NOTES ON THE GEOMETRY OF HYPERTORIC VARIETIES

XIAOLONG LIU

ABSTRACT. In this note we will introduce the basic theory of hypertoric varieties.
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1. BASIC DEFINITIONS AND RESOLUTIONS OF HYPERTORIC VARIETIES

1.1. About Poisson and symplectic structures and symplectic resolutions. Here we give
an introduction of these and we refer | ] and [ | for more details. See also | ] for more
examples and results. We work over C.

Definition 1.1. We consider complex algebraic schemes.
o We say a scheme X carries a Poisson structure if there is a C-bilinear operation

{—,—}Zﬁxxﬁx—)ﬁX

which is a Lie bracket.
o Let f : X — Y be a morphism of Poisson schemes, we say it is a Poisson morphism if it
induce a homomorphism of Lie algebras.

Remark 1.2. Any Poisson structure can be induced by the Ox-linear homomorphism H : QY —
Tx = Der(Ox, Ox) such that {f, g} = H(df)(g). In particular, any symplectic variety has a canon-
tcal Poisson structure.

We also have the relative version of Poisson schemes and we omit them here.

Definition 1.3. Let Y, be a normal variety.

o A pair (Yo,wo) of the normal algebraic variety Yo and a 2-form wg on the smooth locus
(Yo)sm s called a symplectic variety if wg is symplectic and there exists (or equivalently, for
any) a resolution w :' Y — Yy such that the pull-back of wy by m extends to a holomorphic
2-form w on'Y.

e The resolution m: Y — Yy is called symplectic if w is also symplectic.

Some basic properties:
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Proposition 1.4 (Namikawa, 2001). A normal variety is symplectic if and only if it has only
rational Gorenstein singularities and its smooth part admits a holomorphic symplectic form.

Proof. See also Theorem 1.2 in | ] O
Proposition 1.5 (Prop.1.6 in | D). Let W be a symplectic variety with a resolution w: Z — W,
then the following statements are equivalent:

(1) m is crepant;
(2) w is symplectic;
(3) Kz is trivial.

Next, we now care about the following special case:

Definition 1.6. An affine symplectic variety (Yo = Spec R, wq) with C*-action (called conical C*-
action) is called a conical symplectic variety if it satisfies:

e The grading induced from the C*-action to the coordinate ring R is positive, i.e., R =
®i20 ]%z and Ro =C.

e wq is homogeneous with respect to the C*-action, i.e., there exists £ € Z (the weight of wg)
such that t*wy = t‘wy (t € C*).

Remark 1.7. We can show that the weight ¢ is always positive.

1.2. Algebraic symplectic quotients and hypertoric varieties. Note that hypertoric varieties
are examples of symplectic varieties.
Consider the exact sequence

0z 4B zn 4700
where A = [a1,...,a,] € Mgun(Z) and BT = [by,....,b,] € Mg,_aqyxn(Z) (the Gale duality of
{ay,...,a,}). Acting Hom(—, C*) we get
1T e B ed g
an exact sequence of algebraic tori.
Via the natural action of T™ on T*C" =~ C?" as
(t1y oo tn) = (21, ooy 20y W1y ey W) = (F121, ey b2y £ P W1, ey £ 20,
we have the action of T¢ on T*C" =~ C?" as
(21, ey 2y W1y ooy Wy ) = (8 21, oo, 80 2y, 8 P w0y, o 4wy

where t% := " -+ - ¢5*". The moment map of this given by
n
p:THC™ — ) = Ch (21, ey Zny W, oy Wy,) Z a; 2z W;.
i=1

Definition 1.8. Fiz a character a € Z¢ = Hom(T%,C*) and a point & € CY.

e We define the Lawrence toric variety as

X(4,a) = (€2")2 | T = Proj (@ C[zi,wj]“”’ka>

k=0

where (C*")*-%% = {u € C?" : there exists f € Clz;,w;]| such that f(u) # 0 and o(f)
a*(t)* @ f for k > 0} where C* = SpecC[t,1/t] and coaction morphism o : Clz;,w;] —
I'(Ora) ® C[z;,w;]. Note that (C[zi,wj]w’k“ ={feClz,wj]:0(f) =a*)*® f}.

o We define the hypertoric variety (or toric hyperkahler variety) as

V(A,0,8) = p (7 T = Proj (@ C[u*(s)fd’ka)

k=0

similar as above.

Remark 1.9. The Poisson structures coming from the usual symplectic structure we = Z;;l dz; A
dw; on T*C" = C" @ C™*.
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Remark 1.10. We can write the semistable locus as follows:

((Czn)a-ss — (Zi; wj) eEC™ . qe Z ngai + Z QéO(_aj)
i:2;#0 Jrw;#0
and ufl(f)a_ss = lfl(f) N (CQn)a_SS'

Remark 1.11. Note that we have a natural projective morphism II : X(A,a) — X(4,0) and
m:Y (A, o,&) = Y(A,0,¢) with the same reason. Indeed, we consider the case of hypertoric varieties.
Note that

k=0

Y(4,0,8) = Proj ((—B C[ul(f)]w’k“) — Spec Clu~'(9)]"".

Then inclusion C[p~1 (5)]Td C @0 Clu? (f)]w’}m induce Spec @ o Clpu™* (f)]TdJm — SpecC[p~! (f)]Td.
Since the grade induced by C*-action and this morphism is C*-invariant, then we getw: Y (A, a, &) —

Y (A,0,£). Note moreover that p=1(€)* % < p=1(€) = p=1(£)0-s.

Remark 1.12. As X(A,0) and Y (A4,0) are affine, we can find their coordinate rings. We refer this
in Lemma 2.17 in | ].

Remark 1.13. The hypertoric varieties are the special case of the following general contruction.

Consider a reductive group G and a representation V. Then we form T*V =V @®V* which comes
with a moment map ® : T*V — g* given by cup of T,V* — g* as T.G — T, (Gx) c T,V. We fix a
character x : G — C* and form the GIT quotient

27E) [ G 1= 27 | G = Proj <@ @[@*(5)]6"“) |

n=0
We have a natural projective morphism as before
T Y = 97NE) ), G— X = ®7(¢) J, G = SpecC[@71(0)]¢

carry Poisson structures coming from the usual symplectic structure on T*V . This construction will
not usually give a symplectic resolution; for example, Y may not be smooth and Y — X might not
be birational. Here in the physics literature, Y is called the Higgs branch of the 3d supersymmetric
gauge theory defined by G, V. G is called the gauge group and N 1is called the matter. Similarly, there
is a conical C* action on'Y coming from its scaling action of T*V .
As another special case, Nakajima defined the quiver varieties and we omit it here.

Proposition 1.14 (Trivial). If A € Matyxn(Z) of form A = A1 @ --- @ A, for A; € Maty, «1,(Z),
then we have the natural C* x T"~%-equivariant isomorphism of Poisson varieties

X%@;HM%%%Y%M%HWM%)

where aj 1= pj(a) for p; : C¢ — Chi.

1.3. Symplectic resolutions of hypertoric varieties. We will consider when 7 : Y (4, «,§) —
Y (A,0,£) will be a symplectic resolution. So we need to consider the condition that p=1(£)* =
p~ (&) st First we will compute their stabilizer group.

Let (z,w) € C* and set J, 4 1= {j € {1,...,n} : z; # 0 or w; # 0}, then we have

d d Az
Stab, 4 T = ker(T? 5% Tl=wl),

Hence by some linear algebra, that is, Ai W’ T4 — TlI/=wl is injective iff Aj, o 7z wl 5 7d g
surjective and Stab , T finite iff Ay, ®z2Q: Ql/=wl — Q7 is surjective, then we have
Corollary 1.15 (Coro.2.7 in | D). We have:

(1) Stab ., T? is finite if and only if Yjes. ., Qa; = Q4;

(2) Stab, 4 T? = 1 if and only if 2jes. ., Laj = 74,
Definition 1.16. In this setting, we call A is unimodular if all d x d-minors of A are 0 or +1.

Remark 1.17. Note that A is unimodular if and only if B is. Note also that for a unimodular A,
we have 3, ; Qa; = Q¢ iff ey Laj = 7% for J < {1,...,n}.
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Let A is a unimodular matrix and we define
Ha = {H < R?: H is generated by some of the a; and of codimension = 1}.

We say o generic if o ¢ | ey, H-

Lemma 1.18 (Lem.2.10 and Coro.2.11 in | D). In the case, for any o € Z¢ and &€ € C¢, we
have (u=1(€))*%% # &. If a generic, then (u=1(£))** = (u=1(€))** with free action by T?. In
particular, if o generic then X (A, «) is 2n — d-dimensional smooth Poisson variety and for any &,
Y (A, «,§) is a 2n — 2d-dimensional smooth symplectic variety.

Proof. The fact (u=1(£))*** # & follows from linear algebra. Now for generic «, to show (pu=1(£))®ss
(u=1(€))* st we just need to show C5 = C25t. We only have to show that the stabilizer group at
each point in C**° is finite by the closed orbit lemma.

To show that the stabilizer group of TZ at each point in (C2")
2jes. ., Qa; holds for (z,w) € (C?n)oss by the fact that

«a-SS

is finite, we note that a €

(CQn)a—ss = (zi7wj) eC*:qe Z onai + Z ng(—aj)
1:2; 70 Jrw; #0
On the other hand, « is generic and hence o cannot be in any hyperplanes in H 4. Since this implies
that Zjer L Qa; = Q?, the stabilizer group at each point in (C2")** is finite by Corollary 1.15(1).

Moreover, A is unimodular, we have >’ Za; = Z%. Thus the stabilizer group at each point in

€Sz w
(C?7)2-ss s trivial by Corollary 1.15(2). The final results follows from the construction of symplectic

quotient by directly check. |

Theorem 1.19 (Thm.2.16 in | 1). For a unimodular A and generic o and any & € C¢, the
morphism

e Y(A4,0,8) > Y(4,0,8)
is a projective symplectic resolution and if & = 0, then it is conical. In particular, Y (A,0,€) is a
symplectic variety and Y (A,0,0) is a conical symplectic variety.

Sketch. First, we have p : C?" L cn A ¢4 with the flat morphism V¥ : (2,w) — >}, zjwje;. Then
from dimension counting we get p~1(¢) is of equidimension 2n — d. As it define by d polynomials,
we know that u~!(¢) € C2¢ is a complete intersection and hence Cohen-Macaulay. After showing
that the codimension of singular locus > 2, that is, we can find that the singular locus contained in
U; (7€) n {2z = w; = 0}) and the latter has codimension > 2, then p~*(£) is normal by Serre’s
condition. One can show it is connected, hence ~1(€) is irreducible. As T? is reductive, Y (A, 0, ¢)
is a normal variety.

Moreover, we can show that it is birational. Indeed, zpw, = 0 defines a divisor Dy < ,fl(g)
and we consider the T%invariant open set U := (= (&)\ U, Di) n p=(£)**". We can show that
U < p=1(0)% need to add. Hence ¢ is indentity on U and hence it is birational.

Finally the result follows from Lemma 1.18, we have a projective resolution m¢ : Y(A4,a,§) —
Y(A,0,¢) such that Y (A4, o, §) is a smooth symplectic variety. Consider Uy := {y € Y} : dim wgl(y) =
0}, then by Zariski main theorem codimy (Y\Up) = 2 with isomorphism 7r§|7T£—1(U0). Then one can

easy to show that the symplectic form w on Y can descent to wg on (Yp)sm which is also symplectic
as codimy;), ((Yo)sm\Uo) = 2. So Y(A4,0,§) is symplectic. Now by Proposition 1.5 (symplectic

sm

manifold implies that it has the trivial canonical divisor). Well done.

Finally we consider the case ¢ = 0. The natural C*-action on C?" is s - (21, ..., Zn, W1, ..., Wy,)

(s71z1, .., 87 20, s twy, ..., 7wy, ). Then s*we = s%we and well done.

Ol

Remark 1.20. The final step is in general can be write with the same proof as follows:

Let Y be a smooth symplectic variety with a normal algebraic variety Yo such that we have a
projective birational morphism f:Y — Yy, then f is a symplectic resolution and Yy is a symplectic
variety.

Here we actually have more results:

Theorem 1.21 (Namikawa, need to add refs). The matriz A as above is unimodular iff Y (A,0) has
a symplectic resolution.
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Theorem 1.22 (Bellamy 2023, [ ). Any hypertoric variety Y (A, o, &) is a symplectic variety
without assuming A is unimodular.

1.4. Some basic examples.

Example 1.23 (A,,-type surface singularity). Consider 0 — Z Bogm+t1t A gm0 where

. 10 -~ 0 -1
01 - 0 -1

B=|:|, 4=
1 00 -~ 1 -1

Hence Y(A,0) = Syu, = {det (u1 xﬁl) = 0} ~ C?/zm+1L.
Y1 Uy

Example 1.24 (General minimal nilpotent orbit closure). Consider
0— Zk g ZZ1+"'+Z)¢+1 i Z£1+'“+£k+1—k -0

where A, B given by Figure 1. Then

1 0 0 -1 0 0
O 1 O k —1 O 0 16171 O O O
00 1 10 0
1 0 0 0 -1 - 0
: l1-1 0 -1 --- 0
i ; {BSF Dl o | Ina oo
0 1 0 0 -1 0
B = 52_1 A=
0 1 0 0 0 -1
0 0 -1
0 0 1 EEE I8 AR R LY loa| O
AR S th-1 0 0 - -1
0o o0 - 1 1 1 - 1
SN fIaar EMaC
Ik ! O (0]
a : : Cry1 0 Iy,
B R ERC AR 1
€ My+-sti—hyxk(Z) € Mt sttty +t0) (£)

FIGURE 1. Matrixes of general minimal nilpotent orbit closure

Ui Z12 o X1 k+1
——mi Z21 U2 o T2k+1
1M1 )
Y(Avo) =0 (617 "'7€k+1) = . . . € 5[k+1 :
Tk+1,1 LTk4+1,2 " Uk+1
14

uy' Tiz 0t Tkl

1z
, T91 Uy’ Togtl |
2 x 2-minors of . . . is 0
Lr+1
Tr+1,1 Tk+1,2 0 Upyq
—min —min

of dimension 2k. When {; =1 for all i, we have O, = O (1,...,1) which is the usual minimal

nilpotent orbit closure of Aj-type with springer resolution T*PF — O, -

Actually we will focus on the case k = 2.

2. BASIC GEOMETRY OF HYPERTORIC VARIETIES

In this section we will introduce the core of Y (A4, 0) and how it determine the geometry of Y(4, 0).
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2.1. Hypertoric varieties with hyperplane arrangements. Here we consider the case & = 0.
Then we define Y (A, ) := Y (A, «,0). It defined by

0>z 18 zn 474 90
where A = [ay,...,a,] € Mgx,(Z) and BT = [by,....b,] € Mn—ayxn(Z).

Then we can define H; := {x e R"%:x.b; +r;, =0} fori = 1,...,n where r = (ry,...,r,) € Z"
be a lifting of a along A. This defines a hyperplane arrangement A := {Hj, ..., H,}. Here we can
denote Y (A) :=Y (4, «a).

Definition 2.1. In this setting, for such hyperplane arrangement A:

e we call A is simple if for any subset of m hyperplanes with nonempty intersections, they
intersect of codimension m.

e we call A is unimodular if for any n — d linear independent {b;,,...,b; _,} spans C"~% over
Z.

o we call A is smooth if it is simple and unimodular.

Remark 2.2. Note that A is unimodular if and only if B is unimodular if and only if A is unimod-
ular.

Proposition 2.3 (3.2/3.3 in | ). The hypertoric variety Y (A) has at worst orbifold (finite
quotient) singularities if and only if A is simple, and is smooth if and only if A is smooth.

Note that A = {H1, ..., H,} be a central arrangement, meaning that ; = 0 for all 4, so that all of
the hyperplanes pass through the origin. Then we have the following result:

Corollary 2.4. For any central arrangement A, there exists a simplification A = {f[l,...,ﬁ'n} of
A by which we mean an arrangement defined by the same vectors {b;}, but with a different choice
of a7 such that A is simple. This will give us an equivariant orbifold resolution Y (A) — Y (A).
When A is unimodular, this will give us a resolution of singularities which recover the special case
of Theorem 1.19.

2.2. The cores and some topology properties. Consider again £ = 0. Then we have an equi-
variant orbifold resolution

~.

m:Y(A) - Y(A)
where A = {Hy, ..., H,} be a central arrangement with simplification A = {Hy, ..., H,}.

Definition 2.5. In this case, we call ¢(A) := 7= 1([0]) the core of Y (A).

~.

Now we will give a toric interpretation of the core ¢(A4). For any J < {1,...,n}, define the
polyhedron
Pyp={zeR"%:z-bj+r;>0ifieJand x-b; +7; <0ifi¢ J}.
Define
¢y :={(z,w)eT*C":w; =01ifie Jand z; =01if i ¢ J}
and define X; := €; //, T, which induce the inclusion

Xy = p'(0) /, T = Y (A).
Theorem 2.6 (Section 6 in [ ]/ section 3.2 in | ). In this setting, we have:
(1) the scheme X is isomorphic to the toric variety correspond to the weighted polytope Pj;

2) we have ¢(A) = . Xy, hence ¢ A) is a union o compact toric varieties glued
J:Pj bounded
together along toric subvarieties as prescribed by the combinatorics of the polytopes Py and

their intersections in R~ %,

Sketch. Note that (1) follows from the surjectivity real moment maps and some classification theo-
rems, see Lemma 3.8 in | ]. For (2), see Proposition 3.11 in | ]. O

Remark 2.7. This is right even for A is not simple. For the basic theory of toric varieties, we refer
[Fulos], | | and [Tel22].

Finally we consider some topological results.

Theorem 2.8 (6.5 in | ] and section 6 in [ D). In this setting, we have:
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~. ~.

(1) the core ¢(A) is a deformation retract of Y (A);
(2) the inclusion
Y(A) = n7(0) /o T > T*C" J/, T = X(A)

~

is a homotopy equivalence where X (A) is the corresponding Lawrence toric variety.

So

Combinatorics Geometry/topology

{hyperplane arrangement A} —— {hypertoric varieties Y (A)}

3. UNIVERSAL POISSON STRUCTURES AND ITS APPLICATIONS

In this section we will give a concrete description of universal Poisson structure of hypertoric
varieties. At the begining, we consider some general results. Here we will follows [ ]

3.1. Basic theories.

Definition 3.1. For a Poisson variety (Y,{—, —}o) and an affine scheme (B,0) with fized point 0,
we call a Poisson B-scheme (Y,{—,—}) a Poisson deformation of Y if Y — B is flat, each fiber is a
Poisson scheme, and the central fiber is isomorphic to (Y,{—, —}o) as a Poisson variety.

A Poisson deformation (V,{—,—}) — B is called infinitesimal if B = Spec A where A is an
Artinian algebra with residue field C.

Definition 3.2. A Poisson deformation (¥,{—,—}) — B of a Poisson variety (Y,{—, —}o) is called
universal at 0 if for each infinitesimal Poisson deformation (X,{—,—}') — (Spec A,m,) there exists
a unique morphism f : Spec A — B such that f(m4) = 0 and the diagram

X ——>Y

Lo

Spec A . B

which is cartesian.
In general we have the following:

Theorem 3.3 (| D). Let Yo be a conical symplectic variety with a projective symplectic res-
olution m : Y — Yy. Then there exists the universal Poisson deformation spaces Y — H?(Y,C)
and Yo — H?*(Y,C)/W of Y and Yy, respectively, and they satisfy the following C*-commutative

diagram:
Y Yo
y / n / ‘
0 0

L "

H(Y,C) ———— H(Y,C)/W

Vo

where 1 is a Galois cover with finite Galois group W acts linearly on H*(Y,C) which is called the
Namikawa—Weyl group of Yj.

Some comments. First, the singular locus (Yp)sing can be stratified by smooth symplectic vari-
eties. Let Y¢odim>4 denote the union of strata of codimension 4 or higher, and define ¥ .oqimo :=
(Y0)Sing \Xcodim>4. Then, for each component Zj, of the connected component decomposition ¥eodim 2 =
LIz, Zx, one can consider a transversal slice Sy, through a point = € Z. Since Sy, = SAek is a
symplectic surface, i.e., the ADE type surface singularity with the corresponding Dynkin diagram
Ay, 80 T : Y — Yy is locally (at z) isomorphic to p x id : S, x C*™=2 — §, x C*™~2 where
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2m = dim Yy and p is the minimal resolution of Sy, . We consider all (—2)-curves C; (1 <4 < ;) in
Sy, and set

@gk = Z dl[CZ] dl € Z s.t. (Z dZ[Cz]> =-2)C H2(§gk,R).
i=1 i=1

Then, &, defines the corresponding ADFE type root system in H2(S, ,R), and the associated usual
Weyl group W, —acts on H 2(5’@ ,R). However this description is local at each point on Zj, and the
number of irreducible components of 771(Z;) may be less than £} globally. In fact, the following
homomorphism is defined by the monodromy:

ok m1(Z1) — Aut(Ay,),

where Ay, is the associated Dynkin diagram and Aut(Ay, ) is its graph automorphism group. Then,
we can define the subgroup of W, ~as

Wy, = W;np’“ i={0eWs, :01=10,1€Tmp}.
. .
Finally, taking the direct product of them, we get the Namikawa-Weyl group:
W .= H Wzk.
k
Well done. (]

In our case of hypertoric varieties, we have the following results:

Theorem 3.4 (Thm 3.11 in | ). Let A be a unimodular matriz and o € Z be a generic
element. If for B, b; # 0(1 <1i < n) and we take B as

B bk)
B(®) bk
B=| . | BW=| . |t
B k)

where if ki # ko, then b*1) %« +b*k2)  Then the diagram of Theorem 3.3 for the affine hypertoric
variety Y (A, 0) is obtained as

) - Y(

)/“ = \
J |

11
X(A, o Ve X(A,0)/Wg

I

cd Cd/Wg

where Iy, is the composition of X(A,a) — X(A,0) and the quotient map of X(A,0) by Wp :=
Sy, X+ x Sy,

Sketch. First we need to show that i, : X(A,a) — C% and fip : X(A,0) — C¢ are Poisson
deformations of Y(A,a) and Y (A,0), respectively. Note that X(A,«a) is smooth and X(A,0) is
Cohen-Macaulay by a result due to Hochster, then by miracle-flatness fi,, and fip are flat. Then
these are right by definition.

Next one can show that W < Wpg by analyze the singular locus carefully, using Proudfoot-
Webster’s result, see Theorem 3.6 and Corollary 3.7 in | ]. Note that in this case we already
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have the following diagram:

Y(

—

) - Y(

X(A, )

A
|

c — c

If one can construct a good Wx-action on X (A, 0) and C¢, then one can show W = Wp and construct
the universal Poisson deformation of Y'(A4,0) (Lemma 3.8 in | D-
Note that we have already take B as

B k)
BO b

B = , B® — ) o
B k)

where if k1 # ko, then (%)  +b(*2). Then we let W 1= &y, x -+ x &y, act C¥" as z; > z,(;), wi —
We(;) and act on C" as u; — uq(;). Now one can show that Wg-action on C?" induce an action on
X (A,0) and Wg-action on C" induce an action on C? via A : C* — C<.

Now we give a sketch of the final things. Let X — C?/W be the universal Poisson structure of
Y (A,0). Then we have

X(A,0)/Wg
X(A ) J X
Cd/ W
o
cd v cd/w

Hence after the completion at 0, we have factorization

—_

X(4,0)/Wp
—_ \\\\\) ~
X(A, ) J X
Ca/W
¥ \\\\
—~ b Y
cd Ca/w

Note that all of these are C*-equivariant, using this C*-action we can have the algebraization by
Namikawa which induce C?/Wpg — C4/W. As W < Wp, this force W = Wy. Well done. a

Remark 3.5. By definition, the Wi-action on C>" does not commute with the T®-action on it in
general.
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3.2. Application 1: some classification results. We will give an equivalent conditions of Y (4, 0) =
Y (A’,0) for unimodular matrixes.

Definition 3.6. For rank d matrices A, A’ € Matyxn(Z), we say that A ~ A" if A" is obtained from
A by a sequence of some elementary row operations over Z, interchanging some column vectors, and
multiplying some column vectors by —1.

Hence A ~ A’ holds if and only if there exists P € GL4(Z) and an n x n signed permutation
matriz D such that A’ = PAD. Here, a signed permutation matriz is a product of a permutation
matriz and o diagonal matriz whose all diagonal components are 1 or —1.

The following is our main theorem:

Theorem 3.7 (Arbo-Proudfoot 2016, Nagaoka 2021). For a rank d unimodular A, A" € Matgxn(Z),
the following are equivalent:

(1) Y(A,0) = Y(A',0) as conical symplectic varieties, that is, C*-equivariant;

(2) Y(A,0) =Y (A,0) which is C* x T" 4-equivariant of symplectic varieties;

(3) A~ A;

(4) BT ~ (B")".

Sketch. Note that (3) is equivalent to (4) by trivial reason. We just need to consider (1)(2)(3). As
(2) implies (1) is also trivial, we will prove (1) implies (2) and the equivalence of (2)(3).

We first prove that (3) implies (2). Note that in this step we don’t need the unimodular condition.
Now elementary row operations don’t change the image of torus embedding A” : T¢ — T™, then then
claim is clear in the case. Next we consider interchanging some column vectors, and multiplying some
column vectors by —1. This is also trivial since if we change a; and a;, then the new moment map
is obtained from the old one with the interchange z; < z; and w; < w;. This is of course C* x T2n-
equivariant on C2” which is C* x T?"~%-equivariant on X (A4/A’,0) and hence C* x T"~%-equivariant
on Y(A/A’,0). The multiplying some column vectors by —1 is similar.

Now (2) implies (3) follows from the general results due to Arbo and Proudfoot in | ] by
using zonotope tiling. We will finally consider (1) implies (3).

Assume we have an isomorphism ¢ : Y (A,0) =~ Y (A4’,0) as conical symplectic varieties, then the
corresponding universal Poisson deformation spaces are C*-equivariant isomorphic to each other as
Poisson varieties, moreover we have the following commutative diagram:

X(A,0)/W5 255 X(A,0)/Wg

| |

Cd/WB % (Cd/WB/

After base change to C? via projection, we have

X(A,0) — 2= X(A',0)

o~

(Cd
Then we just need to show that we can replace ® (which is C*-equivariant) by a C* x T?"~9 -
equivariant isomorphism ¥ as Poisson varieties, which is in the form of an isomorphism induced by
~. This is actually pure linear algebra where the basic idea as follows: Berchttold in | ] Theorem
4.1 shows that we can replace ® by a T?"~“-equivariant isomorphism ¥, : X(A4,0) =~ X(A’,0)
induced from a permutation of coordinates ¥, : C2" ~ C2?" (o € Ss,) which is equivariant with
respect to an isomorphism v : T¢ =~ T¢. This give as the following diagrams:

)

Td « T2n 74d (A77A) 72n
dz,;l lﬁ/a,; w*,;T T\if,":,;
Td < T2n Zd Z2n

(_A;T) ()
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By the commutativity of the above diagram, note that we have

w* I a’a’(i) lf 1 < U(Z) < n,
! —a,()—n ifn+1<o(i)<2n.
Now, by multiplying some of the a} by —1, we can assume that if a; # 0 then there is no j such
that a; = —a; . In this setting, we can construct a permutation 7 € &, such that ¥*a} = fa,@

for any 1 < @ < n as follows. First, take any bijection 79 between Ij) := {i € [n] | a; = 0} and
Iy :={i € [n] | @; = 0}, then define 7(i) := 79(¢). Next, for i ¢ I{), we define 7(¢) as

M) o (i) if 1 <oi) <n,
7(i) :=
o(i)—n ifn+1<o(i)<2n.
Then, this defines a well-defined permutation 7 € &,, since we assume that if & # 0 then there is
no j such that o = —a;. By definition, we have
w*a,. _ ar(;) ifl< O'(Z) <n,
! —a,; ifn+1<o(i)<2n.
Thus, D := D, Dy is the desired signed permutation matrix.

Then ¥* := (D,—D): Z"® 7" — Z™ ® Z™ satisfying the above commutative diagram instead of
W%, Hence we have A = ¢* A’D~! and will done. O

Remark 3.8. We can have the similar results for a # 0.

Remark 3.9. Actually you can show that for the unimodular matrices A, B as above, by applying
some transformations to A, B, we can get

1 -+ 0

1 0
B - |: oA=L :
0 - 1 c 0 .
C
where C' is totally unimodular.
Corollary 3.10 (Thm 4.8 in | ]). Each 4-dimensional affine hypertoric variety Y (A,0) associ-

ated to a unimodular matriz A is isomorphic to exactly one of SA,ZP1 X SAZT1 and @mm(ﬁl,ﬁg,ég).

Sketch. This follows from Theorem 3.7 and the classifications of (the reduction) of B using the graph

matoid theory and the constructions of Sa, , x Sa,, , and O™ (01,05,45). For the classification
results of these matrices, we refer Proposition 4.6 in [ ] 0

3.3. Application 2: counting projective symplectic resolutions via Wall-crossings. To
count the number of projective crepent resolutions of hypertoric varieties Y (A, 0) for unimodular A,
we need to consider the all types of its projective crepent resolutions. Actually we have the following
general result:

Theorem 3.11 (Yamagishi 2015, Braden-Proudfoot-Webster 2016). Assume a conical symplectic
variety Y admits a projective crepant resolution Y’ — Y. Then the number of all distinct projective
crepant resolutions of Y is given by

t{the chambers of Hy }
4
where Hy < H?(Y',R) is the associated hyperplane arrangement whose chambers are each an ample
cone of a projective crepant resolution of Y, and W is the Namikawa—Weyl group for Y .

Comments. In general, by Yamagishi in [ | the number of distinct projective crepant resolu-
tions of conical symplectic varieties (or more generally, rational Gorenstein singularities) is equal to
the number of ample cones inside the movable cone. Moreover, in | ], they showed that in
the case of conical symplectic varieties, the movable cone is a fundamental domain with respect to
the Namikawa—Weyl group action on H?(Y’,R) = Picg(Y”’). Then we have the result. O

Apply this into hypertoric varieties, we have the following result:
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Corollary 3.12 (Nagaoya). For hypertoric variety Y (A,0) associated to a unimodular matriz A,
the number of all distinct projective crepant resolutions of Y is given by

#{the chambers of Ha}
Wl

where Ha = {H < R : H is generated by some of the a; and of codimension = 1} as before.

Comments. We just need to show Hy (4,0) = Ha since by Theorem 3.4 W = Wg. See the argumenst
in Page 501 in | | which using Kirwan maps and we omitted. |

Remark 3.13. In general, to compute the number of chambers of a hyperplane arrangement H, we
consider a more refined invariant, the characteristic polynomial x+ (t) defined as below.

Recall some notations on hyperplane arrangements. Given an arrangement H in R, let L(H) be
the set of all nonempty intersections of hyperplanes in H < R%. We define the partial order x <y
in L(H) if © 2 y. We call L(H) the intersection poset of H. For L(H) (in general for any finite
poset with the least element), we can define the Mébius function u: L(H) — Z as

p(RY) =1 and p(x) =— > u(y).

y<zx
Then we define

xu(t) = Y pla)pt™@,
zeL(H)

where dim(z) is the dimension of x as an affine subspace of R:. They also showed that we have
t{chambers of H} = (—1)%xz(—1).

Corollary 3.14 (777). For unimodular A, any projective symplectic resolutions of the hypertoric
variety Y (4, 0) follows from Y (A, «) for generic a.

Proof. 1 don not know this is right or not!!! |
Now we using this to deduce the number of projective crepent resolutions of O (£1, s, {3).

Corollary 3.15. Let’s consider 6min(€1,€2,€3).
(1) Define the hyperplane arrangement He, o,.0, = R4 as the following, where we take

(T1ye s @oy Y1y - ooy Yoy 21, - - -, Z05) GS the coordinates:
Hijp @ zi+yj+2,=0 (1<i<l,1<j<l,1<k< )
A . bs 1 T — T =0 (1 <iyp <ig <ty)
lilals - =\ Y . oy =0 (1<'<'<€)
J1,J2 ' Yix Yja < J1 J2 X L2
H£17k2 : 2k — Zky =0 (1 < ki <kg < £3)

Then the number of the projective symplectic resolutions of @min(ﬁl,ﬂg,ﬁg) 15

#{the chambers of He, ¢;,05}
01105105

(2) The number of projective crepent resolutions of 6min(€1,€2, 1) is

Uy + £y
4y '

The number of projective crepent resolutions of o (01,02,1) is

(fl +;12+1) (Z1+4Z22+1)

b1+ 0o+ 1

Example 3.16. As an example, we consider the affine hypertoric variety 6mm(27 1,1) give by matriz

1 0
0 1 -1.0 10
B=11 o ’A=(1 10 J'
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Then the wall-crossing structure of the parameter o and the corresponding core given by the Figure
2 as follows. Then one can see how it can connected by Mukai-flops.

Ha X 3 1 a 3 1
- Qg
- 3 ! 2 2
)
i B

az 3 1 as 1 3

N\

\4 4

FIGURE 2. The wall-crossing of cores of @min(Z, 1,1)

Remark 3.17. In | |, they shows that in general all such wall-crossing given by a family version
of Mukai-flops.
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