Y2 Y3

C1

Γ
C2

x1 = γ
′

x2 = γ
′

E

C1 C2
Γ

x1

x2
γ

γ
′ �= γ

γ
′
= γ

Lemma 5.64. Let π : C → B be a family of stable curves over a smooth curve B
which is obtained from a family φ : D → B of (not necessarily connected) nodal curves
by identifying sections Si, Ti pairwise. For each j, let Σj denote the image of Sj in C.
Suppose the locus of singular points of type i in the fibers of π is

[p1, ..., pm] ∪
⋃
j

Σj

where the pi are distinct points not belonging to
⋃
j Σj. Then

(δi)π =
⊗
j

(φ∗(NSj
)⊗ φ∗(NTj))

(∑
l

nlπ(pl)

)
where NS be the normal bundle and C is of form xy = tnl near pl.

Now we will use this to compute deg(δi)Fn . Actually by adjunction formula we get

A2 = 2g(A)− 2− A ·KY1 = −A · (p∗KC1 + q∗KΓ) = 0,

B2 = 2g(B)− 2− B ·KY2 = −B · (p∗KC2 + q∗KΓ) = 0.

By Proposition A.15, we have

∆2 = 2g(∆)− 2−∆ ·KY2 = −∆ · (p∗KΓ + q∗KΓ + E) = −1,
S2 = 2g(S)− 2− S ·KY2 = −S · (p∗KΓ + q∗KΓ + E) = −1.

Hence we have
degNA = degNB = 0, degNS = degN∆ = −1.

Hence by the Lemma we get

deg(δirr)Fn = 0, deg(δ1)Fn =


1, n > 1;
0, g − n− 1 > n = 1;
−1, g − n− 1 = n = 1(g = 3).

deg(δn)Fn =


−1, g − n− 1 > n > 1;
0, g − n− 1 > n = 1;
−2, g − n− 1 = n > 1;
−1, g − n− 1 = n = 1(g = 3),

deg(δn+1)Fn = −1(if g − n− 1 > n).
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And other cases are all 0.
I Families of type III. The family F .

Consider a general pencil of conics in P2 with four base points. Blowing up these
points in the plane we get ψ : X → P2 with exceptional lines E1, ..., E4. Moreover we
consider the resulting conic bundle φ : X → P1. Hence we have

ωϕ = ωX ⊗ φ∗OP1(−2)−1 = ψ∗ωP2 ⊗ OX

(∑
Ei

)
⊗ φ∗OP1(2)

= ψ∗ωP2 ⊗ OX

(∑
Ei

)
⊗ ψ∗OP2(4)⊗ OX

(
−2
∑

Ei

)
= ψ∗OP2(1)⊗ OX

(
−
∑

Ei

)
.

Now we let C be a fixed smooth curve of genus g−3 with four fixed points p1, ..., p4
on it, let

Y =
X t (C × P1)

Ei ∼ {pi} × P1(i = 1, ..., 4)

and consider f : Y → P1 a family of curves of genus g. We call this family F .
We consider the fibers of F . First we draw the picture of the family F , then we find

that there are exactly three special points such that the conics are not smooth, hence
we have two different types of fibers. The following picture is the family f : Y → P1:

C

p1

p2

p3

p4

P 1

E1

E2

E4 E3

X

P 2

∪

P 1

f

S1

S2

S3

Hence we have two kinds of fibers as follows:

Normal case Three special case (Si)

C

C

Conic

Conic

• Compute degλF .
In fact f∗ωf → H0(ωC(

∑
pi)) ⊗ OP1 is injective, hence an isomorphism. Hence

degλF = 0.
• Compute deg(δi)F .

As that three special points, hence we get deg(δirr)F = 3+
∑

degNEi
= 3+

∑
E2
i =

−1. Moreover, it’s easy to see that deg(δi)F = 0 for i > 0.
I Families of type IV. The family F ′.

Let C1 be an smooth elliptic curve and C2 be a smooth curves of genus g− 3. Let
p1 ∈ C1 and p2, p3, p4 ∈ C2. We consider the similar X in the construction of F , we
let

Y =
X t (C1 × P1) t (C2 × P1)

Ei ∼ {pi} × P1, i = 1, ..., 4
,

106



C1

p1 p2

p3

p4

C2

P 1 P 1

P 1

E1 E2

E3

E4

f

C1

C2

Conic

Conic
C2

C1

(1) General fibers: (2) Special fibers:

to get a family of stable curves f : Y → P1. We call this family F ′, as follows:
There are two kinds of fibers as before.
• Compute degλF ′.

Similar as F , we get f∗ωf is trivial. Hence degλF ′ = 0.
• Compute deg(δi)F ′.

As that three special points, hence we get deg(δirr)F ′ = 3+
∑

i≥2E
2
i = 0. Moreover,

we have deg(δ1)F ′ = degNE1 = E2
1 = −1. Finally we get deg(δi)F ′ = 0 for all i > 1.

♣ Back to the proof of the theorem.
Let k = bg/2c and let Gi = (Ci → Si) are k+2 families of stable curves. We denote

the matrix

η(G1, ..., Gk+2) =


degλG1 deg(δirr)G1 · · · deg(δk)G1

degλG2 deg(δirr)G2 · · · deg(δk)G2... ... ...
degλGk+2

deg(δirr)Gk+2
· · · deg(δk)Gk+2

 .

Proof of the theorem. For our familes of curves we find that λ, δi are linearly indepen-
dent. By Harer’s result (Corollary 5.62) we have that Pic(M g) is gemnerated by the
rational coefficients of the linear combinations of λ, δi. So we let ξ ∈ Pic(M g) with
ξ = aλ + b0δirr +

∑
biδi where a, bi ∈ Q. Now we first let that we have constructed

two different sets of k+2 families of stable curves Gi such that two det ηs are relative
prime. Let di = deg ξGi

, then

 d1
...

dk+2

 = η


a
b0
...
dk

 .

As di ∈ Z, then so are a det η, b0 det η, ..., bk det η. As two det ηs are relative prime,
then a, bi ∈ Z and we win! Now we just need to construct these two different sets of
k + 2 families.
•When g is odd and g = 2m+ 1.

We consider ηn := η(Λn, F, F1..., Fm) where n is an integer between 2 and k = bg/2c.
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When have

det ηn = det



n+ 1 · · ·
0 −1 · · ·
0 0 1 −1 0 0 · · ·
0 0 1 −1 −1 0 · · ·

1 0 −1 −1 · · ·
... ...

1 0 · · · 0 −1 −1
0 0 1 0 · · · 0 −2


= (−1)m+1(n+ 1).

Taking n = 2, 3 and well done.
•When g is even and g = 2m+ 2.

We consider ηn := η(Λn, F, F
′, F1..., Fm) where n is an integer between 2 and

k = bg/2c. When have

det ηn = det



n+ 1 · · ·
0 −1 · · ·
0 0 1 0 0 0 · · ·
0 0 0 −1 0 0 · · ·
0 0 1 −1 0 0 · · ·

1 0 −1 −1 0 · · ·
... ...

1 0 · · · 0 −1 −1
0 0 1 0 · · · 0 −2


= (−1)m(n+ 1).

Taking n = 2, 3 and well done.

Now we come to the general case. Here we just give a sketch and the detailed
proof we refer the section 3 in the original paper [5].

Theorem 5.65. For every g ≥ 3, the group Pic(M g,n) is freely generated by λ, ψi, δj
and Pic(Mg,n) is freely generated by λ, ψi.

Remark 5.66. As the marked points here are in order (instead of the case M g,P ),
we now need to make the boundary divisor more explicitly. The class δirr is the locus
that the partial normalization is connected. The class δα;i1,...,ia are the locus that the
partial normalization have two connected components, one of them is of genus α with
marked points pi1 , ..., pia and another one is of genus g − α with remaining marked
points. Of course we will let 0 ≤ α ≤ bg/2c, 0 ≤ a ≤ n, i1 < · · · < ia and a ≥ 2 when
α = 0.

♣ Step 1. Define the forgatting map ϑ : Pic(M g,n)→ Pic(M g,n+1).
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Actually this of course induced by the forgetful map (is some kind of blow down).
Moreover along this map, we have the following fundamental relations.

ϑ(λ) = λ,
ϑ(ψi) = ψi − δ0;i,n+1, i = 1, ..., n,

ϑ(δirr) = δirr,
ϑ(δα) = δα, if α = g/2, n = 0,

ϑ(δα;i1,...,ia) = δα;i1,...,ia + δα;i1,...,ia,n+1, otherwise.

♣ Step 2. Preparation I.
Pick a smooth family F = (f : C → S, σi) ∈Mg,n(S) and consider the pullback of

σi in C ×S C → C as σ′
i. Let

X = Bl⋃
i(∆∩σ′

i(C))(C ×S C)

and consider the diagram

X = Bl⋃
i(∆∩σ′

i(C))(C ×S C) C ×S C C

C S
f

f σiσ′
iϕ

τi,∆̂

where ∆̂, τi are strict transform of ∆, σ′
i. We let F ′ = (φ : X → C, τi, ∆̂).

Definition 5.67. Let L ∈ Pic(Mg,n+1). We shall say that L is trivial on smooth
curves if L|F ′ is trivial whenever S consists of a single point.

Lemma 5.68. Let L be a line bundle on M g,n+1 If L is trivial on smooth curves
there exists a line bundle L on M g,n such that L ≡ ϑ(L )mod boundary classes.
Conversely, if there is L on M g,n such that L−ϑ(L ) is an integral linear combination
of boundary classes other than the δ0;i,n+1, then L is trivial on smooth curves.

Proof. See [5] Lemma 2.

♣ Step 3. Preparation II.
Let X be a smooth K3 surface of degree d = 2g− 2 in Pg such that Pic(X) ∼= Z ·L

where L be a hyperplane section, by [63] Example II.3.9. Pick a Lefschetz pencil
of hyperplane sections on X. Blowing up the base locus to get Y ′ with exceptional
curves E1, ..., Ed as sections of Y ′ → P1. Hence Pic(Y ′) freely generated by a fiber
and the Ei by Proposition A.16.

Notice that as one varies the Lefschetz pencil the monodromy action on the base
points of the pencil, and hence on the E, is given by the full symmetric group.

Let Y = Y ′ −
⋃
{Singular fibers} and P be the projection of Y over P1. Let

ψ : Y → P. We write Ei instead of Ei∩Y . Hence we get the Ei freely generate Pic(Y )
as we have the exact sequence

Zk → Pic(Y ′)→ Pic(Y )→ 0
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where k be the numbers components of singular fibers.
♣ Step 4. Proof for n ≤ 2g − 2 by induction on n.

As n = 0 is proved we let so is n when n ≤ 2g − 3. We just need to show that
Pic(M g,n+1) is generated, over Z, by ϑ(Pic(M g,n)), ψn+1 and the boundary classes.
Let µ ∈ Pic(M g,n+1). As n ≤ 2g − 2 = d, we let

f : Y := Bl⋃n
i=1(∆∩Ei)(Y ×P Y )→ Y, ∆̂, Ê1, ..., Ên

as the construction in Preparation I.
As µf is an integral linear combination of E1, ..., Ed, ny monodromy, the coefficients

of En+1, ..., Ed are all equal, that is,

µf =
∑
i≤n

aiEi + an+1

∑
i>n

Ei.

On the other hand we can express (ψi)f , (ψn+1)f , (δ0;j,n+1)f as the combinations of Ei.
So if we let

µ =
∑

αjψj + βλ+
∑

γjδ0;j,n+1 + · · ·

where αj, β, γj ∈ Q by Harer’s theorem, then we can get some relations (we will omit
it here). In particular, we get αn+1, αj + γj ∈ Z for j ≤ n.

Set
µ′ = µ− αn+1ψn+1 −

∑
(αj + γj)δ0;j,n+1,

then by these relations, we get (µ′)f = 0, and similarly, on any fibers of f . On the
other hand, since we have

µ = αn+1ψn+1 +
∑

αjϑ(ψj) + βϑ(λ) +
∑

(αj + γj)δ0;j,n+1 + · · ·

by several relations in Step 1. Hence µ′ a Q-coefficients linear combination of classes
in ϑ(Pic(M g,n)) and boundary classes not of the form δ0;j,n+1. By Lemma 5.68 there
exists ξ ∈ Pic(M g,n) such that µ′ ≡ ϑ(ξ)(mod boundary classes), hence

µ ≡ αn+1ψn+1 + ϑ(ξ)(mod boundary classes)

and we win!
♣ Step 5. Proof for n > 2g − 2 by induction on n.

We assume that this is proved for some n ≥ 2g − 2 and we consider n + 1. The
main idea is similar as the previous case and we just give a construction of the family
of curves we considered here and omit all details.

Consider the same ψ : Y → P, E1, ..., Ed and let Q = P1 × P → P with sections
D2g−4, ..., Dn. Let

φ : Z :=
Y tQ

E2g−3 ∼ D2g−4

, E1, ..., E2g−4 → P, D2g−3, ..., Dn.

Consider ζ : Z → Z, σ1, ..., σn+1 constructed via Z ×P Z as follows
Like the previous case, we can have some relations and then, we will use the Lemma
5.68.
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5.2.7 The tautological & canonical class
Here we will follow the section XIII.7 in [8].
• Situation A. Let j : Y → Z be a codimension r closed immersion of smooth
schemes with G be a coherent sheaf on Y . By Grothendieck-Riemann-Roch theorem
we get

ch(j∗G ) = ch(j!G ) = j∗(ch(G )td(Y ))td(Z)−1.

Hence we get ci(j∗G ) = 0 when i < r and cr(j∗G ) = (−1)r−1(r− 1)!rank(G )[Y ] by the
codimension reasons.
• Situation B. For any (f : X → H, τ1, ..., τn) ∈ M g,n(H) where X,H are smooth
and any coherent sheaf F on X, by Grothendieck-Riemann-Roch theorem we get

ch(f!F ) = f∗(ch(F ) · td(Ω∨
X/H)).

Consider the degree 1 terms, we get

c1(f!F ) = f∗

(
c1(F )2

2
− c2(F )−

c1(F )c1(Ω
1
f )

2
+
c1(Ω

1
f )

2 + c2(Ω
1
f )

12

)
.

Next let Σ be the locus of nodes with ideal sheaf I , then by Corollary 4.23 we have

0→ Ω1
f → ωf → ωf ⊗ OΣ → 0

as X is smooth. Now consider j : Σ → X and G = ωf ⊗ OΣ in Situation A and
Whitney formula we get c1(Ω1

f ) = c1(ωf ) and c2(Ω1
f ) = [Σ].

Theorem 5.69 (Mumford). For 2g−2+n > 0 we have κ1 = 12λ+ψ−δ in Pic(M g,n).

Proof. By the previous situations, let F = ωf we get

c1(f!ωf ) = f∗

(
c1(ωf )

2

2
−
c1(ωf )c1(ω

1
f )

2
+
c1(ωf )

2 + [Σ]

12

)
= f∗

(
c1(ωf )

2 + [Σ]

12

)
.

By Corollay 5.48(iii) and the definition of κ1 (Example 5.50) we get

λ =
κ1 − ψ + δ

12
⇒ κ1 = 12λ+ ψ − δ

in Pic(M g,n).
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Theorem 5.70 (Mumford). For 2g − 2 + n > 0 we have KM g,n
= 13λ + ψ − 2δ in

Pic(M g,n).

Proof. In the case of Situation B we let f : X → H with divisor of sections D and
F = Ω1

f ⊗ ωf (D). By Proposition 4.53 and Serre duality we get f!F = f∗F . Hence
again by Example 5.21 we get

KM g,n
= c1(f∗(Ω

1
f ⊗ ωf (D))) = c1(f∗F ) = c1(f!F ).

By the same work in Situation B we have c1(Ω1
f ⊗ ωf (D)) = c1(ω

2
f (D)) and c2(Ω1

f ⊗
ωf (D)) = [Σ]. Hence again we have

KM g,n
= 13λ+ ψ − 2δ

in Pic(M g,n).

Corollary 5.71. For g ≥ 1 and g + n ≥ 4, we have KMg,n
= 13λ + ψ − 2δ − δ1,∅ in

Pic(M g,n).

Proof. We need to following results due to [8] Proposition XII.2.5:
• Fact. If g ≥ 1 and g + n ≥ 4, consider the locus parameterizing curves with
nontrivial automorphism group Ξ, then the only divisor components of Ξ is ∆1,∅.

Back to the problem, then this follows KM g,n
= 13λ + ψ − 2δ in Pic(M g,n), this

fact and Riemann-Hurwitz Theorem!

Remark 5.72. Note that when we talking about δ instead of ∆ over coarse moduli
space M g,n, we means that δ1 = 1

2
∆1 and δ = ∆irr +

1
2
∆1 + ∆2 + · · · . Hence here

KMg
= 13λ− 2∆ + 1

2
∆1.

5.2.8 A glimpse of ample & nef divisors and F -conjecture
Here we will summary (without proofs) some results about ample divisors over the
coarse moduli space M g,n. We will follows the idea in [45] here.

Theorem 5.73 (Cornalba-Harris [24], 1988). The class aλ − bδ ∈ Pic(M g) ⊗ Q has
non-negative degree on every curve in M g not contained in the boundary ∆ =M g\Mg

if and only if a ≥ (8 + 4
g
)b and is ample if and only if a > 11b > 0.

Remark 5.74. By Lemma 6.1 in [25], the Hodge class λ is big and nef. Note that
by this result, λ itself is not ample, but since it is big it is a sum of an ample and an
effective divisor.

Definition 5.75. (i) The strata consisting of curves with 3g−4+n nodes form curves
in M g,n called F -curves (in honor of Faber and Fulton);

(ii) The locus of flag curves is the image F g,n of the morphism

M0,g+n/Sg →M g,n

obtained by attaching g copies of the pointed rational elliptic curve at the g-unordered
points.
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Remark 5.76. For (i), since the locus of curves with k nodes has codimension k in
M g,n and dim(M g,n) = 3g − 3 + n, so we just consider the 1-dimensional locus.

Actually by classical Nakai-Moishezon criterion we know that a divisor D on M g,n

is ample if and only if DdimK · K > 0 for all integral subscheme K ⊂ M g,n. But
Fulton’s Conjecture asserts more remarkable thing:

Conjecture 1 (F -Conjecture). A divisor D on M g,n is ample if and only if D ·C > 0
for every F -curve on M g,n.

In the paper [45] they showed that we just need to consider the case n = 0:

Theorem 5.77 (Gibney-Keel-Morrison, 2001). A divisor D onM g,n is nef if and only
if D has non-negative intersection with all the F -curves and the restriction D|F g,n

is
nef. In particular, the F -conjecture for g = 0 implies the F -conjecture for all g.

(But although n = 0, this problem is also open and difficult) In particuler, this
result can deduce many ad hoc examples. We may call the divisor which has non-
negative intersection number with F -curves are called F -nef. Hence the F -conjecture
asserts that the F -nef cone of divisors is the same as the nef cone of divisors of M g,n.

Corollary 5.78. Let D be an F -nef divisor aλ−
∑
biδi on M g. Assume further for

each coefficient bi, 1 ≤ i ≤ bg/2c, that either bi = 0 or bi ≥ birr. Then D is nef.

Proof. See [45] Proposition 6.1.

Corollary 5.79. (i) The ray 10λ− 2δ + δirr is nef on M g for all g ≥ 2;
(ii) (Cornalba-Harris). The class 11λ− δ is nef on M g for all g ≥ 2.

Proof. See [45] Corollary 6.2, 6.3.

We should also remark that the F -conjecture is known for small genus and small
numbers of points thanks to the work of Keel, McKernan, Farkas and Gibney:

Theorem 5.80 (Keel-McKernan with Gibney-Keel-Morrison and Farkas). The F -
conjecture holds for M g,n when the pair (g, n) is of form:

(i) (g, n) for g + n ≤ 7;
(ii) (g, 0) for g ≤ 24;
(iii) (g, 1) for g ≤ 8 or (6, 2).

Proof. See Corollary (0.4) in [45], Theorem 1 in [37] and the results in [44]. In fact,
Gibney has reduced the conjecture on a givenM g to an entirely combinatorial question
which can be checked by computer.
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5.3 The Kodaira dimension of moduli space of curves
5.3.1 Summary of the results of kodaira dimension
Here as an introduction we will summary some results of the types of M g,n where we
will prove and we may not prove.

First, M g,n is uniruled or even unirational for some small values of g and n:
Theorem 5.81 (Summaried in [14]). Here we have a table about these. Let M g,n is
rational if 0 ≤ n ≤ a(g); is unirational if 0 ≤ n ≤ b(g) and uniruled if 0 ≤ n ≤ c(g):

g 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a(g) 12 14 15 12 8
b(g) 12 14 15 12 15 11 8 9 3 10 1 0 2
c(g) 12 14 15 14 15 13 12 10 9 10 5 3 2 2 0

Remark 5.82. Hence the Kodaira dimension of M g is negative for g ≤ 15.
Let’s back to consider the Kodaira dimension and general typeness of M g,n.

Theorem 5.83 (Belorousski [13], 1998; Bini-Fontanari [16], 2004). We have

κ(M1,n) =


−∞, 1 ≤ n ≤ 10;
0, n = 11;
1, n ≥ 12.

Corollary 5.84 (Bini-Fontanari [16], 2004). For n ≥ 1, M1,n is never of general type.
Theorem 5.85 (Summaried in [76]). Let M g,n is of general type for all n ≥ m(g)
given in the following table:

g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
m(g) 16 15 16 15 14 13 11 12 11 11 10 10 9 9 9 7 6 4 4 1

Now we consider the case when n = 0, that is, the space M g.
Theorem 5.86 (Mumford-Eisenbud-Harris [56][33], 1987; Farkas-Jensen-Payne [38],
2020). The space M g is of general type when g ≥ 22.
Remark 5.87. (i) The Mumford-Eisenbud-Harris theorem proved that M g is of gen-
eral type when g ≥ 24 and has positive Kodaira dimension when g = 23. Further
more, Farkas-Jensen-Payne proved that M g is of general type when g = 22, 23;

(ii) The remaining cases are 16 ≤ g ≤ 21. Actually the Kodaira dimension of M g

are still open for 16 ≤ g ≤ 21 (Chang and Ran also argued that M16 is uniruled, but
Tseng recently found a fatal computational error in this argument arXiv:1905.00449,
and this case is again open).

The first main aim of the chapter is to show the Mumford-Eisenbud-Harris theo-
rem, that is, M g is of general type when g ≥ 24. We will refer [32] and [33] by using
limit linear series instead of admissible covers in [56].
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5.3.2 The theorem of Harris-Mumford-Eisenbud
We omitted the theory of limite linear series and focus on the whole structure of the
proof.

Theorem 5.88 (Mumford-Eisenbud-Harris [56][33], 1987). The spaceM g is of general
type when g ≥ 24.

Remark 5.89. In papers [56][33] they show that Mg is of general type when g ≥ 24.
But their criterion also can derived that M g is of general type.

To prove this, just need to show that KMg
is big (see Definition A.17). Recall that

by Corollary 5.71, we get

KMg
= 13λ− 2δ − δ1 = 13λ− 2δirr − 3δ1 − 2

⌊g/2⌋∑
i=2

δi.

We also know that big if and only if it is numerically equivalent to the sum of an
ample and an effective divisor.

Theorem 5.90 (Criterion in [33]). The space M g is of general type if there exists an
effective divisor D over it with class

D = aλ− b0δirr −
⌊g/2⌋∑
i=1

biδi

such that
a

b1
<

13

3
,

a

bi
<

13

2
for all i.

Proof. By Theorem 5.73 we know that (11 + ε)λ − δ is ample, then hence λ is big.
Now we let we have such an effective divisor D onM g. Let c = p

q
be a rational number

such that
max

{
2

b0
,
3

b1
,
2

bi

}
< c <

13

a
,

and we find that

qKMg
− pD = (13q − ap)λ+ (pb0 − 2q)δirr + (pb1 − 3q)δ1 +

⌊g/2⌋∑
i=2

(pbi − 2q)δi.

As λ is big and D is effective, then KMg
is big. Hence M g is of general type.

So we need to find such effective divisor D for any g ≥ 24.
♣ Construction A. Brill-Noether divisors Dr

s.
If g + 1 is composite, we can write g = (r + 1)(s − 1) − 1 for s ≥ 3, r > 0 and let

d = rs − 1. Let S = {[C] ∈ Mg : [C] admits grd}. Consider Dr
s be the union of the

codimension 1 components of S ⊂M g. This divisor called Brill-Noether divisor since
in this case the Brill-Noether number ρ = g − (r + 1)(g − d+ r) = −1.
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Theorem A.(Brill-Noetherian Ray Theorem) In this situation, there exists some
rational number c > 0 such that

Dr
s = c

(g + 3)λ− g + 1

6
δirr −

⌊g/2⌋∑
i=1

i(g − i)δi

 .

♣ Construction B. Petri divisors Er
s .

If g+1 > 2 is not composite (in particular g is even), then we let g = (r+1)(s−1)
and d = rs. Let

T =

{
[C] ∈Mg

∣∣∣∣∣[C] admits L = (L , V ) be a grd such that the map
V ⊗H0(C,KC ⊗ L−1)→ H0(C,KC) is not injective

}
.

Then consider Er
s be the union of the codimension 1 components of T ⊂M g. In this

case the Brill-Noether number ρ = 0.
Theorem B. If g = 2(d− 1) then we have

E1
d = c

eλ− f0δirr − g/2∑
i=1

fiδi


where c = 2 (2d−4)!

d!(d−2)!
, e = 6d2 + d − 6 and f0 = d(d − 1), f1 = (2d − 3)(3d − 2), f2 =

3(d− 2)(4d− 3) and for e ≤ i ≤ g/2 we have fi > fi−1.
♣ The proof of the main theorem.

Assume that we have proved the Theorem A and B, then we give an easy proof
of the main theorem 5.88 by using the Theorem 5.90.

Proof of Theorem 5.88. First, for g ≥ 28 and even, consider E1
(g/2)+1 and one can

easy to calculate that it satisfied the Theorem 5.90; Second, for g ≥ 24 and odd, then
D1

(g+1)/2 satisfied the Theorem 5.90; For g = 24, then D4
6 satisfied the Theorem 5.90

and for g = 26, then D2
10 satisfied the Theorem 5.90. Hence for any g ≥ 24, there

exists such divisor. Hence for any g ≥ 24 the space M g is of general type.

♣ Preparation for the proof of Theorem A and B.
We just prove Theorem A and give a sketch of Theorem B since it is so com-

plicated. Consider i :M0,g →M g be the map by attaching g copies of a fixed pointed
elliptic curve at each of the marked points; And i : M2,1 → M g be the map by at-
taching a fixed general smooth pointed curve of genus g − 2 at the marked point:

i
j

Let W ⊂ M2,1 be the closure of the locus for which the marked point is Weierstrass
point of the underlying curves in M2,1.
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Theorem 5.91. Let D ⊂M g be an effective divisor as

D = aλ− b0δirr −
⌊g/2⌋∑
i=1

biδi.

(i) If supp(j∗D) ⊂ W , then a = 5b1 − 2b2 and b0 = b1
2
− b2

6
. Further, if we write

j∗D = qW for some rational number q, then b2 = 3q.
(ii) If i∗D = 0, then

bi =
i(g − i)
g − 1

b1 for i = 2, ...,
⌊g
2

⌋
.

Proof. See [33] Theorem 2.1 and Theorem 3.1 or the final several parts of the section
6.F in [55].

♣ Proof of Theorem A.

Corollary 5.92. Let D ⊂M g be an effective divisor as D = aλ− b0δirr −
∑⌊g/2⌋

i=1 biδi
satisfies both (i)(ii) in the Theorem 5.91, then there exists some rational c such that

D = c

(g + 3)λ− g + 1

6
δirr −

⌊g/2⌋∑
i=1

i(g − i)δi

 .

Proof. Almost trivial. Use the second relation to write b2 in terms of b1. Then use
the first to show that a/b0 = 6 + 12/(g + 1). Then show that if a = g + 3, then
b0 = (g + 1)/6 and b1 = 1. The remaining coefficients are then immediate from the
second set of relations.

Proposition 5.93. Let g = (r + 1)(s− 1)− 1 for s ≥ 3, r > 0, then Dr
s doesn’t meet

either i(M0,g) or j(M2,1\W ). Moreover, j∗(Dr
s) is a positive multiple of the class of

W .

Proof. See [33] Proposition 4.1. and [55] Proposition 6.68.

Proof of Theorem A. By the first statement in Proposition 5.93 and Corollary 5.92,
we get

Dr
s = c

(g + 3)λ− g + 1

6
δirr −

⌊g/2⌋∑
i=1

i(g − i)δi


for some rational c. To show c > 0, we use the second statement in Proposition 5.93.
This statement shows that the coefficient cb2 of δ2 in the Theorem is positive. As Dr

s

is effective, hence c > 0. Well done.

♣ Sketch of Theorem B.
Let g = 2d − 2 = 2k and let E1

d = aλ − b0δirr −
∑d−1

i=1 biδi. Since when g ≤ 2 is
trivial, we let g ≥ 4.
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• Step A. First show that j∗E1
d ⊂ W . By Theorem 5.91 we get

RA : a = 5b1 − 2b2 and b0 =
b1
2
− b2

6
.

• Step B. Choose some kind of family of curves Cj ⊂ M0,g and restricting to them.
Then we get some relations:

RB0 : bj−2bj+1+bj+2 = −2b1+b2+2
(2k − 2)!

k!(k − 1)!
−

{
2 (2l)!(2k−2−2l)!
(l+1)!l!(k−l)!(k+l−1)!

, j = 2l even;
0, j odd.

(Where bk+1 is interpreted as = bk−1) These give the following formulas for b2, ..., bk
in terms of b1:

RB1 : b2 =
4k − 4

2k − 1
b1 − 2

(2k − 1)!

(k − 2)!(k + 1)!
;

for 3 ≤ i ≤ k we have

RB2 :

bi = −i(i− 2)b1 +
i(i− 1)

2
b2 + (i− 2)(i− 1)

(2k − 2)!

k!(k − 1)!

−
⌊(i−2)/2⌋∑

l−1

2(i− 1− 2l)
(2l)!(2k − 2− 2l)!

(l + 1)!l!(k − l)!(k + l − 1)!
.

Hence the relations RA, RB1, RB2 express all the coefficients in terms of b1. But since
RB1, RB2 are inhomogeneous, this is not enough to check the criterion given in the
introduction.
• Step C. We consider another 1-dimensional family of curves and restrict E1

d into
that family, then we can get

RC : (4k − 2)b0 − b1 = (4k + 2)
(2k − 1)!

(k − 2)!(k + 1)!
.

• The final proof of the Theorem B.

Proof of Theorem B. Combining RA, RB1, RC we can get

a = c(6k2 + 13k + 1), b0 = ck(k + 1), b1 = c(2k − 1)(3k + 1), b2 = 3c(k − 1)(4k + 1)

where c = 2 (2k−2)!
(k+1)!(k−1)!

. Moreover, by RB0 we get

bj − 2bj+1 + bj+2 ≤ −2b1 + b2 + 2
(2k − 2)!

k!(k − 1)!

≤ −12k (2k − 2)!

(k + 1)!(k − 1)!
< 0,

so the sequence of bi is convex. But since bk+1 = bk−1 and taking j = k − 1 gives
bk > bk−1, hence we get Theorem B.
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5.4 About Hassett-Keel program
We will work over algebraically closed field of characteristic zero.

5.4.1 A glimpse of Hassett-Keel program of M g

Here we follows the survey [36] and the introduction of the paper [60][61] and [4][2][3].
These are called Hassett-Keel program aiming to give modular interpretations of the
log canonical models of M g, with the ultimate goal of giving a modular interpretation
of the canonical model for the case g � 0.

By the Theorem of Mumford-Eisenbud-Harris, we get M g is of general type when
g � 0. Fixed this kind of g. By the paper BCHM[18] we get the canonical ring

R(M g) =
⊕
n≥0

H0(M g, nKMg
)

is finitely generated. Hence we can consider its canonical model, more generally, its
log canonical models

M g(α) = Proj
(⊕
n≥0

H0
(
M g,

⌊
n(KM g

+ αδ)
⌋))

for α ∈ Q ∩ [0, 1].
Before consider these, we first introduce some more stability of curves other than

Deligne-Mumford’s.

Definition 5.94 (Some types of elliptic chains). (i) Elliptic tail be a connected sub-
curve of genus 1 which meets the rest curves at only one node;

(ii) Elliptic bridge be a connected subcurve of genus 1 which meets the rest curves
at only two nodes;

(iii) Open elliptic chain of length l is a 2-pointed subcurve (C ′, p, q) such that
C = E1 ∪a1 ∪ · · · ∪al−1

El where Ei are connected genus one curves such that Ei ∩Ei+1

is a node and Ei ∩ Ej − ∅ for |i− j| > 1 and p ∈ E1, q ∈ El are smooth points;
(iv) Open tacnoded elliptic chain of length l is a 2-pointed subcurve (C ′, p, q) such

that C = E1 ∪a1 ∪ · · · ∪al−1
El where Ei are connected genus one curves with nodes,

cusps, or tacnodes as singularities such that Ei ∩ Ei+1 is a tacnode and Ei ∩ Ej − ∅
for |i− j| > 1 and p ∈ E1, q ∈ El are smooth points with ωC′(p+ q) is ample.

Definition 5.95. Let C be a projective connected curve of arithmetic genus g ≥ 3,
with nodes, cusps, and tacnodes as singularities. We say C admits an open (tacnodal)
elliptic chain if there is an open (tacnodal) elliptic chain (C ′, p, q) and a morphism
i : C ′ → C such that

(i) i is an isomorphism over C ′\{p, q} onto its image;
(ii) i(p), i(q) are nodes of C; we allow the case i(p) = i(q), in which case C is said

to be a closed (tacnodal) elliptic chain.
C admits a weak tacnodal elliptic chain if there exists i : C ′ → C as above with the
second condition replaced by
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(ii’) i(p) is a tacnode and i(q) is a node of C;
(ii”) i(p) = i(q) is a tacnode of C, in which case C is said to be a closed weak

tacnodal elliptic chain.

Definition 5.96 (pseudo-stable). A complete curve is pseudo-stable if
(1) it is connected, reduced, and has only nodes and ordinary cusps as singularities;
(2) admits no elliptic tails and its the canonical sheaf of the curve is ample.

Definition 5.97 (c-stable). A complete curve is c-semistable if
(1) C has nodes, cusps, and tacnodes as singularities and ωC is ample;
(2) a connected genus one subcurve meets the rest of the curve in at least two

points (not counting multiplicity).
It is said to be c-stable if it is c-semistable and has no tacnodes or elliptic bridges.

Remark 5.98. A curve is c-stable if and only if it is pseudo-stable and has no elliptic
bridges.

Definition 5.99 (h-stable). A complete curve is h-semistable if it is c-semistable and
admits no tacnodal elliptic chains. It is said to be h-stable if it is h-semistable and
admits no weak tacnodal elliptic chains.

Actually in [60][61], Hassett and Hyeon showing that:

Theorem 5.100 (Hassett-Hyeon).

M g(α) ∼=


M g, if α ∈ (9/11, 1]

M
ps

g , if α ∈ (7/10, 9/11]

M
c

g, if α = 7/10

M
h

g , if α ∈ (2/3− ε, 7/10)

whereMps

g ,M
c

g,M
h

g are the moduli spaces of pseudostable, c-semistable, and h-semistable
curves, respectively.

In these works, new projective moduli spaces of curves are constructed using GIT.
Actually one of the most appealing features of the Hassett-Keel program is the way
that it ties together different compactifications of Mg obtained by varying the param-
eters in the GIT constructions of Mumford’s.

In the series of papers [4][2][3], recall that in Part II, the theory of Deligne-
Mumford stabilization has three steps:

(a) Prove that the functor of stable curves is a proper Deligne-Mumford stack
M g,n;

(b) Use the Keel-Mori theorem to show that M g,n has a coarse moduli spaceM g,n;
(c) Find some line bundle on M g,n descends to an ample line bundle on M g,n.

In these papers, they proved a general existence theorem for good moduli spaces of
non-separated algebraic stacks that can be viewed as a generalization of the Keel-Mori
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theorem. Hence we can run the modified version of the previous standard three-step
procedure to construct moduli interpretations for the log canonical models:

M g,n(α) = Proj
(⊕
n≥0

H0
(
M g,

⌊
n(KM g

+ αδ + (1− α)ψ)
⌋))

Actually, for all α > 2/3 + ε, where 0 < ε� 1, we have
(a) Construct an algebraic stack M g,n(α) of α-stable curves (see [4]);
(b) Construct a good moduli space M g,n(α)→Mg,n(α);
(c) Show that KM g

+αδ+ (1−α)ψ on M g,n(α) descends to an ample line bundle
on Mg,n(α), and conclude that Mg,n(α) ∼= M g,n(α).
Here in the intervals (9/11, 1), (7/10, 9/11), (2/3, 7/10) and (2/3−ε, 2/3), the definition
of α-stability does not change, hence so are M g,n(α) and M g,n(α).

5.4.2 Log canonical models of Deligne-Mumford stacks
This section taken from the appendix of paper [60]. In this section, a scheme means a
separated scheme of finite type over k and a stack means a separated Deligne-Mumford
stack of finite type over k.

Definition 5.101. A birational morphism of stacks is a morphism f : X1 →X2 such
that there exist dense open substacks Ui ⊂ Xi with U2 = f−1(U1) and f : U1 → U2

an isomorphism.
There is a largest open substack U ⊂ X1 such that f an isomorphism, and we

let the complement is exceptional locus Exc(f). For any closed substack D ⊂ X2

such that f(U ) ∩ D dense in D , the birational transform f−1
∗ D is the closure of

f−1(f(U ) ∩D) in X1.
We say that X1 and X2 are properly birational if there exists a stack Y and

birational proper morphisms gi : Y →Xi.

Theorem 5.102 (Resolution of singularities). For a reduced stack X , there exists a
smooth stack X ′ and a birational proper map f : X ′ →X such that

(i) locus Exc(f) can be taken to be a normal crossings divisor;
(ii)If Z ↪→ X is a closed substack with ideal sheaf IZ ⊂ OX , then there exists

an divisor D ′ ⊂ X ′ such that f ∗IZ
∼= OX ′(−D ′) and Exc(f) ∪D ′ is simple normal

crossings.

Proof. This need the functorial resolving singularities and such procedures commute
with étale maps (see Page 329 in [59]), here we give an idea. One have an étale
presentation R ⇒ U . After resolving R,U to be R′, U ′, we can get R′ ⇒ U ′ for a
smooth stack X ′.

Proposition 5.103. Let X be a connected normal separated scheme of finite type
over k. Let D =

∑
j ajDj be a Q-divisor on X, with the Dj distinct and reduced and

aj ∈ [0, 1]. Then the following properties of pair (X,D) are local on the étale topology:
(i) X is normal;
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(ii) Dj are codimension one reduced closed subschemes;
(ii) for some m > 0 the divisor m(KX +D) is Cartier.

We will call (X,D) admissible if it satisfying (i)(ii)(iii).
Pick a coherent sheaf F over X, then following properties are local on the étale
topology:

(a) F is locally free;
(b) F with Sk condition for k > 0.

If X integral with a integral Weil divisor, then OX(D) be a reflexive S2 of rank 1 and
the formation of OX(D) commutes with étale maps.
Let (X,D) admissible, then being terminal, canonical, klt, plt, lc are local on the étale
topology.
Proof. These are the results of descent theory, we refer St 0238 and [66] 5.20.
Definition 5.104. Let (X ,D) is proper and admissible, then define its log canonical
ring is

R(X ,D) =
⊕
m≥0

Γ(X ,OX (mKX + bmDc)).

We define (X ,D) is terminal, canonical, klt, plt, lc if it admits an étale presenta-
tion with this property. We say it is strictly lc if it is lc and X \

⋃
j Dj is canonical.

Similar as the normal birational geometry as in [66], we have:
Proposition 5.105. The admissible pair (X ,D) is terminal, canonical, klt, and lc
if and only if there exists a log resolution f : X ′ →X such that

(i) Exc(f) =
⋃

Ej is a divisor, Exc(f) ∪ f−1D is simple normal crossings and∑
j f

−1
∗ Dj is smooth;

(ii) we have

KX ′ +
∑
j

ajf
−1
∗ Dj ∼Q f

∗(KX + D) +
∑
i

diEi

such that (aj < 1 and di > 0), (aj ≤ 1 and di ≥ 0), (aj < 1 and di > −1) and (aj ≤ 1
and di ≥ −1).
Proof. See [66] Corollary 2.32.
Remark 5.106. These di =: d(Ei;X ,D) is called discrepancy if replaced by any
proper birational Y → X . We will define d(Dj;X ,D) = −aj and d(D0;X ,D) = 0
for divisors in X and not in D .
Definition 5.107. Two admissible pairs (X ,D) and (X ′,D ′) are properly birational
if there exists an admissible pair (Y ,B) and proper birational morphisms f : Y →X
and f ′ : Y → X ′ such that KY + B − f ∗(KX + D) is f-exceptional and effective,
similar as KX ′ + D ′.
Proposition 5.108. If two admissible pairs (X ,D) and (X ′,D ′) are properly bira-
tional, then the natural morphism is an isomorphism of graded rings:

R(X ,D) ∼= R(X ′,D ′).
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Proof. This is directly, see [60] Proposition A.12.
Proposition 5.109. Let (X ,D) be a proper lc (or klt) pair with coarse moduli space
π : X → X. Then there exists an effective Q-divisor D′ =

∑
ℓ c

′
ℓD

′
ℓ, 0 ≤ cℓ ≤ 1 of X

such that
(i) pair (X,D′) is lc (or klt);
(ii) for each m > 0 such that m(KX +D′) is integral and Cartier, we have

m(KX + D) = π∗m(KX +D′);

(iii) for any m ≥ 0 we have

Γ(X,mKX + bmD′c) ∼= Γ(X ,mKX + bmDc).

Together these we have
π∗ : R(X,D′) ∼= R(X ,D).

Proof. Omitted, see [60] Proposition A.13.
Corollary 5.110 (Basepoint-freeness for stacks). Let (X ,D) be a proper klt pair and
KX +D is nef and big (i.e., KX +D′ is nef and big). Consider the stack and coarse
moduli space

Y := [(SpecR(X ,D)\0)/Gm], Y := ProjR(X ,D) = ProjR(X,D′),

where the action of Gm arises from the grading, then there is a morphism of stacks
ψ : X → Y inducing on coarse moduli spaces the contraction from X to the log
canonical model of (X,D′).
Proof. Use [66] Theorem 3.3.

5.4.3 The first result for 9/11 < α ≤ 1

Here we just consider g ≥ 4. First we need to point out the following well-known
result:
Lemma 5.111. For g ≥ 4 we consider the canonical map f : M g → M g, then we
have

f ∗
(
KMg

+ α(∆irr +∆2 + · · ·+∆⌊g/2⌋) +
1 + α

2
∆1

)
= KM g

+ αδ.

Proof. Similar as Corollary 5.71, the only divisor components of the locus parameter-
izing curves with nontrivial automorphism group is ∆1. Hence by Riemann-Hurwitz
theorem we have

f ∗
(
KMg

+ α(∆irr +∆2 + · · ·+∆⌊g/2⌋) +
1 + α

2
∆1

)
= KM g

− δ1 + α(δirr + δ2 + · · ·+ δ⌊g/2⌋) +
1 + α

2
f ∗∆1

= KM g
− δ1 + α(δirr + δ2 + · · ·+ δ⌊g/2⌋) + (1 + α)δ1 = KM g

+ αδ,

so we get the conclusion.
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Fact. By Lemma 5.111, the universal property of the coarse moduli space implies that
sections of invertible sheaves on M g are all pullbacks of sections of the corresponding
reflexive sheaves on M g. Hence by Proposition 5.109 we get the log canonical model
of M g with respect to KM g

+ αδ can thus be identified with the log canonical model
of M g with respect to (we will use both of them)

K(M g; ∆, α) := KMg
+ α(∆irr +∆2 + · · ·+∆⌊g/2⌋) +

1 + α

2
∆1.

Theorem 5.112 (Mumford-Cornalba-Harris). If 9/11 < α ≤ 1, then M g(α) ∼= M g.

Proof. By Remark 5.72 and Theorem 5.73, we know that the divisor

aλ−∆+
1

2
∆1 =

a

13

(
KMg

+

(
2− 13

a

)
(∆irr +∆2 + · · · ) +

(
3

2
− 13

2a

)
∆1

)
=

a

13
K

(
M g; ∆,

(
2− 13

a

))
is ample if and only if a > 11. Hence K(M g; ∆, α) is ample if and only if 9/11 < α ≤ 1.
As M g is proper, we get M g(α) ∼= M g by [46] Proposition 13.48.

Remark 5.113. As (M g, αδ) is lc and proper, the log canonical model (in sense of
[66] Definition 3.50) is unique and is M g here by [66] Theorem 3.52.

5.4.4 The main results for 7/10 < α ≤ 9/11

We will focus on the paper [60] and work out this paper. Here we just consider g ≥ 4.
When α = 9/11, the divisor K(M g; ∆, α) is not ample and pair (M g, αδ) is a klt

pair. Hence using the log MMP argument, we need to find some extremal ray to obain
a contraction!

By Theorem 5.73, when α = 9/11, then K(M g; ∆, α) = 11λ − δ is nef and big
(when g ≥ 22 as then it’s log general type). By the base-point free theorem we get it
is semi-ample.

Fix a (C2, p) in M g−1,1 and consider

M1,1 ×M g−1,1 →M g.

Consider C = C1 ∩p C2 be curves with elliptic tails and (C1, p) in M1,1
∼= P1. Hence

these curves parameterizing by a rational curve R(C2, p) ⊂M g.

Lemma 5.114. In M g, the class R = [R(C2, p)] is independent of (C2, p) and we have
λ ·R = 1/12, δirr ·R = 1, δ1 ·R = −1/12 and δi ·R = 0 for all i ≥ 2. In particular we
have (KM g

+ 9/11δ) ·R = 0.

Proof. This follows from the analysis in [24] and introductions in [60].

In fact, in [45] (Proposition 6.4) they find that:
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Proposition 5.115. When g ≥ 5, the only divisorial contraction γ : M g → X with
ρ(M g/X) = 1 with X projective is the blowdown of the elliptic tails, contraction of R.

Now what is X? Actually the construction of γ as follows. As D := K(M g; ∆, α)
is semi-ample, replacing a multiple we get a morphism f : M g → P := P(Γ(M g, D)).
By taking Stein factorization, we get

M g → Spec
P
f∗OMg

→ P = P(Γ(M g, D)).

The morphism M g → Spec
P
f∗OMg

is the contraction map. We claim that

Spec
P
f∗OMg

∼= Proj
⊕
n

Γ(M g, nD).

First we need to find a canonical morphism r : M g → Proj
⊕

n Γ(M g, nD) and
analyze its properties. This is a standard scheme theory. For simplicity, we denote
Ad = Γ(M g, dD) and A =

⊕
n Γ(M g, nD). Then the map OMg

A →
⊕

d O(dD) =
Sym(O(D)) induce the morphism

r :M g
∼= ProjSym(O(D))→ ProjOMg

A = ProjA×M g → ProjA

which induce r−1(D+(f)) = (M g)f and the restriction map rf : (M g)f → D+(f)
yield A(f)

∼= Γ((M g)f ,OMg
) where f ∈ A+ and (M g)f means the non-vanishing locus

of f (for more details of the general case of this, we refer the previous part of the
Proposition 13.48 in[46]).

Next, we have the canonical map π : Proj
⊕

n Γ(M g, nD)→ P(Γ(M g, D)) induced
by surjection SymΓ(M g, D)→

⊕
n Γ(M g, nD). Easy to see that we have the following

commutative diagram:

Spec
P
f∗OMg

M g Proj
⊕

n Γ(M g, nD)

P = P(Γ(M g, D))

f

r

π

g

h

Let f induced by the sections fi, then pick the standard coordinates xi of P we
have h−1(D′

+(xi)) = D+(fi) = SpecA(fi)
∼= SpecΓ((M g)fi ,OMg

). One the other hand,
since f−1(D′

+(xi)) = (M g)fi , we also have h−1(D′
+(xi)) = SpecΓ((M g)fi ,OMg

). As
the intersection parts are automatically coincident, we get the claim. Hence we can
restate the result:

Proposition 5.116. When g ≥ 5, the only divisorial contraction of M g is γ :M g →
M g(9/11) with M g(9/11) projective is the blowdown of the elliptic tails ∆1.

As γ is a divisorial contraction and M g is a quotient of smooth variety by a finite
group (by E. Looijenda, see [70]), the space M g(9/11) is Q-factorial. Then we may
ask that is M g(9/11) the coarse moduli space of moduli stack of some kind of curves
which is the compactification of moduli space of smooth curves? Actually this is one
of our main theorems. Here we state the main theorems we will prove.
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Theorem 5.117. Let M
ps

g be the stack of pseudostable curves. Then there is a
morphism of stacks

T : M g →M
ps

g

which is an isomorphism in the complement of δ1. And for a stable curve C ∈
δ1(Speck), the curve T (Speck)(C) is obtained by replacing each elliptic tail of C with
a cusp:

E1

E2

Er−1

Er

p1

p2

pr−1

pr

q1

q2

qr−1

qr

T

The coarse moduli space Mps

g
∼= M g(9/11) and the induced map

T :M g →M
ps

g

coincides with the extremal contraction γ :M g →M g(9/11).

Theorem 5.118. For 7/10 < α ≤ 9/11, then M g(α) ∼= M
ps

g as projective varieties.

• Results about the moduli stack of pseudostable curves.
Define the moduli stack of pseudostable curves M

ps

g as

M
ps

g (S) :=

{
f : C → S

∣∣∣∣∣f is proper and flat and the geometric fibers
of f are pseudostable of genus g.

}
.

The main reference we use about the moduli stack of pseudostable curves is paper
[75].

Theorem 5.119 (D. Schubert, 1991). The stack M
ps

g is a separated Deligne-Mumford
stack of finite typre over k. By Keel-Mori’s theorem, they have a coarse moduli space
M

ps

g . Actually we have M
ps

g
∼= [chows

3/PGL5g−5] and M
ps

g
∼= chow3 // SL5g−5 where

chow3 be the Chow variety and chows
3 be the GIT-stable locus.

Remark 5.120. We may use the Hilbert scheme instead of Chow variety, we refer
[61].

• Constructing the morphism of moduli stacks.
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Lemma 5.121 (Single case). Let C be a genus g > 2 stable curve of with elliptic tails
E1, ..., Er and let D be the union of the components of C pi the node where Ei meets D,
away from the elliptic tails an. Then there exists a unique curve T (C) characterized
by the following properties:

(a) there is a birational morphism ν : D → T (C), which is an isomorphism away
from p1, ..., pr;

(b) ν is bijective and maps each pi ∈ D to a cusp qi ∈ T (C).
There is a unique replacement morphism ξC : C → T (C) with ξC |D = ν and ξC |Ei

are
constant. Note that T (C) has arithmetic genus g.
Proof. It suffices to determine the subrings OT (C),qi ⊂ OD,pi (some kind of anti-
normalization). Let mD,pi be the maximal ideal and let OT (C),qi generated by the
constants and m2

D,pi
as an algebra. Then the maximal ideal of it generated by two

elements x, y such that x2 = y3 (let t be the uniformizer, then m2
D,pi

generated by
t2, t3). Conversely, any germ of a cuspidal curve normalized by (D, pi) is obtained in
this way. Hence ν is the normalization of the cusps q1, ..., qr.
••Step I. Reduce to the concrete case.

Now we need to construct the (1-)morphism of stacks
T : M g →M

ps

g

assigns to each stable curve f : C → S a pseudostable curve T (f) : T (C)→ S.
The main tool is the (family-case) replacement S-morphism ξC : C → T (C) satiefies

the following properties:
(a) Over the open subset S0 ⊂ S mapping to the complement of δ1, the ξC|S0 is an

isomorphism;
(b) for the s ∈ S mapping to δ1, the morphism ξCs is the morphism as Lemma

5.121;
(c) ξC is compatible with base change and isomorphisms.
Pick a étale cover U of M g (as it is a Deligne-Mumford stack) with representation

R ⇒ U and the universal family π : Z → U where R encodes the isomorphisms among
the fibers of π.
Proposition 5.122. To construct T and ξ over M g, it suffices to construct T (π) :
T (Z)→ U and ξZ compatibly with the isomorphism relation R.
Proof. For any family of stable curves f : C → S correspond to ρf : S →M g, consider
the cartesian of stacks:

S ′ := S ×M g
U U

S M g

prS
ρf

prU

ρπp

and we get the stable curves

pr∗SC pr∗UZ

S ′
pr∗Sf pr∗Uπ

∼=
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After base change, we get pr∗UT (π) : pr∗UT (Z) → S ′ and pr∗UξZ : pr∗UZ → pr∗UT (Z).
Hence they correspond to pr∗Sf : pr∗SC → S ′. As prS is the base change of ρπ, it is
étale, hence faithfully flat. As T is compatible with isomorphisms, by the descent
theory we get

T (f) : T (C)→ S, ξC : C → T (C)

as desired.

••Step II. Setup step. Find a appropriate line bundle.
Consider

Z Ug = M g,1 ⊃ δ1,{1}

U M g

univ

µπ

π

ρπ

p

with elliptic tail δ1,{1}. Let E := µ∗
πδ1,{1} (is Cartier, omitted) and W = ρ∗πδ1 and

consider L := ωπ⊗O(E) = ωπ(E). Like Lemma 2.14, we find that over U\W we have

kn := rankπ∗L⊗n =

{
g n = 1,

(2n− 1)(g − 1) n ≥ 2.
, R1π∗L

⊗n ∼=
{

OU n = 1,
0 n ≥ 2.

Hence we need to discover that happens near W as we will use π∗L⊗n to define our
maps.
••Step III. Locally freeness I. Some cohomology.

Note that the locally freeness and cohomology can descend along the failthfully
flat extension. Fix u0 ∈ W , then Zu0 := C has r elliptic tails Ei and the remaining
component we denote D. After some faithfully flat extension, we may assume that π
has sections s1, ..., sr : U → Z such that si(u0) ∈ Ei are smooth points.

Now we have

0→ L⊗n → L⊗n(s1 + ...+ sr)→ L⊗n(s1 + ...+ sr)|{s1,...,sr} → 0

Over this fiber C, we have

0→ L⊗n|C → L⊗n(s1 + ...+ sr)|C → L⊗n(s1 + ...+ sr)|{s1(u0),...,sr(u0)} → 0

and the last term support over a finite sets {s1(u0), ..., sr(u0)}. On the other hand, we
can show that H1(C,L⊗n(s1 + ... + sr)|C) = 0 (as in [60] section 3.3 using long exact
sequence, we omitted the details here). Then we get an exact sequence

0→ π∗L
⊗n → F 0 → F 1 → R1π∗L

⊗n → 0

with F 0 := π∗(L
⊗n(s1 + ... + sr)) and F 1 := π∗(L

⊗n(s1 + ... + sr)|s1+...+sr) locally free
of rank r0, r1. Let Q = coker(π∗L⊗n → F 0) is a subsheaf of a locally-free sheaf, hence
is locally-free of rank r0 − kn away from a subset Y ⊂ U of codimension≥ 2. Note
that Y is contained in the locus where R1π∗L

⊗n fails to be locally free, and thus is a
subset of W .
••Step IV. Locally freeness II. Some limit linear series.
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Let B be a spectrum of a DVR with closed point 0 and generic point b. Consider
the map β : (B, 0)→ (U, u0) such that 0 7→ u0 and b /∈ W . Consider the fiber product

ZB Z

B U

πB

β

β′

π
p

and let LB = (β′)∗L. As πB,∗L⊗n
B is locally free of rank kn as it is a subsheaf of β∗F0

and thus torsion free and then flat (over Dedekind domain).
We need the follwoing result:

Proposition 5.123 ([26] 4.3iii). For n ≥ 1, let Vn := πB,∗L
⊗n
B |0 can be naturally

identified with

Γ

(
D,ω⊗n

D

(
(2n− 2)

r∑
j=1

pj

))
+ span(σn1 , ..., σnr )

as a subspace of H0(C,L⊗n|C) where σj be a section of V1 such that σi(pi) 6= 0 and σj
vanishes to order two at pi for i 6= j.
Corollary 5.124. For n ≥ 2, the linear series Vn defines C → Pkn−1 with image
T (C). The induced C → T (C) is the morphism in Lemma 5.121.
Proof. For stable curve (D, p1, ..., pr), unless g(D) = 2, r = 0 (which can not occur
here) the line bundle (ωD(p1 + ... + pr))

2 is very ample. Hence Vn can induce an
embedding of D\{p1, ..., pr} into the projective space. By Proposition 5.123 we get
that the vanishing sequence of Vn near pj are all (0, 2, 3, ...) and then induce pj into
cusps. As pj separated by σnj , these cusps are different ones. As these sections are
constant (6= 0) along the Ei, so each Ei is collapsed to the corresponding cusp.

••Step V. Locally freeness III. Finish the locally freeness.
Proposition 5.125. For integer n ≥ 1, the sheaf π∗L⊗n is locally free of rank kn.
Proof. We denote Grass(m,F ) be the geometric Grassmannian represented the func-
tor of rank m subbundles of F . Recall the exact sequence

0→ π∗L
⊗n → F 0 φ−→ F 1 → R1π∗L

⊗n → 0

with F 0 and F 1 locally free of rank r0, r1. Let Q = coker(π∗L⊗n → F 0) is locally-free
of rank r0 − kn away from a subset Y ⊂ U of codimension≥ 2.

Then we induce the morphism

τ : U\Y → Grass(r0 − kn, (F 0)∨)×Grass(r0 − kn, F 1)

↪→ P

(
r0−kn∧

(F 0)∨

)
× P

(
r0−kn∧

F 1

)

↪→ P

(
H om

(
r0−kn∧

F 0,

r0−kn∧
F 1

))
.
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Consider as a rational map

U 99K P

(
H om

(
r0−kn∧

F 0,

r0−kn∧
F 1

))
,

it is given by the section
∧r0−kn ϕ and the indeterminacy locus of it is precisely the

zero locus of
∧r0−kn ϕ defined by (r0− kn)× (r0− kn)-minors of ϕ (which is one of the

Fitting ideals I of R1π∗L
⊗n). Blowing up the base locus as follows:

B U ′ := BlI (U)

U Grass(r0 − kn, (F 0)∨)×Grass(r0 − kn, F 1)

σ

τ

τ ′βi

β′
i

Now we claim that σ is an isomorphism.
As U normal (it is étale over smooth stack M g) and σ is proper birational, using

the Zariski’s main theorem, we just need to show that σ is quasi-finite. Let it is not
quasi-finite and for two different closed points x1, x2 ∈ U ′ such that τ is not defined at
u := σ(x1) = σ(x2). Pick a DVR B = Spec∆ with closed point 0 and generic point η.
Then let β′

i : B → U ′ such that 0 7→ xi and η is not in the locus of δ1. Let βi = σ ◦ β′
i

and using the functorial, we find that τ ′ ◦ β′
i correspond to

0→ Ki → β∗
i F

0 → Qi → 0,

where Ki is of rank kn. Consider the fiber product

ZB Z

B U

πi

βi

µi

π
p

then we get the exact sequence

0→ πi,∗µ
∗
iL

⊗n → β∗
i F

0 β∗
i φ−→ β∗

i F
1 → R1(πi)∗µ

∗
iL

⊗n → 0.

Note that β∗
i F

0/πi,∗µ
∗
iL

⊗n is locally free and πi,∗µ∗
iL

⊗n and Ki are agree over B\{0} as
subbundles of β∗

i F
0. Hence they are isomorphic over entire B. By Proposition 5.123,

(πi,∗µ
∗
iL

⊗n)0 are identified in H0(Z|βi(0), L⊗n|Z|βi(0)), then τ
′ ◦ β′

1(0) = τ ′ ◦ β′
2(0). Then

any points in the fiber over u maps to the same point and then τ should regular at u
which is impossible! Hence σ is an isomorphism and we get the claim.

From the claim we know that there exists a subbundle K ⊂ F 0 over U such that
K|U\Y ∼= π∗L

⊗n|U\Y . Let j : U\Y ↪→ U , then j∗(π∗L⊗n|U\Y ) ∼= π∗L
⊗n as it is reflexive

and codimU(Y ) ≥ 2. Hence we have

K ∼= j∗(K|U\Y ) = j∗(π∗L
⊗n|U\Y ) ∼= π∗L

⊗n

be a vector bundle.
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••Step VI. Finish the construction.

Proposition 5.126. For n ≥ 2, the sections of L⊗n relative to π induced Z →
P(π∗L⊗n) over U which factors as

Z
ξZ−→ T (Z) ↪→ P(π∗L⊗n).

Proof. Now by Proposition 5.125, π∗L⊗n is locally free. By the argument in Proposi-
tion 5.123 and Corollary 5.124, using the Stein factorization we get

Z
ξZ−→ T (Z) ↪→ P(π∗L⊗n).

By the functoriality of dualizing sheaf and δ1,{1} on the moduli stack M g,1, we find
that this construction is compatible with isomorphism relation and commutes with
base extension.

•Moduli of pseudostable curves as log canonical models.

Proof of Theorem 5.117. By Proposition 5.126, we just need to identify M
ps

g and
M g(9/11).

By Lemma 5.121, we know that T : M g →M
ps

g implies
(a) T is isomorphism over M g\∆1;
(b) T takes locus of elliptic tails into cusps as in Lemma 5.121;
(c) T (C) = T (C ′) if and only if the number of elliptic tails are the same and the

remaining pointed stable curves (D; p1, ..., pr) ∼= (D′; p′1, ..., p
′
r).

Hence T is also an extremal contraction of the locus of elliptic tails. By Remark
1.26 in [66], we know that γ :M g →M g(9/11) are the same as T . Well done.

Now we turn to prove Theorem 5.118. Let δps be the boundary divisor of M
ps

g , it
is the image of δ under T . We will write KM g

+ αδ instead of K(M g; ∆, α) over M g

since they are the same things, after a pull-back.

Lemma 5.127 (Log Discrepancy Formula).

KM g
+ αδ = T ∗(KM

ps
g
+ αδps) + (9− 11α)δ1.

Proof. First, it’s easy to see that

KM g
+ αδ = T ∗(KM

ps
g
+ αδps) + cδ1.

Then by Lemma 5.114 we find that

(KM g
+ αδ) ·R = 13λ ·R + (α− 2)R · δ

= 13/12 + (α− 2)(1− 1/12) =
11α− 9

12

and δ1 ·R = −1/12. Hence c = 9− 11α.
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Hence if (M g, αδ − (9 − 11α)δ1) is lc pair and α ≤ 9/11, then so is (M
ps

g , αδ
ps).

This is right as reducing the coefficient of δ1 can only increase the discrepancies of
divisors lying over δ1; this does not affect whether the singularities are log canonical.
Now we just need to analyze whether KM

ps
g
+ αδps is ample for 7/10 < α < 9/11.

We have
T ∗NS(Mps

g ) = R⊥ ⊂ NS(M g),

then Amp(Mps

g ) = Int(R⊥ ∩ Nef(M g)). Actually, if the Fulton’s Conjecture 1 holds,
then we finish the proof. Of course we can not use this for now and fortunately, we
do not need the full strength of the conjecture and we just need to use the following
result (Corollary 5.78):

Proposition 5.128 ([45] Proposition 6.1). Let D = aλ −
∑⌊g/2⌋

i=0 biδi over M g such
that if 1 ≤ i ≤ g/2 then either bi = 0 or bi > b0. If D has non-negative intersection
with all F -curves, then D is nef.

Actually the intersection numbers of D = aλ −
∑⌊g/2⌋

i=0 biδi with the F -curves has
the following results (let bi = bg−i for i > g/2):

(a) a/12− b0 + b1/12 family of elliptic tails
(b) b0
(c) bi for g − 2 ≥ i
(d) 2b0 − bi+1 for g − 2 ≥ 2i
(e) bi + bj − bi+j for i, j ≥ 1, i+ j ≤ g − 1
(f) bi + bj + bk + bl − bi+j − bi+k − bi+l for i, j, k ≥ 1, i+ j + k + l = g

Proof of Theorem 5.118. We just need to show that for 7/10 < α ≤ 9/11, the divisor

D := KM g
+ αδ − (9− 11α)δ1 = 13λ+ (α− 2)δ − (9− 11α)δ1

lies in Int(R⊥ ∩ Nef(M g)). Then we just need to check Proposition 5.128. In our
case, we have a = 13 and bi =

{
2− α, i 6= 1;

11− 12α, i = 1
. Then our divisor satisfied the

conditions in Proposition 5.128, and we just need to check the table above!
(i) We do not consider (a) as it is elliptic tails;
(ii) for (b)(c)(f), if α ≤ 11/12 then they are positive;
(iii) for (d), if α > 7/10 it is positive;
(iv) for (e), if α > 7/10 it is positive.

Hence well done!

5.5 More geometry of moduli space of curves
5.5.1 A glimpse of some results using Teichmüller theory
Theorem 5.129 (Boggi-Pikaart, 2000, [19]). The stack M g,n has no non-trivial étale
cover, hence it is simply connected.
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Corollary 5.130. The coarse moduli space M g,n is simply connected.
Theorem 5.131 (Harer-Zagier 1986, [52]; Bini-Harer 2011, [17]). For non-negative
integers g, n, n > 2− 2g, we have: (i) The orbifold Euler characteristic of Mg,n is

χ(Mg,n) = (−1)n (2g − 1)B2g

(2g)!
(2g + n− 3)!;

(ii) The orbifold Euler characteristic of M g,n is

χ(M g,n) =
∑

G of type (g,n)

∏
v χ(Mgv ,Lv)

]Aut(G) .

5.5.2 Intersection theory of moduli space of curves
We will refer [43] and [8] chapter XVII. We work over C.
•Chow rings of moduli space of curves.

In the classical book [42] section 8.3 (Example 8.3.12) we know that the intersec-
tion product in the Chow ring only defined on the non-singular case and the rational
coefficient Chow ring can defined over the quotient variety X/G of a non-singular
variety X by a finite group G of automorphisms with p : X → X/G, that is,

V ·W :=
p∗(p

∗[V ] · p∗[W ])

]G
.

(In fact we have CH∗(X/G)⊗Q = (CH∗(X)⊗Q)G.)
Now we consider smooth quotient X/G and its stack [X/G] with canonical map

p : [X/G] → X/G. We define CH∗([X/G])Q := CH∗(X/G) ⊗ Q. Concerning Chern
classes of vector bundles on a stack [X/G], recall that such a vector bundle can be
viewed as a G-equivariant bundle E on X, meaning that E is a vector bundle on
X plus a lifting of the G-action on X. The Chern classes of E are naturally G-
invariant elements of CH∗(X) and therefore give well-defined Chern classes ci(E) ∈
CH∗([X/G])Q.

Now back to the moduli of curves. Now Mg,n and M g,n are all singular! Foun-
dations of these due to D. Mumford. But Mg,n can be written as a non-singular
variety(the `-level structure, omit it here) quotient by a finite group, hence we have
define as above. But M g,n is not that easy. Mumford use that, M g,n is étale locally as
a non-singular variety (Kuranishi family) quotient by a finite group by Theorem 5.12
and globally it is a quotient of Cohen-Macaulay variety by a finite group, to define
the rational Chow ring. However, E. Looijenda (cf. [70]) showed that M g,n is also be
a globally quotient of a smooth variety Mg/G by a finite group (non abelian `-level
structure)! Hence we can define CH∗(Mg)⊗Q and CH∗(M g)⊗Q now.

For moduli stacks, unfortunately, although this works for coarse moduli space,
the moduli stack in general not quotients of smooth varieties modulo finite groups!
Let then M ∼= M/G be a moduli space of (stable or smooth) curves, and M the
corresponding moduli stack. We then have natural morphisms

[M/G]
α−→M

β−→M = M/G
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by the definition of coarse moduli space. Hence we define

CH∗(M )Q := CH∗([M/G])Q = CH∗(M)Q.

Noet that here we have

CH1(M )Q = CH1(M)Q = Pic(M )⊗Q = Pic(M)⊗Q.

•Basic classes.
Fixed the moduli stack M g,P with sections σp : M g,P → Ug,P

∼= M g,P∪{x}. Let
Σp := Im(σp) and Σ =

∑
p∈P Σp. Fix the dualizing sheaf ωπ with universal family

π : Ug,P →M g,P .

Example 5.132 (Mumford-Morita-Miller). (1) Let ψp := σ∗
pc1(ωπ) ∈ CH1(M g,P )Q;

(2) Let κi := π∗(c1(ωπ(Σ))
i+1) ∈ CHi(M g,P )Q.

Remark 5.133. (i) We have κ0 = (2g − 2 + ]P )[M g,P ]
(ii) Also we let κ̃i = κi −

∑
ψip.

Example 5.134 (λ-classes). We let λi := ci(π∗ωπ) = ci(π!ωπ) ∈ CHi(M g,P )Q. More
generally, we let

λi(ν) := ci(π!ω
ν
π) ∈ CHi(M g,P )Q.

Hence we may define these over the coarse moduli space.
•Tautological relations.
••Relations after forgetful maps.

Proposition 5.135. Let π : M g,P∪{x} →M g,P and let at ∈ Z≥0 labelled by t ∈ P∪{x}.
(i) (String Equation)

π∗

(∏
p∈P

ψapp

)
=
∑
ap>0

ψap−1
p

∏
q ̸=p

ψaqq ;

(ii) (Generalized Dilaton Equation)

π∗

(
ψax+1
x

∏
p∈P

ψapp

)
= κax

∏
p∈P

ψapp .

Proof. Omitted, see Proposition XVII.4.9 in [8].

Remark 5.136. The standard dilaton equation is the special case of the generalized
one in which ax = 0, that is,

π∗

(
ψx
∏
p∈P

ψapp

)
= (2g − 2 + ]P )

∏
p∈P

ψapp .
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Corollary 5.137. Let π : M g,P∪{x} →M g,P , then
(i) π∗(κa) = κa − ψax;
(ii) πx,∗(κa) = κa−1;
(iii) π∗(ψpa) = ψp − δ0,{p,x};
(iv) If we let πn : M g,n →M g,n−1, then

(πk+1 · · · πn)∗(ψa11 · · ·ψ
ak
k ψ

ak+1+1
k+1 · · ·ψan+1

n ) = ψa11 · · ·ψ
ak
k

∑
σ∈Sk

κσ

where κσ = κ♯γ1 · · · κ♯γν(σ)
with σ as a product of ν(σ) disjoint cycles γi.

Proof. Omitted, (i)(ii) follows from string equation and see XVII.4.17,18 in [8]. (iii)
follows from XVII.4.6 in [8]. (iv) follows directly from dilaton equation.

Remark 5.138. Now combine (iv) and string equation, we find that the intersection
numbers of the classes ψi and κi on a fixed M g,n is completely determined by the
intersection theory of the ψi alone on all the M g,ν with ν ≥ n, and conversely. This
is a generalization of E. Witten’s remark.

Proposition 5.139 (Some relations of boundaries). Let π : M g,P∪{x} → M g,P and
Γ be a dual graph with Γν is the P ∪ {x}-marked graph obtained from Γ by letting
Pν ∪ {x} be the index set for the vertex ν. Then

π∗δΓ =
∑
ν∈V

δΓν .

In particular, we have π∗δirr = δirr and π∗δa,A = δa,A + δa,A∪{x}.

Proof. Trivial.

••Relations after general gluing maps.

Proposition 5.140. Consider the morphisms

M Γ =
∏

v∈V (Γ) M gv ,Lv M gv ,Lv

M g,P

ξΓ

ηv

Then:
(i) ξ∗Γψp = ψp;
(ii) ξ∗Γκa =

∑
v∈V (Γ) η

∗
vκa;

(iii) by the notations as before, we have

M ΓΓ′ := M Γ ×M g,P
M Γ′

∐
Λ∈GΓΓ′ M Λ M Γ

∐
ξΛΓ
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then

ξ∗ΓδΓ′ = ΣΛ∈GΓΓ′ξΛΓ,∗

 ∏
{l,l′}∈E(|Λ|)

(
−η∗v(l)ψl − η∗v(l′)ψl′

) .

Remark 5.141. The special case of the relations of gluing maps we refer Lemma
XVII.4.35,36 in [8].

•The tautological ring and relative theorems and conjectures.
Here we refer [78] and chapter XVII and XX in [8].

Definition 5.142. The system of tautological rings (R∗(M g,n)) ⊂ (CH∗(M g,ν)Q)g,n
is the smallest system of Q-algebras satisfying

(i) ψ1, ..., ψn ∈ R∗(M g,n);
(ii) the system is closed under pushforwards by morphisms π, ξirr, ξa,A.

Define
Fg :=

∑
n≥0

1

n!

∑
♯k=3g−3+n

(∫
M g,n

ψk11 · · ·ψknn

)
tk1 · · · tkn

and F :=
∑

g Fgλ
2g−2. This is Witten’s free energy. For convenience, we will set

λ = 1.

Theorem 5.143 (Witten’s Conjecture (Kontsevich’s Theorem)). We have the fol-
lowing system of PDEs:

(2n+ 1)
∂3F

∂tn∂t20
=

(
∂2F

∂tn−1∂t0

)(
∂3F

∂t30

)
+ 2

(
∂3F

∂tn−1∂t20

)(
∂2F

∂t20

)
+

1

4

(
∂5F

∂tn−1∂t40

)
.

Sketch of Kontsevich’s Proof. Kontsevich’s Proof consisted of two parts. The first
part was to prove a combinatorial formula for the gravitational descendents. Let Gg,n

be the set of isomorphism classes of trivalent ribbon graphs of genus g with n faces
and together with a numbering Faces(G) ∼= [n]. Denote by V (G) the set of vertices
of a graph G ∈ Gg,n. Let us introduce formal variables λi, i ∈ [n]. For an edge
e ∈ Edges(G), let λ(e) = 1

λi+λj
where i and j are the numbers of faces adjacent to e.

Then we have (Kontsevich’s combinatorial formula):

∑
♯k=3g−3+n

∫
M g,n

ψk11 · · ·ψknn
n∏
ℓ=1

(2kℓ − 1)!!

λ2kℓ+1
ℓ

=
∑

G∈Gg,n

2♯Edges(G)−♯V (G)

]Aut(G)
∏

e∈Edges(G)

λ(e).

The second step of Kontsevich’s proof was to translate the combinatorial formula
into a matrix integral. Then, by using non-trivial analytical tools and the theory of
τ -functions of the KdV hierarchy, he was able to prove that exp(F ) is a τ -function of
the KdV hierarchy and, hence, the free energy F satisfies our equation.

Remark 5.144. (i) Using these PDEs along with a straightforward geometric fact
known as the string equation and the initial condition

∫
M 0,3

1 = 1, as M 0,3 is a point,
all top intersections are quickly recursively determined;
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(ii) There was a later reformulation of Witten’s conjecture using Virasoro equa-
tions, see [8];

(iii) Okounkov and Pandharipande in 2001 showed the Witten’s conjecture using
the ELSV formula which relates intersection numbers with Hurwitz numbers (as a
corollary, they get R3g−3+n(M g,n) ∼= Q);

(iv) Mirzakhani in 2004 showed the Witten’s conjecture with a formula which
relates intersection numbers with volumes of moduli spaces.

There are several conjectures about Poincaré duality of moduli of curves:

Conjecture 2 (Poincaré duality conjecture for stable curves (Hain-Looijenga)). Let
d = dimM g,n = 3g − 3 + n, then

(I) Ri(M g,n) = 0 for i > d (which is obvious);
(II) Rd(M g,n) ∼= Q (ture by ELSV formula);
(III) the natural pairing Ri(M g,n)×Rd−i(M g,n)→ Rd(M g,n) ∼= Q is perfect.

This conjecture was motivated by an earlier conjecture by Faber:

Conjecture 3 (Faber’s conjecture for smooth curves). (I) R∗(Mg) is a dimension
g − 2 Poincaré ring;

(II) The bg/3c classes κ1, ..., κ⌊g/3⌋ generated the ring , with no relations in degree
bg/3c (is true in cohomology by Morita, Ionel; Ionel’s proof should extend to the Chow
ring without difficulty);

(III) We have

ψd1+1
1 · · ·ψdk+1

k =
(2g − 3 + k)!(2g − 1)!!

(2g − 1)!
∏k

j=1(2dj + 1)!!
=
∑
σ∈Sk

κσ

which defined as before (proved by Getzler, Pandharipande, Givental).

Remark 5.145. E. Looijenga showed that Ri(Mg) = 0 for i > g−2 and Rg−2(Mg) ∼=
Q.

5.5.3 Cohomology of moduli space of curves
•Collections of results about cohomology groups.

We will consider about the rational (singular)-cohomology (or homology) groups
of moduli space of smooth or stable curves over C. We note that as in [30], we have
H i(M )⊗Q ∼= H i(M,Q) := H i(M(C),Q), so we may just consider the coarse moduli
space.

Theorem 5.146 (Harer 1986). For i > 4g−5, we have Hi(Mg,n,Q) = 0 for i > c(g, n)
where

c(g, n) =


n− 3, g = 0;
4g − 5, g > 0, n = 0;

4g − 4− n, g > 0, n > 0.

Proof. Using the construction of Teichmüller method, see chapter XIX Theorem 2.2
in [8].
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Theorem 5.147. The following hold true:
(i) (Mumford, Harer) H1(Mg,n;Q) = 0 for any g ≥ 1 and any n such that 2g −

2 + n > 0;
(ii) (Harer) H2(Mg,n;Q) is freely generated by κ1, ψ1, ..., ψn for any g ≥ 3 and any

n. H2(M2,n;Q) is freely generated by ψ1, ..., ψn for any n, while H2(M1,n;Q)vanishes
for all n.

Proof. For the modern proof using Deligne’s spectral sequence, we refer Theorem 10
in [7].

Theorem 5.148 (Arbarello-Cornalba [6], 1998; Bergström-Faber-Payne [15], 2022;
Canning-Larson-Payne [20], 2022). (i) The cohomology groups Hk(M g,n) = 0 for all
odd k ≤ 9;

(ii) The cohomology groups H2(M g,n) generated by κ1, ψi and δirr and δa,A for
0 ≤ a ≤ g and 2a− 2 + ]A ≥ 0 and 2(g − a)− 2 + ]Ac ≥ 0, with relations

(ii-a) If g > 2 all relations are generated by δa,A = δg−a,Ac;
(ii-b) If g = 2 all relations are generated by δa,A = δg−a,Ac and

5κ1 = 5ψ + δirr − 5
∑
A

δ0,A + 7
∑
A

δ1,A;

(ii-c) If g = 1 all relations are generated by δa,A = δg−a,Ac and

κ1 = ψ − 5
∑
A

δ0,A, 12ψp = δirr + 12
∑

p∈S,♯S≥2

δ0,S, p ∈ {1, ..., n};

(ii-d) If g = 0 all relations are generated by δa,A = δg−a,Ac and

c(g, n) =


κ1 =

∑
x,y/∈A(]A− 1)δ0,A, x, y ∈ {1, ..., n}, x 6= y;

ψz =
∑

z∈A;x,y/∈A δ0,A, x, y, z ∈ {1, ..., n}, x, y, z distinct;
δirr = 0.

(iii) The group H11(M g,n) nonzero if and only if g = 1 and n ≥ 11, and in this
case we have H11(M1,n) ∼= (H11(M1,11))

⊕(n−1
10
);

(iv) Assume k ≤ 11. Let g1, ..., gk be distinct positive integers, and set g =
1 + g1 + ···+ gk. Then H11+2k(M g,n) 6= 0 for n ≥ 11− k.

Proof. (i)(ii) In paper [6], E. Arbarello and M. Cornalba showed when k = 1, 2, 3, 5
and in paper [15], Jonas Bergström, Carel Faber and Sam Payne showed when k = 7, 9.

(iii)(iv) In paper [20], Samir Canning, Hannah Larson and Sam Payne showed
these.

Remark 5.149. The funny point is that, in papers [15] and [20], they using some
number-theoric method, such as Hasse-Weil zeta functions.
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A Appendix. Useful results in basic algebraic ge-
ometry

A.1 Some corollaries of semi-continuity theorem
Review A.1 (Cohomology and Base Change, see [58] III.12.11). Let f : X → Y be
a proper and finitely presented morphism of schemes with a finitely presented sheaf
on X which is flat over Y . Let a point y ∈ Y and i ∈ Z, the comparison map
φiy : R

if∗F ⊗ κ(y)→ H i(Xy, Fy) is surjective. Then
(i) There is an open neighborhood V ⊂ Y of y such that for any morphism

g : Y ′ → V of schemes, the comparison map φiY ′ : g∗Rif∗F → Rif ′
∗(g

′)∗F is an
isomorphism. In particular φiy is an isomorphism;

(ii) φi−1
y is surjective if and only if Rif∗F is locally free in a neighborhood of y.

Review A.2 (Grauert’s Corollary). (See [1] A.7.16) Let f : X → Y be a flat proper
morphism of noetherian schemes such that h0(Xy,Oy) = 1 for all y ∈ Y (⇔ OY =
f∗OX and stable under base-change) (resp. the geometric fibers are integral).

For a line bundle L on X, consider the functor (Sch/Y ) → (Sets) by sending
T → Y to {∗} if LT is the pullback of a line bundle on T and to ∅ otherwise. Then
this functor is representable by a locally closed (resp. closed) subscheme of Y .

A.2 Artin approximation and its corollaries
Definition A.3. Let A→ B be a map of noetherian rings. It is called geometrically
regular if it is flat and for every prime ideal p ⊂ A and any finite field extension
K/κ(p), the fiber B ⊗A K is regular.

A noetherian local ring R is called a G-ring if A→ Â is geometrically regular.

Theorem A.4 (Artin approximation, see [1] A.10.9). Let S be a scheme and s ∈ S
be a point such that OS,s is G-ring. Let F : (Sch/S)→ (Sets) be a colimit preserving
contravariant functor (commutes with systems of OS-algebras) and ξ̂ ∈ F (SpecÔS,s).
For any integer N ≥ 0, there exists an étale morphism (S ′, s′)→ (S, s) and ξ′ ∈ F (S ′)

with κ(s) = κ(s)′ such that the restrictions of ξ̂ and ξ′ to Spec(OS,s/m
N+1
s ) are equal.

Corollary A.5 (See [1] A.10.13). Let X1, X2 be schemes of finite type over S and let
s ∈ S be a point such that OS,s is a G-ring. If x1 ∈ X1, x2 ∈ X2 are points over s such
that ÔX1,x1 and ÔX2,x2 are isomorphic as OS,s-algebras, then there exists a common
residually-trivial étale neighborhood as

(X3, x3)

(X1, x1) (X2, x2)
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A.3 Some birational geometry of surfaces
Here we give some well-known results of birational geometry of surfaces.

Theorem A.6 (Minimal Resolutions). Let X be a surface. There exists a unique
projective birational morphism π : X̃ → X from a smooth surface such that every
other resolution Y → X factors as Y → X̃ → X (or equivalently such that KX ·E ≥ 0
for every π-exceptional curve E).

Proof. See [67] Theorem 2.16.

Theorem A.7 (Embedded Resolutions of Curves in Surfaces). Let X be a surface
and X0 ⊂ X be a curve. There is a finite sequence of blow-ups at reduced points of
X0 yielding a projective birational morphism X̃ → X such that X̃ is smooth and such
that the preimage X̃0 of X0 has set-theoretic normal crossings, i.e. (X̃0)red is nodal.

Proof. See [67] Theorem 1.47.

Theorem A.8 (Castelnuovo’s Contraction Theorem). Let X be a smooth projective
surface and E a smooth rational (−1)-curve. Then there is a projective birational
morphism X → Y to a smooth surface and a point y ∈ Y such that f−1(y) = E and
X\E → Y \{y} is an isomorphism.

Proof. See [67] Theorem 2.14.

Corollary A.9 (Existence of Relative Minimal Models). A smooth surface X admits
a projective birational morphism X → Xmin to a smooth surface such that every
projective birational morphism Xmin → Y to a smooth surface is an isomorphism. In
particular Xmin has no smooth rational (−1)-curves.

A.4 Miscellany
Review A.10. Let k be a field and X be a proper geometrically connected and geo-
metrically reduced k-scheme, then Γ(X,OX) = k.

Proof. This is almost trivial. See [46] Proposition 12.66 or St 0BUG in [11].

Review A.11 (Openness of ampleness). Let X → S be a proper morphism of schemes
and L be a line bundle over X. Let S is noetherian. If for some s ∈ S, the fiber Ls
over Xs is ample (resp. very ample), then exists an open neighborhood U of s such
that LU is ample (resp. very ample) over XU .

Proposition A.12 (Openness of nefness). Let X be a proper and flat scheme over a
DVR R and E be a vector bundle on X. Let 0, η ∈ SpecR be the closed and generic
points. If E |0 is nef, then so is E |η.

Proposition A.13 (St 0C45). Let X be a locally Noetherian scheme of dimension 1
with normalization f : X̃ → X. Then

(1) f is integral (finite if X is reduced locally finite type over a field), surjective,
and induced a bijection on irreducible components;
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(2) there exists a factorization X̃ → Xred → X such that the morphism X̃ → Xred

is the normalization of Xred and it is birational;
(3) for every closed point x ∈ X we have (f∗OX̃)x is the integral closure of OX,x

in total ring of fractions of (OX,x)red = OXred,x;
(4) X̃ is a disjoint union of integral normal Noetherian schemes.

Proposition A.14 (0B5V). Let f : X → Y be a morphism of schemes proper over
Noetherian ring R. Let L be a line bundle over Y and assume f is finite and surjective.
Then L is ample if and only if f ∗L is ample.

Proposition A.15 (Canonical bundle and blowing ups). Let X be a regular variety
and let Y be a regular subvariety of codimension r ≥ 2. Let π : X ′ = BlYX → X be
the blowing up with exceptional divisor E, then

ωX′ ∼= π∗ωX ⊗ OX′((r − 1)E).

Proof. This is Exercise II.8.5 in [58].
Proposition A.16 (Picard groups and blowing ups). Let X be a regular variety and
let Y be a regular subvariety of codimX(Y ) = r ≥ 2. Let π : X ′ = BlYX → X
be the blowing up of X along Y and let E be the exceptional divisor. Then the
map π∗ : Pic(X) → Pic(X ′) given by functorialtiy of the Picard group and the map
Z→ Pic(X ′) defined by n 7→ nE define an isomorphism Pic(X)⊕ Z ∼= Pic(X ′).

Proof. Let U = X − Y and we have Pic(X) ∼= Pic(U) is similar as Pic(X)
π∗
−→

Pic(X ′) → Pic(U). Hence Pic(X)
π∗
−→ Pic(X ′) → Pic(X) is identity. Consider Z →

Pic(X ′)→ Pic(X)→ 0 is exact, we just need to find a splitting for Z→ Pic(X ′).
The closed immersion induce Pic(X ′)→ Pic(E). As E is a projective bundle over

Y , then Pic(E) ∼= Pic(Y )⊕ Z as regularness by [58] Exercise II.7.9(a). Hence we get

f : Z→ Pic(X ′)→ Pic(E) ∼= Pic(Y )⊕ Z→ Z

which sends 1 7→ OX′(E) ∼= OX′(−1) 7→ OE(−1) 7→ −1. Hence consider −f and we
win!
Definition A.17. Fix a variety X over a field.

(i) Define the canonical ring R(X) =
⊕

m≥0H
0(X,mKX), we define the Kodaira

dimension as

κ(X) :=

{
−∞, if R(X) = C,

trdegCFrac(R(X))− 1, otherwise;

(ii) Define X is of general type if κ(X) = dimX (This if and only if KX is big).

Definition A.18. Let X be a proper algebraic variety of dimension n over an alge-
braically field k.

(a) We call X is rational if there is a birational map X 99K Pn;
(b) we call X is unirational if there exists a dominant rational map Pn 99K X;
(c) we call X is uniruled if there is a variety Y of dimension n−1 with a dominant

rational map Y × P1 99K X.
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Proposition A.19. Let f : C → B be a smooth proper flat and finitely presented
morphism of relative dimension = 1 with geometric fibres isomorphic to P1.

(i) If f admits a section s : B → C, then there exists a rank 2 vector bundle E on
B such that C is isomorphic to the projective bundle C ∼= P(E ) over B;

(ii) If f admits two disjoint sections s1, s2 : B → C, then the bundle E splits as a
direct sum E ∼= L1 ⊕L2 of line bundles;

(iii) If f admits three disjoint sections s1, s2, s3 : B → C, then we can take E = O⊕2
B

above, so that C ∼= B × P1.

Proof. (i) Note that since f : C → B is proper and the composition f ◦ s is a closed
embedding, then s is a closed embedding. Since the image of s is an effective Cartier
divisor when restricted to each fibre, by Tag 062Y it defines a relative effective Cartier
divisor. Let L = OC(s) and we claim that E = f∗L is a locally free sheaf on B of
rank 2. This is directly follows from Review A.1. The fact C ∼= P(E ) follows by the
similar proof in [58] Proposition V.2.2;

(ii) By (i) we can obtain line bundles Li = O(si) for i = 1, 2 and we claim that
there exists M a line bundle on B with L ∨

1 ⊗L2 = f ∗M . This can be easily deduced
by Review A.2 (see [79] Proposition 28.1.11). Let s0 ∈ H0(C,L1) be the section
vanishing along s1 and s∞ ∈ H0(C,L2) the section vanishing along s2. Then we have
a map of locally free sheaves on B:

Ψ : OB ⊕M ∨ → E , (a, b) 7→ as0 + bs∞.

Here the section bs∞ makes sense since by projection formula we have E = M ∨⊗f∗L2.
On an open cover of B which trivializes E , it is easy to check that Ψ is an isomorphism.
This open cover also trivializes the line bundle M and then the sections s0, s∞ restrict
to a basis of the sections of L on the fibres of f (since s1, s2 are disjoint);

(iii)Now we have the third s3, then by (ii) we have

M = s∗3f
∗M = s∗3OC(−s1 + s2) = OB,

hence again by (ii) we have E = O⊕2
B .
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