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Abstract. In this note we will introduce the basic theory of hypertoric varieties.
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1. Basic definitions and resolutions of hypertoric varieties

1.1. About Poisson and symplectic structures and symplectic resolutions. Here we give
an introduction of these and we refer [Bea00] and [Fu06] for more details. See also [Fu03] for more
examples and results. We work over C.

Definition 1.1. We consider complex algebraic schemes.

‚ We say a scheme X carries a Poisson structure if there is a C-bilinear operation

t´,´u : OX ˆ OX Ñ OX

which is a Lie bracket.
‚ Let f : X Ñ Y be a morphism of Poisson schemes, we say it is a Poisson morphism if it
induce a homomorphism of Lie algebras.

Remark 1.2. Any Poisson structure can be induced by the OX-linear homomorphism H : Ω1
X Ñ

TX “ DerpOX ,OXq such that tf, gu “ Hpdfqpgq. In particular, any symplectic variety has a canon-
ical Poisson structure.

We also have the relative version of Poisson schemes and we omit them here.

Definition 1.3. Let Y0 be a normal variety.

‚ A pair pY0, ω0q of the normal algebraic variety Y0 and a 2-form ω0 on the smooth locus
pY0qsm is called a symplectic variety if ω0 is symplectic and there exists (or equivalently, for
any) a resolution π : Y Ñ Y0 such that the pull-back of ω0 by π extends to a holomorphic
2-form ω on Y .

‚ The resolution π : Y Ñ Y0 is called symplectic if ω is also symplectic.

Some basic properties:
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Proposition 1.4 (Namikawa, 2001). A normal variety is symplectic if and only if it has only
rational Gorenstein singularities and its smooth part admits a holomorphic symplectic form.

Proof. See also Theorem 1.2 in [Fu06]. □

Proposition 1.5 (Prop.1.6 in [Fu06]). Let W be a symplectic variety with a resolution π : Z Ñ W ,
then the following statements are equivalent:

(1) π is crepant;
(2) π is symplectic;
(3) KZ is trivial.

Next, we now care about the following special case:

Definition 1.6. An affine symplectic variety pY0 “ SpecR,ω0q with C˚-action (called conical C˚-
action) is called a conical symplectic variety if it satisfies:

‚ The grading induced from the C˚-action to the coordinate ring R is positive, i.e., R “
À

iě0Ri and R0 “ C.
‚ ω0 is homogeneous with respect to the C˚-action, i.e., there exists ℓ P Z (the weight of ω0)
such that t˚ω0 “ tℓω0 (t P C˚).

Remark 1.7. We can show that the weight ℓ is always positive.

1.2. Algebraic symplectic quotients and hypertoric varieties. Note that hypertoric varieties
are examples of symplectic varieties.

Consider the exact sequence

0 Ñ Zn´d B
Ñ Zn A

Ñ Zd Ñ 0

where A “ ra1, ...,ans P MdˆnpZq and BT “ rb1, ..., bns P Mpn´dqˆnpZq (the Gale duality of
ta1, ...,anu). Acting Homp´,C˚q we get

1 Ñ Td A
T

Ñ Tn BT

Ñ Tn´d Ñ 1

an exact sequence of algebraic tori.
Via the natural action of Tn on T˚Cn – C2n as

pt1, ..., tnq ¨ pz1, ..., zn, w1, ..., wnq “ pt1z1, ..., tnzn, t
´1
1 w1, ..., t

´1
n wnq,

we have the action of Td on T˚Cn – C2n as

t ¨ pz1, ..., zn, w1, ..., wnq “ pta1z1, ..., t
anzn, t

´a1w1, ..., t
´anwnq

where tai :“ t
a1,i
1 ¨ ¨ ¨ t

ad,i
d . The moment map of this given by

µ : T˚Cn Ñ t˚d “ Cd, pz1, ..., zn, w1, ..., wnq ÞÑ

n
ÿ

i“1

aiziwi.

Definition 1.8. Fix a character α P Zd “ HompTd,C˚q and a point ξ P Cd.
‚ We define the Lawrence toric variety as

XpA,αq :“ pC2nqα-ss {{ Td “ Proj

˜

à

kě0

Crzi, wjs
Td,kα

¸

where pC2nqα-ss “ tu P C2n : there exists f P Crzi, wjs such that fpuq ‰ 0 and σpfq “

α˚ptqk b f for k ą 0u where C˚ “ SpecCrt, 1{ts and coaction morphism σ : Crzi, wjs Ñ

ΓpOTdq b Crzi, wjs. Note that Crzi, wjs
Td,kα “ tf P Crzi, wjs : σpfq “ α˚ptqk b fu.

‚ We define the hypertoric variety (or toric hyperkähler variety) as

Y pA,α, ξq :“ µ´1pξqα-ss {{ Td “ Proj

˜

à

kě0

Crµ´1pξqsT
d,kα

¸

similar as above.

Remark 1.9. The Poisson structures coming from the usual symplectic structure ωC “
řn
j“1 dzj ^

dwj on T˚Cn “ Cn ‘ Cn˚.
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Remark 1.10. We can write the semistable locus as follows:

pC2nqα-ss “

$

&

%

pzi, wjq P C2n : α P
ÿ

i:zi‰0

Qě0ai `
ÿ

j:wj‰0

Qě0p´ajq

,

.

-

and µ´1pξqα-ss “ µ´1pξq X pC2nqα-ss.

Remark 1.11. Note that we have a natural projective morphism Π : XpA,αq Ñ XpA, 0q and
π : Y pA,α, ξq Ñ Y pA, 0, ξq with the same reason. Indeed, we consider the case of hypertoric varieties.
Note that

Y pA, 0, ξq “ Proj

˜

à

kě0

Crµ´1pξqsT
d,k¨0

¸

“ SpecCrµ´1pξqsT
d

.

Then inclusion Crµ´1pξqsT
d

Ă
À

kě0 Crµ´1pξqsT
d,kα induce Spec

À

kě0 Crµ´1pξqsT
d,kα Ñ SpecCrµ´1pξqsT

d

.
Since the grade induced by C˚-action and this morphism is C˚-invariant, then we get π : Y pA,α, ξq Ñ

Y pA, 0, ξq. Note moreover that µ´1pξqα-ss Ă µ´1pξq “ µ´1pξq0-ss.

Remark 1.12. As XpA, 0q and Y pA, 0q are affine, we can find their coordinate rings. We refer this
in Lemma 2.17 in [Nag21].

Remark 1.13. The hypertoric varieties are the special case of the following general contruction.
Consider a reductive group G and a representation V . Then we form T˚V “ V ‘V ˚ which comes

with a moment map Φ : T˚V Ñ g˚ given by cup of TxV
˚ Ñ g˚ as TeG Ñ TxpGxq Ă TxV . We fix a

character χ : G Ñ Cˆ and form the GIT quotient

Φ´1pξq {{χ G :“ Φ´1pξqχ-ss {{G “ Proj

˜

à

ně0

CrΦ´1pξqsG,nχ

¸

.

We have a natural projective morphism as before

π : Y :“ Φ´1pξq {{χ G Ñ X :“ Φ´1pξq {{0 G “ SpecCrΦ´1p0qsG

carry Poisson structures coming from the usual symplectic structure on T˚V . This construction will
not usually give a symplectic resolution; for example, Y may not be smooth and Y Ñ X might not
be birational. Here in the physics literature, Y is called the Higgs branch of the 3d supersymmetric
gauge theory defined by G,V . G is called the gauge group and N is called the matter. Similarly, there
is a conical Cˆ action on Y coming from its scaling action of T˚V .

As another special case, Nakajima defined the quiver varieties and we omit it here.

Proposition 1.14 (Trivial). If A P MatdˆnpZq of form A “ A1 ‘ ¨ ¨ ¨ ‘ As for Ai P MatkiˆlipZq,
then we have the natural C˚ ˆ Tn´d-equivariant isomorphism of Poisson varieties

XpA,αq –
ź

j

XpAj , αjq, Y pA,αq –
ź

j

Y pAj , αjq

where αj :“ pjpαq for pj : Cd Ñ Ckj .

1.3. Symplectic resolutions of hypertoric varieties. We will consider when π : Y pA,α, ξq Ñ

Y pA, 0, ξq will be a symplectic resolution. So we need to consider the condition that µ´1pξqα-ss “

µ´1pξqα-st. First we will compute their stabilizer group.
Let pz,wq P C2n and set Jz,w :“ tj P t1, ..., nu : zj ‰ 0 or wj ‰ 0u, then we have

Stabz,w Td “ kerpTd
AT

Jz,w
Ñ T|Jz,w|q.

Hence by some linear algebra, that is, ATJz,w
: Td Ñ T|Jz,w| is injective iff AJz,w : Z|Jz,w| Ñ Zd is

surjective and Stabz,w Td finite iff AJz,w bZ Q : Q|Jz,w| Ñ Qd is surjective, then we have

Corollary 1.15 (Coro.2.7 in [Nag21]). We have:

(1) Stabz,w Td is finite if and only if
ř

jPJz,w
Qaj “ Qd;

(2) Stabz,w Td “ 1 if and only if
ř

jPJz,w
Zaj “ Zd.

Definition 1.16. In this setting, we call A is unimodular if all dˆ d-minors of A are 0 or ˘1.

Remark 1.17. Note that A is unimodular if and only if B is. Note also that for a unimodular A,
we have

ř

jPJ Qaj “ Qd iff
ř

jPJ Zaj “ Zd for J Ă t1, ..., nu.
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Let A is a unimodular matrix and we define

HA :“ tH Ă Rd : H is generated by some of the aj and of codimension “ 1u.

We say α generic if α R
Ť

HPHA
H.

Lemma 1.18 (Lem.2.10 and Coro.2.11 in [Nag21]). In the case, for any α P Zd and ξ P Cd, we
have pµ´1pξqqα-ss ‰ H. If α generic, then pµ´1pξqqα-ss “ pµ´1pξqqα-st with free action by Td. In
particular, if α generic then XpA,αq is 2n ´ d-dimensional smooth Poisson variety and for any ξ,
Y pA,α, ξq is a 2n´ 2d-dimensional smooth symplectic variety.

Proof. The fact pµ´1pξqqα-ss ‰ H follows from linear algebra. Now for generic α, to show pµ´1pξqqα-ss “

pµ´1pξqqα-st we just need to show Cα-ss “ Cα-st. We only have to show that the stabilizer group at
each point in Cα-ss is finite by the closed orbit lemma.

To show that the stabilizer group of TdC at each point in pC2nqα-ss is finite, we note that α P
ř

jPJz,w
Qaj holds for pz,wq P pC2nqα-ss by the fact that

pC2nqα-ss “

$

&

%

pzi, wjq P C2n : α P
ÿ

i:zi‰0

Qě0ai `
ÿ

j:wj‰0

Qě0p´ajq

,

.

-

On the other hand, α is generic and hence α cannot be in any hyperplanes in HA. Since this implies
that

ř

jPJz,w
Qaj “ Qd, the stabilizer group at each point in pC2nqα-ss is finite by Corollary 1.15(1).

Moreover, A is unimodular, we have
ř

jPJz,w
Zaj “ Zd. Thus the stabilizer group at each point in

pC2nqα-ss is trivial by Corollary 1.15(2). The final results follows from the construction of symplectic
quotient by directly check. □

Theorem 1.19 (Thm.2.16 in [Nag21]). For a unimodular A and generic α and any ξ P Cd, the
morphism

πξ : Y pA,α, ξq Ñ Y pA, 0, ξq

is a projective symplectic resolution and if ξ “ 0, then it is conical. In particular, Y pA, 0, ξq is a
symplectic variety and Y pA, 0, 0q is a conical symplectic variety.

Sketch. First, we have µ : C2n Ψ
Ñ Cn A

Ñ Cd with the flat morphism Ψ : pz,wq ÞÑ
ř

j zjwjej . Then

from dimension counting we get µ´1pξq is of equidimension 2n ´ d. As it define by d polynomials,
we know that µ´1pξq P C2d is a complete intersection and hence Cohen-Macaulay. After showing
that the codimension of singular locus ě 2, that is, we can find that the singular locus contained in
Ť

i

`

µ´1pξq X tzi “ wi “ 0u
˘

and the latter has codimension ě 2, then µ´1pξq is normal by Serre’s

condition. One can show it is connected, hence µ´1pξq is irreducible. As Td is reductive, Y pA, 0, ξq

is a normal variety.
Moreover, we can show that it is birational. Indeed, zkwk “ 0 defines a divisor Dk Ă µ´1pξq

and we consider the Td-invariant open set U :“
`

µ´1pξqz
Ť

kDk

˘

X µ´1pξqα-st. We can show that

U Ă µ´1p0q0-st need to add. Hence πξ is indentity on U and hence it is birational.
Finally the result follows from Lemma 1.18, we have a projective resolution πξ : Y pA,α, ξq Ñ

Y pA, 0, ξq such that Y pA,α, ξq is a smooth symplectic variety. Consider U0 :“ ty P Y0 : dimπ´1
ξ pyq “

0u, then by Zariski main theorem codimY pY zU0q ě 2 with isomorphism πξ|π´1
ξ pU0q

. Then one can

easy to show that the symplectic form ω on Y can descent to ω0 on pY0qsm which is also symplectic
as codimpY0qsmppY0qsmzU0q ě 2. So Y pA, 0, ξq is symplectic. Now by Proposition 1.5 (symplectic
manifold implies that it has the trivial canonical divisor). Well done.

Finally we consider the case ξ “ 0. The natural C˚-action on C2n is s ¨ pz1, ..., zn, w1, ..., wnq “

ps´1z1, ..., s
´1zn, s

´1w1, ..., s
´1wnq. Then s˚ωC “ s2ωC and well done. □

Remark 1.20. The final step is in general can be write with the same proof as follows:
Let Y be a smooth symplectic variety with a normal algebraic variety Y0 such that we have a

projective birational morphism f : Y Ñ Y0, then f is a symplectic resolution and Y0 is a symplectic
variety.

Here we actually have more results:

Theorem 1.21 (Namikawa, need to add refs). The matrix A as above is unimodular iff Y pA, 0q has
a symplectic resolution.
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Theorem 1.22 (Bellamy 2023, [Bel23]). Any hypertoric variety Y pA,α, ξq is a symplectic variety
without assuming A is unimodular.

1.4. Some basic examples.

Example 1.23 (Am-type surface singularity). Consider 0 Ñ Z B
Ñ Zm`1 A

Ñ Zm Ñ 0 where

B “

¨

˚

˝

1
...
1

˛

‹

‚

, A “

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0 ´1
0 1 ¨ ¨ ¨ 0 ´1
...

...
...

...
0 0 ¨ ¨ ¨ 1 ´1

˛

‹

‹

‹

‚

.

Hence Y pA, 0q – SAm
:“

"

det

ˆ

u1 x1
y1 um1

˙

“ 0

*

– C2{Zm`1.

Example 1.24 (General minimal nilpotent orbit closure). Consider

0 Ñ Zk B
Ñ Zℓ1`¨¨¨`ℓk`1 A

Ñ Zℓ1`¨¨¨`ℓk`1´k Ñ 0

where A,B given by Figure 1. Then

Figure 1. Matrixes of general minimal nilpotent orbit closure

Y pA, 0q “ Omin
pℓ1, ..., ℓk`1q :“

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

u1 x12 ¨ ¨ ¨ x1,k`1

x21 u2 ¨ ¨ ¨ x2,k`1

...
...

...
xk`1,1 xk`1,2 ¨ ¨ ¨ uk`1

˛

‹

‹

‹

‚

P slk`1 :

2 ˆ 2-minors of

¨

˚

˚

˚

˝

uℓ11 x12 ¨ ¨ ¨ x1,k`1

x21 uℓ22 ¨ ¨ ¨ x2,k`1

...
...

...

xk`1,1 xk`1,2 ¨ ¨ ¨ u
ℓk`1

k`1

˛

‹

‹

‹

‚

is 0

,

/

/

/

.

/

/

/

-

of dimension 2k. When ℓi “ 1 for all i, we have Omin

Ak
:“ Omin

p1, ..., 1q which is the usual minimal

nilpotent orbit closure of Ak-type with springer resolution T˚Pk Ñ Omin

Ak
.

Actually we will focus on the case k “ 2.

2. Basic geometry of hypertoric varieties

In this section we will introduce the core of Y pA, 0q and how it determine the geometry of Y pA, 0q.
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2.1. Hypertoric varieties with hyperplane arrangements. Here we consider the case ξ “ 0.
Then we define Y pA,αq :“ Y pA,α, 0q. It defined by

0 Ñ Zn´d B
Ñ Zn A

Ñ Zd Ñ 0

where A “ ra1, ...,ans P MdˆnpZq and BT “ rb1, ..., bns P Mpn´dqˆnpZq.

Then we can define Hi :“ tx P Rn´d : x ¨ bi ` ri “ 0u for i “ 1, ..., n where r “ pr1, ..., rnq P Zn
be a lifting of α along A. This defines a hyperplane arrangement A :“ tH1, ...,Hnu. Here we can
denote Y pAq :“ Y pA,αq.

Definition 2.1. In this setting, for such hyperplane arrangement A:

‚ we call A is simple if for any subset of m hyperplanes with nonempty intersections, they
intersect of codimension m.

‚ we call A is unimodular if for any n ´ d linear independent tbi1 , ..., bin´d
u spans Cn´d over

Z.
‚ we call A is smooth if it is simple and unimodular.

Remark 2.2. Note that A is unimodular if and only if B is unimodular if and only if A is unimod-
ular.

Proposition 2.3 (3.2/3.3 in [BD00]). The hypertoric variety Y pAq has at worst orbifold (finite
quotient) singularities if and only if A is simple, and is smooth if and only if A is smooth.

Note that A “ tH1, ...,Hnu be a central arrangement, meaning that ri “ 0 for all i, so that all of
the hyperplanes pass through the origin. Then we have the following result:

Corollary 2.4. For any central arrangement A, there exists a simplification rA “ t rH1, ..., rHnu of
A by which we mean an arrangement defined by the same vectors tbiu, but with a different choice

of α, r such that rA is simple. This will give us an equivariant orbifold resolution Y p rAq Ñ Y pAq.
When A is unimodular, this will give us a resolution of singularities which recover the special case
of Theorem 1.19.

2.2. The cores and some topology properties. Consider again ξ “ 0. Then we have an equi-
variant orbifold resolution

π : Y p rAq Ñ Y pAq

where A “ tH1, ...,Hnu be a central arrangement with simplification rA “ t rH1, ..., rHnu.

Definition 2.5. In this case, we call cp rAq :“ π´1pr0sq the core of Y p rAq.

Now we will give a toric interpretation of the core cp rAq. For any J Ă t1, ..., nu, define the
polyhedron

PJ :“ tx P Rn´d : x ¨ bi ` ri ě 0 if i P J and x ¨ bi ` ri ď 0 if i R Ju.

Define
EJ :“ tpz,wq P T˚Cn : wi “ 0 if i P J and zi “ 0 if i R Ju

and define XJ :“ EJ {{α Td, which induce the inclusion

XJ ãÑ µ´1p0q {{α Td “ Y p rAq.

Theorem 2.6 (Section 6 in [BD00]/ section 3.2 in [Pro04]). In this setting, we have:

(1) the scheme XJ is isomorphic to the toric variety correspond to the weighted polytope PJ ;

(2) we have cp rAq “
Ť

J:PJ bounded XJ , hence cp rAq is a union of compact toric varieties glued
together along toric subvarieties as prescribed by the combinatorics of the polytopes PJ and
their intersections in Rn´d.

Sketch. Note that (1) follows from the surjectivity real moment maps and some classification theo-
rems, see Lemma 3.8 in [Pro04]. For (2), see Proposition 3.11 in [Pro04]. □

Remark 2.7. This is right even for rA is not simple. For the basic theory of toric varieties, we refer
[Ful93], [CLS11] and [Tel22].

Finally we consider some topological results.

Theorem 2.8 (6.5 in [BD00] and section 6 in [HS02]). In this setting, we have:
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(1) the core cp rAq is a deformation retract of Y p rAq;
(2) the inclusion

Y p rAq “ µ´1p0q {{α Td ãÑ T˚Cn {{α Td “ Xp rAq

is a homotopy equivalence where Xp rAq is the corresponding Lawrence toric variety.

So

Combinatorics Geometry/topology

thyperplane arrangement rAu thypertoric varieties Y p rAqu

3. Universal Poisson structures and its applications

In this section we will give a concrete description of universal Poisson structure of hypertoric
varieties. At the begining, we consider some general results. Here we will follows [Nag21].

3.1. Basic theories.

Definition 3.1. For a Poisson variety pY, t´,´u0q and an affine scheme pB, 0q with fixed point 0,
we call a Poisson B-scheme pY, t´,´uq a Poisson deformation of Y if Y Ñ B is flat, each fiber is a
Poisson scheme, and the central fiber is isomorphic to pY, t´,´u0q as a Poisson variety.

A Poisson deformation pY, t´,´uq Ñ B is called infinitesimal if B “ SpecA where A is an
Artinian algebra with residue field C.

Definition 3.2. A Poisson deformation pY, t´,´uq Ñ B of a Poisson variety pY, t´,´u0q is called
universal at 0 if for each infinitesimal Poisson deformation pX , t´,´u1q Ñ pSpecA,mAq there exists
a unique morphism f : SpecA Ñ B such that fpmAq “ 0 and the diagram

X Y

SpecA B

x

f

which is cartesian.

In general we have the following:

Theorem 3.3 ([Nam15]). Let Y0 be a conical symplectic variety with a projective symplectic res-
olution π : Y Ñ Y0. Then there exists the universal Poisson deformation spaces Y Ñ H2pY,Cq

and Y0 Ñ H2pY,Cq{W of Y and Y0, respectively, and they satisfy the following C˚-commutative
diagram:

Y Y0

Y Y0

0 0̄

H2pY,Cq H2pY,Cq{W

π

Π

µ̄

ψ

µ̄W

where ψ is a Galois cover with finite Galois group W acts linearly on H2pY,Cq which is called the
Namikawa–Weyl group of Y0.

Some comments. First, the singular locus pY0qsing can be stratified by smooth symplectic vari-
eties. Let Σcodimě4 denote the union of strata of codimension 4 or higher, and define Σcodim2 :“
pY0qSingzΣcodimě4. Then, for each component Zk of the connected component decomposition Σcodim 2 “
Ůs
k“1 Zk, one can consider a transversal slice Sℓk through a point x P Zk. Since Sℓk “ S∆ℓk

is a
symplectic surface, i.e., the ADE type surface singularity with the corresponding Dynkin diagram
∆ℓk , so π : Y Ñ Y0 is locally (at xq isomorphic to p ˆ id : S̃ℓk ˆ C2m´2 Ñ Sℓk ˆ C2m´2, where
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2m “ dimY0 and p is the minimal resolution of Sℓk . We consider all p´2q-curves Ci p1 ď i ď ℓkq in

S̃ℓk and set

Φℓk :“

$

&

%

ℓk
ÿ

i“1

dirCis
ˇ

ˇ

ˇ
di P Z s.t.

˜

ℓk
ÿ

i“1

dirCis

¸2

“ ´2

,

.

-

Ă H2pS̃ℓk ,Rq.

Then, Φℓk defines the corresponding ADE type root system in H2pS̃ℓk ,Rq, and the associated usual

Weyl group WSℓk
acts on H2pS̃ℓk ,Rq. However this description is local at each point on Zk, and the

number of irreducible components of π´1pZkq may be less than ℓk globally. In fact, the following
homomorphism is defined by the monodromy:

ρk : π1pZkq Ñ Autp∆ℓkq,

where ∆ℓk is the associated Dynkin diagram and Autp∆ℓkq is its graph automorphism group. Then,
we can define the subgroup of WSℓk

as

WZk
:“ W Im ρk

Sℓk
:“ tσ P WSℓk

: σι “ ισ, ι P Im ρku.

Finally, taking the direct product of them, we get the Namikawa-Weyl group:

W :“
ź

k

WZk
.

Well done. □

In our case of hypertoric varieties, we have the following results:

Theorem 3.4 (Thm 3.11 in [Nag21]). Let A be a unimodular matrix and α P Zd be a generic
element. If for B, bi ‰ 0p1 ď i ď nq and we take B as

B “

¨

˚

˚

˚

˝

Bp1q

Bp2q

...

Bpsq

˛

‹

‹

‹

‚

, Bpkq “

¨

˚

˚

˚

˝

bpkq

bpkq

...

bpkq

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

ℓk

where if k1 ‰ k2, then bpk1q ‰ ˘bpk2q. Then the diagram of Theorem 3.3 for the affine hypertoric
variety Y pA, 0q is obtained as

Y pA,αq Y pA, 0q

XpA,αq XpA, 0q{WB

0 0̄

Cd Cd{WB

π

ΠWB

µ̄α

ψ

µ̄WB

where ΠWB
is the composition of XpA,αq Ñ XpA, 0q and the quotient map of XpA, 0q by WB :“

Sℓ1 ˆ ¨ ¨ ¨ ˆ Sℓs .

Sketch. First we need to show that µ̄α : XpA,αq Ñ Cd and µ̄0 : XpA, 0q Ñ Cd are Poisson
deformations of Y pA,αq and Y pA, 0q, respectively. Note that XpA,αq is smooth and XpA, 0q is
Cohen-Macaulay by a result due to Hochster, then by miracle-flatness µ̄α and µ̄0 are flat. Then
these are right by definition.

Next one can show that W Ă WB by analyze the singular locus carefully, using Proudfoot-
Webster’s result, see Theorem 3.6 and Corollary 3.7 in [Nag21]. Note that in this case we already
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have the following diagram:

Y pA,αq Y pA, 0q

XpA,αq XpA, 0q

0 0̄

Cd Cd

π

Π

µ̄α

“

µ̄0

If one can construct a goodWB-action onXpA, 0q and Cd, then one can showW “ WB and construct
the universal Poisson deformation of Y pA, 0q (Lemma 3.8 in [Nag21]).

Note that we have already take B as

B “

¨

˚

˚

˚

˝

Bp1q

Bp2q

...

Bpsq

˛

‹

‹

‹

‚

, Bpkq “

¨

˚

˚

˚

˝

bpkq

bpkq

...

bpkq

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

ℓk

where if k1 ‰ k2, then bpk1q ‰ ˘bpk2q. Then we letWB :“ Sℓ1 ˆ¨ ¨ ¨ˆSℓs act C2n as zi ÞÑ zσpiq, wi ÞÑ

wσpiq and act on Cn as ui ÞÑ uσpiq. Now one can show that WB-action on C2n induce an action on

XpA, 0q and WB-action on Cn induce an action on Cd via A : Cn Ñ Cd.
Now we give a sketch of the final things. Let X Ñ C

¯
d
{W be the universal Poisson structure of

Y pA, 0q. Then we have

XpA, 0q{WB

XpA,αq X

Cd{WB

Cd Cd{W

Π

ψB

ψ

Hence after the completion at 0, we have factorization

{XpA, 0q{WB

{XpA,αq pX

{Cd{WB

xCd {Cd{W

Π̂

ψ̂B

ψ̂

Note that all of these are C˚-equivariant, using this C˚-action we can have the algebraization by
Namikawa which induce Cd{WB Ñ Cd{W . As W Ă WB , this force W “ WB . Well done. □

Remark 3.5. By definition, the WB-action on C2n does not commute with the Td-action on it in
general.
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3.2. Application 1: some classification results. We will give an equivalent conditions of Y pA, 0q –

Y pA1, 0q for unimodular matrixes.

Definition 3.6. For rank d matrices A,A1 P MatdˆnpZq, we say that A „ A1 if A1 is obtained from
A by a sequence of some elementary row operations over Z, interchanging some column vectors, and
multiplying some column vectors by ´1.

Hence A „ A1 holds if and only if there exists P P GLdpZq and an n ˆ n signed permutation
matrix D such that A1 “ PAD. Here, a signed permutation matrix is a product of a permutation
matrix and a diagonal matrix whose all diagonal components are 1 or ´1.

The following is our main theorem:

Theorem 3.7 (Arbo-Proudfoot 2016, Nagaoka 2021). For a rank d unimodular A,A1 P MatdˆnpZq,
the following are equivalent:

(1) Y pA, 0q – Y pA1, 0q as conical symplectic varieties, that is, C˚-equivariant;
(2) Y pA, 0q – Y pA1, 0q which is C˚ ˆ Tn´d-equivariant of symplectic varieties;
(3) A „ A1;
(4) BT „ pB1qT .

Sketch. Note that (3) is equivalent to (4) by trivial reason. We just need to consider (1)(2)(3). As
(2) implies (1) is also trivial, we will prove (1) implies (2) and the equivalence of (2)(3).

We first prove that (3) implies (2). Note that in this step we don’t need the unimodular condition.
Now elementary row operations don’t change the image of torus embedding AT : Td Ñ Tn, then then
claim is clear in the case. Next we consider interchanging some column vectors, and multiplying some
column vectors by ´1. This is also trivial since if we change ai and aj , then the new moment map
is obtained from the old one with the interchange zi Ø zj and wi Ø wj . This is of course C˚ ˆT2n-
equivariant on C2n which is C˚ ˆT2n´d-equivariant on XpA{A1, 0q and hence C˚ ˆTn´d-equivariant
on Y pA{A1, 0q. The multiplying some column vectors by ´1 is similar.

Now (2) implies (3) follows from the general results due to Arbo and Proudfoot in [AP16] by
using zonotope tiling. We will finally consider (1) implies (3).

Assume we have an isomorphism ϕ : Y pA, 0q – Y pA1, 0q as conical symplectic varieties, then the
corresponding universal Poisson deformation spaces are C˚-equivariant isomorphic to each other as
Poisson varieties, moreover we have the following commutative diagram:

XpA, 0q{WB XpA1, 0q{WB1

Cd{WB Cd{WB1

Φ,–

–

After base change to Cd via projection, we have

XpA, 0q XpA1, 0q

Cd

Φ,–

Then we just need to show that we can replace Φ (which is C˚-equivariant) by a C˚ ˆ T2n´d -
equivariant isomorphism Ψ as Poisson varieties, which is in the form of an isomorphism induced by
„. This is actually pure linear algebra where the basic idea as follows: Berchttold in [Ber03] Theorem
4.1 shows that we can replace Φ by a T2n´d-equivariant isomorphism Ψσ : XpA, 0q – XpA1, 0q

induced from a permutation of coordinates Ψ̃σ : C2n – C2n (σ P S2n) which is equivariant with
respect to an isomorphism ψ : Td – Td. This give as the following diagrams:

Td T2n Zd Z2n

Td T2n Zd Z2n

¨

˝

AT

´AT

˛

‚

ψ,– Ψ̃σ,–

´

A,´A
¯

¨

˝

A1T

´A1T

˛

‚

ψ˚,– Ψ̃˚
σ ,–

´

A1,´A1
¯
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By the commutativity of the above diagram, note that we have

ψ˚a1
i “

#

aσpiq if 1 ď σpiq ď n,

´aσpiq´n if n` 1 ď σpiq ď 2n.

Now, by multiplying some of the a1
i by ´1, we can assume that if a1

i ‰ 0 then there is no j such
that a1

i “ ´a1
j . In this setting, we can construct a permutation τ P Sn such that ψ˚a1

i “ ˘aτpiq

for any 1 ď i ď n as follows. First, take any bijection τ0 between I 1
0 :“ ti P rns | a1

i “ 0u and
I0 :“ ti P rns | ai “ 0u, then define τpiq :“ τ0piq. Next, for i R I 1

0, we define τpiq as

τpiq :“

#

σpiq if 1 ď σpiq ď n,

σpiq ´ n if n` 1 ď σpiq ď 2n.

Then, this defınes a well-defined permutation τ P Sn since we assume that if α1
i ‰ 0 then there is

no j such that α1
i “ ´α1

j . By defınition, we have

ψ˚a1
i “

#

aτpiq if 1 ď σpiq ď n,

´aτpiq if n` 1 ď σpiq ď 2n.

Thus, D :“ DτD˘ is the desired signed permutation matrix.

Then rΨ˚ :“ pD,´Dq : Zn ‘ Zn Ñ Zn ‘ Zn satisfying the above commutative diagram instead of
rΨ˚
σ. Hence we have A “ ψ˚A1D´1 and will done. □

Remark 3.8. We can have the similar results for α ‰ 0.

Remark 3.9. Actually you can show that for the unimodular matrices A,B as above, by applying
some transformations to A,B, we can get

B1 “

¨

˚

˚

˚

˝

1 ¨ ¨ ¨ 0
...

...
0 ¨ ¨ ¨ 1

C

˛

‹

‹

‹

‚

, A1 “

¨

˚

˝

1 ¨ ¨ ¨ 0

´C
...

...
0 ¨ ¨ ¨ 1

˛

‹

‚

where C is totally unimodular.

Corollary 3.10 (Thm 4.8 in [Nag21]). Each 4-dimensional affine hypertoric variety Y pA, 0q associ-

ated to a unimodular matrix A is isomorphic to exactly one of SAℓ1´1
ˆ SAℓ2´1

and Omin
pℓ1, ℓ2, ℓ3q.

Sketch. This follows from Theorem 3.7 and the classifications of (the reduction) of B using the graph

matoid theory and the constructions of SAℓ1´1
ˆ SAℓ2´1

and Omin
pℓ1, ℓ2, ℓ3q. For the classification

results of these matrices, we refer Proposition 4.6 in [Nag21]. □

3.3. Application 2: counting projective symplectic resolutions via Wall-crossings. To
count the number of projective crepent resolutions of hypertoric varieties Y pA, 0q for unimodular A,
we need to consider the all types of its projective crepent resolutions. Actually we have the following
general result:

Theorem 3.11 (Yamagishi 2015, Braden-Proudfoot-Webster 2016). Assume a conical symplectic
variety Y admits a projective crepant resolution Y 1 Ñ Y . Then the number of all distinct projective
crepant resolutions of Y is given by

7tthe chambers of HY u

|W |

where HY Ă H2pY 1,Rq is the associated hyperplane arrangement whose chambers are each an ample
cone of a projective crepant resolution of Y , and W is the Namikawa–Weyl group for Y .

Comments. In general, by Yamagishi in [Yam15] the number of distinct projective crepant resolu-
tions of conical symplectic varieties (or more generally, rational Gorenstein singularities) is equal to
the number of ample cones inside the movable cone. Moreover, in [BPW16], they showed that in
the case of conical symplectic varieties, the movable cone is a fundamental domain with respect to
the Namikawa–Weyl group action on H2pY 1,Rq “ PicRpY 1q. Then we have the result. □

Apply this into hypertoric varieties, we have the following result:
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Corollary 3.12 (Nagaoya). For hypertoric variety Y pA, 0q associated to a unimodular matrix A,
the number of all distinct projective crepant resolutions of Y is given by

7tthe chambers of HAu

|WB |

where HA :“ tH Ă Rd : H is generated by some of the aj and of codimension “ 1u as before.

Comments. We just need to show HY pA,0q “ HA since by Theorem 3.4W “ WB . See the argumenst
in Page 501 in [Nag21] which using Kirwan maps and we omitted. □

Remark 3.13. In general, to compute the number of chambers of a hyperplane arrangement H, we
consider a more refined invariant, the characteristic polynomial χHptq defined as below.

Recall some notations on hyperplane arrangements. Given an arrangement H in Rd, let LpHq be
the set of all nonempty intersections of hyperplanes in H Ă Rd. We defıne the partial order x ď y
in LpHq if x Ě y. We call LpHq the intersection poset of H. For LpHq (in general for any fınite
poset with the least element), we can defıne the Möbius function µ : LpHq Ñ Z as

µpRdq “ 1 and µpxq “ ´
ÿ

yăx

µpyq.

Then we define

χHptq :“
ÿ

xPLpHq

µpxqtdimpxq,

where dimpxq is the dimension of x as an affine subspace of Rd. They also showed that we have

7tchambers of Hu “ p´1qdχHp´1q.

Corollary 3.14 (???). For unimodular A, any projective symplectic resolutions of the hypertoric
variety Y pA, 0q follows from Y pA,αq for generic α.

Proof. I don not know this is right or not!!! □

Now we using this to deduce the number of projective crepent resolutions of Omin
pℓ1, ℓ2, ℓ3q.

Corollary 3.15. Let’s consider Omin
pℓ1, ℓ2, ℓ3q.

(1) Define the hyperplane arrangement Hℓ1,ℓ2,ℓ3 Ă Rℓ1`ℓ2`ℓ3 as the following, where we take
px1, . . . , xℓ1 , y1, . . . , yℓ2 , z1, . . . , zℓ3q as the coordinates:

Aℓ1,ℓ2,ℓ3 :“

$

’

’

&

’

’

%

Hijk : xi ` yj ` zk “ 0 p1 ď i ď ℓ1, 1 ď j ď ℓ2, 1 ď k ď ℓ3q

Hx
i1,i2

: xi1 ´ xi2 “ 0 p1 ď i1 ă i2 ď ℓ1q

Hy
j1,j2

: yj1 ´ yj2 “ 0 p1 ď j1 ă j2 ď ℓ2q

Hz
k1,k2

: zk1 ´ zk2 “ 0 p1 ď k1 ă k2 ď ℓ3q

,

/

/

.

/

/

-

.

Then the number of the projective symplectic resolutions of Omin
pℓ1, ℓ2, ℓ3q is

7tthe chambers of Hℓ1,ℓ2,ℓ3u

ℓ1!ℓ2!ℓ3!
.

(2) The number of projective crepent resolutions of Omin
pℓ1, ℓ2, 1q is

ˆ

ℓ1 ` ℓ2
ℓ1

˙

.

The number of projective crepent resolutions of Omin
pℓ1, ℓ2, 1q is

`

ℓ1`ℓ2`1
ℓ1

˘`

ℓ1`ℓ2`1
ℓ2

˘

ℓ1 ` ℓ2 ` 1
.

Example 3.16. As an example, we consider the affine hypertoric variety Omin
p2, 1, 1q give by matrix

B “

¨

˚

˚

˝

1 0
0 1
1 0

´1 ´1

˛

‹

‹

‚

, A “

ˆ

´1 0 1 0
1 1 0 1

˙

.
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Then the wall-crossing structure of the parameter α and the corresponding core given by the Figure
2 as follows. Then one can see how it can connected by Mukai-flops.

Figure 2. The wall-crossing of cores of Omin
p2, 1, 1q

Remark 3.17. In [HD14], they shows that in general all such wall-crossing given by a family version
of Mukai-flops.
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