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Preface

Here we first develope some history, see also in the introduction in [Hwa01].
A Fano manifold is a smooth projective variety whose anti-canonical class −KX is

ample. In dimension 1, the Riemann sphere P1 is the only example of a Fano manifold.
In higher dimensions, two possible sources of complication exist, as usual:

(1) The product of two Fano manifolds is again a Fano manifold, or more generally,
many fiber bundles over Fano manifolds with Fano fibers are themselves Fano.

(2) The blow-up of a Fano manifold with a suitable center is again Fano.

To handle complications of these sorts in higher dimensions, the minimal model program
(MMP) has been developed since 1980’s.

For uniruled varieties, there is another machinery in handling these matters devel-
oped in 1990’s based on the concept of rationally connected varieties which was nicely
surveyed in [Kol96]. In particular, sometimes we focused on the Fano manifolds have
Picard number 1. The methods employed in these works include the classical method
of double projections, adjunction theory, vector bundle techniques, as well as methods
coming from the minimal model program.

In the 1990s, Ngaiming Mok and Jun-Muk Hwang have been trying to develop a
geometric theory of Fano manifolds of Picard number 1 from a different perspective,
by using rational curves of minimal degree on Fano manifolds Undoubtedly, the impor-
tance of rational curves in the study of Fano manifolds is well-known and most works
mentioned above also use rational curves extensively as one of the main geometric tools.
Before starting discussion, let me roughly describe some motivations and history around
this idea.

The story begins with two related conjectures which were outstanding in the 1970’s.
Both were proposed as a generalization of the uniformization of Riemann surfaces for
the genus zero case.

Conjecture 0.1 (Frankel Conjecture, Mori 1979 and Siu-Yau 1980). If X is a com-
pact Kähler manifold of dimension n with everywhere positive holomorphic bisectional
curvature, then X ∼= PnC.
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Conjecture 0.2 (Hartshorne Conjecture, Mori 1979). Consider n-dimensional smooth
projective variety X over an algebraically closed field k, if TX is ample then X ∼= Pnk .

Note that Hartshorne conjecture implies Frankel conjecture. The Hartshorne con-
jecture solved by Mori ([Mor79]) and the Frankel conjecture was also solved by Siu-Yau
([SY80]) using the completely different method which depends heavily on the positive
curvature condition and can not be generalized to other Fano manifolds.

But the method of Mori provided a new ground for the study of high-dimensional
Fano manifolds. Mori created a method, called bend-and-break, aiming to find the
rational curves on Fano manifolds. Finally he shows that any Fano manifold is uniruled.
To solve the Hartshorne conjecture, he recover the Fano manifold by the moduli space
of rational curves of minimal degree. This is what we concerned here. Finally Mori give
a much stronger result than Hartshorne conjecture (see the proof in Theorem 1.79):
Theorem 0.1 (Mori, 1979). Consider n-dimensional smooth projective variety X over
an algebraically closed field k. If
(1) −KX is ample, that is, X is a Fano manifold;
(2) For any non-constant morphism f : P1

k → X the bundle f∗TX is the sum of line
bundles of positive degree.

Then X ∼= Pnk .
After resolving Frankel conjecture, Siu and Yau consider the following generalization:

Conjecture 0.3 (Generalized Frankel Conjecture, Mok 1988). A Fano manifold with
a Kähler metric of non-negative holomorphic bisectional curvature is a Hermitian sym-
metric space.

This conjecture was solved by Mok in 1988. Following Mori’s proof of Hartshorne
conjecture, he consider the space of rational curves of minimal degrees passing a point
Kx and its tangent image Cx ⊂ P(Ω1

X,x) as all tangent vectors ofthese curves. Then as
Mori’s method, he want to use Cx to recover the Hermitian symmetric space. He use
the following result due to Berger:
Theorem 0.2 (Berger’s Theorem). If the holonomy group of a Kähler metric on a
Fano manifold at a point x does not act transitively on P(Ω1

X,x), then X is a Hermitian
symmetric space different from the projective space.

Mok actually show that Cx is invariant under the action of the holonomy group of a
suitable deformation of a given Kähler metric of non-negative holomorphic bisectional
curvature. Hence then we can using the Berger’s theorem to recover the Hermitian
symmetric space.

Now how about the anologue conjecture in algebraic geometry (from now on we just
consider the varieties on C)? How do we find the projective manifold with nef tangent
bundle? Actually in 1994 we have the following result ([DPS94]):
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Theorem 0.3 (Demailly-Peternell-Schneider, 1994). Let X be a compact Kähler man-
ifold with nef tangent bundle TX . Let X ′ → X be a finite étale cover of maximum
irregularity q = q(X ′) = h1(X ′,OX′). Then

(a) π(X ′) ∼= Z⊕2q.
(b) The Albanese map α : X ′ → Al(X ′) is a smooth fibration over a q-dimensional

abelian variety with nef relative tangent bundle.
(c) The fibres of α are Fano manifolds with nef tangent bundles.

Hence the geometry of projective manifold with nef tangent bundle is determined,
up to a finite étale cover, by abelian varieties and Fano manifolds with nef tangent
bundles. Actually in 1991, Campana and Peternell consider the following conjecture:

Conjecture 0.4 (Campana-Peternell Conjecture). Any Fano manifold with nef tangent
bundle is a rational homogeneous variety.

If we solved Campana-Peternell conjecture, then we can classify the projective man-
ifolds with nef tangent bundle up to a finite étale cover.

One of the possible way is to find the algebraic-analogue of Mok’s proof of Gen-
eralized Frankel conjecture, that is, the Berger’s theorem. This seems a difficult way.
Maybe we can use minimal rational curves and the splitting model of TX on these curves
to replace the geodesics and parallel translations. But we don’t know what is algebraic
holonomy groups!

Another is the original possible way:

(1) First prove Campana-Peternell conjecture for smooth varieties with Picard number
one.

(2) Then prove that, given any Fano manifold with nef tangent bundle X and a
contraction f : X → Y , from the homogeneity of Y and of the fibers of f one can
recover the homogeneity of X.

So we need to use our theory to consider the Fano manifolds of Picard number one.
Note that we will use the theory of VMRT to consider many results of these manifolds.
Such as stability of the tangent bundles, Fano manifolds with non-isomorphic surjective
endomorphism, Fano manifolds with big automorphism group, deformation rigidity and
Remmert-Van de Ven/Lazarsfeld Problems and so on.

Note that from now on, P(−) is in the sense of Grothendieck and P(−) is in the
geometric sense and Grass(s, V ) is in the sense of geometry. The Pn-bundle f : X → Y
is that f is smooth and all fibers are Pn. The projective bundle is P(E ). We call
the smooth projective varieties are projective manifolds. The Picard group is ρ(X) :=
dimN1(X) = rank(Pic(X)/Pic0(X)).



10 CONTENTS



Chapter 1

Basic Theory of Rational Curves

The main results here we follows the famous book [Kol96].

1.1 Hilbert Schemes and Chow Schemes
1.1.1 Hilbert Schemes, a Basic Introduction
Definition 1.1. Let X be an S-scheme, we define the Hilbert functor H ilbX/S sends
an S-scheme Z to the set consists of subschemes V ⊂ X ×S Z which is proper and flat
over Z.

Fix a Polynomial P and a relative ample line bundle O(1), we can define H ilbPX/S
sends an S-scheme Z to the set consists of subschemes V ⊂ X ×S Z which is proper
and flat over Z with Hilbert Polynomial P .

Theorem 1.2 (Grothendieck). Let S be a noetherian scheme, let X → S be a projective
morphism, and L a relatively very ample line bundle on X. Then for any polynomial
P , the Hilbert functor H ilbPX/S is representable by a projective S-scheme HilbPX/S. We
also have HilbX/S =

∐
P HilbPX/S.

Proof. Note that this notion of projectivity is much general than [Har77], but is the
same when S = Spec k. The proof is to embed it into Grassmannian. The original proof
in [Gro61] and we also refer [Mum66], [Kol96] and [FGI+05].

Remark 1.3. In [BALK80] we can remove the noetherian hypothesis, by instead as-
suming strong (quasi-)projectivity of X → S. So also [Alp23].

Example 1.4. Some examples and interesting results:

(a) We have Hilb1X/S = X/S.

11



12 CHAPTER 1. BASIC THEORY OF RATIONAL CURVES

(b) Let C be a curve over a field k, then

HilbmC/k
∼= SmC := C × · · · × C︸ ︷︷ ︸

m

/Sm.

Hence if C smooth, so is HilbmC/k. See also [FGI+05] Theorem 7.2.3(1) and
Proposition 7.3.3.

(c) Let S be a smooth surface over a field k, then HilbmS/k is also smooth of dimension
2m and hence HilbmS/k → SmX (we will see this later for general settings) is a
resolution of singularities. Note that SmX is smooth if and only if X is smooth
and dimX = 1 or m < 2. See [FGI+05] Theorem 7.2.3(2) and Theorem 7.3.4.

(d) Let X be a nonsingular variety. Then HilbmX/k is nonsingular form ≤ 3. Moreover,
for any nonsingular 3-fold the scheme Hilb4X/k is singular. See [FGI+05] Remark
7.2.5 and 7.2.6.

(e) Let E be a vector bundle of rank m+ 1 over S and let Pd(n) =
(
m+n
m

)
−
(
m+n−d

m

)
,

then
HilbPd

P(E )/S
∼= P((SymdE )∨).

(f) Let Z → S, we have HilbX×SZ/Z
∼= HilbX/S ×S Z.

(g) Hartshorne’s Connectedness Theorem: for every connected noetherian scheme S,
HilbPPn

S/S
is connected.

(h) Let X be a connected variety over k, then HilbnX/k is connected for all n > 0.
(i) Murphy’s Law: It has many singularities, that is, for every scheme X finite type

over Z and point x ∈ X, there exists a point q ∈ HilbPPn/k of some Hilbert scheme
and an isomorphism

ÔX,p[[x1, ..., xs]] ∼= ÔHilbP
Pn/k,q

[[y1, ..., yt]].

See [Vak06]. In fact, it can be arranged that the Hilbert scheme parameterizes
smooth curves in Pn for some n. It turns out that various other moduli spaces also
satisfy Murphy’s Law: Kontsevich’s moduli space of maps, moduli of canonically
polarized smooth surfaces, moduli of curves with linear systems, and the moduli
space of stable sheaves.

(j) In [SGS20] they gave a full classification of the situation where HilbPPn/k smooth.

Definition 1.5. Let X/S, Y /S are S-schemes, then we have a functor H omS(X,Y )
send S-scheme T into a set of T -morphisms X ×S T → Y ×S T .

For a subscheme B ⊂ X proper over S and g : B → Y , we have a functor
H omS(X,Y ; g) send S-scheme T into a set of T -morphisms X ×S T → Y ×S T such
that f |B×ST = g ×S idT .
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Proposition 1.6. If X/S and Y /S are both projective over S and X is flat over S,
then H omS(X,Y ) represented by an open subscheme HomS(X,Y ) ⊂ HilbX×SY /S.
Proof. Any X ×S T → Y ×S T correspond to its graph which is a closed immersion
Γ : X ×S T → X ×S Y ×S T . As X is flat over S, then X ×S T is flat over T . Hence
we get a morphism HomS(X,Y ) → HilbX×SY /S . We omit the more details and refer
Theorem I.1.10 in [Kol96].

Proposition 1.7. If X/S and Y /S are both projective over S and X,B are both flat over
S, then H omS(X,Y ; g) represented by a subscheme HomS(X,Y ; g) ⊂ HomS(X,Y ).
Proof. Consider the restriction map R : HomS(X,Y ) → HomS(B, Y ), then g : B →
Y gives a section G : S → HomS(B, Y ). Hence HomS(X,Y ; g) := R−1(G(S)) ⊂
HomS(X,Y ) represents H omS(X,Y ; g).

Now we state the deformation theory of Hilbert schemes. We only consider the
simpler case that all schemes over a field k. For general case we refer Section 1.2 in
[Kol96].
Theorem 1.8. Let Y be a projective scheme over a field k and Z ⊂ Y is a subscheme.
Then
(a) We have

T[Z]HilbY ∼= HomZ(IZ/I
2
Z ,OZ).

(b) The dimension of every irreducible components of HilbY at [Z] is at least

dimHomZ(IZ/I
2
Z ,OZ)− dimExt1Z(IZ/I

2
Z ,OZ).

Proof. See Theorem I.2.8 in [Kol96]. For family case we refer Theorem I.2.15 in [Kol96].

Corollary 1.9. Let X,Y are projective varieties over a field k with a morphism f :
X → Y . Let Y is smooth over k. Then
(a) We have

T[f ]Homk(X,Y ) ∼= HomX(f
∗Ω1

Y ,OX).

(b) The dimension of every irreducible components of Homk(X,Y ) at [f ] is at least

dimHomX(f
∗Ω1

Y ,OX)− dimExt1X(f∗Ω1
Y ,OX).

Proof. Let Z ⊂ X ×k Y be the graph of f , we claim that IZ/I
2
Z
∼= f∗Ω1

Y . Indeed
we have an exact sequence IZ/I

2
Z → Ω1

X×kY
|Z → Ω1

Z → 0. This is split by OZ
∼=

OX
(idX ,1)→ OX×kY . Then we can show the claim. Hence the results follows from Theorem

1.8. The family version we refer Theorem I.2.17 in [Kol96].
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1.1.2 Chow Schemes, a Basic Introduction
Here we only consider the schemes over a field k such that char(k) = 0. The positive
characteristic case is very complicated and we refer Section I.4 in [Kol96].

Definition 1.10. Let gi : Ui →W be a proper morphism of schemes over W . Assume
that W is reduced and Ui is irreducible. By generic flatness there is an open subset
Wi ⊂ gi(Ui) ⊂ W such that gi is flat of relative dimension d over Wi. Let T = Spec∆
be the spectrum of a DVR ∆ and h : T → W a morphism such that h(Tg) ∈ Wi and
h(T0) = w ∈ W . Let h∗Ui = Ui ×h T and J ⊂ Oh∗Ui

the ideal of those sections whose
support is contained in the special fiber of h ∗ Ui → T . Let (Ui)

′
T := Spec

T
Oh∗Ui

/J
which is flat over T . Then we let [Z0] be the fundamental cycle of the central fiber of
(Ui)

′
T → T , and define

lim
h→w

(Ui/U) := [Z0] ∈ Zd(g−1
i (w)×κ(w) T0)

which is called the cycle theoretic fiber of gi at w along h.

Definition 1.11. A well defined family of d-dimensional proper algebraic cycles over W
is a pair (g : U →W ) satisfying the following properties:

(a) There is a reduced scheme suppU with irreducible components Ui such that U =∑
imi[Ui] is an algebraic cycle.

(b) W is a reduced scheme and g : suppU →W is a proper morphism.
(c) Let gi := g|Ui. Then every gi maps onto an irreducible component of W and every

fiber of gi is either empty or has dimension d. In particular there is a dense open
subset W0 ⊂W such that every gi is flat over W0.

(d) For every w ∈ W there is a cycle g[−1](w) ∈ Zd(g
−1(w)) such that for any

h : T →W of spectrum of DVR such that h(T0) = w and h(Tg) ∈W0 we have

g[−1](w) =ess
∑
i

mi lim
h→w

(Ui/W ).

That is, both two cycles from a single cycle of Zd(g−1(w)).

Remark 1.12. If W is normal, then (d) can be implied by (a)-(c). See Theorem I.3.17
in [Kol96].

Definition 1.13. Let X be a scheme over S. A well defined family of proper algebraic
cycles of X/S over W/S is a pair (g : U/S →W/S) satisfying the following properties:

(a) suppU is a closed subscheme of X×SW and g is the natural projection morphism.
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(b) (g : U →W ) is a well defined family of d-dimensional proper algebraic cycles over
W for some d.

Proposition 1.14. Assume that g : U → W is proper and flat of relative dimension d
and W is reduced. Let

∑
imi[Ui] be the fundamental cycle of U . Then g : [U ]→ W is

a well defined family of algebraic cycles over W .

Proof. See Lemma I.3.14 and Corollary I.3.15 in [Kol96].

Definition 1.15 (Chow Schemes of Characteristic Zero). Let X/S and we define a
functor ChowX/S sends Z/S to the set consists of well defined families of nonnegative
proper algebraic cycles of X ×S Z/Z.

Let a relative ample line bundle O(1), we can define Chowd,d
′

X/S sends Z/S to the
set consists of well defined families of nonnegative proper algebraic cycles of X ×S Z/Z
which is of dimension d and degree d′.

Theorem 1.16. Let X/S be a scheme, projective over S and O(1) relatively ample.
Then the functor Chowd,d

′

X/S is representable by a semi-normal and projective S-scheme
Chowd,d

′

X/S. We also have ChowX/S =
∐
d,d′ Chowd,d

′

X/S.

Proof. Very complicated, we refer Theorem I.3.21 in [Kol96].

Example 1.17. Let X be a semi-normal variety, then Chow0,m
X/k
∼= SmX.

Proposition 1.18 (Hilbert-Chow). Let X,Y be S-schemes.

(a) We have a natural morphism Hilbsn
X/S → ChowX/S. This morphism can be factored

by dimensions.
(b) If X,Y be projective S-schemes and X/S flat, then we have

HomS(X,Y )sn → ChowY /S .

Proof. For (a), consider [UnivHilb×HilbX/S
Hilbsn

X/S ]→ Hilbsn
X/S , then by Proposition 1.14

this is a well defined family of algebraic cycles. This gives such morphism Hilbsn
X/S →

ChowX/S .
For (b), by (a) we have

HomS(X,Y )sn → Hilb(X ×S Y /S)sn → ChowX×SY /S → ChowY /S

and well done.

Remark 1.19. LetX be a semi-normal variety, hence we have (HilbmX/k)
sn → Chow0,m

X/k
∼=

SmX.
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1.1.3 Small Applications to Curves
For more applications we refer Section II.1 in [Kol96]. Here we only need some easy
case. We assume over a field k.

Theorem 1.20. Let C be a proper curve and f : C → Y a morphism to a projective
variety Y of dimension n such that Y is smooth along f(C). Then

dim[f ] Hom(C, Y ) ≥ −C ·KY + nχ(OC).

And equality holds if H1(C, f∗TY ) = 0, in this case it is smooth at [f ].

Proof. By Corollary 1.9(b) we have

dim[f ] Hom(C, Y ) ≥ dimHomX(f
∗Ω1

Y ,OX)− dimExt1X(f∗Ω1
Y ,OX)

= h0(C, f∗TY )− h1(C, f∗TY ) = χ(C, f∗TY )

= deg f∗TY + nχ(OC)

by Riemann-Roch theorem. The final statement follows from Corollary 1.9(a).

Proposition 1.21. Assume that X/S is flat, B/S is flat and finite of degree m and
Y /S is smooth of relative dimension n. Then dimHom(X,Y ; g) ≥ dimHom(X,Y )−kn.

Proof. Let p : B → S be the projection. By Corollary 1.9 we find that Hom(B, Y )
is smooth over S of relative dimension rank kn. Thus g(S) ⊂ Hom(B, Y ) is locally
defined by kn equations. Pulling back these equations by R we obtain local defining
equations.

Lemma 1.22. Let 0 ∈ T be the spectrum of a local ring and let U/T be a flat and
proper and V /T be a variety. Let p : U → V as a T -morphism. If p0 : U0 → V0 is a
closed immersion (resp. an isomorphism), then so is p.

Proof. See Lemma I.1.10.1 and Proposition I.7.4.1.2 in [Kol96]. We omit this.

Theorem 1.23. Let C be a projective curve over k and Y a smooth variety over k. Let
B ⊂ C be a closed subscheme which is finite over k. Assume that C is smooth along B.
Let g : B → Y be a morphism. Then

(a) We have
T[f ]Hom(C, Y ; g) ∼= H0(C, f∗TY ⊗IB).

(b) The dimension of every irreducible component of Hom(C, Y ; g) at [f ] is at least

h0(C, f∗TY ⊗IB)− h1(C, f∗TY ⊗IB).
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Proof. The original proof we refer [Mor79]. A simple case of family version we refer
Theorem II.1.7 in [Kol96]. Here we assume k is algebraically closed. Here IB =
OC(−s1 − ...− sm).

Let X0 := C ×k Y and let γ0 : C ∼= Γ0 ⊂ X0 be the graph of f . Let π1 : X1 :=
Bl{s1}X0 → X0 and Γ1 be the strict transform of Γ0. Let γ1 : C ∼= Γ1 ⊂ X1 as C is
smooth at s1. Repeat the process and finally we get πm : Xm := Bl{sm}Xm−1 → Xm−1

and Γm be the strict transform of Γm−1. Let γm : C ∼= Γm ⊂ Xm. Then we have
γ∗0(IΓ0/I

2
Γ0
) ∼= f∗Ω1

Y and γ∗i+1(IΓi+1/I
2
Γi+1

) ∼= γ∗i (IΓi/I
2
Γi
) ⊗ OC(−si+1). Hence we

get γ∗m(IΓm/I
2
Γm

) ∼= f∗Ω1
Y ⊗IB.

Now we claim that there is an open neighborhood [Γm] ∈ U ⊂ HilbXm such that
Hom(C, Y ; g) ∼= U . Indeed, let U ⊂ HilbXm be the open set parametrizing those 1-cycles
D for which the projection D → C is an isomorphism. This is open by Lemma 1.22.

First, the universal family of U is contained in Hom(C, Y ; g)(U). Conversely consider
[p0 : C × R → Y × R] ∈ Hom(C, Y ; g)(R). Let its graph is G0 ⊂ X0 × R. As
{s1} × R ⊂ G0 and G0 → R smooth along {s1} × R, we let G1 ⊂ X1 × R be the
strict transform of G0. Then G1

∼= G0
∼= C × R. Repeat the process and finally

we get Xm × R ⊃ C × R ∼= Gm ∈ HilbXm(R). Hence this give the isomorphism
Hom(C, Y ; g) ∼= U . Hence by Theorem 1.8 and we get the result.

1.2 Families of Rational Curves
We may assume all schemes over a field k of characteristic zero locally of finite type.
Note that there are also have the same results by some small modification in the case
of positive characteristic, see Section II.2 in [Kol96].

Proposition 1.24. Let f : X → Y be a proper morphism of relative dimension one.
Assume that if T is the spectrum of a DVR and h : T → Y a morphism, then every
irreducible component of T ×Y X has dimension two (By Corollary I.3.16 in [Kol96]
this is always the case if f is a well defined family of proper algebraic 1-cycles). Then
the subset

{y ∈ Y : f−1(y) has geometrically rational components} ⊂ Y

is closed in Y .

Proof. See Proposition II.2.2 in [Kol96].

Corollary 1.25. Let g : U → V be a family of proper algebraic 1-cycles of X/S. Let
U ′ ⊂ U be the set of points u ∈ U which are contained in a geometrically rational
component of g−1(g(u)). The image of the natural morphism U ′ → X is called the
rational locus of g. It is denoted by RatLocus(g : U → V ).

Now let V → S is proper, then RatLocus(g : U → V ) is proper over S.
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Proof. WLOG we let V is irreducible. Let U =
∑

i aiUi, then we just need to consider
every gi : Ui → V . Consider the generic fiber Di of gi which is a irreducible curve,
then if Di rational, then so is whole gi by Proposition 1.24. Hence RatLocus(gi : Ui →
V ) = Im(Ui → X) is proper over S. If Di is not rational, then there is an open subset
∅ 6=W ⊂ V such that the fibers of gi over Ware irreducible and nonrational. Thus

RatLocus(gi : Ui → V ) = RatLocus(gi : g−1
i (V \W )→ V \W ).

Hence we can apply Noetherian induction.

Definition 1.26. Let Hombir(P1, X) ⊂ Hom(P1, X) be a subscheme correspond to the
morphisms P1 → X birational to its image. By Lemma 1.22 since P1 → X birational
to its image if and only if it is a immersion at its generic point, then Hombir(P1, X) ⊂
Hom(P1, X) is an open subscheme.

Definition 1.27. Let X/S be a scheme, projective over S.

(a) Let Hombir(P1, X)sn =
⋃
iWi be the decomposition into irreducible subschemes of

semi-normalization of Hombir(P1, X). By Proposition 1.18 we have the Hilbert-
Chow morphism Hombir(P1, X)sn → ChowX/S. Let V ′

i = Im(Ui → ChowX/S).
By Proposition 1.24 V ′

i parametrizes 1-cycles with geometrically rational compo-
nents, and the generic 1-cycle is irreducible. Let Vi ⊂ V ′

i be the open subscheme
parametrizing irreducible 1-cycles.
Let ηi ∈ Vi be the generic points correspond to curves Ci. By generic smoothness
Ci is a smooth rational curve. Let V n

i be the normalization of Vi. Then we define
the family of rational curves on X is

RatCurvesn(X/S) :=
∐
i

V n
i .

with a normalization morphism RatCurvesn(X/S)→ ChowX/S.
If L is ample onX/S, then we can define RatCurvesn(X/S) =

∐
d RatCurvesnd(X/S)

where RatCurvesnd(X/S) is quasi-projective over S for any d. We define its universal
rational curve is

Univrc(X/S) :=
(

RatCurvesn(X/S)×ChowX/S
UnivChow

X/S

)n

be the normalization.
(b) Fix a section f : S → X. Similar as (a) we can define RatCurvesn(f,X/S) =∐

d RatCurvesnd(f,X/S) and Univrc(f,X/S). This is called family of rational curves
passing through Im(f).
In particular if S = Spec k where k is a field and f : (Spec k) = x ∈ X, then we
will use the notation RatCurvesn(x,X) =

∐
d RatCurvesnd(x,X) and Univrc(x,X).
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Theorem 1.28. (a) Let f : X → Y be a proper and surjective morphism between
irreducible and normal schemes. Assume that the dimension of every fiber is one
(hence f is a well defined family of proper 1-cycles by Remark 1.12). Assume
that for every y ∈ Y the cycle theoretic fiber f [−1](y) is an irreducible and reduced
rational curve, then f is a P1-bundle.

(b) In the case of the definition, the universal morphisms

Univrc(X/S)→ RatCurvesn(X/S) and Univrc(x,X)→ RatCurvesn(x,X)

are P1-bundles.

Proof. (b) follows directly from (a), so we just need to prove (a).
One can show that f is smooth at the generic point of every fiber (see Theorem

I.6.5 in [Kol96]). For y ∈ Y pick three different points x1, x2, x3 ∈ f−1(y) such that f
is smooth at xi. Let Si ⊂ X be a Cartier divisor which intersects f [−1](y) transversally
at xi (there may be other intersection points). Hence Si → Y is étale at xi. Let

Z = S1 ×Y S2 ×Y S3, z = (x1, x2, x3) ∈ Z and XZ = X ×Y Z.

So Z → Y is étale at z, thus XZ is normal along f−1
Z (z) and f is smooth above y iff fZ

is smooth above z by some commutative algebra. Furthermore, fZ has three sections
si : Z → XZ corresponding to the Si. By shrinking Z we may assume that these sections
are disjoint.

In P1
Z → Z we have three disjoint sections pi : Z → P1

Z corresponding to {0, 1,∞}.
Our aim is the construct an isomorphism q : P1

Z
∼= XZ such that q ◦ pi = si. Let

h : P1
Z ×Z XZ → Z be the projection. In order to construct the graph of q let Γ ⊂

ChowP1
Z×ZXZ/Z be the closed subvariety parametrizing 1-cycles D with the following

properties:

(1) degOP1(1)|D = 1;
(2) degO(s1(Z))|D = 1;
(3) (pi(h(D)), si(h(D))) ∈ D for i = 1, 2, 3.

Let UnivΓ → Γ be the universal family. We claim that the natural projections π1 :
UnivΓ → P1

Z and π2 : UnivΓ → XZ are isomorphisms.
For any t ∈ Z consider h−1(t). By construction (h−1(t))red ∼= P1

κ(t) × Ct where Ct
is an irreducible geometrically rational curve, smooth for general t. As D gives a 1-
cycle on (h−1(t))red which has bidegree (1, 1), thus D is either the graph of a birational
morphism qt : P1

κ(t) → Ct or the union of a vertical and of a horizontal section. In
the latter case it can not contain all three points (pi(t), si(t)). Hence D is the graph
of the unique birational morphism qt such that qt(pi(t)) = si(t) for i = 1, 2, 3. Thus
π1, π2 are both one-to-one. If Ct is smooth, then qt is defined over κ(t), thus π1, π2 are
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isomorphisms over the generic point of Z. Since XZ and P1
Z are normal, this implies

that π1, π2 are isomorphisms. Well done.

Remark 1.29. In positive characteristic, (a) is right if we assume generic-smoothness.

Proposition 1.30. Notation as above definitions, then

(a) Let m = min{d : RatCurvesnd (X/S) 6= ∅}. Then RatCurvesnk(X/S) is proper over
S for k < 2m.

(b) Let S be a field and letm(x) = min{d : RatCurvesnd (x,X) 6= ∅}. Then RatCurvesnk(x,X)
is proper for k < m+m(x).

Proof. (b) follows from the same proof of (a). For (a), as Chow1,k
X/S is proper over

S, we just need to show that
⋃
i Vi ⊂ Chow1,k

X/S is closed where RatCurvesnk(X/S) =⋃
i V

n
i →

⋃
i Vi is finite. Let

∑
i aiDi ∈ RatCurvesnk(X/S), then every Di is rational by

Proposition 1.24 and
∑

i ai degDi = k < 2m. By assumption degDi ≥ m, then
∑

i aiDi

is an irreducible and reduced rational curve. Hence RatCurvesnk(X/S) closed.

Theorem 1.31. Let Homn
bir be the normalization of Hombir, then we have the following

important results:

(a) Let X/S projective scheme over S, then there is a natural commutative diagram

P1 × Homn
bir(P1

S , X/S) Univrc(X/S)

Homn
bir(P1

S , X/S) RatCurvesn(X/S)

U

u

where U and u are smooth of relative dimension 3 with connected fibers. (In fact
both U and u are principal Aut(P1)-bundles)

(b) Let X projective scheme over k with a k-point x ∈ X(k), then there is a natural
commutative diagram

P1 × Homn
bir(P1, X; 0 7→ x) Univrc(x,X)

Homn
bir(P1, X; 0 7→ x) RatCurvesn(x,X)

U

u

where U and u are smooth of relative dimension 2 with connected fibers. (In fact
both U and u are principal Aut(P1; 0)-bundles)

Proof. These are easy but boring since we consider the characteristic zero. See [Kol96]
Theorem II.2.15 and II.2.16.
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Corollary 1.32. Let X projective scheme over k with a k-point x ∈ X(k), then

T[C]RatCurvesn(X/k) ∼= H0(P1, NC), T[C]RatCurvesn(x,X) ∼= H0(P1, NC ⊗mx)

for general point [C] where f : P1 → C ⊂ X is birational and NC = f∗TX/TP1.

Proof. By Theorem 1.31, canonical morphism u : Homn
bir(P1

k, X/k)→ RatCurvesn(X/k)
is a principal Aut(P1)-bundle which is smooth. Hence we have

0→ u∗Ω1
RatCurvesn(X/k) → Ω1

Homn
bir(P1

k,X/k) → Ω1
u → 0.

As [C] general, we have T[f ]Homn
bir(P1

k, X/k) = T[f ]Hombir(P1
k, X/k). Hence

T[C]RatCurvesn(X/k) ∼= T[f ]Hombir(P1
k, X/k)/Aut(P1) ∼= H0(P1, NC)

by trivial reason. Similar for RatCurvesn(x,X).

1.3 Free and Minimal Rational Curves
We will assume all scheme over a algebraically closed field k of characteristic zero.

1.3.1 Free Rational Curves
Definition 1.33. Let C be a proper curve, X a smooth variety and f : C → X a
morphism. Let B ⊂ C be a closed subscheme with ideal sheaf IB and g = f |B. We call
f is called free over f if f is nonconstant and H1(C, f∗TX ⊗IB) = 0 and f∗TX ⊗IB

is generated by global sections. Therefore we can define Homfree(P1, X) ⊂ Hom(P1, X)
parameterizes the free rational curves.

Proposition 1.34. Being free is an open. Hence Homfree(P1, X) ⊂ Hom(P1, X) is open.

Proof. Trivial by definition.

Theorem 1.35. Let C be a proper curve and X a smooth variety. Let B ⊂ C be a
closed subscheme with ideal sheaf IB and g = f |B. Let F : C × Hom(C,X; g)→ X be
the universal morphism. Then Tκ(p,[f ]),C×Hom(C,X;g) = Tκ(p),C ⊕ H0(C, f∗TX ⊗ IB) if
p /∈ B Consider the differential df(s) : Tκ(s),C → Tκ(f(s)),X and evaluation map

φ(p, f) : H0(C, f∗TX ⊗IB)→ f∗TX ⊗ κ(p),

then dF (p, [f ]) = df(p)+φ(p, f). Furthermore If φ(p, f) is surjective, then F is smooth
at (p, [f ]). The converse also holds if H0(TC ⊗IB)→ Tκ(p),C is surjective.

Proof. Trivial by definitions.
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Corollary 1.36. If C is smooth and f : C → X is free over g, then F : C ×
Hom(C,X; g)→ X is smooth along (C\B)× [f ]. In particular P1×Homfree(P1, X)→ X
is smooth.

Proposition 1.37. Assume that f : P1 → X, g = f |B, lengthB ≤ 2 and write
f∗TX ⊗IB =

∑
i O(ai). Then ]{i : ai ≥ 0} = rankdF (p, [f ]) for all p ∈ P1\B.

In particular, if
Fred : P1 × Hom(P1, X; g)red → X

is smooth at (p, [f ]) for some p ∈ P1, then f is free over g.

Proof. Note that lengthB ≤ 2 implies H0(TP1 ⊗ IB) → Tκ(p),P1 is surjective for all
p ∈ P1\B. Then these are trivial by arguments in Theorem 1.35.

Theorem 1.38 (Kollár-Miyaoka-Mori, 1992). Let X be a smooth projective variety over
k. Let B ⊂ P1

k be a closed subscheme with lengthB ≤ 2 and g : B → X. There are
countably many subvarieties Vi = Vi(B, g) ⊂ X such that if f : P1 → X is a nonconstant
morphism such that f |B = g and Im(f) ⊈

⋃
i Vi, then f is free over B.

Proof. Let Zi be the irreducible components of Hom(P1, X; g) with universal morphisms
Fi : P1 × Zi → X. Let Vi = Im(Fi) if Fi is not dominant, and Vi = X\UFi if Fi is
dominant, where UFi ⊂ X is an open and dense subset such that Fi,red : P1×Zi,red → X
is smooth over UFi (this is where we use the char = 0 assumption). Then the result is
trivial.

Theorem 1.39. Let X be a smooth proper variety over k, then the following statements
equivalent.

(1) X is uniruled.
(2) Generic rational curves of X are free.
(3) X has a free rational curve.

Proof. If X is uniruled then since the morphism

Fred : P1 × Hom(P1, X; g)red → X

is dominant, it is generic smooth. Hence by Proposition 1.37 the generic rational curves
of X are free.

If the generic rational curves of X are free, then X has a free rational curve.
If X has a free rational curve, then the morphism P1 × Homfree(P1, X) → X is

smooth by Corollary 1.36. Hence it has densed image. Hence X is uniruled.

Remark 1.40. More properties of uniruled varieties we refer Section IV.1 in [Kol96].
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1.3.2 Minimal Rational Curves
Definition 1.41. Let X be a smooth projective variety over k of dimension n.

(a) A rational curve f : P1 → X is called standard (or unbendable) if

f∗TX ∼= OP1(2)⊕ OP1(1)⊕p ⊕ O⊕n−1−p
P1

where p+ 2 = − deg f∗KX .
(b) Let X be a smooth Fano variety over k. A morphism f : P1 → X is called a

minimal free rational curve if it is a free rational curve such that − deg f∗KX is
minimal.

(c) Let X be a smooth Fano variety over k. A morphism f : P1 → X is called a
minimal rational curve if it is a deformation of the minimal free rational curves. An
irreducible component K ⊂ RatCurvesn(X) is called a minimal rational component
if it contains a rational curve of minimal degree.

Remark 1.42. For any non-constant f : P1 → X, it can be factored by f : P1 g→
P1 h→ X where h is birational to its image, then it is a immersion at generic points.
Hence TP1 = OR1(2) ⊂ h∗TX . Hence OP1(2 deg g) ⊂ f∗TX . So if we let f∗TX ∼=
OP1(a1)⊕ · · ·OP1(an) with a1 ≥ · · · ≥ an, then a1 ≥ 2.

Proposition 1.43. Let X be a smooth proper variety over k.

(a) If X has a free rational curve, then generic free rational curves of X are standard.
(b) If X is Fano and x ∈ X is a general point, let minimal rational component
K ⊂ RatCurvesn(X) and the corresponding component Kx ⊂ RatCurvesnp+2(x,X)
be of minimal degree p+ 2. Then Kx is a union of smooth varieties of dimension
p and the general points are minimal standard.

Proof. For (a), let that free rational curve is g, pick an irreducible component V ⊂
Hombir(P1, X) containing [g]. Then by Theorem 1.39 V is dominated to X. Then by
Theorem IV.2.4 and Corollary IV.2.9 in [Kol96] there is a W ⊂ Hombir(P1, X) such that
dominated to X and general points in W is standard.

For (b), WLOG we let Kx irreducible and let V ⊂ Homn
bir(P1, X; 0 7→ x) be the

irreducible component correspond to Kx. Now since x is general, by Theorem 1.38 any
members of V and hence Kx are free. Hence for any [f ] ∈ V we have H1(P1, f∗TX ⊗
m0) = 0. Then Homn

bir(P1, X; 0 7→ x) = Hombir(P1, X; 0 7→ x) is smooth at [f ] in this
case. Hence by Theorem 1.23 V is also smooth at [f ] and of dimension H0(P1, f∗TX ⊗
m0) = p + 2. Hence by Theorem 1.31(b) the morephism u : Homn

bir(P1, X; 0 7→ x) →
RatCurvesn(x,X) is smooth and is an Aut(P1; 0)-bundle, hence so is V → Kx. So Kx is
smooth variety of dimension p.
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Definition 1.44. Let X be a projective variety and V ⊂ RatCurvesn(X) be a closed
irreducible subvariety. Let u : Homn

bir(P1, X) → RatCurvesn(X) and V ′ = u−1(V ). We
say V (or V ′) is unsplit if V is proper on Spec(k).

Corollary 1.45. Let V ⊂ RatCurvesn(X) is a closed irreducible subvariety of minimal
degree, then it is unsplit.

Proof. Follows from the definition and Corollary 1.30(a).

1.4 Bend and Break
Bend and Break is a classical method aiming to find the rational curves over the projec-
tive varieties which is first observed by S. Mori in [Mor79]. Here we will give the main
results proved in [Kol96]. See also the first chapter in [KM98] for a brief introduction.
Here we assume all schemes over a infinity field k.

1.4.1 Main Results of Bend and Break
Definition 1.46. Let S be a proper surface and B ⊂ S a proper curve. We say that B
is contractible in S if there is a surface S′ and a dominant morphism g : S → S′ such
that g(B) is zero dimensional.

Proposition 1.47 (Rigidity Lemma). Let f : X → Y be a proper morphism such that
f∗OX = OY . Let g : X → Z be a morphism. Assume that for some y ∈ Y there is a
factorization

Z

X f−1(y)

Y {y}

g

f fy

hy

g|f−1(y)

Then there is an open neighborhood y ∈ U ⊂ Y and a factorization

Z

X f−1(U)

Y U

g

f fU

hU

g|f−1(U)
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Proof. Let Γ ⊂ Y × Z be the image of (f, g). Then p : Γ → Y is proper and p−1(y) =
(y, hy(y)) is finite over y. Thus there is an open neighborhood y ∈ U ⊂ Y such that
p−1(U)→ U is finite. Since

f∗Of−1(U) ⊃ p∗Op−1(U) ⊃ OU ⊃ f∗Of−1(U)

which shows that p−1(U)→ U is an isomorphism.

Corollary 1.48. Let S be a proper surface and B ⊂ S a contractible curve. Then
B ·B < 0.

In particular, let D be an irreducible and proper curve and C an arbitrary curve.
Let Bc = B × {c} ⊂ B × C where c ∈ C is arbitrary. Then Bc is not contractible in
B × C.

Proof. Since B ⊂ S a contractible, there is a surface S′ and a dominant morphism
g : S → S′ such that g(B) is zero dimensional. We prove this only for S smooth and S′

projective. The general case works the same once the definition of intersection numbers
is established in general.

Since S′ projective, then we can find a finite morphism f : S′ → P2 since k is infinity.
Let O(H) = f∗O(1) which is ample and H · H > 0 and H · B = 0. By Hodge index
theorem we have B ·B < 0.

For the final statement, note that Bc ·Bc = 0 hence Bc is not contractible.

Theorem 1.49 (Fundamental Bend and Break, Mori-Miyaoka 1979-1986). Let B be
a smooth proper and irreducible curve over k and S an irreducible, proper and normal
surface. Let p : S → B be a morphism. Assume that there is an open subset B0 ⊂ B, a
smooth projective curve C and an isomorphism

f : [C ×B0 π→ B0] ∼= [p−1(B0)
p→ B0].

We call a section s : B → S is called flat if s(B0) = {c} × B0 under the above
isomorphism.

(a) If there is a contractible flat section s1 : B → S, then for some b ∈ B\B0 the fiber
p−1(b) contains a rational curve intersecting s1(B).

(b) If k algebraically closed, g(C) = 0 and there are two contmctible sections s1, s2 :
B → S, then for some b ∈ B\B0 the fiber p−1(b) is either reducible or nonreduced.

(c) Let L be a nef R-Cartier divisor on S. If there are k ≥ 1 contractible flat sections
si : B → S such that L · si(B) = 0 for every i, then for some b ∈ B\B0 the
fiber p−1(b) contains a rational curve D intersecting a section si(B) such that
L ·D ≤ 2

kL · C where C be the general fiber of p.
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(d) Let L be a nef R-Cartier divisor on S with L2 > 0. If there are k contractible flat
sections si : B → S such that L · si(B) = 0 for every i, then for some b ∈ B\B0

the fiber p−1(b) contains a rational curve D intersecting a section si(B) such that
0 < L ·D < 2

kL · C where C be the general fiber of p.

Proof. Let X := C × B and Γ ⊂ X ×B S be the closure of the graph of f . Consider
projections pX , pS and every flat section si induces a flat section sXi : B → X:

BB0 BB0

X = B × C

C
S

sXi

si

f

sXj

sj

By Corollary 1.48 the rational map f : X 99K S is not defined some where along
sXi (B) if si contractible. Here we only prove (a) and (b). Actually (c) and (d) including
the same idea with complicated computation and we refer Theorem II.5.4 in [Kol96].

For (a), since s1 : B → S is a contractible flat section, then f : X 99K S is not
defined some where along sX1 (B). So we have a exceptional curve D′ ⊂ Γ of pX . One
can show that D′ is rational, then take D = pS(D

′) and we get (a).
For (b), we assume that every fibres of p are integral, then h1(Op−1(b)) = 1 −

χ(Op−1(b)) since k is algebraically closed. Then it is independent of b ∈ B and every
fiber of p is isomorphic to P1. Since p has sections, then S is a minimal ruled surface
over B. Now the matrix of intersection form of s1(B), s2(B) and C × {b} is M =−a1 c 1

c −a2 1
1 1 0

 where −ai = si(B)2 < 0 by Corollary 1.48 and c = s1(B) · s2(B) ≥ 0.

Hence detM = 2c + a1a + 2 > 0 which is impossible since dimN1(S) = 2 since N1(S)
generated by s1(B) and C × {b}.

Corollary 1.50. Let C be an irreducible, proper and smooth curve and X a proper
variety. Let p1, ..., pk ∈ C be k distinct points and g : {p1, ..., pk} → X a morphism.
Assume that there is a smooth, irreducible, proper curve B, an open set B0 ⊂ B and a
morphism

[h0 : C ×B0 → X ×B0] ∈ Hom(C,X; g)(B0)

such that h0(C × {b}) and pX ◦ h0({c} ×B0) are one dimensional for some b ∈ B0 and
c ∈ C.

Then there is a unique normal compactification S ⊃ C ×B0 such that h0 extends to
a finite morphism h : S → X ×B. Let p : S → B.
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(a) If k ≥ 1, then for some b ∈ B\B0 the 1-cycle h∗(p−1(b)) contains a rational curve
D which passes through g(p1).

(b) If C ∼= P1, dim Im(pX ◦ h0) = 2 and k ≥ 2, then for some b ∈ B\B0 the 1-cycle
h∗(p

−1(b)) is either reducible or nonreduced.
(c) Let L be a nef R-Cartier divisor on X and k ≥ 1. Then for some b ∈ B\B0 the

1-cycle h∗(p−1(b)) contains a rational curve D such that 0 ≤ L · D ≤ 2
kL · h∗C

and {g(p1), ..., g(pk)} ∩D 6= ∅.
(d) Let L be a nef R-Cartier divisor on X with h∗L2 > 0 and k ≥ 1. Then for

some b ∈ B\B0 the 1-cycle h∗(p
−1(b)) contains a rational curve D such that

0 < L ·D < 2
kL · h∗C and {g(p1), ..., g(pk)} ∩D 6= ∅.

Proof. If h0(C ×{b}) is a point for some b ∈ B0, then by rigidity lemma h0(C ×{b}) is
a point for any b ∈ B0, a contradiction. Thus h0 is finite on every fiber of C×B0 → B0,
hence the natural morphism h0 is quasifinite. S ⊃ C × B0 such that h0 extends to a
finite morphism h : S → X ×B.

If Im(pX◦h0) is of dimension one, this is not hard to see. If Im(pX◦h0) is of dimension
two, then any pi determines a contractible flat section of S given by si : B0 → {pi}×B0.
Then this follows from Theorem 1.49.

Theorem 1.51 (Bend and Break). Let C be an irreducible, proper and smooth curve
and X a proper variety. Let f : C → X be a nonconstant morphism.

(a) If dim[f ] Hom(C,X) ≥ dimX + 1, then for every x ∈ f(C) there is a morphism
fx : C → X and a 1-cycle

∑
i aiDi whose irreducible components are rational

curves such that x ∈ supp(
∑

i aiDi) and

f∗[C] ∼alg (fx)∗[C] +
∑
i

ai[Di].

(b) If g(C) = 0 and dim[f ] Hom(C,X) ≥ 2 dimX+2 (holds if −KX ·C ≥ n+2), then
for every x1, x2 ∈ f(C) there is a 1-cycle

∑
i aiDi whose irreducible components

are rational curves such that x1, x2 ∈ supp(
∑

i aiDi) and

f∗[C] ∼alg
∑
i

ai[Di],
∑
i

ai ≥ 2.

(c) Let L be a nef R-Cartier divisor on X and k ≥ 1. If dim[f ] Hom(C,X) ≥ k dimX+
1, then for every x ∈ f(C) there is a morphism fx : C → X and a 1-cycle

∑
i aiDi

(a1 > 0) whose irreducible components are rational curves such that x ∈ D1 and

f∗[C] ∼alg (fx)∗[C] +
∑
i

ai[Di], L ·D1 ≤
2

k
L · f∗C.
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Proof. Choose {p1, ..., pk} ⊂ C with g = f |{p1,...,pk}, then by Proposition 1.21 we have

dim[f ] Hom(C,X; g) ≥ dim[f ] Hom(C,X)− k dimX.

For (a), we assume k = 1 and f(p1) = x then dim[f ] Hom(C,X; g) ≥ 1. Let B0 be the
normalization of an irreducible curve in Hom(C,X; g) containing [f ] and h0 : C×B0 →
X × B0 the natural cycle morphism. By Corollary 1.50 we have compactifications B
and S. Resolve the indeterminacies of C ×B 99K S we get

C ×B Y S X ×B

B

ρX ρS

q p

h

Pick b ∈ B\B0 as before we get (p ◦ ρS)−1(b) = (q ◦ ρX)−1(b) = [C0] +
∑

j ej [Ej ] where
C0
∼= C and Ej rational as the exceptional curves of ρX . Set fx = (h ◦ ρS)|C0 and∑

i aiDi = (h ◦ ρS)∗(
∑

j ej [Ej ]) and well done.
The proof of (b) is similar as (a) using Corollary 1.50(b).
For (c), as before we obtain D = D1 which satisfies all the requirements except that

we only know that D∩{f(p1), ..., f(pk)} 6= ∅. By letting the points pi vary, we conclude
that (c) holds except possibly for k − 1 points of f(C).

Let W ⊂ Chow1(X) be the connected component of f∗[C]. Let V ⊂W be the set of
those points such that the corresponding cycle Z has the form Z ∼alg (fx)∗[C]+

∑
i ai[Di]

where the Di are rational. By Proposition 1.24 V is closed in W and hence proper. By
Corollary 1.25 RatLocus(V ) ⊂ X is closed. Thus RatLocus(V ) ∩ C is a closed subset
whose complement has at most k − 1 points. Therefore C ⊂ RatLocus(V ) and this
completes the proof.

Theorem 1.52 (Smooth Bend and Break, Mori 1979-1982). Let X be a smooth pro-
jective variety.
(a) Let f : P1 → X be a nonconstant morphism. Then for every x ∈ f(P1) there

is a 1-cycle
∑

i aiDi whose irreducible components are rational curves such that
x ∈ supp(

∑
i aiDi) and

f∗[C] ∼alg
∑
i

ai[Di], −KX ·Di ≤ dimX + 1.

(b) Let C be a smooth, projective and irreducible curve and f : C → X a morphism.
Assume that degC f∗(−KX) > g(C) dimX, then for every x ∈ f(C) there is a
morphism fx : C → X and a 1-cycle

∑
i aiDi whose irreducible components are

rational curves such that x ∈ supp(
∑

i aiDi) and degC f∗x(−KX) ≤ g(C) dimX
and

f∗[C] ∼alg (fx)∗[C] +
∑
i

ai[Di], −KX ·Di ≤ dimX + 1.
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Proof. By using Theorem 1.51(b) to our (a) and 1.51(a) to our (b) and induction on
deg f∗H for some fixed ample divisor H on X, we can get the results.

1.4.2 Connection of Zero and Positive Characteristics
When we want to find the rational curves on variety X, we need to use the bend and
break as Theorem 1.51(c). For any f : C → X passing x ∈ X we need to make sure
that dim[f ] Hom(C,X) ≥ k dimX + 1 for some k. Now by Theorem 1.20 we have

dim[f ] Hom(C, Y ) ≥ −C ·KY + dimXχ(OC) = −C ·KY + dimX − dimXg(C).

If −KX · C > 0, to make sure the latter number larger, we need to find C ′ → C such
that −KX · C ′ larger but g(C) do not change.

For g(C) = 0 we can use the large degree map P1 → P1; for g(C) = 1 we use the ×n
morphism. But if g(C) ≥ 2 we do not have such things. Now that in char = p case we
have Frobenius map which satisfies this condition. So we need to make char = 0 into
char = p case and come back to char = 0. This is the magic method due to Mori.

Assume that we are given finitely many schemes of finite type Xi, coherent sheaves
Fi and maps gi defined over a field k. All of these can be described by a finite number
of equations (the schemes are given by affine charts and patching functions, the sheaves
by finitely presented modules over the affine charts and patchings and the maps are
described by their graphs which are schemes themselves). All these equations involve
only finitely many elements aj of the field k.

Let F ⊂ k be a subring which denote Fp if char(k) = p and Z if char(k) = 0. Let
R := F[aj ] is a finite type F-algebra.

Lemma 1.53. Let R be a finitely generated ring over F. Then

(a) The residue field R/m of any maximal ideal m ⊂ R is finite.
(b) The maximal ideals are dense in SpecR.

Proof. (a) is trivial and (b) follows from both cases are Jacobson rings.

Aftering choose aj and then R, we may consider Xi, Fi and gi defined over SpecR
which we denote them as XR

i ,F
R
i and gRi . Hence after base change to Spec k we again

have Xi,Fi, gi. Hence we constructed data {XR
i ,F

R
i , g

R
i } over SpecR such that the

fibers over Spec k are the original data {Xi,Fi, gi}. Similarly for maximal ideal m ⊂
R we have data {Xm

i ,F
m
i , g

m
i } over SpecR/m which is positive characteristic by the

previous Lemma (a).

Definition 1.54. Let (P ) be a property of schemes (morphisms etc.) in algebraic
geometry. We say that (P ) is of finite type if:

Let K/k be a field extension and Xk a k-scheme. Then (P ) holds for XK iff there
is a finitely generated subextension K/F/k such that (P ) holds for XL for every L/F .
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Remark 1.55. A typical property that is not of finite type is: XK has only finitely
many K-points.

Theorem 1.56 (Meta). Let (P1)⇒ (P2) be a statement in algebraic geometry that we
want to prove. Assume the following four conditions:

(1) (P1) and (P2) are of finite type.
(2) If (P1) holds for the generic fiber of a morphism X → Y , then it holds for every

fiber over a nonempty open set.
(3) If (P2) holds for every fiber of a morphism X → Y over a (not necessarily open)

dense set, then it holds for the generic fiber.
(4) (P1)⇒ (P2) holds in positive characteristic.

Then (P1)⇒ (P2) always holds.

We may not use this meta-theorem and we will show how to use the propcess before
the theorem, that is, a proof of the special (but nice and classical) case of the theorem
in the next section.

1.4.3 Applications of General Varieties and Fano Varieties
We assume that all varieties over an algebraically closed field k.

Theorem 1.57 (Kollár-Miyaoka-Mori, 1979-1982-1986-1991). Let X be a projective
variety over k, let C a smooth, projective and irreducible curve, f : C → X a morphism
and M any nef R-divisor. Assume that X is smooth along f(C) and −KX · C > 0.

Then for every x ∈ f(C) there is a rational curve Lx ⊂ X containing x such that

M · Lx ≤ 2 dimX
M · C
−KX · C

.

Proof. Fix the condition in the theorem and consider the following proposition:

(P) M any ample R-divisor and ε > 0 there is a rational curve Lx,ε ⊂ X containing x
such that

M · Lx,ε ≤ (2 dimX + ε)
M · C
−KX · C

.

Now we prove this theorem with several steps:
I Step 1. Prove the proposition (P) for M is ample divisor and char = p > 0.

Consider the Frobenius Fm : Cm → C of degree pm and consider fm : Cm → X,
then −KX · Cm = pm(−KX · C). Hence by Theorem 1.20 we have

dim[fm] Hom(Cm, X) ≥ pm(−KX · C) + dimXχ(OC)
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since X is smooth along f(C). Then for m � 0 we have dim[fm] Hom(Cm, X) ≥
pm −KX ·C

dimX+ε/2 dimX + 2. By Theorem 1.51(c) and we get the claim.
I Step 2. Prove the proposition (P) for char = 0.

We just need to show the case when M is ample divisor since R-divisor can be
approximated by Q-divisors.

Let f(p) = x and we construct R as before such that p ⊂ C
f→ X and M over

SpecR. Hence we have pR, xR, CR, fR, XR,MR. By shrinking SpecR we may assume
CR → SpecR is smooth, XR → SpecR is smooth along fR(CR) and MR is locally free
(since K(R) is of char = 0).

Let Wε ⊂ Chow1(XR/ SpecR) be the subvariety parametrizing those 1-cycles Z =∑
i aiDi which satisfies that every Di is rational and Z ·M ≤ (2 dimX + ε) M ·C

−KX ·C and
supp(Z) ∩ fR(XR) 6= ∅. Consider π :Wε → SpecR. We claim that π is surjective.

Indeed, we know that π is proper by Theorem 1.16 and Proposition 1.24. Since
the closed points dense in SpecR, we just need to show that π(Wε) contains all closed
points of SpecR. Pick a maximal ideal m ⊂ R and {pm, xm, Cm, fm, Xm,Mm} as before
over SpecR/m of positive characteristic. Hence by Step 1 we have rational curve Lxm,ε
such that [Lxm,ε] ∈Wε. Hence we get the claim.

By the claim we find that Wε ×SpecR Spec k 6= ∅. Hence we finish this step.
I Step 3. Prove the theorem.

Now come back to our general theorem. Now M be any nef R-divisor and we fix an
ample divisor H. Then kM +H is ample for any k ≥ 0. By Step 1,2, for anyε > 0 there
is a rational curve Lx,k,ε ⊂ X containing x such that

(kM +H) · Lx,k,ε ≤ (2 dimX + ε)k
M · C
−KX · C

+ (2 dimX + ε)
H · C
−KX · C

.

Then we have

k

(
M · Lx,k,ε − 2 dimX

M · C
−KX · C

)
+H ·Lx,k,ε ≤ (2 dimX + ε)

H · C
−KX · C

+ kε
M · C
−KX · C

.

If M · Lx,k0,ε − 2 dimX M ·C
−KX ·C ≤ 0 for some k0, ε, then we take Lx := Lx,k0,ε and then

well done. If not we have

H · Lx,k,ε ≤ (2 dimX + ε)
H · C
−KX · C

+ kε
M · C
−KX · C

.

for every k, ε. Set ε = 1
k and k → ∞. We obtain a sequence of curves Lx,k := Lx,k,1/k.

So H · Lx,k is uniformly bounded, thus the Lx,k form a bounded family. By Theorem
1.16 Chow1(X) has only finitely many components parametrizing 1-cycles of bounded
degree. In particular there is a subsequence ki →∞ such that P := P (i) :=M ·Lx,ki −
2 dimX M ·C

−KX ·C is independent of i. Hence

kiP ≤ (2 dimX + 1)
H · C
−KX · C

+ ε
M · C
−KX · C

, ki →∞.



32 CHAPTER 1. BASIC THEORY OF RATIONAL CURVES

Hence P ≤ 0 and we take Lx := Lx,ki and well done.

Theorem 1.58 (Smooth Case). Let X be a smooth projective variety, C a smooth,
projective and irreducible curve and f : C → X a morphism. Let M be any nef R-
divisor. Assume that −KX · C > 0, then for any x ∈ f(C) there is a rational curve
Dx ⊂ X containing x such that

M ·Dx ≤ 2 dimX
M · C
−KX · C

, −KX ·Dx ≤ dimX + 1.

Proof. Use Theorem 1.52 and Theorem 1.57. This is trivial.

Remark 1.59. Both Theorem 1.57 and Theorem 1.58 have generalizations with the
same proof, see Theorem II.1.3 and Remark II.5.15 in [Kol96].

Corollary 1.60 (Fano Case). Let X be a smooth Fano variety, then for any x there is
a rational curve Dx ⊂ X containing x such that −KX ·Dx ≤ dimX + 1. In particular
any smooth Fano variety is uniruled.

1.5 Application I: Basic Theory of Fano Manifolds
Some general theory of Fano varieties we refer [PS99]. Here we give some important
basic theory of Fano manifolds. We consider any schemes over an algebraically closed
field k.

1.5.1 Some General Properties
Theorem 1.61. Let G be a reduced and connected linear algebraic group and X be a
proper homogeneous space under the action of G. Pick x ∈ X and stabilizer Gx ⊂ G.
If Gx is reduced (always hold if char = 0), then TX is generated by global sections and
−KX is very ample.

Proof. Omitted, we refer Theorem V.1.4 in [Kol96].

Proposition 1.62. Let X be a smooth Fano variety over an algebraically closed field k
of characteristic zero.

(a) We have χ(X,OX) = 1 and X is simply connected.
(b) Pic(X) is finite generated and torsion free.

Proof. For (a), by Kodaira’s vanishing theorem we find that Hm(X,OX) = 0 for all
m > 0, hence χ(X,OX) = 1. If π : X ′ → X is a connected finite étale cover, then X is
also a smooth Fano variety. Hence χ(X ′,OX′) = 1. But χ(X ′,OX′) = degπχ(X,OX).
Hence π is an isomorphism.
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For (b) we may assume k = C. By exponential sequence one has

H1(X,OX)→ Pic(X)→ H2(X,Z)→ H2(X,OX).

By Kodaira’s vanishing theorem, we find that Hm(X,OX) = 0 for all m > 0, hence
Pic(X) ∼= H2(X,Z). Hence Pic(X) is finite generated. To show Pic(X) is torsion free,
we just need to show H2(X,Z) is torsion free. By universal coefficient theorem for
cohomology, one has

0→ Ext1(H1(X,Z),Z)→ H2(X,Z)→ Hom(H2(X,Z),Z)→ 0.

As Hom(H2(X,Z),Z) is torsion free, the only torsion ofH2(X,Z) follows fromH1(X,Z).
As H1(X,Z) = π1(X)abel = 0 by (a), hence Pic(X) is torsion free.

Proposition 1.63. Let f : X → Y be a smooth proper morphism of smooth proper
varieties over algebraically closed field of characteristic zero.

(a) Consider the Stein factorization f : X
g→ Z

h→ Y , then g is smooth and h is étale.
(b) If Y is simply connected (for example, Y is Fano), then f has connected fibres.

Proof. (b) follows from (a) and Proposition 1.62(a). Here we consider (a).
For (a), now h is finite. By miracle-flatness we just need to show that h is unramified.

Indeed, If z is a ramification point and y = g(z), then g−1(y) is non-reduced at z. Hence
f−1(y) is also non-reduced, hence not smooth. So h is unramified.

Theorem 1.64 (Cone Theorem). Let X be a smooth Fano variety over an algebraically
closed field k. On X there are only finitely many families of rational curves Cµ such
that −KX · Cµ ≤ dimX + 1. Let Ci : 1 ≤ i ≤ N be a set of representatives, then

NE(X) = NE(X) =
∑
i

R+[Ci].

Proof. A very special case of Theorem 3.7 in [KM98]. Omitted.

Proposition 1.65. Let f : X → Y be a smooth morphism between smooth projective
varieties over an algebraically closed field k.

(a) If dimY > 0 then −KX/Y is not (absolutely) ample on X.
(b) If X is Fano, then Y is also Fano.

Proof. For (a), need to add.
For (b), we may assume dimY > 0. Pick an ample divisor H and a > 0 such that

−KX − af∗H is nef. Let h : C → Y be a non-constant morphism from a smooth
projective curve C. Consider c fC← XC := X ×Y C

g→ X. Now g∗(−KX) is ample but
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−KXC/C is not by (a). Hence for any ε > 0 there exists an irreducible curve D ⊂ XC

such that −KXC/C ·D < ε(−g∗KX ·D). As −KXC/C = g∗f∗KY − g∗KX , we have

−g∗f∗KY ·D > (1− ε)(−g∗KX ·D) ≥ (1− ε)(ag∗f∗H ·D).

One can choose D → C non-constant, so pushforward to C we have

degh∗(−KY ) > (1− ε)a degh∗H.

Hence since ε > 0 and h : C → Y are arbitrary, we know that −KY − aH is nef. Hence
−KY is ample and Y is Fano.

Remark 1.66. Noe that if f is only flat, this is not true.

1.5.2 Classifications Via Fano Index
Definition 1.67. Let X be a smooth Fano variety. The Fano index of X is

Index(X) := max{m ∈ N : −KX ∼ mH for some Cartier divisor H}.

Theorem 1.68 (Kobayashi-Ochiai, 1970). Let X be a smooth Fano variety of dimension
n over a field of characteristic zero. Then

(a) Index(X) ≤ n+ 1.

(b) Let −KX ∼ Index(X)H, then χ(X,OX(jH)) =


1 j = 0

0 −Index(X) < j < 0

(−1)n j = −Index(X)

.

Moreover we have

χ(X,OX(tH)) =



(
t+n
n

)
Index = n+ 1(

t+n+1
n+1

)
−
(
t+n−1
n+1

)
Index = n

Hn
(
t+n−1
n

)
+
(
t+n−2
n−2

)
Index = n− 1

Hn
(
2t+n−2

2n

)(
t+n−2
n−1

)
+
(
t+n−2
n−2

)
+
(
t+n−3
n−2

)
Index = n− 2

.

HenceHn =

{
1 Index = n+ 1

2 Index = n
and h0(X,OX(H)) =


n+ 1 Index = n+ 1

n+ 2 Index = n

Hn + n− 1 Index = n− 1
1
2H

n + n Index = n− 2

.

(c) Index(X) = n+ 1 if and only if X ∼= Pn.
(d) Index(X) = n if and only if X ∼= Qn ⊂ Pn+1 be a smooth quadric.
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Proof. For (a), by Corollary 1.60 we can find a rational curve C such that −KX · C ≤
n+ 1. But C ·H ≥ 1, hence Index(X) ≤ n+ 1.

For (b), χ(X,OX(jH)) follows from Kodaira vanishing theorem and Serre duality.
Then using this we know some roots of χ(X,OX(tH)) correspond to t. Hence others
are not hard to find. By Kodaira vanishing theorem again we get h0(X,OX(H)) and
Hn.

For (c), actually one can show that OX(H) is base-point free by Claim V.1.11.7
in [Kol96]. Hence by (b) this induce p : X → Pn. Let Y := Im(p), then 1 = Hn =
deg p degY . Hence deg p = degY = 1. As H is ample, p is finite. Hence p is an
isomorphism.

For (d), one can show that OX(H) is base-point free by Claim V.1.11.7 in [Kol96].
Hence by (b) this induce p : X → Pn+1. Let Y := Im(p), then 2 = Hn = deg p degY .
As Index(X) = n, Y is not linear. Hence deg p = 1 and degY = 2. As H is ample, p is
finite. Hence p is an isomorphism.

Remark 1.69. Some remarks:

(1) If one assumes only that −KX ∼ mH is nef and big, then essentially the same
proof gives that X ∼= Pn if m = n+1. If m = n, then either X is a smooth quadric
in X ∼= Qn ⊂ Pn+1 or p : X → Y is a birational morphism onto a singular quadric
of rank 2.

(2) Let X be a smooth Fano variety of dimension n (any characteristic) such that
−KX ∼ (n+ 1)H, we also have Hn = 1.
Indeed, section of O(mH) has

(
m+n−1

n

)
conditions vanishing at x ∈ X. So if

Hn > 1, then H0(X,OX(mH)⊗mm+1
x ) ≥ cmn for some c > 0 (see also VI.2.15.7

in [Kol96]). Pick a such section D. By Corollary 1.60 we can find a rational
curve x ∈ C ⊈ D such that C ·D = m since −KX ∼ (n+1)H. But C ·D ≥ m+1
which is impossible.

Theorem 1.70 (Fujita, 1990). Let X be a smooth Fano variety of dimension n ≥ 3
over a field of characteristic zero such that Index(X) = n− 1. Assume N1(X) ∼= R. Let
−KX = (n− l)H. Then one of the following holds:

(a) Hn = 1 and X ∼= X6 ⊂ P(1n−1, 2, 3).
(b) Hn = 2 and X ∼= X4 ⊂ P(1n, 2).
(c) Hn = 3 and X ∼= X3 ⊂ P(1n+1).
(d) Hn = 4 and X ∼= X2,2 ⊂ P(1n+2).
(e) Hn = 5 and X is a linear space section of the Grassmannian Grass(2, 5) ⊂ P9

(thus n ≤ 6).

Proof. See 8.11 in [Fuj90].
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Proposition 1.71. The only Fano surface of Picard number 1 is P2.

Proof. Similar proof as in Theorem 1.68(c). See Theorem III.3.7 in [Kol96].

1.6 Application II: Boundedness of Fano Manifolds
Here we will give a brief introduction about the boundedness of Fano manifolds using
rational curves due to Kollár-Miyaoka-Mori (see Section V.2 in [Kol96] or original paper
[KMM92b] for details). Then we will give a statement of BAB conjecture which has
proved by Birkar. We consider schemes over an algebraically closed field k of charac-
teristic zero.

Theorem 1.72 (Kollár-Miyaoka-Mori, 1992). Let X be a smooth Fano variety of di-
mension n over k. Then there is a number d(n) (depending only on n) such that any
two points of X can be joined by an irreducible rational curve of anticanonical degree
at most d(dimX).

Proof. This follows from the rational connected varieties, see Section IV.3 and IV.4 and
Corollary V.2.14.2 in [Kol96].

Proposition 1.73. Let X be a proper variety of dimension n, x ∈ X a smooth point
and L an nef and big line bundle on X. Choose d > 0 such that a general point x′ ∈ X
can be connected to x by an irreducible curve Cx′ such that L ·Cx′ ≤ d. Then L n ≤ dn.

Proof. Fix ε > 0 and use a classical result (see Corollary VI.2.15.7 in [Kol96], actually
with the similar proof of Remark 1.69(2)) there is a k > 0 and a divisor Dk ∈ |kL |
such that multxDk ≥ k n

√
L n − kε. Pick a general point x′ /∈ suppDk. Then Cx′ is not

contained in Dk hence

kd ≥ Dk · Cx′ ≥ multxDk ≥ k
n
√

L n − kε.

Hence d ≥ n
√

L n − ε and let ε→ 0.

Theorem 1.74 (Boundedness of Fano Manifolds, Kollár-Miyaoka-Mori 1992). All n-
dimensional Fano Manifolds over k forms a bounded family.

Proof. By Theorem 1.72 and Proposition 1.73, we know that (−1)nKn
X is bounded. Us-

ing Matsusaka estimate (see Exercise VI.2.15.8 in [Kol96], proved by Kollár-Matsusaka
in [KM83] in 1983) we know that for any nef and big divisor H, the coefficients of
polynomial χ(X,OX(tH)) can be bounded by Hm and KX ·Hm−1. So χ(X,OX(tKX))
has bounded coefficients. In 1970, Matsusaka in [Mat70] shows that there are only
finitely many deformation types with fixed Hilbert polynomial. So All n-dimensional
Fano Manifolds over k forms a bounded family.
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This finish the story of the smooth Fano varieties. If we have some mild singularities,
then this problem is the famous conjecture in birational geometry:

Theorem 1.75 (BAB-Conjecture, Birkar 2016). Let d ∈ N and ε > 0. Then the set of
projective varieties X such that (X,B) is ε-lc of dimension d for some boundary B and
−(KX +B) is nef and big, form a bounded family.

Some History. This is one of the fundamental result of singular Fano varieties and is
one of the most important conjectures in birational geometry and it is related to the
termination of flips.

As we have seen, Kollár-Miyaoka-Mori in 1992 showed the boundedness of smooth
Fano varieties using rational curves. But this can not be used in the BAB-conjecture.

In 1992 Kawamata showed the boundedness of terminal Q-Fano Q-factorial three-
folds of Picard number one. In 1992 Borisov-Borisov shows this for toric cases. In
1994 V. Alexeev proved the BAB-conjecture for surfaces. In 2000 Kollár-Miyaoka-
Mori-Takagi showed the boundedness of canonical Q-Fano threefolds. Then in 2014 C.
Jiang proved the weak BAB-conjecture for 3-fold, which is an important step towards
the BAB-conjecture.

Finally BAB-Conjecture (along with the Weak BAB Conjecture) in arbitrary di-
mension was proved by C. Birkar in 2016 by different and much stronger methods, see
his papers [Bir19] and [Bir21].

Remark 1.76. The theory of moduli of Fano varieties is an application of J. Alper’s
theory of good moduli space. Many mathematicians build the whole theory in recent
years using K-stability theory.

In fact, by the theory of Birkar in [Bir19], C. Jiang in 2017 showed that any K-
semistable Fano varieties with dimension n and volumn (−KX)

n = V is bounded. Then
there exists N � 0 such that | − NKX | gives an embedding to PM . Fix a Hilbert
polynomial and then using the theory of KSBA-moduli space, there is a subspace of that
Hilbert space H ′ correspond what we what. Hence the moduli stack MKss

n,V of K-semistable
Fano varieties with dimension n and volumn (−KX)

n = V is [H ′/PGL] which is an
algebraic stack of finite type. Then using Alper’s theory we construct the separated good
moduli space MKss

n,V →MKps
n,V with ample CM-line bundle.

1.7 Application III: Hartshorne’s Conjecture
Hartshorne’s Conjecture is first proved by S. Mori in his famous and important paper
[Mor79]. This paper is the beginning of the theory of VMRT.

Theorem 1.77 (Hartshorne’s Conjecture, Mori 1979). Consider n-dimensional smooth
projective variety X over an algebraically closed field k, if TX is ample then X ∼= Pnk .
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Proof. By Theorem 1.79 directly.

This conjecture motivated by an important conjecture in complex geometry:

Theorem 1.78 (Frankel’s Conjecture, Mori 1979 and Siu-Yau 1980). If X is a com-
pact Kähler manifold of dimension n with everywhere positive holomorphic bisectional
curvature, then X ∼= PnC.

Proof. By Kodaira embedding theorem to −KX we know that X is a projective mani-
fold. Then by Theorem 1.77 we get the result.

Our main result in this section is the following due to Mori which is much stronger
than the Hartshorne’s Conjecture as we mentioned above.

Theorem 1.79 (Mori, 1979). Consider n-dimensional smooth projective variety X over
an algebraically closed field k. If

(1) −KX is ample, that is, X is a Fano manifold;
(2) For any non-constant morphism f : P1

k → X the bundle f∗TX is the sum of line
bundles of positive degree.

Then X ∼= Pnk .

Proof. We will use the following lemmas:

• Lemma A. For any f : P1
k → X such that bundle f∗TX is the sum of line bundles

of positive degree, we have deg f∗TX ≥ n+1. If equality holds, then f is an closed
embedding and is standard, that is, f∗TX ∼= O(2)⊕ O(1)⊕n−1.

Proof of Lemma A. Let f∗TX ∼= O(a1)⊕ · · · ⊕ O(an) where a1 ≥ · · · ≥ an. Then
ai ≥ 1 and a1 ≥ 2 by Remark 1.42. Hence deg f∗TX ≥ n + 1. If equality holds,
then the only possibility is f∗TX ∼= O(2)⊕O(1)⊕n−1. To show f is an embedding,
first we now that f is unramified by trivial reason. Others are also easy and we
refer to Lemma V.3.7.3.2 in [Kol96].

• Lemma B. In the case of Theorem, any rational curve can be deformed as a cycle
to the sum of rational curves C such that −KX · C = n+ 1.

Proof of Lemma B. From bend and break directly.

Back to the theorem. We let n ≥ 2. Pick f : P1 → X passing a general point
x ∈ X with 0 7→ x and with minimal degree n + 1 by Lemma B. By Proposition 1.43
the components V ⊂ Homn

bir(P1, X; 0 7→ x) = Hombir(P1, X; 0 7→ x) containing [f ] is
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smooth of dimension n+1 and the correspond Kx ⊂ RatCurvesnn+1(x,X) is also smooth
of dimension n− 1. Actually γ : V → Kx is a principal G := Aut(P1; 0)-bundle.
I Step 1. We claim that Kx ∼= P(Ω1

X,x).
Consider the tangent Φ : V → V(Ω1

X,x) via v 7→ (dv)0(
d
dt) for uniformizer t ∈ OP1,0

by Lemma A. First we claim that Φ is smooth. Easy to see that Φ is flat and we just
need to show Φ−1(Φ(v)) is smooth. Note that for any finite type k-scheme T and for
any morphism T → V over k, it factors through Φ−1(Φ(v)) → V if and only if the
morphism P1

T → XT coincides on Spec(OP1,0/m
2
P1,0) with vT . Hence

Φ−1(Φ(v)) ∼= V ∩ Hombir(P1, X; v|Spec(OP1,0/m
2
P1,0

))

which is open and hence smooth with the same proof of Proposition 1.43.
Hence by Lemma A again we get a smooth morphism Φ : Kx → P(Ω1

X,x). Hence it
is finite étale. Hence Kx ∼= P(Ω1

X,x).
I Step 2. Let F : V × P1 → Kx × X defined by (v, x) 7→ (γ(v), v(x)), consider
Z := SpecKx×X

F∗OG which is a geometrically quotient by G (can be checked along the
principal bundle V → Kx). As ψ : Z → Kx is a P1-bundle with a section S ⊂ Z induced
by V → V × P1 as v 7→ (v, 0), then Z ∼= P(ψ∗OZ(S)) is a projective bundle. Define a
universal cycle map π : Z → X induced by G-invariant cycle morphism V × P1 → X.
We claim that π : Z → X is étale on Z\S and π(S) = x.

Actually π(S) = x is trivial, to show π|Z\S is étale we just need to show V ×P1 → X
is smooth. This follows from Corollary 1.36 and Theorem 1.38. Hence we get the claim.
I Step 3. Consider the Stein factorization we have π : Z

ϕ→ U ∼= Spec
X
π∗OZ

η→ X.
We claim that η is étale, Z\S ∼= U\{r} where φ(S) = r and OS(S) ∼= OPn−1(−1).

In fact by Stein factorization η is étale outside a codimension ≥ 2 locus, by purity
of branced locus we know that η is étale. Now Z\S ∼= U\{r} where φ(S) = r follows
from Zariski main theorem. Finally we show that OS(S) ∼= OPn−1(−1). Indeed, picka
hyperplane L ⊂ Kx and a line C ∼= P1 ⊂ S such that ψ(C) ⊈ L. Let D := ψ−1(L),
then C · D = 1. As r ∈ φ(D), we have φ−1φ(D) = D + aS for some a > 0. So
C · φ−1φ(D) = φ(D) ·D = 0. Hence C · S = −1 and OS(S) ∼= OPn−1(−1).
I Step 4. We claim that U ∼= Pn.

By Step 3 we have OS(S) ∼= OPn−1(−1), hence

0→ OZ → OZ(S)→ OS(−1)→ 0

exact. Since R1ψ∗OZ = 0, we get

0→ OKx → ψ∗OZ(S)→ OKx(−1)→ 0

exact. As Ext1Pn−1(O(−1),O) = 0, we get ψ∗OZ(S) ∼= OKx ⊕ OKx(−1). Hence by Step
2 we have Z ∼= P(OKx ⊕ OKx(−1)).
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Z

ψ

π

φ

η

U

X

S

Hence Z ∼= P(OKx ⊕ OKx(−1)) ∼= BlOPn. We can have a contraction map Z → BlOPn
makes S to a point O ∈ Pn (in fact it is induced by ψ∗O(1) ⊗ O(S)). Hence via
Pn ← Z → U we have a birational map Pn 99K U . This must be an isomorphism since
Z ∼= BlOPn has only two dimensional Mori cone, hence the only birational contraction
is this one (another is that P1-bundle).
I Step 5. Finish the proof, that is, we have X ∼= Pn.

Since Pn is simply connected, U ∼= Pn → X is a Galois covering by Step 3 and 4.
Thus X ∼= Pn because any automorphism of Pn has a fixed point.

Remark 1.80. Note that by the proof this is right if we just consider the rational curves
containing a sufficient general point.

Corollary 1.81 (Lazarsfeld, 1984). Let X be a smooth projective variety over an alge-
braically closed field k of dimension > 0. Let there is a surjective separable morphism
p : Pnk → X, then X ∼= Pn.

Proof. By the Chow ring structure of projective space, we know that dimX = n and p
is finite. Hence let R be a ramification divisor of p, we have p∗(−KX) = −KPn+R hence
some multiple of −KX is effective. As p surjective, then dimN1(X) = 1 Hence −KX is
ample and X is Fano. For a sufficient general point x ∈ X outside of the ramification
divisor, consider f : P1 → X as 0 7→ x. Let C be a normalization of a component in
P×X P1, we have

C Pn

P1 X
f

pq

h

The natural map r : h∗TPn → h∗p∗TX = q∗f∗TX is a local isomorphism q−1(0) ⊂ C
since p is étale above x. Write f∗TX =

⊕
i OP1(ai). For any j we have⊕

h∗OP1(1)→ h∗TPn
r→
⊕
i

q∗OP1(ai)→ q∗OP1(aj)
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which is surjective over an open subspace U ⊂ C. So q∗OP1(aj) has a section vanishing
at somr point. Hence ai > 0 for any i. So by Theorem 1.79 we have X ∼= Pn.
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Chapter 2

Several Special Fano Varieties

2.1 More General Facts of Fano Varieties
2.1.1 About Linear Systems
Theorem 2.1 (Fujita 1980-1984). Let X be a smooth Fano n-fold of index r ≥ n− 1.
Then the general element in the fundamental divisor is smooth.

Proof. See [PS99] Theorem 2.3.2.

Theorem 2.2 (Mella 1996). Let X be a smooth Fano n-fold of index n− 2. Then the
general element in the fundamental divisor is smooth.

Proof. See [Mel99] Theorem 2.5.

Corollary 2.3. Let X be a smooth Fano 3-fold of index 1 and H3 ≥ 8 and ρ(X) = 1.
Then the linear system | −KX | is very ample and X is projectively normal which is an
intersection of quadrics.

Proof. See [PS99] Corollary 4.1.13.

Proposition 2.4. Let X be a smooth Fano 3-fold of Index(X) = r with fundamental
divisor H.

(a) If r ≥ 2, then Bs(| −KX |) = ∅.
(b) If dimBs(| − KX |) = 1, then Bs(| − KX |) ∼= P1 as schemes and Bs(| − KX |) ∩

(H ′)sing = ∅ for general H ′ ∈ | −KX |.
(c) If dimBs(| −KX |) = 0, then Bs(| −KX |) is a single point, general H ′ ∈ | −KX |

at this point has ordinary double singularity and Bs(| −KX |) ∈ Xsing.

Moreover, H is base point free except the following cases:

43
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(1) r = 2 and degX = 1 and |H| has simple base point.
(2) r = 1, g(X) = 3.
(3) r = 1, g(X) = 4.

Proof. See Proposition 2.4.1 and Theorem 2.4.5 in [PS99].

2.1.2 Pseudoindex of Fano Manifolds
Definition 2.5. For a Fano manifold X, we define the pseudoindex iX is the minimum
of the anticanonical degrees of rational curves on X.

Conjecture 1 (Mukai Conjecture). For a Fano manifold, we have ρ(X)(Index(X)−1) ≤
dimX.

Conjecture 2 (Generalized Mukai Conjecture). For a Fano manifold, we have ρ(X)(iX−
1) ≤ dimX with equality if and only if X is isomorphic to (PiX−1)ρ(X).

Remark 2.6. Note that this is right for Fano manifolds with simplicial Mori cones
([BCDD03] Corollaire 5.3), hence so is the Fano mnifold with nef tangent bundle by
Theorem 7.4(b).

Theorem 2.7. Let X be a Fano manifold of dimension m ≥ 2. Then iX ≤ m + 1.
Moreover we have the following.

(a) If iX = m+ 1, then X ∼= Pm.
(b) If iX = m, then X ∼= Qm.
(c) If iX > 1

2m+ 1, then ρ(X) = 1.

Proof. This is a generalization of the case in Fano index. See Theorem 4.1 in [MOESC+15].

Proposition 2.8. Let X be a Fano manifold of dimension n and iX ≥ 2 which has
only contractions of fiber type. Then ρ(X) ≤ n. Moreover,

(a) if ρ(X) = n, then X ∼= (P1)n;
(b) if ρ(X) = n− 1, then X is either (P1)n−2 × P2 or X = (P1)n−3 × P(TP2).

If All its elementary contractions but one are of fiber type. Then ρ(X) ≤ n− 1, equality
holding if and only if X = (P1)n−3 × BlpP3.

Proof. We omitted and we refer Proposition 5.1 and 5.2 in [NO07]. See also the com-
ments of the proof as in Remark 2.4 in [Wat14b].
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2.1.3 More Known Facts of Fano Manifolds
Lemma 2.9. Let f : X → Y be a surjective morphism between two smooth projective
varieties with connected fibers. Let F be a general fiber of f and dimF < (dimX − 1).
Then KX |F = KF .

Proof. Note that here F is smooth. Then the differential of f gives an isomorphism of
the normal bundle NF/X and the tangent space to Y at the corresponding point. Hence
NF/X is trivial. By adjunction formula we get the result.

Proposition 2.10. Let X be a Fano manifold with p : P(E)→ X a projectivisation of
a rank r bundle. Suppose that f : Y → X is a finite morphism. If P(f∗(E)) ∼= Y ×Pr−1,
then P(E) ∼= X × Pr−1.

Proof. Let η := OP(E)(1). We first claim that rη−p∗ detE is nef and (rη−p∗ detE)r = 0
over P(E). This follows because the pull-back of rη − p∗ detE to P(f∗(E)) has these
features. By the same reason −KP(E) = rη − p∗(detE + KX) is ample and therefore
P(E) is a Fano manifold and by Kawamata-Shokurov base-point-freeness rη − p∗ detE
defines a contraction, g : P(E)→ Z, onto a normal projective variety of dimension r−1.
Any fiber of g is mapped, via p, surjectively onto X, with no positive dimensional fiber.
Let F be a general fiber of g. Then, F is smooth and by adjunction and Lemma 2.9 we
find out that

KF = (KP(E))|F = (p∗KX + p∗(detE)− rη)|F = (p∗KX)|F .

Hence g|F is finite étale. As X Fano, we have p|F : F → X is an isomorphism and
hence F is a section of p. Thus we conclude that P(E) ∼= X ×Pr−1 since F general.

For the similar idea, we have:

Proposition 2.11. Let X be a Fano manifold admitting a projective bundle structure
f : X = P(E )→ Y of a rank r bundle E and R the extremal ray corresponding to f . If
there exists a proper morphism g : X → Z onto a variety Z of dimension r − 1 which
does not contract curves of R. Then X ∼= Pr−1 × Y .

Proof. Let F a general fiber of g. By dimension reason and condition f does not contract
curves in the fibers of g , F dominantes Y (hence surjective). Consider the diagram

F

XF X Z

F Y
fF

f

g
pF

p
p

idF

s
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where now s is a section of p such that pF ◦s is the embedding of F into X. Let F ′ ⊂ X
be the image of s. Let EF := f∗FE and hence XF = P(EF ). Hence

−KXF
+ p∗KF = rOXF

(1)− p∗ detEF .

As (p∗KF )|F ′ = KF ′ = (KXF
)|F ′ , hence (rOXF

(1) − p∗ detEF )|F ′ = OF ′ . Use the
canonical bundle for X again we get OF = (rOX(1)− f∗ detE )|F = (−KX + f∗KY )|F .
Hence KF = (KX)|F = f∗KY |F . Hence fF : F → Y is finite unramified (hence
étale by dimension reason). Hence as Y Fano by Theorem 1.65(b), fF : F → Y is an
isomorphism and hence F is a section of f .

As a section, F correspond to 0→ E ′ → E → L → 0. HenceNF/X = f∗F (E
∨⊗L ) =

(OX(1)⊗f∗(E ′)∨)|F . But now NF/X = O⊕r−1
F , we get (f∗E ′)|F ∼= (OX(1))|⊕r−1

F . More-
over f∗FL = OX(1)|F , hence pullback the exact sequence, we have 0→ (OX(1))|⊕r−1

F →
f∗FE → (OX(1))|F → 0 on F . As F ∼= Y , hence Fano and H1(F,OF ) = 0. Hence this
sequence split and f∗FE ∼= (OX(1))|⊕rF . As fF is an isomorphism, hence so is E and
X ∼= Pr−1 × Y .

2.1.4 Manifolds with Two Bundle Structures
Proposition 2.12. Let X be a projective manifold of dimension n, endowed with two
different P-bundle structures f : X → Y and g : X → Z such that dimY +dimZ = n+1.
Then either n = 2m − 1, Y = Z = Pm and X = P(TPm) or Y and Z have a P-bundle
structure over a smooth curve C and X = Y ×C Z.

Proof. See Theorem 2 in [OAW02] for the proof.

Lemma 2.13. Let X be a Fano manifold of Picard number 2 which admits two different
smooth P1-fibration structures. Then X is isomorphic to G/B with G a semisimple Lie
group of type A1 ×A1, A2, B2 or G2, and B a Borel subgroup of G.

Very Sketch of the Proof. See Theorem 4.7 in [MOESC+15] for the detailed proof and
here we give a very sketched proof.

Let X be an m-dimensional Fano manifold of Picard number 2 having two smooth
P1-fibrations π1 : X → X1 and π2 : X → X2. We assume that m ≥ 3. Let Ki

be the relative canonical divisor of πi, Hi the pull-back of the ample generator of Xi,
rXi = Index(Xi). Set ν1 := K1 · Γ2, µ1 := H1 · Γ2, ν2 := K2 · Γ1, µ2 := H2 · Γ1. WLOG
we may assume that ν2 ≥ ν1.

When m = 2 this is easy to see and we assume m ≥ 3. First one can show that
µi, νi > 0 and K2

j ∈ ∆jH
2
j for some ∆j ∈ Q by Chern-Wu numerical relations and

moreover ∆j < 0. As −Kj +
νj
µj
Hj is nef but not big, then (−K1 +

ν1
µ1
H1)

jHm−j
1 ≥

0 and being 0 when j = m. By some argument these inequalities reduce to ( ν1µ1 +
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i
√
−∆1)

j ≥ ( ν1µ1 − i
√
−∆1)

j . Hence argument of ν1
µ1

+ i
√
−∆1 is π/m and we have

−∆1 =
ν21
µ21

tan2( πm) ∈ Q. Hence m = 3, 4 or 6.
More calculation we can get ν1ν2 = 4 cos2(π/m) and hence (ν1, ν2) = (1, 1) or (1, 2)

or (1, 3). More calculation we get µ1 = µ2 and (m,µ1, rX1 , µ2, rX2) is (3, 1, 3, 1, 3) or
(4, 1, 3, 1, 4) or (6, 1, 3, 1, 5). By Theorem 1.68 we can find X2, then by some more theory
on them and well done.

Theorem 2.14. Let U be a smooth projective variety which admits two P1-bundle
structures over smooth projective varieties W,S:

U W

S

π

e

such that e dose not contract any π-fiber. Hence the image of π-fibres generate a half-
line RS ⊂ NE(W ). Then RS is an extremal ray of W and the induced contraction of
RS is a smooth morphism.

Idea of proof. The detailed proof we refer Theorem 2.2 in [Kan17], here we just give
some basic ideas.

Give a point x ∈W , we define V0(x) := {x} and Vm(x) := e(π−1(π(e−1(Vm−1(x))))).
Hence Vm(x) is just the set of points that can be connected to x by an S-chain of length
m. By the results of rational connected quotient theory, see [Deb01] Proposition 5.7,
Vn(x) will stable for some large n. We define d(x) = dimV (x) and m(x) be the smallest
such that dimVm(x)(x) stable. Let dS and mS be those of general fibres. Then after
discovering the properties of chain V0(x) ⊂ · · · ⊂ Vn(x), we can show that m(y) = mS

and d(y) = dS for any y ∈W .
Now we can have a morphism W → Chow(W ) and the union V of above V (x) is a

well-defined family of cycles, and hence the pullback of universal family of Chow(W ).
Let Z be the normalisation of the image of this map. Hence we have f : W → Z since
W normal which is the S-rational connected quotient. Hence RS is an extremal ray and
f be its contraction.

Now we need to show that the induced contraction of RS is a smooth morphism.
By Rigidity Lemma 1.47 we have

U W

S Z

e

π

g

f

By symmetry, g is the W -rationally connected quotient morphism of S. By proving
the smoothness we just need to show every f -fiber with its reduced structure is a Fano



48 CHAPTER 2. SEVERAL SPECIAL FANO VARIETIES

manifold with trivial normal bundle by Lemma 4.13 in [SCAW04]. Let h := f ◦ e, then
as the general fiber of h is Fano manifold with Picard number 2 admit two P1-bundle
structures, by Lemma 2.13 we know that this fiber is the complete flag of type A1×A1

or A2 or B2 or G2. By checking case by case and consider dimensions, we can show the
result.

Corollary 2.15. As the condition of Proposition, we have

U W

S Z

e

π

g

f

where f is the contraction of the ray RS. Then every fiber of f ◦ e is a complete flag
manifold by Theorem 11.19. In particular, all f -fibers are isomorphic to each other and
they are isomorphic to P1,P2,P3,Q3,Q5 orK(G2). Furthermore, if −Ke·(π-fiber) = −1,
then f -fibers are isomorphic to P2,Q3 or K(G2).

Theorem 2.16. Let X be a complex projective manifold with Picard number ρ(X) = 1
and E a rank 2 vector bundle on X. Assume that Z := P(E ) → X admits another
smooth morphism Z → Y of relative dimension 1 and n := dimX ≥ 2. Then,

(I) X and Y are Fano manifolds with ρ = 1 and there exists a rank 2 vector bundle
E ′ on Y such that Z → Y is given by PY (E ′).

(II) If E and E ′ are normalized by twisting with line bundles (i.e., c1 = 0 or −1), then
((X, E ), (Y,E ′)) is one of the following, up to exchanging the pairs (X, E ) and
(Y,E ′):

(a) ((P2, TP2), (P2, TP2)).
(b) ((P3,N ), (Q3,S )), where N is a null-correlation bundle on P3 (see Defini-

tion 11.26) and S is the restriction to the 3-dimensional quadric Q3 of the
universal quotient bundle of the Grassmannian Grass(2, 4).

(c) ((Q5,C ), (K(G2),Q)), where C is a Cayley bundle on Q5 and Q is the
restriction of universal quotient bundle of Grassmannian.

Proof. This is the main theorem of [Wat14a].

2.2 Gushel-Mukai Varieties
2.2.1 Basic Definitions and Properties
Let V5 be a vector space of dimension 5 and consider the Plücker embedding Grass(2, V5) ↪→
P
(∧2 V5

)
. For any vector spaceK, consider the cone CK(Grass(2, V5)) ⊂ P

(∧2 V5 ⊕K
)
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of vertex P(K). Choose a vector subspaceW ⊂
∧2 V5⊕K and a subscheme Q ⊂ P(W )

defined by defined by one quadratic equation (possibly zero).

Definition 2.17. The scheme

X = CK(Grass(2, V5)) ∩P(W ) ∩Q

is called a Gushel-Mukai intersection (GM intersection). A GM intersection X is called a
Gushel-Mukai variety (GM variety) if X is a smooth variety of dimension dimW −5 ≥ 1.

Remark 2.18. Some remarks:

(a) In the original paper [DK18] they defined without the smoothness (but always
Gorenstein).

(b) Note that all Q and CK(Grass(2, V5)) ∩ P(W ) are Gorenstein, hence all Cohen-
Macaulay. So the dimension condition means they are dimensionally transverse,
that is, Tor>0(OQ,OCK(Grass(2,V5))∩P(W )) = 0.

(c) A GM variety X has a canonical polarization, the restriction H of the hyperplane
class on P(W ); we will call (X,H) a polarized GM variety.

The definition of a GM variety is not intrinsic. We actually have an intrinsic char-
acterization. But before giving these, we will introduce a new definition:

Definition 2.19. Let W be a vector space and let Y ⊂ P(W ) be a closed subscheme
which is an intersection of quadrics, i.e., the twisted ideal sheaf IX(2) on P(W ) is
globally generated.

Define VX := H0(P(W ),IX(2)), this yields a surjection VX ⊗ OP(W )(−2) � IX

which induce
VX ⊗ OX(−2) � IX/I

2
X = N ∨

X/P(W ).

We define the excess conormal sheaf E N ∨
X/P(W ) to be the kernel of this map.

Theorem 2.20. A smooth polarized projective variety (X,H) of dimension n ≥ 1 is a
polarized GM variety if and only if all the following conditions hold:

(a) Hn = 10 and KX = −(n− 2)H.
(b) H is very ample and the vector space W := H0(X,OX(H))∨ has dimension n+5.
(c) X is an intersection of quadrics in P(W ) and the vector space

V6 := H0(P(W ),IX(2)) ⊂ Sym2W∨

of quadrics through X has dimension 6.
(d) The twisted excess conormal sheaf UX := E N ∨

X/P(W )(2H) of X in P(W ) is
simple.
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Proof. We will show a smooth polarized GM variety (X,H) satisfies (a)-(d) and we will
not prove the converse and we refer [DK18].

For (a), as deg(CK(Grass(2, V5))) = 5 and they are dimensionally transverse, then
deg(X) = 10. Let dimK = k and hence KCK(Grass(2,V5)) = −(5 + k)H by Lemma 2.21.
Finally we have

KX = (−(5 + k) + (10 + k)− (n+ 5) + 2)H = −(n− 2)H.

For (b), we just need to show W = H0(X,OX(H))∨. Consider the resolution

0→ O(−5)→ V ∨
5 ⊗ O(−3)→ V5 ⊗ O(−2)→ O → OCK Grass(2,V5) → 0.

Restrict it into P(W ) and tensor the resolution of Q as 0 → O(−2) → O → OQ, then
tensor O(1) again we get the resolution

0→ O(−6)→ (V ∨
5 ⊕ C)⊗ O(−4)→ (V5 ⊗ O(−3))⊕ (V ∨

5 ⊗ O(−2))
→ (V5 ⊕ C)⊗ O(−1)→ O(1)→ OX(H)→ 0

on P(W ). Hence H0(X,OX(H)) = H0(P(W ),OP(W )(1)) =W∨.
For (c), consider the resolution again:

0→ O(−5)→ (V ∨
5 ⊕ C)⊗ O(−3)→ (V5 ⊗ O(−2))⊕ (V ∨

5 ⊗ O(−1))
→ (V5 ⊕ C)⊗ O → O(2)→ OX(2H)→ 0

Hence one can show that H0(P(W ),IX(2)) = V5 ⊕ C, hence well done.
For (d), we will use the induction of the dimension. For n = 1, this follows from some

basic fact of excess normal sheaf and the Mukai’s construction about a stable vector
bundle of rank 2 on X to show that UX is stable, and hence simple. For the detail we
refer [DK18] Theorem 2.3. Hence we now assume n ≥ 2. Pick a smooth hyperplane
section X ′ ⊂ X which is also irreducible since n ≥ 2 by Bertini’s theorem. Hence X ′ is
also a GM variety. One can easy to show that in this case UX |X′ = UX′ (see Lemma
A.5 in [DK18]). Hence we have 0→ UX(−H)→ UX → UX′ → 0. Hence

0→ Hom(UX ,UX(−H))→ Hom(UX ,UX)→ Hom(UX′ ,UX′).

If dim(Hom(UX ,UX)) > 1, then dim(Hom(UX ,UX(−H))) > 0. By the similar argu-
ment we get

0→ Hom(UX ,UX(−2H))→ Hom(UX ,UX(−H))→ Hom(UX′ ,UX′(−H)) = 0.

Hence Hom(UX ,UX(−2H)) 6= 0. By induction we get Hom(UX ,UX(−kH)) 6= 0 for
any k > 0. Hence for any k > 0 we have Γ(X,U ∨

X ⊗ UX(−kH)) 6= 0. But these are
vector bundles and X is integral of dimension ≥ 2, hence this is impossible.
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Lemma 2.21. Let X ⊂ Pn be a subvariety such that KX = rH. Let C(X) ⊂ Pn+1 be
a cone over X, then KC(X) = (r − 1)H.

Proof. We know that the blow-up of of the vertex of C(X) is

X ′ = PX(OX ⊕ OX(−H))

C(X) X

π
p

Let H ′ be the relative hyperplane class of p. Then

KX′ = p∗(KX +H)− 2H ′ = (r + 1)p∗H − 2H ′.

On the other hand, the morphism π contracts the exceptional section E ⊂ X ′ and H ′

is the pullback of HC(X). Finally E ∼lin H ′ − p∗H, hence

KX′ = (r − 1)H ′ − (r + 1)E.

Hence KC(X) = (r − 1)H.

2.2.2 Some Classifications
Lemma 2.22. Let (X,H) be a polarized variety. If it is projective normal, that is, the
canonical map SymmH0(X,OX(H)) → H0(X,OX(mH)) is surjective for any m ≥ 0,
then H must be very ample.

Proof. By the commutative diagram

PH0(X,OX(nH))

X PH0(X, SymnOX(H))

PH0(X,OX(H))

|nH|

|H| n-uple

we know that |H| also induce an immersion. Hence H is very ample.

Proposition 2.23. Let (X,H) be a smooth polarized variety of dimension n ≥ 2 such
that KX = −(n − 2)H and H1(X,OX) = 0. If there is a hypersurface X ′ ⊂ X in the
linear system |H| such that (X ′,H|X′) is a smooth polarized GM variety, (X,H) is also
a smooth polarized GM variety.
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Proof. First we note that for any smooth GM variety (Y,H) the resolution

0→ O(m− 7)→ (V ∨
5 ⊕ C)⊗ O(m− 5)→ (V5 ⊗ O(m− 4))⊕ (V ∨

5 ⊗ O(m− 3))

→ (V5 ⊕ C)⊗ O(m− 2)→ O → OY (mH)→ 0

can imply Y is projective normal, that is, the canonical map SymmH0(Y,OY (H)) →
H0(Y,OY (mH)) is surjective for any m ≥ 0.

Back to the result, we need to check the conditions in Theorem 2.20. For (a), this
follows from Hn = H · Hn−1 = H|n−1

X′ = 10. Now we know X ′ is projective normal,
so is X by [Isk77] Lemma (2.9). By Lemma 2.22 we know H is very ample. By
H1(X,OX) = 0 we know that h0(X,OX(H)) = n + 5 by the case of X ′. This proves
(b), and [Isk77] Lemma (2.10) proves (c). For (d), since UX′ is simple, by the similar
proof of (d) in Theorem 2.20 we can also show that UX is simple.

Theorem 2.24. Let X be a complex smooth projective variety of dimension n ≥ 1,
together with an ample Cartier divisor H such that KX ∼lin −(n− 2)H and Hn = 10.
If we assume that

• when n ≥ 3, we have Pic(X) = Z ·H;
• when n = 2, the surface X is a Brill-Noether general K3 surface (a K3 surface is
called Brill-Noether general if h0(S,D)h0(S,H −D) < h0(S,H) for all divisors D
on S not linearly equivalent to 0 or H. When H2 = 10, this is equivalent to the
fact that |H| contains a Clifford general smooth curve);

• when n = 1, the genus-6 curve X is Clifford general (that is, it is neither hyperel-
liptic, nor trigonal, nor a plane quintic).

then X is a GM variety.

Before proving this, we need some Lemmas:

Lemma 2.25. Let X be a complex smooth projective variety of dimension n ≥ 3 with
an ample divisor H such that Hn = 10 and KX ∼lin −(n− 2)H.

Then the linear system |H| is very ample and a smooth general X ′ ∈ |H| satisfies
the same conditions: if H ′ := H|X′, we have (H ′)n−1 = 10 and KX′ ∼lin −(n− 3)H ′.

Proof. First we need to show that h0(H) > 0. This follows from the follows result:

• Lemma 2.25.A. Let X be a smooth Fano variety of dimension n ≥ 3 such that
−KX ∼lin rH where H is ample. Then when r ≥ n− 2, then h0(H) > 0.

Proof of Lemma 2.25.A. See Theorem 1.68.



2.2. GUSHEL-MUKAI VARIETIES 53

Hence now |H| is non-empty. Note that in this caseH is already the fundamental divisor
since Hn = 10. Hence by Theorem 2.1 and Theorem 2.2 as in this case the index of X
is ≥ n − 2, then the general elements are smooth. Pick such X ′. Then if H ′ := H|X′ ,
we have (H ′)n−1 = 10 and by adjunction formula we have KX′ ∼lin −(n − 3)H ′. By
Kodaira vanishing theorem we have H1(X,OX) = 0. Hence the linear series |H ′| is
just the restriction of |H| to X ′ and the base loci of |H| and |H ′| are the same. Taking
successive linear sections, we arrive at a linear section Y of dimension 3 which is smooth
and KY ∼lin −HY and H3

Y = 10.
If Pic(Y ) = Z ·HY , then by Corollary 2.3 the pair (Y,HY ) is projectively normal.
If not, then ρ(X) ≥ 2. By the classification theory (one omitted) of the Fano

threefold, Y must be a divisor of bidegree (3, 1) in P3×P1 and the pair (Y,HY ) is again
projectively normal.

Hence in both case, we can use the [Isk77] Lemma (2.9) repeatly which imply that
(X,H) is projectively normal. Hence by Lemma 2.22 we know H is very ample.

Lemma 2.26. Let (X,H) be a polarized complex variety of dimension n ≥ 2 which
satisfies the hypotheses of Theorem 2.24. A general element of |H| then satisfies the
same properties.

Proof. Assume first n ≥ 4. By Lemma 2.25 we need only to prove that a general smooth
X ′ ∈ |H| satisfies Pic(X ′) = Z · H ′ where H ′ := H|X′ . By Grothendieck-Lefschetz
theorem we have Cl(X) ∼= Cl(X ′). Hence Pic(X ′) = Z ·H ′ as Pic(X) = Z ·H.

When n = 2, this follows from definitions.
When n = 3, X is a smooth Fano 3-fold with Pic(X) = Z ·H. Then by Corollary

2.3 X is an intersection of quadrics. Any smooth hyperplane section S of X is a degree-
10 smooth K3 surface which is still an intersection of quadrics. A general hyperplane
section of S is still an intersection of quadrics, hence is a Clifford general curve. This
proves that S is Brill-Noether general.

Proof of Theorem 2.24. Induction on n. The case n = 1 was proved in Proposition 2.27,
so we assume n ≥ 2. A general hyperplane section X ′ of X has the same properties by
Lemma 2.26, hence is a GM variety by the induction hypothesis. On the other hand,
we have H1(X,OX) = 0. By Proposition 2.23, we conclude that X is a GM variety.
Well done.

Some inverse results:

Proposition 2.27. A smooth projective curve is a GM curve if and only if it is a
Clifford general curve of genus 6.

Proof. Follows from the Theorem 2.20 and the Enriques-Babbage theorem in [ACGH85]
Section III.3.
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Proposition 2.28. A smooth projective surface X is a GM surface if and only if X is
a Brill-Noether general polarized K3 surface of degree 10.

Proof. By Theorem 2.24, we just need to show that if X is a GM surface, then X is a
Brill-Noether general polarized K3 surface of degree 10. In this case, we have KX = 0
by Theorem 2.20(a), and the resolution

0→ O(−7)→ (V ∨
5 ⊕ C)⊗ O(−5)→ (V5 ⊗ O(−4))⊕ (V ∨

5 ⊗ O(−3))
→ (V5 ⊕ C)⊗ O(−2)→ O → OX → 0

implies H1(X,OX) = 0, hence X is a K3 surface. Moreover, a general hyperplane
section of X is a GM curve, hence a Clifford general curve of genus 6, hence X is
Brill-Noether general.

Proposition 2.29. Let (X,H) be a polarized complex smooth GM variety of dimension
n ≥ 3. Then Pic(X) = Z · H. In particular, the polarization H is the unique GM
polarization on X.

Proof. By Theorem 2.24, we just need to show that if (X,H) be a polarized complex
smooth GM variety of dimension n ≥ 3, then Pic(X) = Z · H. By Theorem 2.20,
X is a Fano variety of degree 10 and is an intersection of quadrics. When n = 3,
by the proof of Lemma 2.25 we know that Pic(X) = Z · H. Now consider n ≥ 4, a
general hyperplane section X ′ of X satisfies the same properties by Lemma 2.26 and by
Grothendieck-Lefschetz theorem again (for general case we refer Theorem 1 in [RS06])
we have injection Pic(X) ↪→ Pic(X ′). Hence by induction we get the result.

2.2.3 Grassmannian Hulls
Fix V5, V6,K,W ⊂

∧2 V5 ⊕K,Q ⊂ P(W ) which defines a smooth GM variety

X = CK Grass(2, V5) ∩P(W ) ∩Q.

Definition 2.30. Define MX := CK Grass(2, V5)∩P(W ) to be the Grassmannian hull of
X. Hence X =MX ∩Q which is a quadric section of MX .

Define M ′
X := Grass(2, V5)∩P(W ′) to be the projected Grassmannian hull of X where

W ′ defined as the image of the projection µ :W ⊂
∧2 V5 ⊕K →

∧2 V5.

Remark 2.31. Note that these two schemes are canonically associated to X via GM
datas. See [DK18] Section 2.

Now consider the Gushel map X → Grass(2, V5).

Proposition 2.32. Let X be a such smooth GM variety.
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(i) If µ : W →
∧2 V5 is injective, that is, µ induce W ∼= W ′, then MX

∼= M ′
X and

Gushel map X → Grass(2, V5) is an embedding which induce

X ∼=M ′
X ∩Q = Grass(2, V5) ∩P(W ) ∩Q.

In this case we call X a ordinary GM variety. Hence in this case

dimX = dimW − 5 ≤ dim
2∧
V5 − 5 = 5.

(ii) If kerµ 6= 0, then dimkerµ = 1, Q ∩ P(kerµ) = ∅ and MX = CP(kerµ)M ′
X and

the Gushel map X → Grass(2, V5) induce X → M ′
X which is a double covering

branched at a quadric (which is a ordinary GM variety if dimX ≥ 2). In this
case we call X a special GM variety. Hence in this case it comes with a canonical
involution from the double covering and

dimX = dimW − 5 ≤ dim
2∧
V5 + 1− 5 = 6.

Proof. For (i), this is trivial by the conditions.
For (ii), note that the blow up BlP(kerµ)MX at its vertex is a Pdim kerµ-bundle over

M ′
X . As X is smooth, then X ∩ P(K) = Q ∩ P(kerµ) = ∅. Hence dimkerµ = 1 as

dimQ = dimP(W )− 1. Now as Q is a quadric, then the Gushel map induce X →M ′
X

which is a double covering. We have X →M ′
X branched along Grass(2, V5)∩P(W ′)∩Q

which is a ordinary GM variety if dimX ≥ 2,

Remark 2.33. By (ii), we can turn the special GM variety into a ordinary GM variety
(as its branched locus). This leads to an important birational operation on the set of all
GM varieties which can be described by GM datas. This actually gives a correspondence
between special GM n-folds and ordinary GM (n− 1)-folds. For details we refer [DK18]
Lemma 2.33.

Remark 2.34. Hence in this case we know that we only need to assume dimK = 1 to
construct the whole theory if we just consider the smooth GM varieties.

2.3 Rational Homogeneous Varieties
2.3.1 Some Lie Algebras and Algebraic Groups
We only consider the objects over C. We will recall some basic things about Cartan
decomposition, root system, Weyl groups, Cartan matrix and Dynkin diagrams.
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Cartan Decomposition
Definition 2.35. A Cartan subalgebra of a Lie algebra is a nilpotent subalgebra equal
to its own normalizer.
Remark 2.36. This shows that Cartan subalgebra is a maximal nilpotent subalgebra:

Let h ⊂ g be a proper subalgebra of a Lie algebra g. By induction on dim g we
can show that h 6= ng(h). Indeed, as z(g) 6= 0, if z(g) ⊈ h then h 6= ng(h) since z(g)
normalizes h. If z(g) ⊂ h, apply induction to h/z(g) ⊂ g/z(g).
Definition 2.37. Let g be a Lie algebra. For any x ∈ mathfrakg consider the charac-
teristic polynomial Px(T ) = det(T − ad(x)|g), let n(x) be the multiplicity of T in Px(T ),
or equivalently, the multiplicity of 0 as an eigenvalue of ad(x). Then we define the rank
of g is n = min{n(x) : x ∈ g} and x ∈ g is called regular if n(x) = n.
Remark 2.38. By definition the regular elements forms a Zariski open subset.
Proposition 2.39. Let g be a Lie algebra.
(a) Consider the primary decomposition g =

⊕
λ∈C gλx associated to ad(x), then

[gλx, g
µ
x] ⊂ gλ+µx . Hence g0x is a Lie subalgebra.

(b) For any regular element x ∈ g, the subalgebra g0x is a Cartan subalgebra of dimen-
sion rankg. In particular, any Lie algebra has a Cartan subalgebra.

(c) Any two Cartan subalgebras are conjugate by an elementary automorphism, that
is, product of automorphisms of form exp(ad(x)).

(d) For any Cartan subalgebra h ⊂ g, we have dim h = rankg and there exists a regular
element x ∈ g such that h = g0x.

Proof. For (a), this is follows from

(ad(x)− λ− µ)m[y, z] =
m∑
i=1

(
m

i

)
[(ad(x)− λ)i(y), (ad(x)− µ)m−i(z)]

for m� 0.
For (b), consider two Zariski open subsets of g0x:

U1 := {y ∈ g0x : ad(y)|g0x is not nilpotent}, U2 := {y ∈ g0x : ad(y)|g/g0x is invertible}.

Now U2 6= ∅ since x ∈ U2. To show g0x is nilpotent, we just need to show U1 = ∅
by Engel’s theorem. If not, then U1 ∩ U2 6= ∅. Pick such y in the intersection. Then
n(y) < dim g0x = n(x), contradicting the regularity of x. Hence g0x is nilpotent.

To show g0x = ng(g
0
x), pick z ∈ ng(g0x), then [z, x] ∈ g0x, that is, (ad(x))m[z, x] = 0

for some m. Hence (ad(x))m+1(z) = 0. Hence z ∈ g0x, well done.
For (c), we omit it and we refer Section III.4 in [Ser66]. Now (d) is a direct corollary

of (b) and the proof of (c). See Corollary III.4.2 in [Ser66].
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Now we consider the decomposition of a Lie algebra.

Theorem 2.40 (Representation of Nilpotent Lie Algebras). Let g be a Lie algebra and
ρ : g→ glV be a representation. For any linear from λ ∈ g∨ we define the primary space
V λ := {v ∈ V : (ρ(g) − λ(g))nv = 0, n � 0, ∀g ∈ g}. Then if g is nilpotent, then each
V λ is stable under g and

V =
⊕
λ∈g∨

V λ.

Proof. See Bourbaki’s Lie algebra VII.

Definition 2.41. Let g be a Lie algebra with a Cartan subalgebra h. Consider adjoint
action of h acting at g, we get adh : h→ glg. Hence by Theorem 2.40 we have a primary
decomposition

g = g0 ⊕
⊕

α∈h∨\{0}

gα

which is called the Cartan decomposition of (g, h) where gα = {g ∈ g : (ad(h)−α(h))ng =
0, n� 0, ∀h ∈ h}.

Now we consider the semisimple Lie algebras which are our main objects.

Theorem 2.42. Let g be a semisimple Lie algebra with a Cartan subalgebra h.

(a) The restricted Killing form κg|h is nondegenerate.
(b) We have h is abelian and cg(h) = h.
(c) Every elements of h is semisimple.
(d) We have Cartan decomposition of (g, h) as

g = h⊕
⊕

α∈R(g,h)

gα

where R(g, h) ⊂ h∨\{0} be a finite subset such that gα 6= 0 for that α ∈ R(g, h)
where gα = {g ∈ g : ad(h)g = α(h)g, ∀h ∈ h}. Moreover [gα, gβ ] ⊂ gα+β.

(e) The Cartan subalgebra h is a maximal abelian subalgebra of g.
(f) The Cartan subalgebras of a semisimple Lie algebra are those that are maximal

among the subalgebras whose elements are semisimple.
(g) Every reguler element is semisimple.

Proof. For (a), by Proposition 2.39(d) there exists a regular element x ∈ g such that
h = g0x. Then we have the primary decomposition g = h ⊕

⊕
λ∈C× gλx associated to

ad(x). Let x ∈ gax, y ∈ gbx, then we have

κg(ad(h)x, y) + κg(x, ad(h)y) = 0.
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Hence (a+b)κg(x, y) = 0. Hence gax and gbx are orthogonal with respect to κg if a+b 6= 0.
Hence we have orthogonal decomposition

g = h⊕
⊕

λ∈C×/±

(gλx ⊕ g−λx ).

As κg is nondegenerate, then so is κg|h.
For (b), as z(g) = 0, hence the adjoint representation of h make it as a Lie subalgebra

h ⊂ glg. By Lie’s theorem there exists a base such that ad h ⊂ bm. Hence ad[h, h] ⊂ nm.
Hence κg(h, [h, h]) = 0. By (a) we have [h, h] = 0 and hence h is abelian. Now h ⊂
cg(h) ⊂ ng(h). By definition h = ng(h), we have h = cg(h).

For (c), by Jordan-Chevalley decomposition we have x = xs + xn for any x ∈ h.
As ad(xs) and ad(xn) are polynomials of ad(x), then by (b) xs, sn ∈ cg(h) = h. For
any y ∈ h we know that ad(y) and ad(xn) are commute and ad(xn) is nilpotent, then
tr(ad(y) ◦ ad(xn)) = 0. Hence xn = 0 by (a).

For (d), we already have the Cartan decomposition of (g, h):

g = g0 ⊕
⊕

α∈h∨\{0}

gα

where gα = {g ∈ g : ad(h)g = α(h)g, ∀h ∈ h} as g semisimple and by (b) they can
simultaneously diagonalizable. As g0 = cg(h), hence by (b) we have the result. The fact
[gα, gβ ] ⊂ gα+β is follows from the direct calculation.

For (e), this is follows by (b) directly.
For (f), this is follows by (b)(e) and the fact that if any ad(x) is semisimple for x ∈ h,

then h is abelian.
For (g), this is because every regular element is contained in a Cartan subalgebra

and use (c).

Classifications of Semisimple Lie Algebras
We omit the general definitions of root Systems, Weyl Groups, Cartan Matrix, Coxeter
Graphs and Dynkin Diagrams. See Chapter V in [Ser66]. Here we state some basic
results of the classification theory of semisimple Lie algebras.

Theorem 2.43. Let g be a semisimple Lie algebra with a Cartan subalgebra h. We
have Cartan decomposition

g = h⊕
⊕

α∈R(g,h)

gα

where gα = {g ∈ g : ad(h)g = α(h)g, ∀h ∈ h}. Fix an α ∈ R(g, h).

(a) gα and [gα, g−α] ⊂ h are both 1-dimensional.
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(b) There is a unique element hα ∈ [gα, g−α] such that α(hα) = 2.
(c) For each nonzero xα ∈ gα there is a unique yα ∈ g−α such that

[xα, yα] = hα, [hα, xα] = 2xα, [hα, yα] = 2yα.

Hence sα := Cxα ⊕ Chα ⊕ Cyα = gα ⊕ [gα, g−α]⊕ g−α is a copy of sl2 in g.

Proof. See Chapter VI in [Ser66] or J. Milne’s notes [Mil13].

Theorem 2.44. Let g be a semisimple Lie algebra with a Cartan subalgebra h. We
have Cartan decomposition

g = h⊕
⊕

α∈R(g,h)

gα

where gα = {g ∈ g : ad(h)g = α(h)g, ∀h ∈ h}. Then

(a) R(g, h) is finite, spans h∨ and does not contain 0.
(b) For each α ∈ R(g, h), let hα ∈ h as in Theorem 2.43. Let h ∼= h∨∨ with hα 7→ α∨,

then 〈α, α∨〉 = 2, 〈R(g, h), α∨〉 ∈ Z, and the symmetry sα : x 7→ x − 〈x, α∨〉α
maps R(g, h) into R(g, h).

(c) For no α ∈ R(g, h) does 2α ∈ R(g, h).

Hence R(g, h) is a reduced root system in h∨.

Proof. For (a), if h ∈ h such that α(h) = 0 for any α ∈ R(g, h), then [h, gα] = 0. Hence
h ∈ z(g) = 0 and h = 0. Hence R(g, h) spans h∨.

For (b), we claim that for any α, β ∈ R(g, h) we have β(hα) ∈ Z and β − β(hα)α ∈
R(g, h). Indeed, regard g as an sα ∼= sl2-module via adjoint representation. Let z
be a nonzero element in gβ , then [hα, z] = β(hα)z, hence n := β(hα) ∈ Z by the
representation theory of sl2. Moreover we have ynα : gβ ∼= gβ−nα if n ≥ 0 and x−nα : gβ ∼=
gβ−nα if n ≤ 0. Hence in any case β − nα ∈ R(g, h). This finish the claim. Hence the
result follows directly from this claim.

For (c), suppose that there is α ∈ R(g, h) such that 2α ∈ R(g, h). Hence there exists
y 6= 0 such that [hα, y] = 2α(hα)y = 4y. As hα = [xα, yα], we have [hα, y] = [xα, [yα, y]].
But [yα, y] ∈ gα = Cxα, hence [hα, y] = [xα, [yα, y]] = 0. This is impossible.

The classifications of semisimple Lie algebras as follows:

Theorem 2.45 (Classifications of Semisimple Lie Algebras). Over C we have:

(a) Every reduced root system arises from a pair of Lie algebras (g, h) where g be a
semisimple Lie algebra with a Cartan subalgebra h.
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(b) The root system of a semisimple Lie algebra determines it up to isomorphism.
Note that by Proposition 2.39(c) that root system of a semisimple Lie algebra is
independent to the Cartan subalgebra up to isomorphism.

(c) A decomposition of a pair (g, h) as before is equivalent to a decomposition of its
root system.

(d) Any Dynkin diagrams (and equivalently a Cartan matrix) arising from indecom-
posable root systems are exactly the following type diagrams An(n ≥ 1), Bn(n ≥ 2),
Cn(n ≥ 3), Dn(n ≥ 4), E6, E7, E8, F4 and G2:

– An(n ≥ 1):
– Bn(n ≥ 2):
– Cn(n ≥ 3):

– Dn(n ≥ 4):

– E6:

– E7:

– E8:
– F4:
– G2:

Note that the type E6, E7, E8, F4, G2 are called exceptional.
(e) Each type in (d) has a indecomposable root system such that its Dynkin diagram

has that type.

Proof. For (a), we refer Theorem VI.9 in [Ser66].
For (b), we refer Theorem VI.8 and Theorem VI.8’ in [Ser66].
For (c), this is trivial.
For (d), we refer Theorem V.4 in [Ser66].
For (e), we consider Section V.16 in [Ser66].

Here is an easy but useful criteria for semisimplicity:
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Proposition 2.46. Let g be a Lie algebra with a abelian Lie subalgebra h. For each
α ∈ h∨ we define gα = {g ∈ g : ad(h)g = α(h)g, ∀h ∈ h}. Let R(g, h) ⊂ h∨\{0} consist
of α such that gα 6= 0. If

(a) We have g = h⊕
⊕

α∈R(g,h) g
α.

(b) dim gα = 1 for each α ∈ R(g, h).
(c) For each nonzero h ∈ h, there exists an α ∈ R(g, h) such that α(h) 6= 0.
(d) If α ∈ R(g, h), then −α ∈ R(g, h) and [[gα, g−α], gα] 6= 0.

Then g is semisimple and h is a Cartan subalgebra.

Proof. Pick a abelian ideal a. As [h, a] ⊂ a, we have

a = a ∩ h⊕
⊕

α∈R(g,h)

a ∩ gα

by (a). If a ∩ gα 6= 0, then by (b) gα ⊂ a. As a is an ideal, we have [gα, g−α] ⊂ a. As
[a, a] = 0, then [[gα, g−α], gα] = 0 which is contradicting (d). Moreover, if a ∩ h 6= 0, let
0 6= h ∈ a ∩ h. By (c) there exists an α ∈ R(g, h) such that α(h) 6= 0. Pick 0 6= x ∈ gα,
then [h, x] = α(h)x. Hence 0 6= [h, x] ∈ gα ∩ a which is impossible by the previous
argument. Hence a = 0 and g is semisimple. Now by (a) directly we find that h is a
Cartan subalgebra.

Example 2.47 (Classical Lie Algebras). We consider several types of subalgebras of
gln+1. Note that gln+1 is not semisimple since z(gln+1) are scalar matrixes.

Let ĥ ⊂ gln+1 be a subalgebra of diagonal objects. Hence {Eij} and {Eii} are
basis of gln+1 and ĥ, respectively. Let (εi) be a dual basis of ĥ. As for h ∈ ĥ we have
[h,Eij ] = (εi(h)−εj(h))Eij, we have gln+1 = ĥ⊕

⊕
α∈R glαn+1 where R = {εi−εj : i 6= j}

and gl
εi−εj
n+1 = C · Eij.

(a) Type An: sln+1. Let h be the subalgebra of diagonal objects. Here sln+1 = {x ∈
gln+1 : tr(x) = 0}.
Note that {Ei,i−Ei+1,i+1}1≤i≤n is a basis of h and {Ei,i−Ei+1,i+1}1≤i≤n∪{Ei,j :
i 6= j} is a basis of sln+1. Note that h∨ be a hyperplane of ĥ∨ consist of

∑
i aiεi

for
∑

i ai = 0. Now we also have

sln+1 = h⊕
⊕

α∈R(sln+1,h)

slαn+1

where R(sln+1, h) = {εi − εj : i 6= j}. Easy to check the conditions in Proposition
2.46, hence (sln+1, h) is a semisimple Lie algebra with a Cartan subalgebra.



62 CHAPTER 2. SEVERAL SPECIAL FANO VARIETIES

As (εi − εi+1)i be a base of root system R(sln+1, h), consider the inner product
(
∑

i aiεi,
∑

i biεi) =
∑

i aibi. By directly calculation we know that the Dynkin
diagram is An type: Moreover sln+1 is simple.

(b) Type Bn: so2n+1. Here the original definition is so2n+1 = {x ∈ gl2n+1 : x+ xt =

0}. But here we will use an equivalent definition: let S =

1 0 0
0 0 I
0 I 0

 and

so2n+1 = {x ∈ gl2n+1 : xtS+Sx = 0}. Let h be the subalgebra of diagonal objects.
(c) Type Cn: sp2n. Let h be the subalgebra of diagonal objects. Here sp2n ={

x ∈ gl2n :

(
0 I
−I 0

)
x+ xt

(
0 I
−I 0

)
= 0

}
.

(d) Type Dn: so2n. Here the original definition is so2n = {x ∈ gl2n : x + xt = 0}.

But here we will use an equivalent definition: let S =

(
0 I
I 0

)
and so2n = {x ∈

gl2n : xtS + Sx = 0}. Let h be the subalgebra of diagonal objects.

Note that the proof of (b)(c)(d) are similar as (a), so we omit it and we refer Milne’s
notes [Mil13]. Note that sln(n ≥ 2), son(n ≥ 3) and spn(n ≥ 1) are semisimple.

Remark 2.48. Note that we use the new but isomorphic definitions for so2n and so2n+1.
Here we will give the reason. We define glTn := {M ∈ gln :MtT+TM = 0}, then if T
and S are congruent, then glSn ∼= glTn . In our case well done.

Connections with Semisimple Algebraic Groups
Definition 2.49. Let G be an algebraic group, then we define

Lie(G) := Te(G) = ker(G(C[ε]/(ε2))→ G(C)).

(a) Now Lie is a functor from algebraic groups to vector spaces (as tangent maps).
(b) Consider GLn := SpecC[{Tij}1≤i,j≤n, det(Tij)−1]. For any A ∈ gln we consider

I+εA. Then (I+εA)(I−εA) = I, hence I+εA ∈ ker(GLn(C[ε]/(ε2))→ GLn(C))
and all the elements in it is of this form. Hence Lie(GLn) ∼= gln as vector space.
Now we define the Lie bracket as [A,B] = AB −BA. Hence Lie(GLn) = gln as
Lie algebras.

(c) The conjugate action of G on itself defines Ad : G → GLLie(G). Then functor Lie
induce ad := Lie(Ad) : Lie(G) → glLie(G). So the Lie bracket given by [x, y] :=
ad(x)(y). Hence Lie(G) is called the Lie algebra of G. Hence Lie is a functor from
algebraic groups to Lie algebras.

Example 2.50. Now we consider the cases in Example 2.47.
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(a) Now we have defined GLn := SpecC[{Tij}1≤i,j≤n, det(Tij)−1] with Lie(GLn) = gln
as Lie algebras.

(b) Consider SLn := SpecC[{Tij}1≤i,j≤n]/(det(Tij) − 1). Then Lie(SLn) = sln. Note
that SLn is simply connected almost-simple group.
Indeed, as before we have Lie(SLn) = {I+εA ∈ GLn(C[ε]/(ε2)) : 1 = det(I+εA) =
1 + εtr(A)}. Hence Lie(SLn) = {I + εA ∈ GLn(C[ε]/(ε2)) : tr(A) = 0}. Hence
Lie(SLn) = sln.

(c) Consider On := Spec C[{Tij}1≤i,j≤n, det(Tij)
−1]

((Tij)t(Tij)− I)
. Then Lie(On) = son.

Indeed, as before we have Lie(On) = {I+εA ∈ GLn(C[ε]/(ε2)) : (I+εA)t(I+εA) =
I}. As this is equivalent to At +A = 0, we get Lie(On) = on.

(d) We define SOn = On ∩ SLn, then Lie(SOn) = son. Note that we have

0→ SOn → On → {±1} → 0.

Note that π1(On) = π1(SOn) = Z/2Z for 6= 3.

(e) Consider Spn := Spec C[{Tij}1≤i,j≤n, det(Tij)−1](
(Tij)t

(
0 I
−I 0

)
(Tij)−

(
0 I
−I 0

)) . Then Lie(Spn) = spn

as (c). Note that Spn is simply connected almost-simple group.
(f) Now we consider the universal covering, the spin groups.

Fix a C-vector space V (dimV = n) with a nonsingular quadratic form on it, that
is, q is equivalent to

∑n/2
i=1 x2i−1x2i for n even and x20 +

∑(n−1)/2
i=1 x2i−1x2i for n

odd.

– Define Cl(V, q) := T ∗V /(v ⊗ v − q(v)) be the Clifford algebra associated to V
and q. Then this is a graded algebra with Cl0(V, q) is of even degree part and
Cl1(V, q) is of odd degree part.
Note that Cl(V, q) ∼= M2n/2(C) if n even and Cl(V, q) ∼= M2(n−1)/2(C) ×
M2(n−1)/2(C) if n odd. Hence all C-linear automorphisms of Cl(V, q) are
inner associated to the elements in Cl0(V, q)×.

– Let SO(V, q) := ker(O(V, q)
det→ Gm) where O(V, q) = {x ∈ GLV : q(xv) =

q(v), ∀v ∈ V } are algebraic subgroups. In our case SO(V, q) ∼= SOn.
– Now for any g ∈ SO(V, q), the induced g : V ∼= V induce an isomorphism

Cl(V, q) ∼= Cl(V, q) by the universal property. Hence this defines an element
h ∈ Cl0(V, q)×.
Conversely if h ∈ Cl0(V, q)× is such that hV h−1 = V , then the mapping
V → V induced by x 7→ hxh−1 is an element of SO(V, q).
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Hence if we define an algebraic group GSpin(V, q) = {g ∈ Cl0(V, q)× :
gV g−1 = V }, then we have an exact sequence

1→ Gm → GSpin(V, q)→ SO(V, q)→ 1.

Define Spin(V, q) = ker(GSpin(V, q) q(−)→ Gm).
– We have the following commutative diagram:

1 Spin(V, q)

1 Gm GSpin(V, q) SO(V, q) 1

Gm 1
x 7→x2

of exact sequences. This induce an exact sequence:

1→ µ2 → Spin(V, q)×Gm → GSpin(V, q)→ 1.

By some diagram chase we get

Spin(V, q)/µ2
∼= GSpin(V, q)/Gm

∼= SO(V, q).

Hence let Spin(V, q) → SOn is a double covering and Spin(V, q) is simply
connected when n ≥ 3.

Hence we have a double covering Spinn → SOn and hence Lie(Spinn) ∼= son.
Moreover Spinn is simply connected when n ≥ 3.

Proposition 2.51. Now let G be an algebraic group, then we have

Lie(G) ∼= {left invariant derivations of Γ(G,OG)} ⊂ Der(Γ(G,OG))

as Lie algebras with Lie bracket [D,D′] = D ◦D′ −D′ ◦D. Note that a left invariant
derivation D is defined as satisfies ∆ ◦D = (id⊗D) ◦∆.

Proof. Well-known that Lie(G) ∼= Der(Γ(G,OG),C). So we just need to consider Derl(Γ(G,OG))
of left invariant derivations with Der(Γ(G,OG),C). Note that let e : SpecC → G as
E : Γ(G,OG) → C. Define Derl(Γ(G,OG)) → Der(Γ(G,OG),C) as D 7→ E ◦ D. We
omit more details.

Proposition 2.52. Consider the functor Lie.

(a) Lie is an exact functor.



2.3. RATIONAL HOMOGENEOUS VARIETIES 65

(b) Lie commute with finite inverse limits.
(c) Fix an algebraic group, then Lie acting on subgroups is injective and preserve order.
(d) Let H ⊂ G be a algebraic subgorup. Then Lie(NG(H)) = nLie(G)(Lie(H)) and

Lie(CG(H)) = cLie(G)(Lie(H)).

Proof. Omitted.

Proposition 2.53. We have the following useful things.

(a) A connected algebraic group G is semisimple if and only if its Lie algebra Lie(G)
is semisimple.

(b) If g be a Lie algebra. We define a functor G(−) such that G(g) be the Tannaka
dual of the neutral tannakian category (Rep(g),Forget). Then G a Lie between
affine groups and Lie algebras.

(c) When g be a semisimple Lie algebra, then G(g) is also semisimple and g ∼=
Lie(G(g))

Proof. Omitted.

Here is the classification theory of semisimple algebraic groups:

Definition 2.54. Let (V,R) be a root system. The root lattice Q = Q(R) = Z · R is
the Z-submodule of V generated by the roots. The weight lattice P = P (R) is the lattice
dual to Q(R∨):

P (R) = {x ∈ V :
〈
x, α∨〉 ∈ Z for all α ∈ R}.

The elements of P are called the weights of the root system. We have Q(R) ⊂ P (R)
and the quotient P (R)/Q(R) is finite (because the lattices generate the same Q-vector
space).

Theorem 2.55. Let g be a semisimple Lie algebra with Cartan subalgebra h, and let
P and Q be the corresponding weight and root lattices. The action of h on a g-module
V decomposes it into a direct sum V =

⊕
w∈P Vw of weight spaces. Let D(P ) be the

diagonalizable group which satisfies R 7→ HomGroups(P,R×) is a functor. Thus D(P )
is a torus such that Rep(D(P )) has a natural identification with the category of P -
graded vector spaces. The functor (V, rV ) 7→ (V, (Vw)w∈P ) is an exact tensor functor
Rep(g)→ Rep(D(P )) compatible with the forgetful functors, and hence by dual it defines
a homomorphism D(P )→ G(g) with image T (h). Then we have the following.

(a) T (h) is a maximal torus in G(g) and g ∼= Lie(G(g)) induce h ∼= Lie(T (h)).
(b) We have D(P ) ∼= T (h) and X∗(T (h)) = P .
(c) We have z(G(g)) =

⋂
α∈R ker(α : T (h)→ Gm). Hence X∗(z(G(g))) = P/Q.
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Moreover, let T ⊂ G be a subtorus of a semisimple algebraic group, then the following
are equivalence.

(1) T is a maximal torus.
(2) T = CG(T )

0.
(3) Lie(T ) is a Cartan subalgebra of Lie(G).

Theorem 2.56 (Classifications of Semisimple Algebraic Groups). Let T ⊂ G be a max-
imal subtorus of a semisimple algebraic group. Now the vector space Lie(G) decomposes
into eigenspaces under its action

Lie(G) =
⊕

α∈X∗(T )

Lie(G)α

(a) Let R(G,T ) ⊂ X∗(T ) consist of nonzero α such that Lie(G)α 6= 0, then (X∗(T )⊗
Q, R(G,T )) is a reduced root system. Moreover Q(R(G,T )) ⊂ X∗(T ) ⊂ P (R(G,T )).

(b) Every data consist of a reduced root system (V,R) and a lattice Q(R) ⊂ X ⊂ P (R)
arises from a pair (G,T ) of maximal subtorus of a semisimple algebraic group
in (a). Hence they are 1-to-1. Moreover G is simply connected if and only if
X = P (R) and it is centerless if and only if X = Q(R).

(c) Let (G,T ) and (G′, T ′) be two pairs of maximal subtori of a semisimple algebraic
groups. let (V,R,X) and (V ′, R′, X ′) be their associated datas as in (a)(b). Any
isomorphism V ∼= V ′ sending R onto R′ and X into X ′ arises from an isogeny
G→ G′ mapping T onto T ′.

2.3.2 Homogeneous Varieties
Definition 2.57. A smooth projective variety X is said to be homogeneous if X admits
a transitive action of an algebraic group G.

Proposition 2.58. Let X be a projective manifold. Then X is homogeneous if and
only if TX is globally generated. In particular, the tangent bundle of a homogeneous
manifold is nef.

Proof. Let G be the identity component of group scheme Aut(X). Then G is an alge-
braic group with Lie algebra aut(X) ∼= H0(X,TX). The evaluation map is denoted by
H0(X,TX) ⊗ OX → TX . On the other hand, for any point x ∈ X, consider the orbit
map µx : G→ X as g 7→ gx. Since the differential of µx at the identity e ∈ G coincides
with the evaluation at x, then our claim follows.



2.3. RATIONAL HOMOGENEOUS VARIETIES 67

2.3.3 Rational Homogeneous Varieties and Dynkin Diagrams
Definition 2.59. Let g be a Lie algebra.

(a) A maximal solvable Lie subalgebra of g is called a Borel subalgebra of g.
(b) A Lie subalgebra of g is called a parabolic subalgebra of g if it contains a Borel

subalgebra of g.

Definition 2.60. Let G be a algebraic group.

(a) A maximal connected solvable subgroup of G is called a Borel subgroup of G.
(b) A parabolic subgroup of G is a subgroup contains a Borel subgroup of G.

Remark 2.61 (Quotient by Subgroups). We refer Section 25.4 in [TWTY05] or Section
5.C in [Mil17] for details. Let H ⊂ G be a closed subgroup, then there exists a quotient
G/H correspond to the orbits (or cosets). In this case G → G/H is universal and
faithfully flat. Hence G/H is smooth quasi-projective G-homogeneous variety.

Proposition 2.62 (Basic Properties). We have the following basic properties.

(a) Let P be a closed subgroup of G, then P is parabolic if and only if G/P is projective.
P is Borel if and only if P is solvable and G/P is projective.

(b) Let h be the Lie algebra of a connected algebraic group H. Then a Lie subalgebra
of h is a Borel subalgebra if and only if it is the Lie algebra of a Borel subgroup of
H. Similarly a Lie subalgebra of h is a parabolic subalgebra if and only if it is the
Lie algebra of a parabolic subgroup of H.

(c) A parabolic subalgebra p ⊂ g contains a Cartan subalgebra of g, and p = ng(p).
(d) All Borel subgroup (hence all Borel subalgebra) are closed and conjugate. Any

maximal torus contained in a Borel subgroup.
(e) Let B ⊂ G is a Borel subgroup, then Z(B) = CG(B) = Z(G).

Proof. See Corollary 28.1.4, 28.1.6, 28.2.3(i) and Proposition 29.4.3 in [TWTY05].

Lemma 2.63. Let G be a connected algebraic group.

(a) Any finite normal subgroup H ⊂ G, we have H ⊂ Z(G).
(b) We have

⋂
MaxTori⊂G T = Z(G)s. When G reductive, then

⋂
MaxTori⊂G T = Z(G).

Proof. For (a), pick any h ∈ H and consider f : G → G as g 7→ ghg−1. Then as
H normal we have f(G) ⊂ H. As G connected, then f(G) is a single point. Hence
f(G) = {h}. Hence h ∈ Z(G) and hence H ⊂ Z(G).

For (b), see Corollary 28.2.3(ii) in [TWTY05] and Proposition 17.61 in [Mil17].
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Proposition 2.64. We have the following useful and important properties.

(a) Let q : G → G′ be a quotient map of connected algebraic groups and let H be a
subgroup variety of G. If H is parabolic (resp. Borel, resp. a maximal unipotent
subgroup variety, resp. a maximal torus), then so also is q(H); moreover, every
such subgroup of G′ arises in this way.

(b) For any isogeny q : G→ G′ of connected semisimple algebraic groups and parabolic
subgroups H ⊂ G and q(H) ⊂ G′, then

G/H ∼= G′/q(H).

Proof. For (a), the first statement is easy and the converse we refer Proposition 17.20
in [Mil17].

For (b), by the universal property of quotients, we have the morphism q̄ : G/H →
G′/q(H) induced by q. Now q̄ is surjective. We claim that it is injective in C-points.
Indeed, for any g1H 6= g2H we have g−1

1 g2 /∈ H. Hence it is injective if and only if
g−1
1 g2 /∈ (ker q) · H for all such g1, g2. As q is an isogeny, then ker q is normal finite

subgroup. By Lemma 2.63(a) we have ker q ⊂ Z(G) ⊂ H. Hence q̄ is injective in
C-points. Finally q̄ is bijective in C-points. As G/H and G′/q(H) are proper by (a)
and are smooth, then q̄ is an isomorphism by Zariski main theorem.

Let g be a semisimple Lie algebra with a Cartan subalgebra h. Consider the Cartan
decomposition

g = h⊕
⊕

α∈R(g,h)

gα.

Let hα = [gα, g−α] and for any subset P ⊂ R(g, h) we define hP =
∑

α∈P hα and
gP =

∑
α∈P gα.

Proposition 2.65. The subalgebras of (g, h), that is, a subalgebra a ⊂ g such that
[a, h] ⊂ a, are exactly subspaces a = h′ + gP where h′ is a vector subspace of h and
P ⊂ R(g, h) is a closed subset (that is, if α, β ∈ P and α+β ∈ R(g, h) then α+β ∈ P ).
Moreover

(a) a is semisimple if and only if P = −P and h′ = hP .
(b) a is solvable if and only if P ∩ (−P ) = ∅.

Moreover, let b = h + gP , then b is maximal solvable subalgebra if and only if there
exists a base S of R(g, h) such that P = R(g, h)+ if and only if P ∩ (−P ) = ∅ and
P ∪ (−P ) = R(g, h).

Proof. See Proposition I.8.46, I.8.50 in Milne’s notes [Mil13] or Section 20.7 in [TWTY05].
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For a basis S ⊂ R(g, h), we can define a Borel subalgebra:

b(S) := h⊕
⊕

α∈R(g,h)+

gα.

For a subset I ⊂ S, let R(g, h)−(I) = {α ∈ R(g, h)− : α =
∑

αi /∈I niαi}, then we can
define

p(I) := h⊕
⊕

α∈R(g,h)+

gα ⊕
⊕

α∈R(g,h)−(I)

gα

which is a parabolic subalgebra. Let P (I) be the corresponding parabolic subgroup of
G with Lie algebra p(I) and g by Proposition 2.62(b).

Now these things can be describe the rational homogeneous varieties.

Proposition 2.66 (Classification of Parabolic Subgroups). Let G be semisimple and
simply connected. Let P be a parabolic subgroup of G. There exist g ∈ G and I ⊂ S
such that g−1Pg = P (I).

Proof. By Proposition 2.62(b)(d) we may choose g ∈ G such that P ′ := g−1Pg ⊃ B(S)
where Lie(B(S)) = b(S) as before. Note that Lie(P ′) invariant under ad |h. Hence
Lie(P ′) = h ⊕

⊕
α∈T gα for some T ⊂ R(g, h) such that R(g, h)+ ⊂ T . Let α ∈ T is

negative and α = β + γ where β, γ are also negative and −β,−γ ∈ T . Since [ga, gb] ⊂
ga+b, we have α − β = γ ∈ T and α − γ = β ∈ T . Hence let I = S\(−T ) and well
done.

Corollary 2.67. Let G is a semisimple algebraic group.

(a) There is an isogeny

G1 × · · · ×Gk → G, (g1, ..., gk) 7→ g1 · · · gk

where Gi are minimal connected normal algebraic subgroups, hence almost-simple.
(b) If morever G is simply connected, then G = G1×· · ·×Gk as in (a) and let P ⊂ G

be a parabolic subgroup. Then there are parabolic subgroups Pi ⊂ Gi such that
P = P1 × · · · × Pk. In particular

G/P ∼= G1/P1 × · · · ×Gk/Pk.

Proof. For (a), this follows from the decomposition of semisimple Lie algebra g :=
Lie(G) =

⊕k
i=1 gi by simple algebras. Let G1 := CG(G(g2 ⊕ · · · ⊕ gk)), then Lie(G1) =

cg(g2⊕· · ·⊕gk) = g1 which is also an ideal of g. Hence G1 is normal. If G1 is not almost-
simple, then g1 will have an ideal other than 0 and g1 which is impossible. Now repeat
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the process. Finally we get G1, ..., Gk. Now as Lie(G1 × · · · ×Gk) = Lie(G1 · · ·Gk) = g,
hence

G1 × · · · ×Gk → G, (g1, ..., gk) 7→ g1 · · · gk
is an isogeny.

For (b), since by (a) and G is simply connected, then G = G1×· · ·×Gk. Moreover by
Proposition 2.66, let P ⊂ G be a parabolic subgroup then there are parabolic subgroups
Pi ⊂ Gi such that P = P1 × · · · × Pk.

Definition 2.68. A projective quotient G/P of a semisimple algebraic group G and a
parabolic subgroup P ⊂ G is called a rational homogeneous variety.

Proposition 2.69. For any rational homogeneous variety G/P where G be a semisimple
connected algebraic group with a parabolic subgroup P ⊂ G, we have

G/P ∼= G1/P1 × · · · ×Gk/Pk

where Gi are almost-simple group with parabolic subgroups Pi ⊂ Gi.

Proof. From Proposition 2.64 and Corollary 2.67 directly.

An important result of homogeneous manifold due to Borel-Remmert is the following
theorem:

Theorem 2.70 (Borel-Remmert). For any homogeneous manifold X we have X ∼=
A×G/P where A is an abelian variety and G/P be a rational homogeneous variety.

This theorem tell us that to study the properties of homogeneous manifold is equiv-
alent to study the properties of abelian varieties and rational homogeneous varieties.

2.3.4 Examples of Rational Homogeneous Varieties
We will only give the detailed calculations of An and others we omitted. The other roots
and lattices we refer Section 21.J in [Mil17] or Section 8 in [Mil13]. We will mainly focus
on the Fano varieties of Picard number 1, so we just consider some special cases.

Example 2.71 (Type An). In this type we consider SLn+1 and it has Dynkin diagram

And we have

roots R = {εi − εj : 1 ≤ i, j ≤ n+ 1, i 6= j}
root lattice Q(R) = {

∑
i aiεi : ai ∈ Z,

∑
i ai = 0}

weight lattice P (R) = Q(R) + 〈ε1 − (ε1 + · · ·+ εn+1)/(n+ 1)〉
base S = {ε1 − ε2, ..., εn − εn+1}



2.3. RATIONAL HOMOGENEOUS VARIETIES 71

And

sln+1 = h⊕
⊕

εi−εj∈R
sl
εi−εj
n+1 = {diag(a1, ..., an+1) : a1 + · · · an+1 = 0} ⊕

⊕
εi−εj∈R

C · Eij .

Hence the Borel group B ⊂ SLn+1 is the group of all upper-triangular matrices in
SLn+1, i.e., those automorphisms preserving the standard flag. Moreover, any parabolic
subgroup P ⊃ B can be described as the subgroup that preserves a partial flag in the
standard representation. Hence for any I = {a1, ..., ar} ⊂ S ∼= {1, ..., n}, we have

SLn+1/P (I) = Flag(a1, ..., ar)

the (partial) flag variety. In particular if I = {k}, then SLn+1/P (I) = Grass(k, n+ 1).

A special case of An:

Lemma 2.72. We have PPn(TPn) ∼= SLn+1/P (1, n), hence it is a rational homoge-
neous variety. Moreover PPn(ΩPn) ∼= SLn+1/P (1, 2), hence it is a rational homogeneous
variety.

Proof. By the definition of Euler sequence we get a closed embedding PPn(TPn) ∼= I ⊂
Pn × Pn defined by

∑
i xiyi = 0. Hence I ∼= I ′ ⊂ Pn × Pn,∗ as {(x,H) : x ∈ H} which

is the partial flag variety SLn+1/P (1, n). Hence PPn(TPn) ∼= SLn+1/P (1, n) which is a
rational homogeneous variety.

To consider PPn(ΩPn), need to add!!!

Example 2.73 (Type Bn). In this type we consider SO2n+1 and it has Dynkin diagram

Fix a quadratic form q, then the Borel group B ⊂ SO2n+1 is the subgroup of automor-
phisms which preserve a fixed complete flag 0 ⊂ V1 ⊂ · · · ⊂ Vn of isotropic subspaces
where dimVr = r.

If I = {k}, then SO2n+1/P (I) = OGrass(k, 2n + 1), the orthogonal Grassmannian,
the space of isotropic k-planes in C2n+1. In particular Sn := OGrass(n, 2n+1) which is
called the spinor variety. Now Bn/P (1) ∼= Q2n−1.

Example 2.74 (Type Cn). In this type we consider Sp2n and it has Dynkin diagram

The Borel subgroups B ⊂ Sp2n are just the subgroups preserving a half-flag of isotropic
subspaces, or equivalently a full flag of pairwise complementary subspaces.

If I = {k}, then Sp2n/P (I) = SGrass(k, 2n) , the symplectic Grassmannian, the space
of isotropic k-planes in the symplectic space C2n. In particular Lag(2n) := SGrass(n, 2n)
which is called the Lagrangian Grassmannian.
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Example 2.75 (Type Dn). In this type we consider SO2n and it has Dynkin diagram

Fix a quadratic form q, then the Borel group B ⊂ SO2n is the subgroup of automorphisms
which preserve a fixed complete flag 0 ⊂ V1 ⊂ · · · ⊂ Vn−1 of isotropic subspaces where
dimVr = r.

If I = {k} for k ≤ n − 2, then SO2n/P (I) = OGrass(k, 2n) as type Bn. When
k = n− 1, n, we have SO2n/P (I) = Sn−1. Now Dn/P (1) ∼= Q2n−2.

Example 2.76 (Exceptional Types). These are E6, E7, E8, F4, G2 types.
For E,F , we denote them Ek/Pl for I = {l}. In particular we have OP2 = E6/P1

which is called the Cayley plane. For G, we have G2/P1 = Q5 and let K(G2) := G2/P2.
Moreover K(G2) ∼= P13 ∩ Grass(2, 7) ⊂ P20.

Example 2.77 (Special Cases of Short Roots). Consider the following rational homo-
geneous space of short root which can be constructed from long roots:

(a) We have Bn/P (n) ∼= Sn ∼= Dn+1/P (n+ 1).
(b) We have Cn/P (1) ∼= SGrass(1, 2n) ∼= P2n−1 ∼= A2n−1/P (1).
(c) We have G2/P (1) ∼= Q5

∼= B3/P (1).

2.3.5 Basic Properties of Rational Homogeneous Varieties
Theorem 2.78. For a rational homogeneous manifold X, we have −KX is ample (hence
X Fano) and globally generated.

Proof. See Theorem V.1.4 in [Kol96].

Theorem 2.79. Fix a rational homogeneous manifold G/P (I) where I ⊂ S ⊂ R of
root system. From the classification theory of parabolic subgroups it immediately follows
that given two subsets J ⊂ I, the inclusion P (I) ⊂ P (J) provides a proper surjective
morphism pI,J : G/P (I)→ G/P (J). Moreover, the fibers of this morphism are rational
homogeneous manifolds, determined by the marked Dynkin diagram obtained from S by
removing the nodes in J and marking the nodes in I\J .

Conversely all contractions are all of the form pI,J for J ⊂ I ⊂ S. In particular,
Pic(G/P (I)) ∼= Z♯(I) and the Mori cone NE(G/P (I)) ⊂ N1(G/P (I)) is simplicial.
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Linearizable Bundles on Rational Homogeneous Spaces
Now fix a rational homogeneous space G/P .
Definition 2.80. As π : G → G/P is a principal P -bundle, for any representation
ρ : P → GLr we let Eρ be the associated vector bundle, that is, Eρ = G× ArC/P where
P ↷ G× ArC as p(g, v) = (gp−1, pv).
Remark 2.81. We have Eρ1 ⊕ Eρ1 = Eρ1⊕ρ2 and

∧k Eρ = E∧k ρ and Eρ1 ⊗ Eρ1 =
Eρ1⊗ρ2.
Remark 2.82. Using this we can describe H0(G/P,Eρ).
Remark 2.83. We can define the G-linearization of a bundle here without cocycle
condition since X is a variety.
Theorem 2.84 (Matsushima). A vector bundle E of rank r over G/P is G-linearizable
if and only if there exists a representation ρ : P → GLr such that E ∼= Eρ.
Proof. Let a vector bundle E of rank r over G/P is G-linearizable, then π : E → G/P
then the action of G restricted to P takes π−1(P ) to π−1(P ) and this is a ρ : P → GLr.
Now E ∼= Eρ defined by taking e ∈ π−1(gP ) to (g, g−1e). Conversely, G act on Eρ as
g′(g, v) = (g′g, v).

Theorem 2.85. Let G semisimple and simply connected. A vector bundle E over
X = G/P is G-linearizable if and only if θ∗gE ∼= E for any g ∈ G where the action of G
on G/P gives G→ Aut(G/P ) as g 7→ θg.
Proof. Consider an algebraic group AutX(E) ⊂ Aut(E)0 consist of automorphisms
preserving each fiber and acting linearly on them. Define another algebraic group H ⊂
Aut(E)0 consist of automorphisms acting linearly on any fibers and induces on X by
elements in G. Hence we have 0→ AutX(E)→ H → G→ 0.

Now this induce surjection φ : Lie(H) � Lie(G). As the image of a solvable algebra
is still a solvable algebra, we have φ(rad(Lie(H))) = 0. By Levi-Malcev theorem to
Lie(H) there exists a semisimple Lie subalgebra s ⊂ Lie(H) such that ψ : s → Lie(G)
is surjective. Now s =

⊕k
i=1 si of simple algebras, then there exists j < k such that

kerψ ∼=
⊕j

i=1 si and Lie(G) ∼=
⊕k

i=j+1 si.
Then there exists Lie subgroup (not necessary algebraic) G′ ⊂ H such that Lie(G′) ∼=

Lie(G). Hence G′ acts over E and now G is a covering of G′ and also G acts over E as
we wanted.

Proposition 2.86 (Ise). Let G be semisimple and simply connected. Every line bundle
on G/P is G-linearizable.
Proof. As it is Fano, we have H i(G/P,O) = 0 for all i > 0. Hence by exponential se-
quence we have Pic(G/P ) = H1(G/P,O∗) ∼= H2(G/P,Z). so that Pic(G/P ) is discrete
and the G-action on it given by L 7→ g∗L is trivial.
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More Properties of Rational Homogeneous Spaces

Here are some results we will use.

Theorem 2.87. (a) (Blanchard) Let G be a connected algebraic group acting over
a projective variety X with H1(X,O) = 0. Then there exists a representation
ρ : G → PGL(V ) and an embedding X ⊂ P(V ) such that the original action is
induced by ρ. In particular the action is given by projective linear transformations.
Hence if X is a projective variety with H1(X,O) = 0 then Aut0(X) is linear
algebraic.

(b) (Borel Fixed Point) Let G be a solvable linear algebraic group. Then any action
of G on a projective variety X has a fixed point.

(c) Let G be a linear group acting transitively and effectively (that is, G→ Aut(X) is
injective) over a variety X. Then G is semisimple. By (c) if H1(X,O) = 0 then
the assumption that G is linear can be dropped.

Theorem 2.88. We have the following properties.

(a) A homogeneous projective variety X with b1(X) = 0 is rational.
(b) Every rational homogeneous variety G/P (I) is rational.

Proof. By Theorem 2.87(c) we just need to show (b). Now as before we have

Lie(P (I)) = h⊕
⊕

α∈R(g,h)+

gα ⊕
⊕

α∈R(g,h)−(I)

gα

where g = Lie(G) and R(g, h)−(I) = {α ∈ R(g, h)− : α =
∑

αi /∈I niαi}.
Let u− :=

⊕
α/∈R(g,h)−(I),α<0 g

α, then it is a solvable (even nilpotent) subalgebra.
Consider ad : g ↪→ glg since g semisimple. Now ad(u−) consists of nilpotent endo-
morphisms. By Engel theorem, in a convenient basis of g we have that u− is in the
subalgebra of strictly lower-triangular matrices. Then at level of Lie groups we have
U− ⊂ G ⊂ GLN such that U− is in the subgroup of unipotent matrices.

In particular exp : u− → U− has inverse given by log : U− → u− as A 7→∑∞
n=0(−1)n

(A−I)n
n . From the matrix description we have U− ∩ P (I) = {e}, so that

the morphism U− → G/P (I) is injective and it is dominant too by dimensional reasons.
Hence G/P (I) is rational.

Proposition 2.89. Consider the rational homogeneous variety G/P (I), then

H2(G/P (I),Z) ∼= Pic(G/P (I)) ∼= Z♯(I).
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Proof. WLOG we let G is simply connected. First we have

Lie(P (I)) = h⊕
⊕

α∈R(g,h)+

gα ⊕
⊕

α∈R(g,h)−(I)

gα

= h⊕
⊕

α∈R(g,h)(I)

gα ⊕
⊕

α/∈R(g,h)+(I),α>0

gα

= sP ⊕
♯(I)⊕
i=1

[gαi , g−αi ]⊕
⊕

α/∈R(g,h)+(I),α>0

gα

where sP = Lie(SP ) is semisimple by Proposition 2.65 and I = {α1, ..., α♯(I)}. Now SP
is called the semisimple part of P (I). By definition sP is covered by the copies of sl2.

By Theorem 2.84 and Proposition 2.86, Pic(G/P (I)) is just the groups of 1-dim
representation of P (I). Let Vλ = {v : ρ(h)(v) = λ(h)v, ∀h ∈ h} be a one-dimensional
Lie(P (I))-module, where λ is the corresponding weight in h∨ where ρ : Lie(P (I))→ glV .
Then Vλ restricted to sP is trivial since sP semisimple. Easy to see that gαVλ ⊂ Vα+λ,
then the representation is trivial when restricted to

⊕
α/∈R(g,h)+(I),α>0 g

α. Hence this
representation is obtained from the abelian ](I)-dimensional piece

⊕♯(I)
i=1 [g

αi , g−αi ] which
is the Lie algebra of a torus G♯(I)

m . Hence well done.

Proposition 2.90 (Ise). Fix a rational homogeneous variety G/P (I). A representation
ρ : P (I) → GLV is completely reducible if and only if ρ|U is trivial where U ⊂ P (I)
correspond to

⊕
α/∈R(g,h)+(I),α>0 g

α. Now U is called the unipotent part of P (I).

Proof. Let ρ is completely reducible. Hence WLOG we let ρ is irreducible. Let Y ⊂ P (I)
correspond to

⊕♯(I)
i=1 [g

αi , g−αi ] ⊕
⊕

α/∈R(g,h)+(I),α>0 g
α. From the theorem of Lie there

exists a basis in V such that ρ(y) is upper triangular for every y ∈ Y . Since Lie(U) =
[Lie(Y ), Lie(Y )] we get that dρ(u) is strictly upper triangular for every u ∈ Lie(U). It
follows that there exists a nonzero v ∈ V such that ρ(u)v = v for any u ∈ U .

Let F := {v ∈ V : ρ(u)v = v, ∀u ∈ U}, then F 6= 0 as before. As U is normal, it is
easy to check that F is P (I)-invariant so that by the assumption F = V . This means
that ρ|U is trivial.

Conversely we let ρ|U is trivial. Then at the level of Lie algebras ρ comes from a
representation of LieSP ⊕ z where z =

⊕♯(I)
i=1 [g

αi , g−αi ]. Any such representation is the
tensor product of a representation of z (abelian Lie algebra of G♯(I)

m ) and a representation
of Lie(SP ) which are both completely reducible.

2.3.6 Borel-Weil Theory
Lemma 2.91. Let G be a semisimple group, we have π2(G) = 0.
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Proof. Omit it.

Lemma 2.92. Let G be semisimple and simply connected. Let P (I) ⊂ G be a parabolic
subgroup. Then π1(P (I)) = π2(G/P (I)) = Z♯(I) and π1(SP ) = 0 where SP be the
semisimple part of P (I).

Proof. See the Proposition 10.8 in the survey [Ott95].

Proposition 2.93 (Classification of Irreducible Bundles). Let G be semisimple and
simply connected. Let P (I) ⊂ G be a parabolic subgroup. Let I := {α1, ..., αk} be a subset
of simple roots. Let λ1, ..., λk be the corresponding set of fundamental weights, that is,
{λi} is dual basis of {hαi} as in Theorem 2.43. Then all the irreducible representations
of P (I) are

V ⊗ Ln1
λ1
⊗ · · · ⊗ Lnk

λk

where V is a representation of SP and ni ∈ Z (by the Lemma 2.92, λi define represen-
tations of SP ).

Proof. Now we have Lie(P (I)) Follows from Proposition 2.90 and Lemma 2.92.

Theorem 2.94 (Borel-Weil). Let G be semisimple and simply connected. Let P (I) ⊂ G
be a parabolic subgroup. Let I := {α1, ..., αk} be a subset of simple roots. Let λ1, ..., λk
be the corresponding set of fundamental weights. Then Ln1

λ1
⊗ · · · ⊗ Lnk

λk
is very ample if

and only if it is ample if and only if all ni > 0.

Proof. See Theorem 10.16 in [Ott95].

Corollary 2.95. The ample generator L of the Picard group of the rational homo-
geneous varieties G/P of Picard number 1 is very ample. In particular, it gives a
G-equivariantly embedding G/P ↪→ P(H0(G/P ),L ).

Theorem 2.96 (Bott, 1957). We have H i(G/P, TG/P ) = 0 for all i > 0 for any rational
homogeneous variety G/P . In particular it is locally rigid.

2.4 Special Rational Homogeneous Spaces
2.4.1 Hermitian Symmetric Spaces
2.4.2 Homogeneous Contact Manifolds

2.5 Del-Pezzo Manifolds



Chapter 3

Varieties of Minimal Rational
Tangents

We will assume the base field is C.

3.1 Basic Properties
In this section we will discover some fundamental and important properties of tangent
map τx : Kx 99K P(Ω1

X,x) with VMRT Cx for any smooth Fano variety X. First we need
to find some properties of singular rational curves.

Definition 3.1. Let X be a smooth uniruled variety over C and x ∈ X is a point.
Choose a (dominanted) minimal rational component K ⊂ RatCurvesnp+2(X) and the
corresponding component Kx ⊂ RatCurvesnp+2(x,X) be of minimal degree p+2. Consider
the rational map

τx : Kx 99K P(Ω1
X,x), [i : C ⊂ X] 7→ di

dt

∣∣∣∣
t=0

where t be the uniformizer of m0 ⊂ OC,0, defined on curves smooth at x. We define the
variety of minimal rational tangents or VMRT Cx ⊂ P(Ω1

X,x) at x is the closure of the
image of τx. Moreover, we define

C :=
⋃

x general
Cx

zar
⊂ P(Ω1

X)

the total variety of minimal rational tangents or total VMRT.

Remark 3.2. Note that there are only finitely many choice of minimal rational compo-
nent K ⊂ RatCurvesnp+2(X), hence there are only finitely many choice of Cx ⊂ P(Ω1

X,x),
at least for general point x ∈ X.

77
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Theorem 3.3 (Kebekus [Keb02], 2002). Let X be a smooth uniruled variety and K ⊂
RatCurvesnp+2(X) a (dominanted) minimal rational component. Let K′

x ⊂ K be the locus
of curves passing through x where x ∈ X be a general point (hence Kx → K′

x is a
normalization). consider the closed subvarieties

Ksing
x := {[C] ∈ K′

x : C singular}, Ksing,x
x := {[C] ∈ K′

x : C singular at x}.

Then the following holds.

(a) The space Ksing
x has dimension at most one, and the subspace Ksing,x

x is at most
finite. Moreover, if Ksing,x

x is not empty, the associated curves are unramified .
(b) If there exists a line bundle L ∈ Pic(X) that intersects the curves with multiplicity

2, then Ksing
x is at most finite and Ksing,x

x is empty.

Proof. See the original paper [Keb02] or the sketch in Theorem 2.12 in the survey
[KC06].

Remark 3.4. There is another thing about the singular rational curves: if there is a
curve parametrized by Kx singular at x, then there is also a curve parametrized by Kx
with a cuspidal singularity. See V.3.6 in [Kol96].

Corollary 3.5. By Theorem 3.3(a), very curve parametrized by Kx is unramified at x
(i.e., its normalization is unramified at 0 7→ x).

Theorem 3.6 (Kebekus-2002, Hwang-Mok-2004). Let X be a smooth uniruled variety
and K ⊂ RatCurvesnp+2(X) a (dominanted) minimal rational component. Let x ∈ X be
a general point, consider the tangent map

τx : Kx 99K P(Ω1
X,x), [f : P1 → X] 7→ df

dt

∣∣∣∣
t=0

.

(a) τx is actually a finite morphism, we can called it tangent morphism.
(b) τx : Kx → Cx is a birational morphism, hence
(c) τx : Kx → Cx is the normalization.

Proof. (a) and (b) implies (c) in this case.
For (a) (proved in [Keb02]), we will first show that τx : Kx 99K P(Ω1

X,x) actually can
be a morphism. We have two arguments with the same result:

(M1) By Theorem 1.31(b) we have q as follows

Kx Hombir(P1, X; 0 7→ x)/Aut(P1; 0)

P(Ω1
X,x)

q

txτx
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where tx : Hombir(P1, X; 0 7→ x)/Aut(P1; 0) → P(Ω1
X,x) sends f to (df)0(

d
dt) for

uniformizer t ∈ OP1,0 since it is unramified by Corollary 3.5.
(M2) Consider the universal morphism and cycle morphism

Univn(x,X) Unx X

RatCurvesn(x,X) Kx

πx

ιx

We have a section Kx ∼= σ∞ ⊂ Unx contracted to x ∈ X via ιx which is canonical
by Theorem 3.3(a). By Corollary 3.5 again we can consider a nowhere vanishing
morphism of vector bundles

TUn
x /Kx
|σ∞ → ι∗x(TX,x)

and yields τx : Kx ∼= σ∞ → P(Ω1
X,x).

Now we need to show τx is finite. If not, we have a curve C ⊂ Kx contracted by
τx. Let the normalization of universal family U → C is again a P1-bundle. Let the
corresponding section is s∞ ⊂ U . Consider Ns∞/U . Since s∞ contracted into a point,
its normal bundle is negative. But this is the tangent morphism, the normal bundle
nedd to be trivial. This is impossible. Hence τx is finite.

For (b), proved in [HM04] Theorem 1 and we will omit it.

Remark 3.7. Note that by the proof of (a) we have τ∗x(O(1)) ∼= Oσ∞(KUn
x /Kx

).
Remark 3.8. Note also that we need to think (M1) and (M2) deeply as follows:

The fundamental question is that if the minimal rational curve C not smooth at x
(however it is unramified at x by Corollary 3.5), how to choose the different tangent
vectors?
(M1) In this method, since Homn

bir(P1, X; 0 7→ x)/Aut(P1; 0) ∼= Kx we know that there
are several curves in Kx maps to [C] and their tangent vectors separated by the
tangent vectors of C at x since C is not smooth at x. The diagram as follows:

(M2) In this method, the section σ∞ ∼= Kx will meet the sections of singular points at
finite points. For example in local case where σ∞ ⊂ ι−1

x (x) be that section and
σ1, σ2 are preimage of singular locus sing ⊂ Ux:
Hence the choice of tangent vectors are canonical. Another interesting method is
that we can use the universal property of the blow-up:

BlxX

Kx Unx Xιx

b
ι̂x
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No map

,

τx

TX,x

n

σ∞

σ1

σ2 sing

σ
′

∞

n

πx

Then we have τx = ι̂x|σ∞ : Kx ∼= σ∞ → E = P(Ω1
X,x).

Remark 3.9. In fact in [Keb02] they show that ι−1
x (x) = σ∞∪{finite points}. Moreover

the tangent morphism dιx has rank one along σ∞.

Proposition 3.10. Let X be a smooth uniruled variety and x ∈ X be a general point,
then the morphism τx : Kx → P(Ω1

X,x) is unramified at [f ] ∈ Kx if and only if [f ] is
standard.

Proof. We follows Proposition 1.4 in the survey [Hwa01] or Proposition 2.7 in [Ara06].
Consider

Homn
bir(P1, X; 0 7→ x) = Hombir(P1, X; 0 7→ x) Vx Kx

P(Ω1
X,x)

ϕx

τx
ψx

Pick any [C] ∈ Kx and its normalization [f ] ∈ Vx, then we need to consider (dψx)[f ] :

T[f ]Vx → Tψx[f ]P(Ω1
X,x). Now T[f ]Vx ∼= H0(P1, f∗TX⊗m0) and Tψx[f ]P(Ω1

X,x)
∼= TxX/ψ̂x[f ]

where ψ̂x[f ] denotes the 1-dimensional subspace of TxX corresponding to the point
ψx[f ]. If v ∈ H0(P1, f∗TX ⊗ m0), then we let a deformation fs with f0 = f such that
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dfs
ds |t=0 = v. Then

(dψx)[f ](v) =
d

ds

∣∣∣∣
s=0

dfs
dt

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

dfs
ds

∣∣∣∣
s=0

=
dv

dt

∣∣∣∣
t=0

∈ TxX/ψ̂x[f ] = f∗TX |0/ToP1

where t be the uniformizer of m0 ⊂ OP1,0. For a v 6= 0 such that v not be zero after
quotient by ToP1, we find that (dψx)[f ](v) = 0 if and only if O(2) ⊂ f∗TX |0/ToP1 if and
only if [f ] is standard.

Remark 3.11. Hence we give another proof of that τx is generically finite.

Corollary 3.12. Let X be a smooth uniruled variety and x ∈ X be a general point.
If every irreducible component of Cx is smooth, then all curves parametrized by Kx are
smooth at x.

Proof. Since every irreducible component of Cx is smooth, τx is unramified by Theorem
3.6 (in fact, the restriction of τx to each irreducible component of Kx is an isomorphism).
Thus, by Proposition 3.10, f is standard for every member [f ] ∈ Kx. Hence there is
no curve parametrized by Kx has a cuspidal singularity. Then the result follows from
Remark 3.4.

Corollary 3.13. Let X be a smooth uniruled variety and x ∈ X be a general point. We
assume that under the embedding X ⊂ PN , any point in X lies in a line on X. Then
τx : Kx → P(Ω1

X,x) is an embedding, hence Cx is smooth.

Proof. Note that the map τx is injective, because any line through x is uniquely de-
termined by its tangent direction. Hence we just need to show that τx is unramified.
By Proposition 3.10 we just need to show that any minimal rational curve, that is,
these lines C containing x is standard. Indeed, let TX |C ∼= O(a1) ⊕ · · · ⊕ O(a1) with
a1 ≥ · · · ≥ an ≥ 0. Hence ai ≥ 2. As TX |C ⊂ TPn |C = O(2)⊕O(1)⊕N−1, we get a1 = 2
and 1 ≥ a2 ≥ · · · ≥ an ≥ 0 and C is standard.

Corollary 3.14. If X be a smooth prime Fano variety of Fano index Index(X) > n+1
2

with dimension n, then X satisfies the conditions in Corollary 3.13. Hence τx : Kx →
P(Ω1

X,x) is an embedding for a general point x ∈ X, hence Cx is smooth.

Proof. For any minimal rational curve C (let the anticanonical degree is p+2), we have

n+ 1 ≥ p+ 2 = −KX · C = Index(X)C ·L

where L generates Pic(X). As Index(X) > n+1
2 , then C must be a line under the

embedding given by L .
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Proposition 3.15. Let X be a smooth uniruled variety and x ∈ X be a general point.
For general [C] ∈ Kx with normalization f : P1 → C ⊂ X with minimal degree p + 2.
Define TxX+

C ⊂ TxX be the subspace correspond to the positive part, that is, the stalk of

Im[H0(P1, f∗TX(−1))⊗ O → f∗TX(−1)]⊗ O(1) ⊂ f∗TX

at x. Then P((TxX+
C )

∨) ⊂ P(Ω1
X,x) is the projective tangent space of Cx at τx([f ]).

Proof. As general curve, we just consider the standard one. By proposition 3.10, if
v ∈ H0(P1, f∗TX⊗m0), then the differential sends v to dv

dt

∣∣
t=0

where t be the uniformizer
of m0 ⊂ OP1,0. Since v lies in the positive part, then so is dv

dt . As dim Cx = p =
dimP(O(2)⊕ O(1)p), then well done.

3.2 Basic Examples of VMRT
3.2.1 Projective Spaces
Proposition 3.16. If X = Pn, then τx : Kx ∼= P(Ω1

X,x).

Proof. By the proof of Theorem 1.79 or Corollary 3.14.

Conversely we introduce some characterizations of projective spaces. Some of them
we have proved and some of them are easy to prove. We also will to prove some of them
using VMRT theory.

Theorem 3.17 (Cho-Miyaoka-Barron, 2002). Let X be a smooth projective variety of
dimension n and x0 ∈ X be a general point . Then the following fourteen conditions
are equivalent:

(a) X ∼= Pn.
(b) Hirzebruch-Kodaira-Yau condition: X homotopic to Pn.
(c) Kobayashi-Ochiai condition: X is Fano and c1(X) is divisible by n+1 in H2(X,Z).
(d) Frankel-Siu-Yau condition: X carries a Kähler metric of positive holomorphic bi-

sectional curvature.
(e) Hartshorne-Mori condition: TX is ample.
(f) Mori condition: X is Fano and TX |C is ample for any rational curves C.
(g) Doubly transitive group action: The action of Aut(X) on X is doubly transitive.
(h) Remmert-Vande Ven-Lazarsfeld condition: There exists a surjective morphism from

a suitable projective space onto X.
(i) Length condition: X is uniruled and −KX · C ≥ n+ 1 for any curve C ⊂ X.
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(j) Length condition on rational curves: X is uniruled and −KX · C ≥ n + 1 for any
rational curve C ⊂ X.

(k) Length condition on rational curves with base point: X is uniruled and −KX ·C ≥
n+ 1 for any rational curve C ⊂ X passing through a general point x0 ∈ X.

(l) VMRT condition: X is uniruled and τx : Kx → Cx ∼= P(Ω1
X,x).

First Comments. Actually there is a much general condition in the original paper [CMSB02]
implies all of these, but we will omit it. Note that we also omit the proof of (k)⇒ (a)
since it use that general condition. But we finally will prove (i) ⇒ (l) ⇒ (a) by using
VMRT theory as in

Here are some trivial implications. We have (a) implies everything. We have (i)⇒
(j) ⇒ (k) and (d) ⇒ (e) ⇒ (f). Morever (c) ⇒ (i) and (f) ⇒ (j) are also trivial.
Note also that (a) ⇔ (d) ⇔ (e) ⇔ (f) are proved in Theorem 1.77, Theorem 1.78 and
Theorem 1.79. Note also that (h)⇒ (k) and (h)⇒ (a) is proved also in Corollary 1.81.
For (g)⇒ (f) we refer Page 45 in [CMSB02].

Proof of (b)⇒ (c). As X homotopic to Pn, then X is simply connected. By the proof
of Proposition 1.62(b) we have Pic(X) ∼= H2(X,Z) = H2(Pn,Z) ∼= Z. Pick an ample
generator h and let c1(X) = mh. As cn1 (X) is homotopic invariant up the sign (see
[Hir56]), we have m = ±(n+ 1). If m = n+ 1 then well done.

If m = −(n+1) and we will show that this is impossible. In this case KX is ample,
then X has KE-metric by several works [Aub78][Yau77][Yau78]. The Chern number
cn−2
1 (2(n+ 1)c2 − nc21) is again homotopic invariant up the sign. By Chen-Ogiue-Yau’s
result ([CO75][Yau77][Yau78]) this would imply that the universal cover of X is the
open unit ball, contradicting the assumption that the compact manifold X is simply
connected.

Finally we will prove (i)⇒ (l)⇒ (a) using VMRT.

Proof of (i)⇒ (l). By Theorem 3.6(a), we have τx : Kx ∼= σ∞ → P(Ω1
X,x) is finite.

Since dimKx = n − 1 = dimP(Ω1
X,x), we know that τx is surjective. By Theorem

3.6(b) we find that τx is birational (Note that the proof of 3.6(b) in [HM04] is to
reduce the general case to our case. So we can not use this at all. But for
convenience we will use this directly). Hence by Zariski main theorem we know
that τx : Kx ∼= σ∞ → Cx ∼= P(Ω1

X,x) are isomorphisms.

Proof of (l)⇒ (a). This is the same proof of the final step of Hartshorne’s conjecture
1.79. As τx : Kx → Cx ∼= P(Ω1

X,x) where by Theorem 3.6 τx is a normalization, hence
Kx ∼= Cx ∼= P(Ω1

X,x)
∼= Pn−1.

By Stein factorization we have ιx : Unx
A→ Y

B→ X where A(σ∞) = {pt} and B finite.
Similarly pushforward 0→ OUn

x
→ OUn

x
(σ∞)→ Oσ∞(σ∞)→ 0 to Kx and consider Ext1
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we have Unx ∼= PKx(O ⊕ O(−1)) and get Y ∼= Pn. Finally by Corollary 1.81 we get
X ∼= Pn.

Remark 3.18. Note that the history about the characterizations of projective space is
very long and we refer Remark 5.2 in [CMSB02]. Noe also that there is an anologue of
quadric hypersurfaces, see Remark 5.3 in [CMSB02].

Theorem 3.19 (Wahl, 1983). Let X be a complex projective non-singular variety, let
L be an ample line bundle. If H0(X,TX ⊗ L −1) 6= 0, then (X,L ) is (Pn,O(1)) or
(Pn,O(2)).

Proof. See the main theorem in the paper [Wah83].

Theorem 3.20 (Andreatta-Wisniewski, 2001). If E is an ample locally free subsheaf of
TX , then X ∼= Pn and E ∼= O(1)⊕r or E ∼= TPn.

Proof. This is the main theorem in the paper [AAW01].

3.2.2 Fano Hypersurfaces
Let X ⊂ Pn+1 be a smooth Fano hypersurface of degree d where n ≥ 3. Hence now
d ≤ n+ 1. We first consider the following general result which will be useful later:

Proposition 3.21. Let X ⊂ Pn+1 be a smooth hypersurface of degree d over any field
k. If n ≥ 3 then

Pic(X) ∼= Z · OX(1).

Proof. For the proof over any field we refer XII. Cor 3.6 in [Gro62]. We only prove the
case where k = C. By exponential sequence one has

H1(X,OX)→ Pic(X)→ H2(X,Z)→ H2(X,OX).

By the Lefschetz hyperplane theorem we have H1(X,OX) = H2(X,OX) = 0 since
n ≥ 3. Hence Pic(X) ∼= H2(X,Z). By the Lefschetz hyperplane theorem again we have
Pic(X) ∼= Z · OX(1). Well done.

To consider Cx for x ∈ X, we first consider when does the lines lie over the X ⊂
Pn+1. Let F (t0, ..., tn+1) be the homogeneous polynomial of degree d defining X and let
x = [x0 : ... : xn+1] ∈ X be a general point.

Proposition 3.22. If d ≤ n, then Cx is the smooth complete intersection of multi-degree
(2, 3, ..., d).
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Proof. A line through x given by l = [x0+λy0 : ... : xn+1+λyn+1] where [y0 : ... : yn+1] ∈
Pn+1 be some point. Hence l ⊂ X if and only if F (x0 + λy0, ..., xn+1 + λyn+1) = 0 for
any λ. So this if and only if

∑d
i=0 λ

i 1
i!(∆x(y))

iF (x) = 0 where ∆x(y) =
∑

i yi
∂
∂ti

. Hence
this if and only if

∆x(y)F (x) = 0, (∆x(y))
2F (x) = 0, · · · , (∆x(y))

dF (x) = 0.

Note that the first one is just the defining equation of P(Ω1
X,x), hence well done.

Remark 3.23. Some situations:

(a) When d = 2 then X is the hyperquadric Qn which is homogeneous. Hence VMRT
Cx ∼= Qn−2 ⊂ P(Ω1

X,x).
(b) When d is high and d < n, then VMRT os Calabi-Yau or of general type.
(c) When d = n then VMRT is finite and of cardinality n!.
(d) When d = n+1 there exists no line but has finite conics (see V.4.4.4 in [Kol96]).

3.2.3 Grassmannians
Let X = Grass(s, V ) is Grassmannian of s > 0-dimensional subspaces where dimV =
r + s. Pick a general point x = [W ] ∈ X.

Proposition 3.24. In this case τx : Kx → P(Ω1
X,x) is just the Segre embedding

τx : P(W )× P((V /W )∗) ↪→ P(W ⊗ (V /W )∗).

Proof. Via Plücker embedding X covered by lines, hence by Corollary 3.13 τx is an
embedding. Note that a line on Grass(s, V ) through a point x = [W ] ∈ X = Grass(s, V )
is determined by a choice of subspace W ′ of dimension s − 1 contained in W and a
subspace W ′′ of dimension s + 1 containing W . Then that line consist of subspaces of
dimension s which are containingW ′ and contained inW ′′. So Kx ∼= P(W )×P((V /W )∗).
Hence easy to see the tangent morphism is just Segre embedding:

τx : Kx ∼= P(W )× P((V /W )∗) ↪→ P(W ⊗ (V /W )∗) ∼= P(Ω1
X,x).

Well done.

3.2.4 Moduli Space of Stable Bundles over Curves
Consider a smooth projective curve C of genus g ≥ 2.
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Proposition 3.25. Consider the moduli spaceM2;D ,d(C) of stable bundles of rank 2 with
fixed determinant D of degree d. If d is odd, then M2;D ,d(C) is a (3g − 3)-dimensional
Fano manifold of Picard number 1 (it is prime). Moreover M2;D ,d(C) ∼= M2;D ,1(C)
in this case. In particular, when g = 2 the space M2;D ,1(C) is a intersection of two
quadrics in P5.

Proof. We refer [MS78], omit it.

Corollary 3.26. When g = 2, the VMRT is just four points in P(Ω1
X,x) given by the

intersection of two conics.

Proof. See the proof of Proposition 3.22.

For g ≥ 3 we will construct some kind of rational curves on X = M2;D ,1(C) which
is called the Hecke curves. There are two equivalent constructions:

(M1) Pick [W ] ∈ X which is (1, 1)-stable, that is, any sub-line-bundle has degree < 0, is
dense inX by [MS78]. Consider π : P(W )→ C and η ∈ P(W ) with y = π(η) ∈ C.
First we get a new bundle W η of rank 2:

0→W η →W → Oy ⊗ (Wy/η)→ 0.

Hence deg((W η)∨) = det(W )−1 ⊗ O(y). Now for any ν ∈ P((W η)∨y ) we have
another new bundle V ν of rank 2:

0→ V ν → (W η)∨ → Oy ⊗ ((W η)∨y /ν)→ 0.

So det(V ν)∨ = detW and V ν is stable. Then {(V ν)∨ : ν ∈ P((W η)∨y )} is a
rational curve on X.
Since by dual we have 0 → W∨ f→ (W η)∨ → Oy = Ext1 → 0. Let ν ′ = cokerf
and then W ∼= (V ν′)∨. Hence {(V ν)∨ : ν ∈ P((W η)∨y )} is a rational curve on X
passing through W which is the Hecke curve.

(M2) This is more geometric. Pick [W ] ∈ X which is (1, 1)-stable and the process as
follows:
Consider the blow-up b1 : Blη(P(W )) → P(W ) over η ∈ P(W ) over y ∈ C
with fiber l1 = P(Wy). The exceptional divisor is l2 ∼= P(TηP(W )). The strict
transform of l1 is a (−1)-curve since 0 = (l1 + l2)

2. Hence blow-down the l1
we get a new ruled surface P(W η). For the choose of tangent direction ν ∈ l2 =
P(TηP(W )) = P(W η

y ), we blow-up ν again and we get b2 : Blν(P(W η))→ P(W η)
and blow-down via (−1)-curve l2 and we get a new ruled surface P(W η,ν). When
ν is tangent to l1, then we have W η,ν = W . Hence {W η,ν : ν ∈ P(TηP(W ))} is a
rational curve on X passing [W ].
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η

y y y

y y

η η

η

ν

νν

l2
l1

l1

l2

l2

l3l3

b1

b2

Proposition 3.27. Consider a smooth projective curve C of genus g ≥ 3. and the
moduli space X = M2;D ,1(C) of stable bundles of rank 2 and degree 1. Let L be the
ample generator of Picard group, then −KX = 2L and Hecke curves have degree 2 with
respect to L . Hecke curves are smooth in the smooth lucus of X. Moreover, Hecke
curves are minimal rational curves on X.

Proof. We refer [MS78] for the proof of that fact that −KX = 2L , Hecke curves have
degree 2 with respect to L and Hecke curves are smooth in the smooth lucus of X.

For the last statement, the original proof is Proposition 8 in [Hwa00]. The basic
idea is follows. We just need to show that there are no rational curves of degree 1.
By Kodaira’s stability, if a rational curve of degree 1 exists at a generic point of X for
some C, such a curve exists at a generic point of X for any C of the same genus. So
if a rational curve of degree 1 exists at a generic point of X for our C, then pick a
hyperelliptic curve C ′ and its X ′ is also in this case. But in the hyperelliptic case X ′

is the set of (g − 2)-dimensional linear subspaces in the intersection of two quadrics in
P2g+1 determined by the hyperelliptic curve, see Theorem 1 in [DR77]. If lines exist
through generic points of X ′, we have at least a (3g−3)−(g−1) = (2g−2)-dimensional
family of (g−1)-dimensional linear subspaces in the intersection of the two quadrics. By
Theorem 2 in [DR77] the set of (g − 1)-dimensional linear subspaces of the intersection
of the two quadrics is equivalent to the Jacobian of C ′ which has dimension g. Hence
this is impossible since g ≥ 3.

Proposition 3.28. Consider a smooth projective curve C of genus g ≥ 3. and the
moduli space X =M2;D ,1(C) of stable bundles of rank 2 and degree 1.

(a) Then for any (1, 1)-stable [W ] ∈ X, the Hecke curves associated to two distinct
η1, η2 are distinct rational curves on X.
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(b) We have K[W ]
∼= PC(W ) = P(W∨) and the tangent morphism τ[W ] : K[W ] →

P(Ω1
X,[W ]) is given by the linear system π∗KC ⊗ TPC(W )/C = 2π∗KC − KPC(W ).

Moreover C[W ] is nondegenerate in P(Ω1
X,[W ]).

Proof. For (a) this is 5.13 in [MS78] and we omit it.
For (b), we give the main idea and the details we refer Proposition 11 in [Hwa00].

By (a) we know that the set of Hecke curves is just PC(W ) ⊂ K[W ]. As dimK[W ] =
dimPC(W ) = 2 we have K[W ]

∼= PC(W ) = P(W∨). Moreover, by Euler sequence we
have π∗TPC(W )/C = ad(W )∨, then traceless endomorphism bundle ofW , andR1π∗TPC(W )/C =
0 where π : PC(W )→ C. As the tangent space of X is just H1(C, ad(W )), we have the
tangent morphism τ[W ] : PC(W )→ PH1(C, ad(W )). As

H0(PC(W ), π∗KC ⊗ TPC(W )/C) = H0(C,KC ⊗ ad(W )∨) ∼= H1(C, ad(W ))∨,

it is not different to see that τ[W ] is given by the linear system π∗KC ⊗ TPC(W )/C .

3.3 Distribution and Its Basic Properties
Definition 3.29. Let X be a smooth uniruled variety with fixed minimal rational com-
ponent K. For general x ∈ X we have VMRT Cx ⊂ P(Ω1

X,x). Consider its linear span
W ′
x ⊂ TxX. As x varies over an zariski open subset (which is our meaning of general) U

we have a subbundle W ′ ⊂ TU . Define its annihilator (W ′)⊥ ⊂ Ω1
X and the annihilator

W ⊂ TV (saturation of W ′) of (W ′)⊥ ⊂ Ω1
X where V is a open subset of codimension

≥ 2.

Lemma 3.30. Given any subset E ⊂ X of codimension ≥ 2, we can find a standard
minimal rational curve disjoint from E.

Proof. Choose a standard minimal rational curve C through a general point x /∈ E.
Let NC

∼= O(1)⊕p ⊕ O⊕n−1−p and choose sections σ1, ..., σp of NC correspond to the
independent sections of O(1)⊕p vanishing at x, and sections σp+1, ..., σn−1 generates
O⊕n−1−p. Since no obstruction, we have a (n− 1)-dimensional deformation of C whose
initial velocities are contained in the linear span of σ1, ..., σn−1. If all members meets
E, this means we have a 1-dimensional subfamily passing through a given point y ∈ E
since codimE ≥ 2. Hence in the linear span of σ1, ..., σn−1 there exists a non-zero section
vanishing at y. But this is impossible since σ1, ..., σn−1 are pairwisely independent
outside x. Hence well done.

3.3.1 Levi Tensor of the Distribution
Definition 3.31. Fix a distribution D ⊂ TM for a complex manifold. For any x ∈ M
and any two vectors u, v ∈ Dx, let their local sections ũ, ṽ. Then we define the Levi
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tensor of D, which is a section of H om
(∧2D, TM/D

)
, as

LeviDx (u, v) := [ũ, ṽ]x (mod )Dx.

Remark 3.32. In the old survey [Hwa01], this is called the Frobenius bracket tensor.
Proposition 3.33. Let X be a smooth uniruled variety of Picard number 1 with fixed
minimal rational component K associated to a distribution W . If W is a proper distri-
bution, then it is not integrable at general points.
Proof. For the whole proof we refer Proposition 2.2 in [Hwa01]. Here we give some
idea. If W is integrable, then by Frobenius theorem it defines a non-trivial foliation on
X\E for some codimE ≥ 2. By some argument one can compactify the leaves of this
foliations into algebraic subvarieties.

Pick a Chow schemes ChowW of compactifications of these leaves. Choosing a hy-
persurface H in ChowW generically, we get a hypersurface L in X which is the closure
of the codimension 1 part of the union of compactificated leaves corresponding to H. A
generic member of K lies in a leaf of D but is disjoint from H, hence disjoint from L, a
contradiction to the Picard number condition on X.

Proposition 3.34. Let X be a smooth uniruled variety with fixed minimal rational
component K associated to a distribution W . Let Tx ⊂ Grass(1,P(Wx)) ⊂ P

(∧2Wx

)
be lines tangent to the smooth locus of Cx. Then Tx is contained in the projectivization
of the kernel of the Levi tensor LeviWx (−,−) :

∧2Wx → TxX/Wx.
Proof. By Proposition 3.15 we just need to show that LeviWx (α, β) = 0 for any α ∈ Wx

correspond to the general point of Cx and β ∈ TxX+
α . So WLOG we let both of them

are non-zero. Hence we just need to show that there is a local complex analytic surface
through x tangent to W in the neighborhood of x whose tangent space at x containing
α, β.

Choose a standard rational curve C through x whose tangent vector is α (as α
general) and fix y ∈ C with x 6= y. Now β correspond to the positivr part of TX |C , thus
there exists a non-zero section σ of the normal bundle so that σ(y) = 0 and σ(x) = β.
As H1(C,NC ⊗ my) = 0, we can find a deformation Ct of C fix y with initial velocity
β. This fomrs a local complex analytic surface through x whose tangent space at x
spanned by α, β. Moreover its tangent space at z near x spanned by TzCt and σt(z)
where σt ∈ H0(Ct, NCt⊗my). By Proposition 3.15 again we know that σt in the tangent
space of Cz, hence in Wz. Hence this surface tangent to W . Well done.

Corollary 3.35. Let X be a smooth uniruled variety of Picard number 1 with fixed
minimal rational component. For a general point x ∈ X, the VMRT Cx cannot be an
irreducible linear proper subspace.
Proof. Follows directly from Proposition 3.33 and Proposition 3.34.
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3.3.2 Nondegeneracy of the Distribution
In this small section we will consider when the VMRT Cx is nondegenerate.

Proposition 3.36. Let W be a vector space with a non-linear cone J ⊂ W such that
dim J > 1

2 dimW and P(J) is a smooth subvariety of P(W ). Let T ⊂ P
(∧2W

)
be

the variety of tangent lines of P(J), then T is nondegenerate in P
(∧2W

)
.

Proof. This is a boring result deduced by dimension-counting and Zak’s theorem in
the projective geometry about tangencies. We refer the proof of Proposition 2.6 in
[Hwa01].

Theorem 3.37. Let X be a smooth uniruled variety of Picard number 1 and dimension
n with dim Cx = p > n−3

2 , then if Cx is smooth for some general point, then it is
nondegenerate.

Proof. If it is degenerate, defining the non-trivial distribution W of rank m < n. Since
Cx is smooth and dim Cx = p > n−3

2 , the Levi tensor of W vanish identically by Propo-
sition 3.34 and 3.36. But by Proposition 3.33 this is impossible!

Corollary 3.38. Let X be a prime smooth Fano variety of dimension n with Index(X) >
n+1
2 , then the VMRT is nondegenerate.

Proof. This follows directly from this Theorem and Corollary 3.14.

3.3.3 Cauchy Characteristic of the Distribution
Definition 3.39. Let a distribution D on a complex manifold X regarded as a subsheaf
of TX . The Cauchy characteristic of D is a subsheaf defined as

Ch(D)(U) := {f ∈ D(U) : LeviD(f, g) = 0, ∀g ∈ D(U)}.

Remark 3.40. Actually Ch(D) is a integrable distribution over the open subset where
it is locally free.

Lemma 3.41. Let g :M → N be a submersion of complex manifolds so that the fibers
of g define a distribution ker(dg) on M . Let D be a distribution on N , define the
pull-back distribution is (g∗D)m = (dg)−1(Dg(m)). Then we have

ker(dg) ⊂ Ch(g∗D).

Proof. Almost trivial. Omitted.
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Proposition 3.42. Let X be a smooth Fano variety of Picard number 1. Consider the
total VMRT

C :=
⋃

x general
Cx ⊂ P(Ω1

X)

and consider the universal cycle morphisms K ρ← U µ→ X. Note that the normalization
(µ−1(x))n = Kx and the tangent morphism τx : Kx → Cx induce a rational map τ :
U 99K C which is generically finite. The image of τ of fibers of ρ induce a multi-valued
foliation F and the leaf of it is the lift of the minimal rational curve to its tangent
vectors.

Define a distribution P of rank 2p+ 1 on generic part of C as

Pα := (dπ)−1(P((TxX+
α )

∨))

where π : C → X sends α 7→ x.
Now choose an analytic open subspace O ⊂ U such that τ |O is biholomorphic, we

can regard O as an open subset of C and F be a univalent foliation on O. If Cx has
generically finite Gauss map for general x ∈ O, then F = Ch(P) on O.

Remark 3.43. Let us examine what the condition on Gauss map means in this remark.
It is perhaps easier to look at the affine case. So let Z ⊂ AnC be an affine variety of

dimension m and let z ∈ Z be a generic smooth point. Let z1, ..., zm be a local coordinate
system of Z at z and w1, ..., wn be an affine coordinate system. The Gauss map of Z is
just associating to z its tangent space Tz(Z). If the Gauss map is not generically finite,
its differential has kernel in a neighborhood of z. Let v ∈ Tz(Z) be in the kernel of the
differential of the Gauss map. This means that in the direction of v, the tangent spaces
Tz(Z) remain constant to the first order as x varies in a neighborhood of z.

In particular, for any local vector field ω on Z as ω =
∑

i ai(z1, ..., zm)
∂
∂wi

and its
derivative in the direction of v is Dvω =

∑
i v(ai(z1, ..., zm))

∂
∂wi

also tangent to Z at z.
Conversely, one can see that if v is a tangent vector to Z at z so that Dvω(z) ∈ TzZ

for any local vector field ω on Z, then v is in the kernel of the differential of the Gauss
map. This can be applied to a projective subvariety of Pn−1 by taking its affine cone.

Sketched proof of Proposition 3.42. Now assume all we work are on O.
One one side (without assuming the Gauss map), if we definr the distribution Q

generically on K as Q[C] = H0(C,O(1)⊕p) ⊂ T[C]K = H0(C,NC). then by Proposition
3.15 we have P = ρ∗Q. By Lemma 3.41, we have F ⊂ Ch(ρ∗Q) = Ch(P).

Conversely, if there exists a vector in Ch(P)α not in Fα, then there must a vector
v tangent to the fibers of π : C → X, that is, v ∈ TαCx where x = π(α) by Jacobi
indentity. The condition v ∈ Ch(P)α as LeviPα (v,P) ⊂ P . Hence

LeviPα (v,P ∩ TP(Ω1
X,x)

) ⊂ P ∩ TP(Ω1
X,x)

.
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As Pα ∩ TαP(Ω1
X,x) = Tα(Cx), we have LeviPα (v, TCx) ⊂ TCx . Hence v is must in this

kernel of the Gauss map since v ∈ TαCx. Hence well done.

3.4 Cartan-Fubini Type Extension Theorem
3.4.1 Some History
In this small section we will follows the introduction survey [Hwa16]. The beginning of
these problems is the following theorem due to Liouville:

Theorem 3.44 (Liouville). For any conformal map f : U1 → U2 between two domains
in sphere Sn for n ≥ 2, there is a Möbius transformation f : Sn → Sn satisfying
f = F |U1.

As a natural extension in the projective geometry, we may ask:

Theorem 3.45. For any holomorphic conformal map f : U1 → U2 between two domains
in Qn, n ≥ 3, there is a biholomorphic automorphism F ∈ Aut(Qn) satisfying f = F |U1.

As a generalization, we consider the following theorems:

Theorem 3.46 (Fubini-Cartan-Jensen-Musso). Let X1, X2 ⊂ Pn+1 be two smooth hy-
persurfaces of degree d ≥ 2. If a biholomorphic map f : U1 → U2 between two domains
U1 ⊂ X1 and U2 ⊂ X2 preserves the structures given by both the second fundamental
form and the Fubini cubic form, then there is a biholomorphic morphism F : X1 → X2

satisfying f = F |U1.

In our sense of VMRT, we may consider the following questions:

Problem 3.1. Let X be a smooth Fano variety of Picard number 1 with the choise of
minimal rational component K so that the VMRT Cx at a general point x ∈ X. Does
Cx determine X in the following sense:

Let X ′ be any smooth Fano variety of Picard number 1 with the choise of minimal
rational component K′ for which we denote the VMRT C′x′ for general x′ ∈ X ′. Suppose
there exists connected analytic open subsets U ⊂ X,U ′ ⊂ X ′ and a biholomorphic
map φ : U → U ′ with isomorphism ψ : PTU → PTU ′ compactible with φ sends Cx
isomorphically to C′ϕ(x) for general x ∈ U . Do we have a biholomorphic map X → X ′?

This question is not right for the moduli space M2;D ,d(C) of stable bundles of rank
2 with fixed determinant D of odd degree d over a smooth projective curve C of genus
g = 2.

This question is right for Pn by Cho-Miyaoka and right for any irreducible Hermitian
symmetric space by Hwang-Mok.
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3.4.2 The Main Result
We will follows the survey [Hwa01] and paper [HM01]. We consider the following theo-
rem due to Hwang-Mok:

Theorem 3.47 (Cartan-Fubini Type Extension Theorem). Let X be a smooth Fano
variety of Picard number 1 with the choise of minimal rational component K so that the
VMRT Cx at a general point x ∈ X is of positive dimension p > 0 and the Gauss map
of Cx ⊂ P(Ω1

X,x) is generically finite.
Let X ′ be any smooth Fano variety of Picard number 1 with the choise of minimal

rational component K′ for which we denote the VMRT C′x′ for general x′ ∈ X ′.
Suppose there exists connected analytic open subsets U ⊂ X,U ′ ⊂ X ′ and a bi-

holomorphic map φ : U → U ′ so that the differential φ∗ : PTU → PTU ′ sends Cx
isomorphically to C′ϕ(x) for general x ∈ U , then φ can extended to a biholomorphic map
X → X ′.

Remark 3.48. Several remarks:

(a) Althrough this theorem is not true for projective space (note that the Gauss map
is not generically finite), the Problem 3.1 is true for projective space.

(b) Actually the Gauss map of Cx ⊂ P(Ω1
X,x) is generically finite (actually finite by

Zak’s results) for any non-linear smooth projective variety, see [GH79]. Hence the
theorem is right for any examples we want to see, except projective space, with
p > 0.

Sketched proof of Theorem 3.47. We will follows the sketch in [Hwa01] Theorem 3.2 and
we refer the detailed proof in [HM01]. We will follows the several steps.
I Step 1. Show the map φ sends local pieces of K in U to local pieces of K′

in U ′.
Consider the Proposition 3.42, then since φ∗ sends C|U to C′|U ′ , then it sends P to

P ′. Hence it sends F to F ′. Well done.
I Step 2. To extend the domain of φ from the analytic open set to an étale
open set.

Suppose C the standard minimal rational curve intersecting U . φ is defined on C∩U
and we want to extend it to other points on C. To define the extension at a point y ∈ C,
consider a deformation Ct of C fixing the point y since p > 0. Now consider the local
pieces U ∩ Ct. By Step 1, φ(U ∩ Ct) is a local piece of some minimal rational curve C ′

t

belonging to K′. We claim that these curves C ′
t have a unique common point y′.

Indeed the common point y′ exists because it exists when y is chosen to be inside
U . It is unique because C ′

t do not have deformations fixing two or more points. In fact,
if such a deformation exists, then its initial velocity is a section of the normal bundle of
a standard minimal rational curve vanishing at two or more points, a contradiction to
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the splitting type. Hence we proved the claim. Hence we can define y′ as the image of y
and then we can extend φ along standard minimal rational curves intersecting U (this
has some problems, but we have shown in bold font below). This enlarges the domain
of definition of φ to a bigger open set Û . Applying the same argument to Û , we can
analytically continue along standard minimal rational curves intersecting Û .

We can repeat this procedure until the domain of definition covers a Zariski open
subset in X. But there is a gap in this extension argument. A point outside U
may belong to different standard minimal rational curves intersecting U . So
when we carry out the analytic continuation, we end up with a multi-valued
extension of φ. So what we get at the end is a multi-valued extension of φ over an
étale open subset Ũ of X, namely a quasi-projective variety Ũ with an étale morphism
Ũ → X covering a Zariski open subset of X and a morphism φ̃ : Ũ → X ′ extending φ.
We skipped many technique things and we refer [HM01].
I Step 3. To extend the domain from the étale open set to a Zariski open
set.

To extend φ̃ to a morphism Φ0, defined on a Zariski open subset X0 of X, we have
to reduce the multi-valuedness of φ̃. First of all, we can reduce the multi-valuedness
of φ̃ by identifying two points u1, u2 ∈ Ũ if ν(u1) = ν(u2) and φ̃(u1) = φ̃(u2) where
ν : Ũ → X be that étale morphism. So let us assume that there is no such two distinct
points. Then we claim that ν must be 1-to-1.

Indeed, if not then by Lemma 3.50 we can choose a standard minimal rational
curve C generically and pick a generic point x ∈ C. Then there exists an irreducible
component C ′ of ν−1(C) containing a pair of points u1, u2 ∈ Ũ with ν(u1) = ν(u2) = x
and φ̃(u1) 6= φ̃(u2). Now let Ct be a deformation of C with x fixed, which exists by
p > 0, then their inverse images under ν contains components C ′

t which are deformations
of C ′ fixing u1 and u2. Then their images under φ̃ define a family of standard rational
curves in X ′ fixing two distinct points φ̃(u1) 6= φ̃(u2), a contradiction. This finishes
Step 3.
I Step 4. To extend the domain from the Zariski open set to the whole Fano
manifold X.

By applying the same extension to φ−1 : U ′ → U , we see that the rational map Φ0 in
Step 3 is birational. For Step 4, if Φ0 has exceptional set E ⊂ X of codimension 1 which
is contracted to a set Z ⊂ X ′ of codimension 2. From the Picard number condition, all
members of K intersect E. It follows that generic members of K must intersect Z, a
contradiction to Lemma 3.30. Hence Φ0 is a birational map with no exceptional set.

Hence Φ0 induce the isomorphisms H0(X,−mKX) ∼= H0(X ′,−mKX′). Hence Φ0

induce

Φ : X ∼= Proj
⊕
m≥0

H0(X,−mKX) ∼= Proj
⊕
m≥0

H0(X ′,−mKX′) ∼= X ′.

Well done.
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Remark 3.49. In the proof, the hypothesis of Gauss map is used only in step 1 and
the hypothesis of p > 0 is used only in step 2,3.

Lemma 3.50. Let π : Y → X be a generically finite morphism from a normal variety Y
onto a Fano manifold X with Picard number 1. Suppose for a generic standard rational
curve C ⊂ X belonging to a chosen minimal rational component, each component of the
inverse image π−1(C) is birational to C by π. Then π : Y → X itself is birational.

Proof. Let π is not birational. By Stein factorization π can be factored into Y g→ Y ′ h→
X where g is birational and h is finite. By Proposition 1.62(a) we know that h is not
étale. Hence we can choose a ramification divisor R ⊂ Y such that π(R) ⊂ X is also a
divisor.

By genericity of C, we may assume that π−1(C) lies on the smooth part of the
normal variety Y . Let C1 be any irreducible component of π−1(C). Then C1 is also a
rational curve and deformations of C1 give deformations of C since π|C1 is birational.
It follows that the space of deformations of C and the space of deformations of C1 have
equal dimensions. So we have KX · C = KY · C1. This implies C is disjoint from the
ramication divisor R. Since this holds for any components of π−1(C), we know that
C is disjoint from π(R). But this is impossible by the assumption that X is of Picard
number 1.

3.4.3 More Comments
We may ask what is the difference between Problem 3.1 and Theorem 3.47. We will
follows [Hwa01] and consider the case X = Qn ⊂ Pn+1. For more general setting
and more detailed computations about conformal differential geometry we refer paper
[HM97].

Actually the VMRT is a hyperquadric in P(Ω1
X,x). Hence they generate a subbundle

of PΩX with fibers isomorphic to hyperquadrics. This gives a conformal structure on
X.

Definition 3.51. A conformal structure on a complex manifold M is vector bundle
morphism σ : sym2TM → L for some line bundle L which gives a nondegenerate
symmetric bilinear form at each fiber TxM .

The null-cone C ⊂ PTM is the zero locus of bilinear form σ whose fibers are Cx ⊂
PTxM .

After choose a local trivialization of L , we have locally

σ =
∑
ij

gij(z)dz
i ⊗ dzj
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for local coordinates z1, ..., zn and (gij) are nondegenerate symmetric matrix. Consider
the curvature tensor

Rijkl =
∂Γijl
∂zk

−
∂Γijk
∂zl

+
∑
µ

(ΓµjlΓ
i
µk − ΓµjkΓ

i
µj) = Weyl +mRic + nSca.

Also, the geodesic defined by d2γk

dt2
+

∑
ij Γ

k
ij
dγi

dt
dγj

dt . Althrough Rijkl depends on the
choice of the trivialization, the Weyl tensor Weyl is not and so is the geodesics which
tangent to the null-cone (null-geodesics). If Weyl = 0 we say the conformal structure is
flat.

For our X, the conformal structure given by the VMRT is flat which can be seen
by the choise of a flattening coordinate system! This is an example of Harish-Chandra
coordinate on Hermitian symmetric spaces. In this case the minimal rational curves are
null-geodesics.

In the sense of Theorem 3.47, φ∗Cx = C′ϕ(x) means the conformal structure defined
at generic points on X ′ is flat. Hence the difference between Problem 3.1 and Theorem
3.47 is just the Weyl tensor Weyl.

Now we give an very special example which shows how to use VMRT to handle the
curvature:

Example 3.52. Let X be a Fano manifold of Picard number 1 with VMRT are hyper-
quadric. Hence we have a conformal structure given on a Zariski open set of X. No
we assume that the conformal structure can be extends to the whole X. Then the Weyl
tensor Weyl ∈ H0(X,

∧2ΩX ⊗ E nd(TX)) vanish.

Proof. Consider a standard minimal rational curve C and TX |C = O(2)⊕O(1)⊕n−2⊕O
in this case. We need to show Weyl(u ∧ v) ∈ EndTxX vanish at all u, v ∈ TxX. By
Proposition 3.36 we just need to consider u ∧ v for u ∈ Cx and v ∈ TuCx. Let u in
the O(2)-part vanish at two points and v vanish at one point. Hence Weyl(u ∧ v) has
three zeros. If it is not zero, then since Weyl(u ∧ v) be a section of E nd(TX |C) =
O(2)⊕ O(1)⊕2n−4 ⊕ · · · . Hence if it is not zero, then it can not have three zeros!



Chapter 4

Some Basic Applications of
VMRT

4.1 Stability of the Tangent Bundles
4.1.1 Basic Facts about Stability of the Tangent Bundles
Proposition 4.1 (Simpleness). Let X be a smooth uniruled variety. If the VMRT Cx
is irreducible and nondegenerate for some choise of minimal rational component, then
TX is simple.

Proof. Let ξ ∈ End(TX). Let x general and v ∈ TxX be a tangent vector to standard
minimal rational curve C through x. Consider the extended vector field ṽ on C having
two distinct zeroes. Then ξ(ṽ) ∈ Γ(TX |C) vanishing at two distinct points. As C is
standard, then either ξ(ṽ) = 0 or ξ(ṽ) is proportional to ṽ. Hence v is the eigenvector of
ξ in TxX. As this is true for any choice of v tangent to some standard minimal rational
curve C through x and since Cx is nondegenerate, then ξ act as scalar multiplication in
TxX. Since ξ(ṽ) is the constant multiple of ṽ, the eigenvalues must be constant on C.
Hence ξ must be a scalar multiplication and TX is simple.

Now we consider the stability of tangent bundles. We will follows Section 2.4 in
the survey [Hwa01] and the paper [Hwa98]. This is a standard method developed in
[Hwa98]. Note that the results in this small section hold for any rational component K′

of Chow schemes but we don not care.
Now we will assume X be an n-dimensional smooth Fano variety of Picard number

1 with fixed minimal rational component K of degree p+ 2. Then to show the stability
of TX we just need to show that for any subsheaf F ⊂ TX of rank 1 ≤ k ≤ n − 1 we
have c1(F )·(−KX)n−1

k < c1(TX)·(−KX)n−1

n . As Picard number is 1, we can check this over
a generic standard minimal rational curve C. Hence for a sheaf F of rank r, which can

97
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be assumed to be locally free over C by Lemma 3.30, we can define µ(F ) := c1(F )·C
r .

Note that µ(F ) depends only on F and K and does not depend on the choice of C.
For example µ(TX) = p+2

n .

Example 4.2 (Baby version for Pn). We will show that TPn is stable. For any subsheaf
F ⊂ TPn Choose a generic line C, so that F |C is a vector bundle and splits as O(a1)⊕
· · · ⊕ O(ar) where a1 ≥ · · · ≥ ar. Since TPn |C ∼= O(2)⊕ O(1)⊕n−1, if µ(F ) ≥ µ(TX) =
n+1
n , then a1 = 2. This implies that the line C is tangent to the distribution F . But

this is true for any generic choice of C. Hence F must have rank n, and we are done.

Proposition 4.3. Suppose that TX is not stable (resp. not semi-stable). Then we can
find a subsheaf F ⊂ TX of rank r, 1 < r < n with torsion free quotient TX/F , satisfying
µ(F ) ≥ µ(TX) (resp. µ(F ) > µ(TX)), whose Levi tensor LeviF vanishs for general x.

Proof. Consider a subsheaf F ⊂ TX of rank r smaller than n with maximal values of
µ(F ) ≥ µ(TX) > 0. Moreover, we can choose such F so that TX/F is torsion free. In
fact, if TX/F has torsion (TX/F )Tor for a such choice of F ⊂ TX , the inverse image F ′

of (TX/F )Tor in TX under the quotient map is a subsheaf of rank r with µ(F ′) ≥ µ(F ),
and we may choose F ′ as our F .

First we have r > 1. Indeed, if r = 1 then F∨∨ is an ample line subbundle of
TX (since Picard number is 1) and hence X is a projective space by Theorem 3.19, a
contradiction to the assumption that TX is not stable.

By the choice, F is semi-stable and
∧2 F is also semi-stable. Let the image of the

Levi tensor LeviF :
∧2 F → TX/F is G . If it has positive rank, by semi-stability, we

have µ(µ(G)) ≥ µ
(∧2 F

)
= 2µ(F ) > µ(F ).

Suppose the rank of G is equal to the rank of TX/F . Then µ(G ) ≤ µ(TX/F ) ≤
µ(TX) ≤ µ(F ). A contradiction to µ(µ(G)) > µ(F ).

Suppose if G has positive, but strictly smaller rank than that of TX/F . let G ′ ⊂ TX
be the kernel sheaf of TX → (TX/F )/G . Let m be the rank of G ′ with r < m < n.
Then

µ(G ′) =
r

m
µ(F ) +

m− r
m

µ(G ) ≥ µ(F )

which is a contradiction to the choice of F .

Proposition 4.4. Let F be any subsheaf of TX with rank < n. If generic curves in K
are tangent to F , then F cannot be integrable at generic points.

Proof. Assume that F is integrable. Let Z ⊂ X be the singular loci of the foliation
defined by F . The codimension of Z is ≥ 2. Thus a generic member of K is disjoint
from Z (Lemma 3.30) and lies in a single leaf of F .

For a given point x ∈ X\Z, let Dx be the set of points which can be joined to x by a
connected curve each component of which is a member of K disjoint from Z. Then Dx
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is a constructible set (see Section IV.4 in [Kol96]) and the collection of Dx’s for generic
x ∈ X defines a meromorphic foliation D on X. Clearly, Dx is contained in the leaf of
F containing x. It follows that D is a nontrivial foliation of X. Let ChowD be the Chow
variety whose generic points corresponds to leaves of D. Choosing a hypersurface H in
ChowD generically, we get a hypersurface L in X which is the closure of the codimension
1 part of the union of D-leaves corresponding to H. A generic member of K lies in a
leaf of D but is disjoint from H, hence disjoint from L, a contradiction to the Picard
number condition on X.

Corollary 4.5. For the choice of Proposition 4.3, we have µ(F ) ≤ 1.

Proof. Let F |C = O(a1)⊕· · ·⊕O(ar) for a1 ≥ · · · ≥ ar. If µ(F ) =
∑r

i=1 ai/r > 1, then
a1 = 2 and implying that C is tangent to F . By Proposition 4.4 this is impossible.

Theorem 4.6. If p = n−1 or 0, then TX is stable. If p = n−2, then TX is semi-stable.

Proof. For p = n − 1, n − 2, this is immediate from µ(TX) = p+2
n ≥ 1 and Corollary

4.5. For p = 0 assuming that TX is not stable, choose F as in Proposition 4.3 and
choose a generic C from K so that both F and TX/F are locally free on C. Let
F |C = O(a1) ⊕ · · · ⊕ O(ar) for a1 ≥ · · · ≥ ar. As TX |C = O(2) ⊕ O⊕n−1, then a1 = 2
and implying that C is tangent to F . By Proposition 4.4 this is impossible.

Theorem 4.7. Let X be a smooth Fano variety of Picard number 1. Assume that for a
general point of the VMRT α ∈ Cx and for any k − 1-dimensional P(F∨

x ) ⊂ P(Ω1
X,x) we

have dim(P(F∨
x ) ∩ P((TxX+

α )
∨)) < k

n(p+ 2)− 1 where p = dim Cx. Then TX is stable.

Proof. If TX is not stable, choose F as in Proposition 4.3. For general C ∈ K we have
F |C = O(a1) ⊕ · · · ⊕ O(ak) for a1 ≥ · · · ≥ ak. As F |C ⊂ TX |C we have a1 ≤ 2.
If a1 = 2, then C tangent to F and this is impossible by Proposition 4.4. Hence
1 = a1 = · · · = aq > aq+1 ≥ · · · for some q ≤ k. As µ(F ) =

∑k
i=1

ai
k ≥ µ(TX) =

p+2
n

and hence q ≥ k
n(p+2). Let x ∈ C general with tangents correspond to α ∈ Cx, then by

definition we have dim(P(F∨
x )∩P((TxX+

α )
∨)) ≥ q−1 ≥ k

n(p+2)−1 which is impossible
by the hypothesis.

Proposition 4.8. LetX be a prime smooth Fano variety of dimension n with Index(X) >
n+1
2 , then TX is stable.

Proof. If not, by Theorem 4.7 we have a k − 1-dimensional P(F∨
x ) ⊂ P(Ω1

X,x) we have
dim(P(F∨

x ) ∩ P((TxX+
α )

∨)) ≥ k
n(p+ 2)− 1 where p = dim Cx.

Consider the projection ψ : P(Ω1
X,x)\P(F∨

x )→ Pn−k−1 and let q be the dimension of
the generic fiber of ψ|Cx . Then q ≥ k

n(p+ 2). Let T be the projective tangent space of
ψ(Cx) at general point α ∈ ψ(Cx), then dimψ−1(T ) = dimT+k = p−q+k. This ψ−1(T )
tangent to Y along (ψ|Cx)−1(α). By Corollary 3.14 Cx is smooth, hence by Zak’s theorem
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on tangencies we can find that q ≤ k
2 . As q ≥ k

n(p + 2) we get Index(X) = p + 2 ≤ n
2

which is impossible by the hypothesis.

4.1.2 For Low Dimensional Fano manifolds
We will follows the paper [Hwa98]. As in the previous section, we fix X be an n-
dimensional smooth Fano variety of Picard number 1 with fixed minimal rational com-
ponent K of degree p+ 2.

Recall that as Picard number is 1, we can check this over a generic standard minimal
rational curve C. Hence for a sheaf F of rank r, which can be assumed to be locally
free over C by Lemma 3.30, we can define µ(F ) := c1(F )·C

r . Note that µ(F ) depends
only on F and K and does not depend on the choice of C. For example µ(TX) = p+2

n .

Proposition 4.9 (For p = 1). If p = 1 and n ≤ 6, then TX is semi-stable, and stable
except possibly when n = 6.

Proof. If TX is not semi-stable, choose F as in Proposition 4.3. From F |C ⊂ O(2) ⊕
O(1)⊕O⊕n−2 with TX/F |C being locally free and µ(F ) > 0, we see F |C = O(1)⊕O⊕r−1

by Proposition 4.4. From 1
r = µ(F ) > µ(TX) =

3
n and r > 1, we get n > 6. If TX is

semi-stable but not stable, we have µ(F ) = µ(TX) and n = 3r.

Proposition 4.10 (For p = 2). Suppose p = 2 and n > 4. If TX is not stable, the for
any F as in Proposition 4.3 we have µ(F ) < 1.

Proof. We need several conclusions on surfaces:

• Lemma A. Let W ⊂ Pn−1 be an irreducible surface with n > 4, which is not
necessarily smooth. Suppose there exists a line l in Pn−1 so that the tangent
spaces to W at all generic points of W contain l. Then W is a plane.

• Lemma B. Let S be a normal projective surface. Suppose for a generic point
s ∈ S, there exists a family Ds of rational curves through s, parametrized by a
complete curve Λs, so that each member of the family is irreducible and reduced
as a cycle. Then S ∼= P2.

For the proof see also Lemma 1,2 in [Hwa98].
By Corollary 4.5 for F ⊂ TX in Proposition 4.3 we have µ(F ) ≤ 1. If µ(F ) =

1 > 4
n = µ(TX), we see that the only possible splitting type of F on a generic member

C is O(1) ⊕ O(1) because the splitting type of TX |C and TX/F is locally free on C.
By Lemma A and Theorem 4.7, Cx for generic x is a finite union of planes intersecting
along the line PFx.
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By this observation, consider

P(ΩX) U X

K

ψ

ϕΦ

where ψ is the universal family with cycle map φ and tangent map Φ. One can show
that ψ′ : Φ−1(P(F∨))→ K′ := ψ(Φ−1(P(F∨))) is a 1-dimensional fibration and K′ ⊂ K
is codimension 1.

Let C ⊂ X be the image of a generic fiber of ψ′ under φ. For a smooth point y ∈ C,
let z ∈ Φ−1(P(F∨)) be its inverse image under φ. Then by the definition of the tangent
map, the fibers of ψ′ correspond to curves in X tangent to the meromorphic foliation
F .

From the minimality of K and the fact that Φx is generically finite on each component
of Ux for a generic x, while P(F∨

x ) is ample on each component of Cx for a generic
x, we can choose a generic point x so that each curve corresponding to a point of
Kx = ψ(Ux) = ψ(φ−1(x)) is reduced and irreducible and K′ := Kx ∩ ψ(Φ−1(P(F∨)))
consists of 1-dimensional components, and there exists at least one component of K′

x

for each component of Kx.
Let S′ be the closure of the F -leaf through x. The 1-dimensional families of curves

corresponding to K′
x lie on the F -leaf through x and their tangents span F at x. Thus

S′ is the closure of the union of curves corresponding to K′
x and is an algebraic surface.

For each generic point s ∈ S′, S′ is the closure of the F -leaf through s. The families
of curves corresponding to K′

s consist of irreducible and reduced cycles. By Lemma B,
the normalization S of S′ is P2. Thus K′

x is just the set of lines through a generic point
on P2, and is irreducible for a generic choice of x. Hence Kx and hence Ux and Cx are
irreducible.

Since Cx is irreducible, the collection of Cx in P(Ω1
X,x) at generic x, defines a meromor-

phic distribution F ′ of rank 3. For a generic member C we have F ′|C = O(2)⊕O(1)⊕2

and TX/F ′|C = O⊕n−3. This implies that F ′ is integrable. A contradiction to Propo-
sition 4.4.

Lemma 4.11 (Reid, 1977). Let X be a Fano manifold of dimension n. Let G ⊂ TX
be a proper reflexive subsheaf. Then c1(G ) < c1(X). In particular, TX is stable if
Index(X) = 1.

Proof. Pick such G ⊂ TX of rank p < n. If c1(G ) ≥ c1(X), then we have a nonzero
detG →

∧p TX . Hence

0 6= H0(X,

p∧
TX ⊗ detG∨) = H0(X,Ωn−pX ⊗ detTX ⊗ detG∨).
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If c1(G ) > c1(X), then this is impossible by Kodaira-Nakano vanishing theorem. If
c1(G ) = c1(X), then by Hodge symmetry this is impossible by Kodaira vanishing theo-
rem as Hn−p(X,OX) = 0.

Theorem 4.12. Fano 5-folds with Picard number 1 have stable tangent bundles.

Proof. For p = 0, 1, 4, the result follows from Theorem 4.6 and Proposition 4.9. If
p = 3, the index of X is either 5 or 1. If the index is 5, X is a hyperquadric by Theorem
1.68(d). If the index is 1, done by Lemma 4.11. If p = 2, and TX is not stable, choose
F with 1 ≥ µ(F ) ≥ 4

5 = µ(TX). Since µ(F ) is a rational number with denominator
2, 3, or 4, we get µ(F ) = 1, a contradiction by Proposition 4.10.

Theorem 4.13. Fano 6-folds with Picard number 1 have semi-stable tangent bundles.

Proof. If p = 0, 1, 4, 5, the result follows from Theorem 4.6 and Proposition 4.9. If p = 3,
X has index 5 or 1. If the index is 1, done by Lemma 4.11. If the index is 5, done by
[PW95] Theorem 3(1).

If p = 2 and TX is not semi-stable, choose F as in Proposition 4.3 and 1 ≥ µ(F ) >
4
6 = µ(TX). Hence we have µ(F ) = 1, 45 ,

3
4 . But µ(F ) = 1 is not possible by Proposition

4.10. The case µ(F ) = 4
5 implies that F |C = O(1)⊕4⊕O, violating the locally freeness

of TX/F |C . The same contradiction for µ(F ) = 3
4 .

4.1.3 For Hecke Curves on Moduli Space of Bundles on Curves
We will follows the paper [Hwa00]. For a smooth projective curve C of genus g. Consider
the moduli space M2;D ,d(C) of stable bundles of rank 2 with fixed determinant D of
degree d. If d is odd (we will assume d odd in whole section), then M2;D ,d(C) is
a (3g − 3)-dimensional Fano manifold of Picard number 1 (it is prime). Moreover
M2;D ,d(C) ∼= M2;D ,1(C) in this case. In particular, when g = 2 the space M2;D ,1(C) is
a intersection of two quadrics in P5.

Proposition 4.14. Let g ≥ 3. For a general [W ] ∈ X and tangent morphism τ[W ] :
K[W ] → P(Ω1

X,[W ]) which is given by the linear system 2π∗KC−KPC(W ) (by Proposition
3.28). Given any linear subspace P(F∨) ⊂ P(Ω1

X,[W ]) of dimension r−1, its intersection
with the projective tangent space at a generic point of C[W ] is either empty or has
dimension smaller than (4r/(3g − 3))− 1.

Proof. Let such P(F∨) ⊂ P(Ω1
X,[W ]) of dimension r − 1 we have

dim(P(F∨) ∩ P((T[W ]X
+
α )

∨)) ≥ 4r

3g − 3
− 1

for generic α ∈ C[W ].
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Since the surface C[W ] is nondegenerate in P(Ω1
X,[W ]) (see Proposition 3.28(b)), the

intersection can have dimension 0 or 1. If the intersection has dimension 1, then the
projection from P(F∨) sends the tangent space at a generic point of C[W ] to zero. Thus
the projection sends C[W ] to a point. This implies that C[W ] is contained in some linear
subspace containing P(F∨), a contradiction to the nondegeneracy of C[W ]. It follows
that the intersection has dimension 0 and r ≤ 3

4(g − 1). Moreover, the projection from
P(F∨) projects C[W ] to a curve ` ⊂ P3g−4−r.

Suppose the τ[W ]-image of a generic fiber of π : PC(W ) → C is dominant over `.
Since the image of this fiber under τ[W ] is of degree less than or equal to 2, ` must be
contained in a plane. This implies that C[W ] is contained in some Pr+2 containing P(F∨),
a contradiction to the nondegeneracy of C[W ] again. Thus the projection to P3g−4−r

contracts generic fibers of π to a point. It follows that the τ[W ]-image of a generic fiber
of π is contained in some linear subspace Pr containing P(F∨) as a hyperplane, and it
intersects P(F∨).

Let Ξ ⊂ |2π∗KC −KPC(W )| be the subsystem of dimension 3g − 4− r defining the
projection of PC(W ) to P3g−4−r from P(F∨). Let D ⊂ PC(W ) be the base locus of Ξ.
Hence D corresponds to the intersection of C[W ] with P(F∨). Hence generic fibers of
π : PC(W )→ C intersect D twice, counting multiplicity. Using the notation of [Har77]
for ruled surface, we haveD ∼num 2C0+df and 2π∗KC−KPC(W ) ∼num 2C0+(2g−2+e)f .
Thus the moving part of the system Ξ is just the pullback of a linear system on X of
degree 2gg−2+e−d. By Nagata’s result about the intersection number of ruled surface
in [Nag70], we have 0 < C2

0 = −e ≤ g. Since C0 is ample by [Har77] Proposition 2.21,
we have D · C0 > 0 and −2e+ d > 0. So Ξ is the pullback of a linear system of degree
less than or equal to 3g− 3. By the Riemann-Roch theorem and Clifford’s theorem (see
[Har77] page 343), we have dimΞ ≤ max((3/2)(g− 1), 2g− 3) = 2g− 3. Combined with
dimΞ = 3g − 4− r, we get g ≤ r + 1, a contradiction to r ≤ (3/4)(g − 1).

Theorem 4.15. Let the moduli space X := M2;D ,d(C) ∼= M2;D ,d(C) of stable bundles
of rank 2 with fixed determinant D of odd degree d over a smooth projective curve C of
genus g. If g ≥ 2, then TX is stable.

Proof. For g = 2, this can be directly deduced by Proposition 3.25 and Corollary 3.26.
For g ≥ 3, this follows directly from Theorem 4.7 and Proposition 4.14.

4.1.4 Need to add

4.2 Rigidity of Generically Finite Morphisms
4.2.1 Varieties of Distinguished Tangents
Here we will the inverse image of minimal rational curves and hence need to construct
the non-rational things. Here we will follows [Hwa01], see also Section 1 in [HM99].
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Definition 4.16 (h-stratification). For a morphism h : M → Z of quasi-projective
varieties, the h-stratification of M is a decomposition M =M1 tM2 t · · · tMk induced
by h such that

(h1) Each Mi is smooth and h(Mi) is also smooth.
(h2) For any tangent vector v to h(Mi), we can find a local holomorphic arc in Mi

whose image under h tangent to v.
(h3) When a connected Lie group acts on M and Z and h equivariant, then each Mi

is invariant under the group action.

Proposition 4.17. This h-stratification can always be constructed.

Proof. Repeatedly using the usual stratification of a variety into smooth and singular
locus, we can get (h1). We can stratify each stratum further by the rank of the restric-
tion of h to the stratum to achieve the condition (h2). But after this new stratification,
(h1) may be violated. Then we apply the singular loci stratification to each stratum
again. After finitely many steps of applying these two stratifying procedures, we end up
with the stratification satisfying both (h1) and (h2). Since this procedure is canonical,
(h3) is automatic.

Definition 4.18 (Varieties of Distinguished Tangents). Given a smooth projective va-
riety Y and a point y ∈ Y . Consider N ⊂ Chow1(y, Y ) be an irreducible component of
Chow schemes of curves passing through y ∈ Y . N ′ ⊂ N be the open subscheme consist
of curves smooth at y.

Consider N ′
red =

∐
iN

i correspond to geometric genus. Pick a N j and tangent
morphism Φ : N j → P(Ω1

Y,y). Using Φ-stratification as above we have N j =M j
1 tM

j
2 t

· · · tM j
k . We define Φ(M j

i ) be a variety of distinguished tangents for the choice of N , N j

and M j
i .

Given a curve l ⊂ Y smooth at y ∈ Y , there exists a unique variety of distinguished
tangents determined by some choice of N , N j and M j

i . We denote it Dy(l) ⊂ P(Ω1
Y,y).

Proposition 4.19. Given a smooth projective variety Y and a point y ∈ Y . We havethe
following properties:

(d1) There only countably many varieties of distinguished tangents in P(Ω1
Y,y).

(d2) Let Dy ⊂ P(Ω1
Y,y) be a variety of distinguished tangents. Then for any tangent

vector v to Dy, we can find a family of curves lt belonging to N smooth at y so
that the derivative of the tangent directions P((Tylt)∨) at t = 0 is v.

(d3) Suppose a connected Lie group G acts on Y fixing y. Then any variety of dis-
tinguished tangents in P(Ω1

Y,y) is G-invariant under the isotropy action of G on
P(Ω1

Y,y).
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Proof. We can easy to see that (d1) follows from the fact that there are only countably
many irreducible components of the Chow scheme. (d2) follows from the property (h2)
of h-stratification. (d3) follows from the property (h3) of h-stratification.

Remark 4.20. The property (d1) is the key to the rigidity result we will discuss. (d2)
is one of the key points of the definition of varieties of distinguished tangents. Unlike
the standard minimal rational curves, it is very rare that we have good information on
the normal bundle of high genus curves. As a result, their deformation theory can be
very tricky. But (d2) automatically takes care of obstructions to deformations. (d3)
is useful in the study of homogeneous spaces.
Proposition 4.21. Given a smooth projective variety Y and a point y ∈ Y .
(a) Let lz (z ∈ Z) be a family of curves passing through y parameterized by an

irreducible variety Z such that lz is smooth at y for general z. Let

Z =
⋃

z∈Zgeneral
P((Tylz)∨) ⊂ P(Ω1

Y,y).

Then Z ⊂ Dy(lz) for general z ∈ Z.
(b) Let y ∈ Y be a sufficiently general point. Then

dimDy(l) ≤ dimY − 1− h0(l̃,H om(ν∗TY /Tl̃,Ol̃))

where ν : l̃→ l be the normalization.
Proof. For (a), by definition Z ⊂

⋃
z∈Z Dy(lz). Since by (d1) this union is countable,

then Z ⊂ Dy(lz) for general z ∈ Z.
For (b), given a tangent vector v to Dy(l), we can find a deformation F → ∆ whose

fibers are lt and l0 := l. Let F̃ → F be the normalization. Then generic fibers of F̃ → ∆
are smooth. Since fibers of it are of constant geometric genus by assumption and of
constant arithmetic genus by flatness, all fibers of it are smooth and the normalization
map F̃ → F gives a family of normalizations νt : l̃t → lt. Then the Kodaira-Spencer
class κ of the deformation can be regarded as an element of H0(l̃, ν∗TY /Tl̃) with κy = 0.

For any w ∈ H0(l̃,H om(ν∗TY /Tl̃,Ol̃)) the pairing 〈w, κ〉 should be a constant
function on l̃ and d 〈w, κ〉 = 0. Hence

0 = d 〈w, κ〉 (Ty l̃) =
〈
dw(Ty l̃), κy

〉
+
〈
wy, dκ((Ty l̃))

〉
= 〈w, κ〉y .

Hence we need have
dimDy(l) ≤ dimY − 1− h0(l̃,H om(ν∗TY /Tl̃,Ol̃))

where ν : l̃→ l be the normalization.

Remark 4.22. Note that VMRT is a special case of varieties of distinguished tangents.
Here dim Cx = n− 1− h0(C,N∗

C) = p.
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4.2.2 Pull-back of VMRT under Generically Finite Morphisms
Proposition 4.23. Let f : Y → X be a generically finite morphism from a projective
manifold Y to a Fano manifold X of Picard number 1, different from Pn. For a
general x ∈ X out side the branced locus and let Cx be VMRT. Then for y ∈ f−1(x),
each irreducible component of df−1

y (Cx) ⊂ P(Ω1
Y,y) is a variety of distinguished tangents

where dfy : TyY → TxX.

Proof. For general proof we refer Proposition 3 in [HM99]. Here we assume all curves
are smooth. Pick an irreducible component A ⊂ Cx, then by Proposition 4.21(a) we have
df−1
y (A) ⊂ Dy(l) for some curve l ⊂ Y where f(l) is a general member of A. As x ∈ X

out side the branced locus and dimA = p, then dim df−1
y (A) = p. But by Proposition

4.21(b) we have dimDy(l) ≤ dimY − 1− h0(l, N∗
l ). Since h0(f(l), N∗

f(l)) = n− 1− p ≤
h0(l, N∗

l ), we get dimDy(l) ≤ p. Hence dimDy(l) = df−1
y (A) and well done.

4.2.3 Rigidity of Generically Finite Morphisms-I
Theorem 4.24. Let Y be a projective manifold and {Xt}t∈∆ be a family of Fano
manifold of Picard number 1 with minimal rational components Kt such that the Cartan-
Fubini type extension theorem 3.47 holds where ∆ be a unit disc.

Then for any family of generically finite morphisms ft : Y → Xt there exists a
family of biholomorphic morphisms gt : X0 → Xt with g0 = id and the following
diagram commutes:

Y X0

Xt

f0

ft
∃gt

Proof. Let U be an analytic open subset of Y such that ft|U is biholomorphic for all
t ∈ ∆ and let Ut := ft(U). For a generic y ∈ U and let xt := ft(y), the components
of df−1

t (Cxt) form a family of varieties of distinguished tangents by Proposition 4.23.
But by (d1) we find that df−1

t (Cxt) = df−1
0 (Cx0) for any t ∈ ∆. Hence if we define

φt := ft◦(f0|U )−1 : U0 → Ut, then it preserves VMRTs. By Cartan-Fubini type extension
theorem 3.47 we find that φt can extends to a biholomorphic morphism gt : X0 → Xt.
Well done.

Remark 4.25. This theorem is not right for projective spaces.

A direct corollary:

Corollary 4.26. For a given projective manifold Y , there are only countably many
smooth hypersurface of degree ≤ n− 1 in Pn+1 which can be the image of a generically
finite morphism from Y .
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Remark 4.27. By the work of Kobayashi-Ochiai on the varieties of general type, there
are finitly many when degree ≥ n+ 3. See [KO75].

By using semi-positivity of direct images of powers of dualizing sheaves, we can show
there are countably many when degree = n+ 2.

4.2.4 Webs, Discriminantal divisors and Their Inverse
Now we need to consider the case p = 0. In this case dimKx = 0 and the normal bundle
of standard minimal rational curves are trivial. Hence we need to discuss the case when
the normal bundle are trivial. We will follows [Hwa01]. Our definition here is different
from that of the original paper [HM03], but suffices for our purpose here.

Definition 4.28. Let Y be a smooth projective variety. Let a projective varietyM with
finitely many components in the reduction of the Chow scheme of Y is called a web, if

(a) Generic members of each component ofM are curves with only nodal singularities
and with trivial normal bundles.

(b) Members of each component ofM cover a Zariski open subset in Y .

Consider the universal familyM ρ← U µ→ Y . Note that µ is generically finite.
The degµ is called the degree of the web M. As before, we can define the tangent

map τ : U → P(Ω1
Y ). Let C ⊂ P(Ω1

Y ) be the closure of the image τ(U) and π : C → Y be
the natural projection, which is generically finite. An irreducible hypersurface M ⊂ Y
is called a discriminantal divisor of the web M if π is not étale over a generic point of
M .

Proposition 4.29. For a Fano manifold X of Picard number 1 which has a minimal
rational component K with p = 0, the set H of discriminantal divisors of the web K is
non-empty. Moreover a member of K intersects H at least at two distinct points on the
normalization P1.

Proof. Suppose H is empty. Then µ (since π) étale outside a set of codimension ≥ 2.
By Lemma 3.30 a generic minimal rational curve is disjoint from that set, so its inverse
image in U must have d distinct components from the simply-connectedness of P1 where
d is the degree ofM. Thus µ : U → X is a birational morphism by Lemma 3.50. Since
µ is unramified in a neighborhood of a generic fiber of ρ : U → K, this is a contradiction
to the Picard number of X since µ(ρ−1(v)) is disjoint to µ(ρ−1(H)). Now for the last
statement, apply the same argument to A1

C and then well done.

Lemma 4.30. Given a webM on Y and an irreducible hypersurface H ⊂ Y , a compo-
nent C of a member of M passing through a generic point h ∈ H is either transversal
to H at every point of H ∩ C or contained in H.
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Proof. Trivial since µ is unramified in a neighborhood of a generic fiber of ρ : U → K.

The following Proposition provides many examples of webs whose members are not
necessarily rational curves:

Proposition 4.31. Let f : Y ′ → Y be a generically finite morphism between projective
manifolds. Suppose Y has a webM. Then for a generic member C ofM each component
of f−1(C) is a curve with nodal singularity whose normal bundle is trivial.

Proof. A generic member of each component of the webM intersects the branch locus
of f transversally from Lemma 4.30. From this we see that each component of f−1(C)
has only nodal singularities. Now the n−1 independent sections of the conormal bundle
of C can be pulled back to those of components of f−1(C), which gives the triviality of
the normal bundle of each component of f−1(C).

Definition 4.32. By Proposition 4.31 the components of f−1(C) form a web which is
called the inverse image web and denote f−1(M).

Proposition 4.33. Let f : Y ′ → Y be a generically finite morphism between projective
manifolds. For a discriminantal divisor M ⊂ Y of the web M, each component of
f−1(M) on which f is generically finite, is a discriminantal divisor of f−1(M).

Proof. It suffices to show that if a hypersurface H of Y ′ is not a discriminantal divisor
of f−1(M), then f(H) is not a discriminantal divisor ofM. We may assume that H is
a ramification divisor of f . Let d be the degree ofM. Through a general point h ∈ H,
there are d distinct curves C1, ..., Cd, belonging to f−1(M) which has d distinct tangent
vectors. We claim that at most one of Ci is not contained in H. In fact, if C1, C2 are not
contained in H, then f(C1) and f(C2) are transversal to f(H) by Lemma 4.30. This
implies that C1 and C2 are tangent to the kernel of dfh. so they are tangent to each
other at h, a contradiction. Since f |H is unramified at h (since it is general), d or d− 1
members among C1, ..., Cd, which are contained in H, are sent to curves in f(H) with
distinct tangents at f(h). Thus f(C1), ..., f(Cd) have d distinct tangents at f(h). Thus
f(H) is not a discriminantal divisor.

4.2.5 Rigidity of Generically Finite Morphisms-II
Now we will consider the case p = 0 proved in [HM03], using the webs and discriminantal
divisors as we discussed above.

Theorem 4.34. Let Y be a projective manifold and {Xt}t∈∆ be a family of Fano
manifold of Picard number 1 with minimal rational components Kt with p = 0 where ∆
be a unit disc.
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Then for any family of generically finite morphisms ft : Y → Xt there exists a
family of biholomorphic morphisms gt : X0 → Xt with g0 = id and the following
diagram commutes:

Y X0

Xt

f0

ft
∃gt

Proof. The key point is that the inverse image web f−1
t (Kt) is independent of t. This is

because there are only countably many webs on Y from the countability of the number
of components of the Chow scheme. Let Mt be the union of all discriminantal divisors
of Kt. Then f−1(Mt) is also independent of t from Proposition 4.33. Fix a general
member C of any component of f−1(Kt). By a general argument, which we will skip,
we can reduce the proof to showing that any two points on C which have the same
image under f0 have the same image under ft for any t. Since f−1(Mt) is independent
of t, we know that any two points which are sent to the same point in M0 are sent to
the same point in Mt. But by Proposition 4.29, at least two points of ft(C) are in Mt.
Thus ft|C can be regarded as meromorphic functions on the curve C with the same
zeroes and poles, and so they are constant multiples of each other, which implies that
any two points with the same value of f0 must have the same value of ft.

4.3 Special Remmert-Van de Ven/Lazarsfeld Problem
In this section we will show a special case in [HM99]. We will discuss the general case
for homogeneous Fano manifold of Picard number 1 in further chapters.

Theorem 4.35. Let X be a smooth projective variety and Grass(s, V ) be a Grassman-
nian. If f : Grass(s, V ) → X be a surjective morphism, then either X ∼= Pn or f is an
isomorphism.

Sketch of the proof. WLOG we let dimV ≥ 2s and s > 1 since if s = 1, then this
follows from Corollary 1.81. The tangent space at [W ] is naturally isomorphic to
Hom(W,V /W ). The isotropy subgroup at [W ] is the group of linear automorphisms
of V preserving W . Under the action of this group, PHom(W,V /W ) has orbits
S1, ..., Ss where Sk ⊂ Hom(W,V /W ) consist of lucs of rank = k. The VMRT C[W ] ⊂
PHom(W,V /W ) corresponds to S1 by Proposition 3.24. It is well-known that the
closure of Sk is an irreducible subvariety of PHom(W,V /W ) whose singular locus is
precisely the closure of Sk−1, for 1 < k < s, with S0 = ∅. Consider the fiber subbundle
S k ⊂ PTGrass(s,V ) whose fiber at [W ] is the closure of Sk.

Given a surjective morphism f : Grass(s, V ) → X with X different from the pro-
jective space, let U ⊂ X be a small connected open set disjoint from the branch locus.
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Hence f is finite and let U1, U2 be two components of f−1(U) and φ : U1 → U2 be the
biholomorphism induced by f . Since X is different from Pn, the VMRT is a proper sub-
variety of P(Ω1

X,x) for x ∈ U by Theorem 3.17(l). Thus df−1
y (Cx) = S l

y for some l < s

by Proposition 4.23 because a variety of distinguished tangents must be S k
y for some

k by (d3). It means that preserves S l and hence S 1 because S k−1 is precisely the
singular locus of S k. From the Cartan-Fubini type extension applied to the Grass(s, V )
and φ, then φ can be extended to an automorphism of Grass(s, V ).

Since U1, U2 can be chosen as any components of f−1(U), we see that f is a Galois
covering outside the ramification locus. Moreover one can show that an automorphism
extending must fix the ramification locus of f pointwise. Thus there exists a finite
group G acting on Grass(s, V ) fixing an effective divisor H pointwise. But one can
show that if a homogeneous Fano manifold of Picard number 1 has a finite group action
fixing a hypersurface pointwise, the Fano manifold must be either the projective space
or the hyperquadric and the quotient by the group must be the projective space, a
contradiction to the assumption that X is not the projective space!



Chapter 5

VMRT of Rational
Homogeneous Varieties

Now we mainly consider the rational homogeneous varieties of Picard number 1, that
is, by Proposition 2.89 the G/P (I) for ](I) = 1.

5.1 More Properties of Rational Homogeneous Varieties
Proposition 5.1. Let G/P (I) be a rational homogeneous variety of Picard number 1,
consider the minimal G-equivalence embedding G/P ↪→ P(H0(G/P ),L ) as Corollary
2.95, then it is covered by lines in P(H0(G/P ),L ).

Proof. For this we refer Theorem V.1.15 in [Kol96]. Note that via the transitive action
of G, the line can be cover the whole variety.

More precisely we have the following:
Let G/P (I) for I = {αp} ⊂ S the p-th nodes be a rational homogeneous varieties of

Picard number 1. Let I ′ be the set of nodes connected to αp in the Dynkin diagram.

Theorem 5.2 (Landsberg-Manivel, 2003). As the previous assumption.

(a) If αp is a long node, then G/P (I ′) is the variety of lines on G/P (I).

(b) If αp is a short node, then the variety of lines on G/P (I) is irreducible with two
G-orbits, and G/P (I ′) is the closed one.

Proof. We refer [LM03].
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5.2 Basic Results of VMRT of Rational Homogeneous
Varieties

Theorem 5.3. Let X = G/P (r) be the rational homogeneous manifold of Picard number
one determined by the connected Dynkin diagram D marked at the node r. Assume
moreover that r is a node associated to a long root. Then the VMRT of X at every point
is a rational homogeneous manifold associated to the Dynkin diagram obtained from D
by removing the node r, and marking the nodes connected with r. In particular, it is a
product of homogeneous manifolds of Picard number one.

Proof. See [LM03] for the proof.

If the node r is a short root, the VMRT may still be computed, but it is homogeneous
only in certain cases:

Proposition 5.4. With the same notation as in the Theorem, assume that the homo-
geneous space is one of the following:

Bn/P (n), Cn/P (1), G2/P (1),

then the VMRT of X at every point is isomorphic, respectively, to

Grass(n− 1, n+ 1), P2n−2, Q3.

Proof. This follows from Example 2.77 and Theorem 5.3.

Finally, the remaining cases are not homogeneous, but they have been described in
the following way:

Proposition 5.5. With the same notation as in the Theorem, we have:

(a) For Cn/P (r), r = 2, ..., n − 1, then the VMRT is P(OPr−1(2) ⊕ OPr−1(1)2n−2r)
embedded by the complete linear system of the tautological bundle O(1).

(b) For F4/P (3), then the VMRT is non-trivial smooth Q4-fibration over P1.

(c) For F4/P (4), then the VMRT is smooth hyperplane section of S4.

Proof. See [LM03] for the proof.

Here we will give a complete table of VMRT of rational homogeneous spaces.
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Dynkin node r X = G/P (r) VMRT Embeddings
An ≤ n Grass(r, n+ 1) Pr−1 × Pn−r O(1, 1)

Bn ≤ n− 2 OGrass(r, 2n+ 1) Pr−1 ×Q2(n−r)−1 O(1, 1)

n− 1 OGrass(n− 1, 2n+ 1) Pn−2 × P1 O(1, 2)
n Sn Grass(n1, n+ 1) O(1)

Cn 1 P2n−1 P2n−2 O(1)
≤ n− 1 SGrass(r, 2n) P(OPr−1(2)⊕ OPr−1(1)2n−2r)

n Lag(2n) Pn−1 O(2)

Dn ≤ n− 3 OGrass(r, 2n) Pr−1 ×Q2(n−r−1) O(1, 1)

n− 2 OGrass(n− 2, 2n) P1 × P1 × Pn−3 O(1, 1, 1)
n− 1, n Sn−1 Grass(n− 2, n) O(1)

Ek 1 Ek/P (1) Sk−2 O(1)
2 Ek/P (2) Grass(3, k) O(1)
3 Ek/P (3) P1 × Grass(2, k − 1) O(1, 1)
4 Ek/P (4) P1 × P2 × Pk−4 O(1, 1, 1)
5 Ek/P (5) Grass(3, 5)× Pk−5 O(1, 1)
6 Ek/P (6) S4 × Pk−6 O(1, 1)
7 Ek/P (7) E6/P (6)× Pk−7 O(1, 1)
8 Ek/P (8) E7/P (7) O(1)

F4 1 F4/P (1) SGrass(3, 6) O(1)
2 F4/P (2) P1 × P2 O(1, 2)
3 F4/P (3) Proposition 5.5
4 F4/P (4) Proposition 5.5

G2 1 Q5 Q3 O(1)
2 K(G2) P1 O(3)

5.3 Determined by VMRT

Theorem 5.6. Let X be a Fano manifold of Picard number 1. If for some general x ∈ X
the VMRT of it is projectively isomorphic to a VMRT of some rational homogeneous
space G/P , then X ∼= G/P .

Proof. Need to add.
Note that the case of irreducible Hermitian symmetric spaces and homogeneous

contact spaces proved by Mok in [Mok08]. The case of long roots was proved by Hong-
Hwang in [HH08]. The case of short roots of type Cn was proved by Hwang-Li in [HL21].
The case of short roots of type F4 was proved by Hwang and others.
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5.4 VMRT of Hermitian Symmetric Spaces

5.5 VMRT of Homogeneous Contact Spaces



Chapter 6

Minimal Sections and Dual
VMRT

6.1 The Contact Structure and Symplectic Resolution

Definition 6.1. A smooth variety M is called a contact manifold if it supports a surjec-
tive morphism from TM to a line bundle L , whose kernel is maximally non integrable,
and it is called symplectic if there exists an everywhere nondegenerate closed to form
σ ∈ H0(M,Ω2

M ).

Given a contact form θ ∈ H0(M,ΩM ⊗L ) on a smooth variety M , the total space
M̂ of the line bundle L is a symplectic manifold. A projective birational morphism
f̂ : M̂ → N̂ from a symplectic manifold M̂ to a normal variety N̂ is called a sym-
plectic resolution of N̂ . This type of resolutions have been extensively studied by Fu,
Kaledin, Verbitsky, Wierzba, and others. We refer the interested reader to [Fu06] and
the references there for a survey on this topic.

Come back to our case, let X be a projective manifold (without assumption about
TX), then X := PTX

ϕ→ X supports a contact structure F defined as the kernel of

θ : TX
dϕ→ φ∗TX = φ∗φ∗O(1)→ O(1),

that is, the Levi tensor on the distribution F defines a symplectic form on Fx for each x.
Globally we have a non-degenerate form induced by the Levi tensor F ⊗F → TX /F ∼=
OX (1). In particular we have F ∼= F∨(1). Note that it fits in the following commutative

115
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diagram, with exact sequences:

0 0

0 TX/X F ΩX/X(1) 0

0 TX/X TX φ∗TX 0

O(1) O(1)

0 0

θ

=

=

For the verification by the local and we refer Proposition 2.14 in [KPJSAW00] for
details. Briefly, around every point with local coordinates (x1, ..., xm) and vector fields
(ζ1, ..., ζm), satisfying ζi(xj) = δij . Then the contact structure is determined by the
1-form

∑
i ζidxi. (so TX is big and semiample as before, then we get a symplectic

resolution êv : X̂ → Ŷ)
Following Beauville’s work [Bea07], the existence of a contact form on X implies the

existence of a symplectic form on X̂ . Locally analytically, the symplectic form induced
by θ is the standard symplectic form on the cotangent bundle, given by

∑
i dζi ∧ dxi.

Theorem 6.2. Let M be a projective contact manifold such that KM is not nef. Then,
either M is a Fano manifold of Picard number 1 or M = P(TZ) for some smooth
projective variety Z.

Proof. We refer [KPJSAW00].

We remark that it is conjectured that the only Fano contact manifolds of Picard
number one are rational homogeneous: more concretely, minimal nilpotent orbits of the
adjoint action of a simple Lie group G on P(g).

6.2 Minimal Sections
Definition 6.3. Let X be a Fano manifold which is not a projective space. For a general
minimal standard rational curve [l], a minimal section l of P(TX) over the curve l is a
section which is given by a surjection f∗TX � OP1 (exist since X is not a projective
space).
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Proposition 6.4. Let X be an n-dimensional uniruled projective manifold (not be the
projective space) equipped with a dominating component K of minimal rational curves
(degree c+2 we assume) and a general standard minimal rational curve f : P1 → C ⊂ X.
Let X := PTX

ϕ→ X. We may consider the irreducible component K ⊂ RatCurvesn(X )
containing a minimal section C of X over [C] and the corresponding universal family,
fitting in a commutative diagram:

K U X

K U X

ϕ

q̄p̄

qp

ϕ̄

Now let f̄ : P1 → X be the normalization of the minimal section C, then K is smooth
at [C], of dimension 2n− 3, and for some e ≤ c we have

f̄∗TX ∼= O(−2)⊕ O(2)⊕ O(−1)⊕e ⊕ O(1)⊕e ⊕ O⊕2n−3−2e.

Proof. First, the fibers of φ̄ over every standard deformation of C are isomorphic to
Pn−c−2, so dimK = 2n− 3.

Next, we have f∗TX ∼= O(2)⊕O(1)⊕c⊕O⊕n−c−1 and by definition of minimal section
we have f̄∗O(1) = O. By the relative Euler sequence we have

f̄∗TX/X
∼= O(−2)⊕ O(−1)⊕c ⊕ O⊕n−c−2.

By the contact structure F as we defined in the previous subsection, we have exact
0→ TX/X → F → ΩX/X(1)→ 0 which deduce

0→ O(−2)⊕ O(−1)⊕c ⊕ O⊕n−c−2 → f̄∗F → O(2)⊕ O(1)⊕c ⊕ O⊕n−c−2 → 0

since f̄∗O(1) = O. On the other hand, f̄∗O(1) = O also implies that df̄ : TP1 → f∗TX
factors via f̄∗F , hence this bundle has a direct summand of the form O(2). Being F
a contact structure, it follows that f̄∗F ∼= f̄∗F∨, so this bundle has a direct summand
O(−2), as well. Hence for some e ≤ c we have

f̄∗F ∼= O(−2)⊕ O(2)⊕ O(−1)⊕e ⊕ O(1)⊕e ⊕ O⊕2n−4−2e.

Hence f̄∗TX has two possible cases: one is O(−2)⊕O(2)⊕O(−1)⊕e⊕O(1)⊕e⊕O⊕2n−3−2e

and another is O(2)⊕O(−1)⊕e+2⊕O(1)⊕e⊕O⊕2n−4−2e. But the fact that dimK = 2n−3
implies that h0(P1, f̄∗TX ) ≥ 2n, which allows us to discard the second option. Finally
we have K is smooth at [C] since h0(P1, f̄∗TX ) = 2n. Well done.
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6.3 Basic Facts About Dual Varieties
Definition 6.5. Let X ⊂ PN be a subvariety of dimension n. We define the conormal
variety of X ⊂ PN is

Conormal(X) := {(p,H) ∈ PN × PN,∗ : p ∈ Xsmooth,P(Ω1
X,p) ⊂ H} ⊂ PN × PN,∗.

The dual variety X∗ of X is the image of Conormal(X) in PN,∗.

Proposition 6.6. Let X ⊂ PN = P(V ) be a subvariety of dimension n. Then
Conormal(X)|Xsmooth = P(NXsmooth(−1)) ⊂ PV × PV ∨ and hence

Conormal(X) = P(NXsmooth(−1))
zar ⊂ PV × PV ∨.

In particular, we have also Conormal(X)|Xsmooth = P(NXsmooth) which is not very canonical
to our original definition.

Proof. Consider the Euler sequence we have

0→ Ω1
P(V ) → O ⊗ V (−1)→ O → 0.

Hence we have a surjection O ⊗ V ∨ � TP(V )(−1) � NXsmooth(−1) which induce the
inclution

P(NXsmooth(−1)) ⊂ P(O ⊗ V ∨) = PV × PV ∨.

By the meaning of the Euler sequence we get the results.

Definition 6.7. As above, we define def(X) := N − 1− dimX∗ is the dual defect of X
and if def(X) > 0 we call X is dual defective.

For more properties of dual varieties we refer the book [AT05]. See also Example
3.2.21 in [Ful98] and Section 10.6 in [EH16].

Theorem 6.8 (Reflexivity). If X ⊂ PN is any variety and X∗ ⊂ PN,∗ its dual, then
the conormal variety Conormal(X) ⊂ PN × PN,∗ is equal to Conormal(X∗) ⊂ PN,∗ × PN
with the factors reversed. It follows that X∗∗ = X.

Proof. See the proof of Theorem 10.20 in [EH16].

6.4 Dual VMRT
Now we consider our main definition and main result. For more things we refer Section
3.A in [FL22].



6.4. DUAL VMRT 119

Definition 6.9. Let X be an n-dimensional uniruled projective manifold (not be the
projective space) equipped with a dominating component K of minimal rational curves.
Let X := PTX

ϕ→ X. We may consider the irreducible component K ⊂ RatCurvesn(X )
containing a minimal section C of X over [C] ∈ K and the corresponding universal
family, fitting in a commutative diagram:

K U X

K U X

ϕ

q̄p̄

qp

ϕ̄

Then we define the total dual VMRT of K is

Č := q̄(U)
zar

=
⋃

[l]∈K general
l̄
zar
⊂ PTX = X

of minimal sections. Define the dual VMRT Čx at general point x is the fibre of Č → X
at x ∈ X.

Theorem 6.10. Let X be an n-dimensional uniruled projective manifold equipped with
a dominating component K of minimal rational curves. Let x ∈ X be a general point.
Then Čx is the dual variety of Cx, that is, Čx = C∗x ∈ P(TxX).

Moreover, let e = def(Cx). Then for a minimal section C over a general standard
rational curve [C] ∈ Kx with normalization f̄ : P1 → C ⊂ PTX = X , we have

f̄∗TX ∼= O(−2)⊕ O(2)⊕ O(−1)⊕e ⊕ O(1)⊕e ⊕ O⊕2n−3−2e.

Proof. Here we follows the proofs in [MOESC+15] which is the similar idea as the proof
of Proposition 3.10. Let the normalization of C is f : P1 → C ⊂ X. Actually as x and
C general, the tangent morphism τx : Kx → Cx is unramified at [C] by Proposition 3.10.
Hence we may use it to identify the tangent space of Cx at P := τx([C]).

Now consider the blow-up β : BlxX → X with exceptional divisor E = P(Ω1
X,x).

Note that we have a filtration TxX ⊃ V1(f) ⊃ V2(f) correspond to f∗TX ⊃ O(2) ⊕
O(1)⊕c ⊃ O(2). Then by previous argument we have TPCx = V1(f)/V2(f). By the
universal property of blow-up, we have the following evaluation morphisms:

P1 × Hom(P1, X; 0 7→ x)

X BlxX
ev

β

ev′

Hence TPCx = dev′(0,[f ])({0}×H0(P1, f∗TX(−1)))/V2(f) and we may identify the space
H0(P1, f∗TX(−1)) with the global sections of f∗TX vanishing at 0. Choosing now a set of
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local coordinates (t, t2, ..., tm) of X around x such that f(P1) is given by t2 = · · · = tm =
0 and t is a local parameter of f(P1), and writing BlxX in terms of these coordinates,
it’s easy to check that, modulo V2(f), dev′(0,[f ]) sends every section s vanishing at 0 to
ds
dt |s=0 as in 3.10, hence it follows that its image is V1(f). Hence by the description in
Proposition 6.6 we get the result.

For the last statement, by Proposition 6.4 we have

f̄∗TX ∼= O(−2)⊕ O(2)⊕ O(−1)⊕E ⊕ O(1)⊕E ⊕ O⊕2n−3−2E

for some E ≤ c. We need to show that E = e = def(Cx). Equivalently, we need to
show that dim q̄(U) = 2n − 2 − f . Let H ⊂ Hom(P1,X ) be a component containing
[f̄ ]. Consider the rank of the differential of H × P1 → X by Theorem 1.35, the result
follows then by noting that E equals the dimension of the kernel of the evaluation of
global sections H0(P1, f̄∗TX )⊗ O → f̄∗TX . Well done.

6.5 Positivity and Dual VMRT
Here we follows the paper [FL22]. First we give some notations and some basic results
we will use about the divisorial Zariski decomposition in 2.B in [FL22].

Definition 6.11. Let D be a pseudoeffective R-divisor on a projective manifold X.
Recall that for a prime divisor Γ on X we can define

σΓ(D) = lim
ε→0+

inf{multΓD′ : D′ ≥ 0, D′ ∼R D + εA}

where A is any fixed ample divisor. One can show that there are only finitely many
prime divisors Γ on X such that σΓ(D) > 0. Hence we can define

Nσ(D) :=
∑
Γ

σΓ(D)Γ, Pσ(D) := D −Nσ(D).

The decomposition D = Nσ(D) + Pσ(D) is called the divisorial Zariski decomposition of
D.

Note that Nσ(D) is an effective R-Weil divisor and Pσ(D) is a movable R-divisor.
In particular, for any prime divisor Γ the restriction Pσ(D)|Γ is pseudoeffective.

Lemma 6.12. Let D be a pseudoeffective R-Weil divisor on a projective manifold X.
Then

(a) supp(Nσ(D)) is precisely the divisor B1
−(D) which is the union of codimension 1

components of B−(D) =
⋃
A BaseLocus(D+A) for ample A such that D+A is a

Q-Cartier Q-Weil divisor.
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(b) If D is not movable and [D] generates an extremal ray of Eff(X), then there
exists a unique prime divisor Γ ⊂ X such that [Γ] ∈ R>0[D]. Moreover, we have
Γ = supp(Nσ(D)) = B1

−(D).

Proof. See the Lemma 2.4 in [FL22].

Lemma 6.13. Let X be a projective variety. Let E be a vector bundle over X and let
δ ∈ N1(X) be a Q-Cartier divisor class. Let π : PE → X.

(a) The divisor O(1) + π∗δ is pseudoeffective if and only if for an arbitrary big Q-
Cartier Q-Weil divisor D on X and an arbitrary Q-Cartier Q-Weil divisor ∆ on
X such that [∆] = δ, there exists an effective Q-Weil divisor N satisfying

N ∼Q O(1) + π∗(∆ +D).

(b) The divisor O(1)+π∗δ is big if and only if divisor O(1)+π∗δ−π∗γ is pseudoeffective
for some big Q-Cartier class γ.

Proof. In the [FL22] they called the Q-twisted vector bundle but we will not use these.
We refer Proposition 2.7 in [FL22] for the proof.

Here is our main result, see Theorem 3.4 in [FL22]:

Theorem 6.14. Let X be a Fano manifold of Picard number 1 equipped with a minimal
rational component K. Let H be the ample generator and let Λ be the tautological divisor
of π : PE → X. Assume that the VMRT Cx ⊂ P(Ω1

X,x) at a general point x ∈ X is not
dual defective. Denote by a and b the unique integers such that

[Č] ∼num aΛ− bπ∗H

Then a = deg Čx and the following statements hold.

(a) TX is big if and only if b > 0.
(b) If TX is big, then bH · K ≤ 2 with equality if and only if there exists a minimal

section C over a general standard rational curve [C] ∈ K such that Č is smooth
along C.

(c) If TX is big, then [Č] generates an extremal ray of Eff(PTX); that is, we have

Eff(PTX) =
〈
[Č], π∗H

〉
.

Proof. Note that a = deg Čx is trivial by [Č] ∼num aΛ− bπ∗H which restrict to the fiber.
For (a), if b > 0 then TX is big by Lemma 6.13(b). Conversely, if TX is big, consider

the pseudoeffective threshold of X is

αX = α(x,H) := max{a ∈ R>0 : Λ− aπ∗H is pseudoeffective}.
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Note that Č is dominated by minimal sections C over standard rational curves in K and
we have (Λ−αXπ∗H) ·C = −αXπ∗H ·C < 0. Hence (Λ−αXπ∗H)|Č is not pseudoeffec-
tive. In particular, the R-divisor Λ−αXπ∗H is not movable and the total dual VMRT Č
is contained in the effective Weil divisor Γ := supp(Nσ(Λ−αXπ∗H)) = B1

−(Λ−αXπ∗H)
by Lemma 6.12(a). As X has Picard number 1, it follows that ρ(P(TX)) = 2 and
R := R≥0[Λ − αXπ∗H] is an extremal ray of Eff(PTX). Then it follows from Lemma
6.12(b) that Γ is a prime divisor generating the extremal ray R. This yields that Γ = Č
and hence b > 0.

For (b), consider minimal section C of a general standard minimal rational curve
[C] ∈ K with normalization f̄ : P1 → PTX . We have the following exact sequence

IČ/I
2
Č
∼= OČ(−aΛ + bπ∗H)→ ΩPTX |Č → ΩČ → 0.

Pull back it via f̄ we have

OP1(bH · C) ι→ f̄∗ΩPTX → f̄∗ΩČ → 0.

As we may assume that C is not contained in the singular locus of Č since it is general,
then ι is generically finite. By (a) as b > 0, since by Theorem 6.10 we have

f̄∗TX ∼= O(−2)⊕ O(2)⊕ O⊕2n−3,

then bH · K ≤ 2 with equality if and only if ι is an injection of vector bundles. By
Nakayama’s lemma, the latter one is equivalent to the smoothness of Č along C.

For (c), by the argument in the proof of (a) we have supp(Nσ(Λ − αXπ∗H)) = Č
and Č ∈ R≥0[Λ− αXπ∗H]. Since TX is big and X has Picard number 1, we have

Eff(PTX) = 〈Λ− αXπ∗H,π∗H〉 =
〈
[Č], π∗H

〉
.

Well done.
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About Campana-Peternell
Conjecture-I

Here we will follows the survey [MOESC+15]. An important motivation of the theory
of VMRT is the conjecture generalize the Hartshorne conjecture in [CP91]:
Conjecture 3 (Campana-Peternell Conjecture). Any Fano manifold whose tangent
bundle is nef is rational homogeneous.

Another version of the same problem is the following.
Conjecture 4. Let X be a Fano manifold, and assume that TX is nef. Then TX is
globally generated.

Note that we have discussed the VMRT in P(ΩX). On the other hand, we may con-
sider the projectivization of the dual bundle, P(TX), which we have already introduced
to define the nefness of TX associated to the Campana-Peternell conjecture.

7.1 Basic Facts about Fano Varieties with Nef Tangent
Bundle

Here we state some basic facts about the Fano manifolds with nef tangent bundle.
Lemma 7.1. Let X be a projective manifold with TX nef. Then any effective divisor
D is nef.
Proof. Not hard. See Proposition 2.12 in [CP91].

Lemma 7.2. Let X be a Fano manifold with nef tangent bundle and let f : P1 → X be a
nonconstant morphism. Then Hom(P1, X) is smooth at [f ] and, being H the irreducible
component of Hom(P1, X) containing [f ], the restriction of the evaluation morphism
H × P1 → X is dominant.

123
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Proof. Since TX is nef, for any nonconstant morphism f : P1 → X it holds that f∗TX
is globally generated, and in particular H1(P1, f∗TX) = 0. Then Hom(P1, X) is smooth
at [f ]. By Theorem 1.35 and then H × P1 → X is dominant.

Lemma 7.3. Let X be a Fano manifold with nef tangent bundle of dimension n.
Consider a minimal rational components K ⊂ RatCurvesn(X) of degree d and universal
family U , then dimK = n+d−3 and the cycle map e : U → X is smooth with connected
fibres of dimension d− 2.

Proof. From the fact that TX is nef, Theorem 1.31 and Corollary 1.36, we know that
the cycle map e : U → X is smooth with fibres of dimension d − 2. By Proposition
1.63(b) we know that e : U → X has connected fibres.

Theorem 7.4. Let X be a Fano manifold with nef tangent bundle, then ρ(X) ≤ dimX.

(a) Any Mori-contraction π : X → Y is a Mori fiber space. Moreover π is smooth,
and Y and the fibers of π are also Fano manifolds with nef tangent bundle.

(b) The Mori cone NE(X) is simplicial, that is, it is generated by linearly independent
elements.

(c) For any Mori-contraction π : X → Y and every y ∈ Y the following properties
hold:

(c1) ρ(π−1(y)) = ρ(X)− ρ(Y ).

(c2) j∗(NE(π−1(y))) = NE(X) ∩N1(π
−1(y)) where j : π−1(y) ⊂ X.

(d) More generally, let f : X → Y be a Mori contraction determined by an extremal
ray. Let F ⊂ Y be a projective manifold such that NF/Y

∼= O⊕l
F , thenW := f−1(F )

is also a Fano manifold with nef tangent bundle.

Proof. We will omit the proof of the smoothness of π in (a) and whole (b)(c). We refer
Corollary 3.2, Theorem 3.3 and Proposition 3.7 in [MOESC+15]. See also the appendix
in [SCAW04].

For (a), by cone-theorem and Lemma 7.2 one can easy to see that the Mori-contraction
π : X → Y is a Mori fiber space. Finally, since π is smooth, via the exact sequences
defining the relative tangent bundle, Proposition 1.65 and the normal bundles to the
fibers we know that Y and the fibers of π are also Fano manifolds with nef tangent
bundle.
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For (d), in this case we have TW/F
∼= TX/Y |W . So we have

0 0

0 NW/X f∗WNF/Y

0 TX/Y |W TX |W f∗(TY )|W = f∗W (TY |F ) 0

0 TW |F TW f∗WTF 0

0 0 0

By the snake lemma we have NW/X
∼= f∗W (NF/Y ) ∼= O⊕l

W . See the middle column, as
TX |W nef and c1(NW/X) = 0, then TW is nef. As −KW = (−KX)|W , then W is also
Fano.

Here we introduce some notations we will use.

Situation 1. Now X is a Fano manifold with nef tangent bundle TX .
We will denote by φ : P(TX)→ X the canonical projection, by OP(TX)(1) the corre-

sponding tautological line bundle. In particular we have O(−KP(TX)) = OP(TX)(dimX).
Throughout this chapter we will always assume that TX is not ample, i.e. that X is
not a projective space by Hartshorne’s conjecture 1.77. This hypothesis allows us to
consider the following:

Let ρ(X) = n, by Theorem 7.4(b) we will denote by R1, ..., Rn the extremal rays of
NE(X). For every i = 1, ..., n the corresponding elementary contraction will be denoted
by πi : X → Xi, and its relative canonical divisor by Ki := Kπi. We will denote by
Γi a rational curve of minimal degree such that [Γi] ∈ Ri, general in the corresponding
unsplit family of rational curves Ki by Corollary 1.45, by Ki

pi← Ui
qi→ X the universal

morphisms. Let Γi be the minimal sections of Γi and fi : P1 → Γi and f i be the
normalizations os Γi and Γi.

Remark 7.5. Note that in this situation the function (−) · OP(TX)(1) is a supporting
function in sense of Definition II.4.9.3 in [Kol96].

7.2 Semiampleness of Tangent Bundles
As a general philosophy, if the Campana-Peternell conjecture is true, one should be able
to recognize the homogeneous structure of X by looking at the loci of P(TX) in which
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O(1) is not ample. The expectancy is that O(1) is semiample and that those loci appear
as the exceptional loci of the associated contraction.

Example 7.6 (For Rational Homogeneous Varieties). Need to add.

7.2.1 Basic Facts
Theorem 7.7. Consider the Situation 1, the Mori cone NE(P(TX)) is generated by the
class of a line in a fiber of φ : P(TX) → X and by the classes of minimal sections Γi.
Moreover, the following are equivalent:

(a) TX is big.
(b) TX is semiample and big.
(c) There exist an effective Q-divisor ∆ satisfying ∆ · Γi < 0 for all i.

Proof. Consider φ∗ : N1(P(TX)) → N1(X). Let N0 ⊂ NE(P(TX)) be a subcone gen-
erated by Γi, then φ∗ induce an isomorphism of N0 with NE(X). By the definition of
minimal section, elements of N0 will be killed by OP(TX)(1). As this intersection function
is actually a supporting function, then N0 is the face of NE(P(TX)) (see Lemma II.4.10.1
in [Kol96]). Since NE(P(TX)) ⊂ (φ∗)

−1NE(X) ∩ {Z ∈ N1(P(TX)) : Z · OP(TX)(1) ≥ 0},
the first claim follows.

The equivalence of (a) and (b) follows from the Basepoint-free theorem. Now con-
sider the equivalence of (a) and (c). Note that OP(TX)(1) is big if and only if OP(TX)(1)
lies in the interior of the pseudo-effective cone of P(TX) or, equivalently, if and only if
for every ample divisor H and sufficiently small ε ∈ Q>0, ∆ = L− εH is effective. Well
done.

7.2.2 A Birational Contraction
Definition 7.8. A contraction ε : X → Y is called

(a) elementary if all curves contracted by ε are numerically proportional, or equiva-
lently, the relative Picard number is 1;

(b) Mori if −KX is ε-ample;
(c) crepant if KX = ε∗KY and ε is birational.

Let X be a smooth projective variety with semiample and big tangent bundle TX ,
then consider the evaluation (contraction) morphism

ev : X := PTX → Y := Proj
⊕
r≥0

H0(PTX ,O(r)) = Proj
⊕
r≥0

H0(X, symrTX)
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with connected fiber (as a Stein factorization of the linear system) which is birational
(since big) and finite type (since semiample).

Alternatively one may consider the total spaces X̂ and Ŷ of the tautological line
bundles O(1) on the Proj-schemes X and Y, and the natural map:

X̂ = SpecX
⊕

r∈Z OX (r) Ŷ = SpecY
⊕

r∈Z OY(r)

X = PTX Y = Proj
⊕

r≥0H
0(X, symrTX)

êv

ev

Gm Gm

Lemma 7.9. In this case, ev and êv are crepant contractions, that is, pull back of
the canonical divisor is also just the canonical divisor. In particular, their positive
dimensional fibers are uniruled.

Proof. The proof in both cases is analogous and we just consider ev. For instance, we
have Riev∗OX = Riev∗(ωX⊗O(dim(X))) = 0 for i > 0 by GR vanishing theorem. Then
ev is a rational resolution and ωY is a line bundle, isomorphic to ev∗ωX (cf. Section
5.1 in [KM98]). But then ωX ⊗ ev∗ω−1

Y is effective and vanishes on the Γi’s, hence it is
numerically proportional to O(1). Since it is also exceptional, it is trivial.

For the uniruledness of the fibers, we take (by Theorem 7.7) an effective Q-divisor ∆
satisfying that (X,∆) is klt and that −∆ is ε-ample, and use Theorem 1 in [Kaw91].

Proposition 7.10. With the same notation as above, if moreover ev is an elementary
divisorial contraction, then its exceptional locus is an irreducible divisor D, and any one
dimensional fiber consists of either a smooth P1 or the union of two P1’s meeting in a
point.

Proof. Omitted and this is a special case of Theorem 1.3 in [Wie03].

7.3 The 1-ample Case of Campana-Peternell Conjecture
Let X be a smooth projective variety with tangent bundle TX , then consider the eval-
uation (contraction) morphism

ev : X := PTX → Y := Proj
⊕
r≥0

H0(PTX ,O(r)) = Proj
⊕
r≥0

H0(X, symrTX).

Definition 7.11. We say TX is k-ample if the dimension of every component of a fiber
of ev is at most k-dimensional.

Lemma 7.12. Let X be a Fano manifold such that TX is nef, big and k-ample, and let
π : X → X ′ be a Mori contraction. Then TX′ is (k − dimX + dimX ′)-ample.
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Proof. By Theorem 7.4(a) π is smooth and we have surjection TX → π∗TX′ which
induce the inclusion P(π∗TX′) = P(TX′)×X′ X ↪→ P(TX). Hence we have the following
factorization:

P(TX′) Y ′

P(π∗TX′) P(TX) = X Yev

ev′

As P(π∗TX′)→ P(TX′) has fibers of dimension dimX − dimX ′, then well done.

In this section we will give a sketch of the proof of the special case of Campana-
Peternell conjecture follows the survey [MOESC+15] and the original paper we refer
[SCAW04].
Theorem 7.13. Let X be a Fano manifold such that TX is nef, big and 1-ample. Then
X is rational homogeneous.

Proof of Theorem 7.13 for Picard number > 1. By Lemma 7.12, any Mori contraction
π : X → X ′ must have one-dimensional fibers and its image must have ample tangent
bundle, which is PdimX−1 by Hartshorne’s conjecture. Therefore, in our situation, X has
at least two P1-fibrations over PdimX−1. By applying Lemma 2.13 and well done.

Now we consider the case of Picard number 1. We consider the notations as before:
consider the irreducible component K ⊂ RatCurvesn(X ) containing a minimal section C
of X over [C] and the corresponding universal family, fitting in a commutative diagram:

K U X

K U X

ϕ

q̄p̄

qp

ϕ̄

Lemma 7.14. Let X be a Fano manifold of dimension m such that TX is nef, big and
1-ample but not ample (hence X 6= Pm).

(a) Let f̄ : P1 → X be a general minimal section of X over a general minimal rational
curve f : P1 → X. Then

f̄∗TX ∼= O(−2)⊕ O⊕2m−3 ⊕ O(2)

and the exceptional locus of ev is equal to D := q̄(U).
(b) Being f̄ : P1 → X be the normalization of any curve [Γ] of K, we have:

f̄∗TX ∼= O(−2)⊕ O(2)⊕ O(−1)⊕e ⊕ O(1)⊕e ⊕ O⊕2m−2e−3

for some e ≥ 0. Moreover, the variety K is a smooth projective contact variety
with dimension 2m− 3.
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(c) The natural map φ̄ : K → K is an isomorphism and f∗TX ∼= O(2)⊕O(1)⊕m−2⊕O
for every [f ] ∈ K.

Proof. For (a), by some arguments as Theorem 4.1 in the original paper [SCAW04] we
can show that e = def = 0. Hence by Theorem 6.10 we have f̄∗TX ∼= O(−2)⊕O⊕2m−3⊕
O(2). In particular, this implies that q̄(U) is an irreducible divisor. By the definition of
mimnimal sections, we have q̄(U) ⊂ Exc(ev). Since the hypotheses also imply that ev
is elementary, then by Proposition 7.10 we have q̄(U) = Exc(ev).

For (b), let J be the ideal of Γ ⊂ X . By (a) and Proposition 7.10 the curve Γ is
smooth. Moreover, by GR vanishing theorem we have Riev∗OX = 0 for i > 0. Hence
push-forward the sequence 0 → J 2 → OX → OX /J

2 → 0 we have R1ev∗OX /J
2 =

R2ev∗J 2 = 0 since TX is 1-ample. Hence we have H1(Γ,OX /J
2) = (R1ev∗OX /J

2)⊗
Op = 0 by formal function theorem where {p} = ev(Γ). Hence by 0 → NΓ/X →
OX /J

2 → OΓ → 0 we have H1(NΓ/X ) = 0 and hence the splitting type of the normal
bundle NΓ/X does not contain any integer bigger than 1. Consider the contact sheaf F
as before we have the following commutative diagram:

0 0

0 TΓ f̄∗F f̄∗F/TΓ 0

0 TΓ f̄∗TX NΓ/X 0

OΓ OΓ

0 0

=

=

Then well done by the contact structure as f̄∗F ∼= f̄∗F∨ as it is contained in the same
components with minimal sections.

Now by the same arguments in Proposition 6.4 we know that K is a smooth projective
variety with dimension 2m− 3. We omit the proof of the fact that K is contact and we
refer Corollary 5.27 in [MOESC+15] or the original Lemma 3.3 in [SCAW04].

For (c), now K and K are both smooth by (b). The general fiber of φ̄ is a projective
space of dimension m − c − 2, with c := −KX · Γ − 2 for [Γ] ∈ K. If m − c − 2 > 0,
then φ̄ would be a Mori contraction of the contact manifold K by (b). By Theorem 6.2
it would follow that K ∼= P(TK) and, in particular, dim(K) = m− 1. Together with the
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nefness of TX , this implies that f∗TX ∼= O(2)⊕ O⊕m−1 for all [f ] ∈ K. Consider

P1 × Hombir(P1, X) P1 × Homn
bir(P1, X) U

X

q

f

=

Hence by Theorem 1.35 we find that U → X is étale. As X is simply connected, then
U ∼= X, contradicting that X has Picard number one since we also have U → K. Hence
m − c − 2 = 0 and φ̄ : K → K is birational. If φ̄ is not an isomorphism, by birational
geometry it would factor via a Mori contraction since K smooth. This is possible by
Theorem 6.2. Hence φ̄ : K → K is an isomorphism.

Finally note that, being φ̄ an isomorphism, the number of zeroes appearing in the
splitting type of f∗TX for any [f ] ∈ K is equal to one. Looking at the general element,
which is standard, we obtain that −KX · P1 = m for every [f ] ∈ K. Hence for any
[f ] ∈ K the splitting type of f∗TX contains no negative elements (since nef), an integer
≥ 2 (since smooth), and at most one zero. Hence the only possibility is f∗TX ∼=
O(2)⊕ O(1)⊕m−2 ⊕ O. Well done.

Proof of Theorem 7.13 for Picard number 1. In our case we will show thatX is a smooth
quadric hypersurface. Let dimX = m.

Let D := q̄(U) ⊂ X be the exceptional divisor of ev by Lemma 7.14(a), and L be a
divisor associated to the tautological line bundle O(1) on X , and write D = aL− φ∗B
for some divisor B on X where φ : X → X as before. For general x ∈ X the space
Dx := φ−1(x) ∩D is the dual VMRT. Since the VMRT Cx is a hypersurface by Lemma
7.14(c), then its dual cannot be a hyperplane in P(TxX) (otherwise Cx would be a point),
and we may write a > 1.

By Proposition 7.10 every positive dimensional fiber of ev is either P1 or a union
of two P1’s meeting at a point. For any irreducible component Γ in the fiber, we have
D · Γ = −2 in the first case and D · Γ = −1 in the second case (Why???). Both of them
we have L · Γ = 0.

If there is an exceptional fiber in the second case, we have B · Γ = 1. It follows that
B is the ample generator of Pic(X) and −KX = mB, so that X is necessarily a smooth
quadric by Theorem 1.68(d).

If all the exceptional fibres are in the first case, then D · Γ = −2. In this case
q̄ : U → D is a bijective immersion, hence an isomorphism. Since moreover the family
U → K is isomorphic to U → K, by Lemma 7.14(c), it allows to identify the restriction
φ|D : D → X with the evaluation morphism q : U → X . Hence it is smooth by Lemma
7.3. Hence we have 0 → OD(−D) → (Ω1

X/X)|D → TD/X → 0. Hence cm−1(Ω
1
X/X ⊗

OD(D)) = 0. Now using the relative Euler sequence one can easy to calculate it.
Then we have a = 1, which is impossible as we argued, or D ∼num aL + a

mφ
∗KX .
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Since D · Γ = 2 and Γ · KX = −m we get a = 2. Hence D defines a section in
H0(X , 2L + 2

mφ
∗KX) = H0(X, sym2TX ⊗ O( 2

mKX)) which is a nowhere degenerate
symmetric form. Now by Lemma 7.16 we find that X ∼= Qm. Well done.

Lemma 7.15 (Twisted Trivial Bundles). Let X be Fano manifold of Picard number 1.
Let E ⊂ TX is a subbundle such that there exists an integer a such that for any [f ] ∈ K,
a unsplit family, we have f∗E = O(a)⊕r. Then there exists a (uniquely defined) line
bundle L over X such that deg f∗L = a and E ∼= L⊕r.

Proof. We omit the proof and we refer Proposition 1.2 in [AAW01].

Lemma 7.16 (Ye, 1994). Let X be Fano manifold of dimension n ≥ 3 of Picard number
1, with K an unsplit and dominating family of rational curves. Suppose that TX is K-
uniform, that is, all f∗TX are the same splitting type for any [f ] ∈ K. If TX ∼= ΩX ⊗ L
for an ample line bundle , then X ∼= Qn.

Proof. For any standard f : P1 → C ⊂ X, we have f∗TX = O(2)⊕ O(1)⊕a ⊕ O⊕b. By
TX ∼= ΩX ⊗ L we get f∗L = O(2) and a = n− 2 and b = 1.

Let H be the ample generator. Then the class c1(H) ∈ H1(X,ΩX) = Ext1(OX ,ΩX)
correspond to 0→ ΩX → V ′ → OX → 0 and we get 0→ L−1 → (V ′)∨⊗L−1 → ΩX → 0.
By the Kodaira vanishing theorem to L we get H1(X,ΩX) ∼= H1(X, (V ′)∨ ⊗ L−1) ∼=
Ext1(L, (V ′)∨). Hence c1(H) can be again associated to a sequence 0 → (V ′)∨ →
V → L → 0. Repeat this process for f∗V for any [f ] ∈ K, we can easy to see that
f∗V ∼= O(1)⊕n+2. By Lemma 7.15 we have V ∼= O(H)⊕n+2 where the divisor H has
degree 1 on K and L = O(2H). So we get −KX = nH. By Theorem 1.68(d) we have
X ∼= Qn.

Remark 7.17. There is a similar result and method for Pn and Grassmannians. We
refer [Wiś02] for details.
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Chapter 8

Fano Manifolds with
Non-isomorphic Surjective
Endomorphism

There is a interesting conjecture:

Conjecture 5. Let X be a Fano manifold of Picard number 1 of dimension n. Suppose
that X admits a non-isomorphic surjective endomorphism. Then X ∼= Pn.

Recently the Conjecture 5 holds for

(a) Almost homogeneous spaces.
(b) Smooth hypersurfaces of a projective space.
(c) Fano threefolds.
(d) Fano manifolds containing a rational curve with trivial normal bundle.
(e) Fano fourfolds with Fano index Index ≥ 2.
(f) Del Pezzo manifolds, i.e., the Fano index Index = dimX − 1.

See introduction in [SZ23] for the references. See also in [KT23] for the new method for
some cases in arbitrary characteristic.

In this chapter we follows the paper [SZ23] to consider the case when TX is big.

8.1 The Case with Big Tangent Bundle and VMRTs not
Dual Defective

First we recall some situations and notations we will use.

133
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Situation 2. Let f : X → Y be a non-isomorphic surjective morphism between Fano
manifolds of Picard number 1. Assume that Y is not isomorphic to a projective space.
Then X is not isomorphic to a projective space, either by Corollary 1.81.

(1) We consider the commutative diagram associated with the injection (since ΩX/Y

is torsion and then Ω∨
X/Y = TX/Y = 0) 0 → TX → f∗TY where Γ is the graph of

the induced rational map P(f∗TY ) 99K P(TX):

Γ

P(TY ) P(f∗TY ) P(TX)

Y X

β α

f̃

ϕ

f

φ
τ

(2) Denote by ξ (resp. η) the tautological line bundle of P(TX) (resp. P(TY )). Let
η̃ := f̃∗η which is the tautological line bundle of P(f∗TY ).

(3) Let K (resp. G) be a dominating family of minimal rational curves on X (resp.
on Y ). Assume that both VMRTs along a general point are not dual defective.

(4) Denote by DX ⊂ P(TX) and DY ⊂ P(TY ) the total dual VMRTs of K and G
respectively. By our assumption, both DX and DY are irreducible hypersurfaces.

(5) Let HX be the ample generator of the Picard group Pic(X).

First we will collect some basic definitions and facts from symplectic geometry.

Definition 8.1. LetM be a complex manifold equipped with a closed holomorphic 2-form
ω. For a point z ∈M , let

Nullz(M) := {u ∈ TzM : ω(u, v) = 0, ∀v ∈ TzM}.

This defines a distribution, called the null distribution on a Zariski open subset of M .
Now let (M,ω) be a symplectic manifold equipped with a non-degenerate symplectic

2-form ω. Given an irreducible subvariety Z ⊂M , we consider the restriction ω|Zsmooth.
The rank of the null distribution of ω|Zsmooth is no more than the codimension codimMZ
and if the equality holds, then we say that Z is coisotropic. The null distribution on Z
defines a foliation on a Zariski open subset of Z which we call the null foliation of ω on
Z.

Theorem 8.2 (Shao-Zhong, 2023). Let f : X → Y be a finite morphism between Fano
manifolds of Picard number 1. Let K and G be the dominating families of minimal
rational curves on X and Y whose VMRTs along a general point are not dual defective.
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Suppose that Y is not isomorphic to a projective space and the induced rational map
P(TX) 99K P(TY ) sends the total dual VMRT DX to the total dual VMRT of DY . Then
f is an isomorphism.

Proof. Let T ∗X = Spec
X
SymTX be the affine cone of PTX and consider the rational

map
Φ : T ∗X 99K T ∗Y, (s, t) 7→ (f(s), (df∗s )

−1(t))

defined outside the ramification divisor.
Let ω be a natural symplectic form on T ∗Y . Now Φ induce a 2-form on T ∗X defined

by
Φ∗ω(u, v) = ω(dΦzu, dΦzv), u, v ∈ Tz(T ∗X).

As dΦz is isomorphism, the form Φ∗ω is a symplectic form on sub open subset of T ∗X.
Suppose that C is a general leaf of the null foliation of Φ∗ω on AffineCone(DX) ⊂
T ∗X. For a general z ∈ C, we have Φ∗ω(u, v) = 0 for arbitrary v ∈ TzC and u ∈
TzAffineCone(DX). Consider the image Φ(C). By our assumption AffineCone(DX) is
mapped onto AffineCone(DY ) along the rational map Φ; hence Φ(C) is contained in
AffineCone(DY ). Given any u′ ∈ TΦ(z)AffineCone(DY ) and v′ ∈ TΦ(z)Φ(C) we have

ω(u′, v′) = Φ∗ω(dΦ−1
z (u′), dΦ−1

z (v′)) = 0.

Therefore, Φ(C) is a leaf of the null foliation of ω on AffineCone(DY ). Hence by [Hwa15]
Proposition 2.4, both AffineCone(DX) and AffineCone(DY ) are coisotropic (hence DX
and DY ) and the closure of C and the closure of Φ(C) (as in PT∗) are minimal sections
over minimal rational curves; moreover, a general minimal section of τ (resp. φ) can be
realized as the closure of a leaf of the null foliation of Φ∗ω (resp. ω) on DX (resp. DY ).

Let MX ⊂ Chow1(P(TX)) and MY ⊂ Chow1(P(TY )) be the families of minimal
sections of τ and φ, respectively. Then we have the following commutative diagram

MX Chow1(P(TX)) Chow1(P(TY )) MY

K Chow1(X) Chow1(Y ) G

τ∗ ϕ∗

AsMX is sent toMY via the first horizontal map, we obtain the induced map K 99K G
via the second horizontal map which is also dominant. In particular, f maps a general
minimal rational curve [l] ∈ K to a general minimal rational curve [l′] ∈ G. Then for a
general point x ∈ X away from the ramification divisor, there exists a general standard
element [l] ∈ Kx which is birational to its image l′ := f(l), noting that the normal
bundle cannot have sections vanishing along two distinct points. Therefore, from the
normal bundle sequence, we obtain that

KX · l = KY · l′ = KY · f∗(l) = KX · l −R · l.
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Hence R = 0 since otherwise R will be ample. Hence f is finite unramified since X is
of Picard number 1. By miracle flatness f is finite étale. But by Proposition 1.62 Y is
simply connected, hence f is an isomorphism.

Here is our main theorem:

Theorem 8.3 (Shao-Zhong, 2023). Let X and Y be the Fano manifolds of Picard
number 1. Suppose that the VMRT Cx ⊂ P(ΩX,x) (resp. C′y ⊂ P(ΩY,y)) at a general
point x ∈ X (resp. y ∈ Y ) is not dual defective. Suppose further that the tangent bundle
TX is big. Then any surjective morphism X → Y has to be an isomorphism unless Y is
a projective space; in particular, X admits no non-isomorphic surjective endomorphism
unless it is a projective space.

Proof. We are in Situation 2. As ξ is big, it follows from Theorem 6.14 that [DX ] ∼num
aξ − bτ∗HX where a = deg Čx > 0 and b > 0 is an integer; moreover, the total dual
VMRT DX is extremal in the pseudo-effective cone Eff(PTX) = 〈[DX ], τ∗HX〉. Here,
as PTX is simply connected, the numerical equivalence of integral Cartier divisors is
indeed a linear equivalence by Lemma 8.4(b). Since DX is covered by minimal sections
l̄ ∈ PTX of K such that ξ · l = 0, we have DX · l < 0. Let D′

X := β∗(α
−1
∗ DX) be the

proper transform along the birational map P(f∗TX) 99K PTX .
Recall the diagram in Situation 2:

Γ

P(TY ) P(f∗TY ) P(TX)

Y X

β α

f̃

ϕ

f

φ
τ

By injection TX ↪→ f∗TX we have the injection

H0(X, SymaTX ⊗ OX(−bHX)) ↪→ H0(X, Syma(f∗TY )⊗ OX(−bHX)).

Hence since α and β are birational and hence with connected fibres by Zariski main
theorem, we have

H0(X, SymaTX ⊗ OX(−bHX)) = H0(X, τ∗(aξ)⊗ OX(−bHX))

= H0(PTX , aξ − bτ∗HX) = H0(Γ, aα∗ξ − bα∗τ∗HX)

and similarly H0(X, Syma(f∗TY )⊗OX(−bHX)) = H0(Γ, aβ∗η̃ − bβ∗ϕ∗HX). Hence we
have the injection

H0(Γ, aα∗ξ − bα∗τ∗HX) ↪→ H0(Γ, aβ∗η̃ − bβ∗ϕ∗HX).
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Hence by linear equivalence [DX ] ∼ aξ − bτ∗HX there exists m ≥ 0 such that aη̃ −
bϕ∗HX ∼ D′

X + mϕ∗HX . Hence D′
X ∼ aη̃ − (m + b)ϕ∗HX . Since both α and β are

birational and DX is dominant over X, it follows that D′
X is a prime divisor.

As the total dual VMRT DY is covered by minimal sections c̄ such that η · c̄ = 0, by
the projection formula, its pullback f̃∗DY is covered by curves c̄′ such that η̃ · c̄′ = 0.
In particular,

c̄′ · D′
X = −(m+ b)ϕ∗HX · c̄′ < 0.

Hence c̄′ ⊂ D′
X and hence f̃∗DY ⊂ D′

X . As D′
X is a prime divisor, we have f̃∗DY = D′

X .
Hence by Theorem 8.2 and well done.

Lemma 8.4. Let X be a smooth projective variety over k = k̄.

(a) (Matsusaka) We have Z1
hom(X) = Z1

num(X).
(b) When k = C and X is simply connected, then

Z1
hom(X) = Z1

num(X) = Z1
rat(X).

Proof. For (a), this is a famous theorem due to Matsusaka which is a special case of
one of the standard conjecture. We refer Appendix A in [PMNAMP13].

For (b), by (a) we just need to prove that Z1
hom(X) = Z1

rat(X). Consider the expo-
nential sequence we have

H1(X,OX)→ Pic(X)
c1→ H2(X,Z)→ H2(X,OX).

As X is simply connected, we have H1(X,Z) = 0. By universal coefficient theorem for
cohomology we have H1(X,C) = 0. By Hodge decomposition we have H1(X,OX) = 0.
Hence c1 : Pic(X)→ H2(X,Z) is injective. Hence Z1

hom(X) = Z1
rat(X).

8.2 Examples for Rational Homogeneous Varieties

8.3 Applications of Bigness of Tangent Bundle
Lemma 8.5. Let f : X → Y be a generically finite surjective morphism between smooth
projective varieties. If the tangent bundle TY is not big (resp. not pseudo-effective),
then TX is not big (resp. not pseudo-effective) either.

Proof. We need the following lemma as Theorem 5.13 in [Uen75]:

• Lemme A. et f : V → W be a surjective morphism of complex varieties and D
be a Cartier divisor in W , then

κ(V, f∗D) = κ(W,D).
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Consider the surjective morphism P(f∗TY ) → P(TY ) induced by f . Then the tauto-
logical line bundles of P(f∗TY ) and P(TY ) have same Kodaira dimension by Lemma A.
Hence, TY is big if and only if f∗TY is big. Since f is generically surjective and TX is
locally free, there is a natural injection 0 → TX → f∗TY , and thus the non-bigness of
TY implies the non-bigness of TX .

Now suppose that TY is not pseudo-effective. Let η (resp. η̃) be the tautological
line bundle of P(TY ) (resp. P(f∗TY )) and let π : P(TY ) → Y and π̃ : P(f∗TY ) → X
be the natural projections. Let A be any ample divisor on Y . Then η + 1

nπ
∗A is not

Q-effective for any sufficiently large integer n. Hence η̃ + 1
n π̃

∗f∗A is not Q-effective
for any sufficiently large integer n by Lemma A. Applying Lemma 2.2 in [HLS22] (a
result about pseudo-effective) and the injection 0→ TX → f∗TY , we see that TX is not
pseudo-effective.

8.3.1 Smooth Complete Intersections
Lemma 8.6. Let X be a smooth non-linear Fano complete intersection of dimension
≥ 3. Then the VMRT is not dual defective along a general point.

Proof.

Theorem 8.7. Let X be a non-linear smooth complete intersection of multi-degree
d = (d1, · · · , dk) in a projective space. Then the tangent bundle TX is big if and only if
X is a quadric hypersurface. Moreover, suppose that X is very general in its deformation
amily. Then TX is pseudo-effective if and only if d = (2) or d = (2, 2).

Proof.

8.3.2 Del-Pezzo Manifolds
Need to add.

8.3.3 Gushel-Mukai Manifolds
Need to add.

8.4 More Applications for the Conjecture
We will show the following which is a special case of the Conjecture 5:

Theorem 8.8. Let X be a Gushel-Mukai manifold of Picard number 1 or a non-linear
smooth complete intersection of dimension ≥ 3. Then X admits no non-isomorphic
surjective endomorphism.

Proof.
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8.5 Connections with Bott Vanishing
Here we follows the special case in [KT23] for smooth projective varieties over C.

Definition 8.9. An endomorphism f : X → X is said to be int-amplified if there is an
ample Cartier divisor H on X such that f∗H −H is ample.

Definition 8.10. Let X be a smooth projective variety over a field. We say that X
satisfies Bott vanishing if we have H i(X,ΩjX(A)) = 0 for every i > 0, j ≥ 0, and A an
ample Cartier divisor.

Here is our main theorem in this section:

Theorem 8.11 (Kawakami-Totaro, 2023). Let X be a smooth projective variety over C.
Suppose that X admits an int-amplified endomorphism, then X satisfies Bott vanishing.

Proof. Let f be that int-amplified endomorphism, hence f is finite. Let d = deg f . By
Tag 0FLB we have a trace map trf : f∗Ω

j
X → ΩjX such that trf ◦ f∗ = did. Hence

trf
d gives a splitting of the pullback f∗ : ΩjX ↪→ f∗Ω

j
X . Taking the pushforward by f ,

we obtain a split injective map f∗ΩjX ↪→ (f2)∗Ω
j
X . Hence we get a split injective map

ΩjX ↪→ (f2)∗Ω
j
X . Repeat this process we find that for every positive integer e we have

the split injective map

ΩjX(A) ↪→ ((f e)∗Ω
j
X)(A) = (f e)∗(Ω

j
X((f

e)∗(A)))

where A ample. As f finite and then we have the split injective map

H i(X,ΩjX(A)) ↪→ H i(X,ΩjX((f
e)∗(A)))

for any positive integer e.
Pick an ample divisor H such that f∗H −H is ample. Then there exists c ∈ Q>1

such that f∗H − cH ample. Hence (f e)∗H − ceH nef for all e ∈ Z>0. Now there exists
also rational u > 0 such that A−uH ample. Hence (f e)∗A−u(f e)∗H nef for all e ∈ Z>0.
Hence (f e)∗A−uceH nef for all e ∈ Z>0. Now by Fujita vanishing theorem (see Theorem
1.4.35 in [Laz04]), there is m ∈ Z>0 such that H i(X,ΩjX(mH + D)) = 0 for any nef
divisor D. As c > 1, pick some e such that uce ≥ m, we find that (f e)∗A−mH is nef.
Hence H i(X,ΩjX((f

e)∗A)) = 0. Finally we get H i(X,ΩjX(A)) = 0 and well done.

Proposition 8.12. Let X be a smooth Fano variety over C satisfies Bott vanishing, then
X is locally rigid, that is, H1(X,TX) = 0. Hence there are only finitely many smooth
complex Fano varieties in each dimension admit an int-amplified endomorphism.

Proof. When dimX = 1, then X = P1 and well done. When dimX > 1, by Serre
duality we have H1(X,TX) = HdimX−1(X,ΩX ⊗ KX)

∨ = 0 since X satisfies Bott
vanishing.

https://stacks.math.columbia.edu/tag/0FLB
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Corollary 8.13. Let X be a smooth projective variety over C with Pic(X) = Z.

(a) If X admits a non-isomorphic surjective endomorphism, then X satisfies Bott
vanishing.

(b) If X is Fano and admits a non-isomorphic surjective endomorphism, then X
satisfies Bott vanishing. In particular X is locally rigid.

Proof. For (a), ifX admits a non-isomorphic surjective endomorphism f , then by Zariski
main theorem deg f > 1. Hence f∗H − H is ample since Pic(X) = Z. Hence f is an
int-amplified endomorphism, then X satisfies Bott vanishing by Theorem 8.11.

For (b), by (a) X satisfies Bott vanishing. Hence by Proposition 8.12 that X is
locally rigid.



Chapter 9

Fano Manifolds with Big
Automorphism Group

There is a interesting conjecture:

Conjecture 6. Let X be a Fano manifold of Picard number 1 of dimension n. Then
dim aut(X) ≤ n2+2n and with equality if and only if X ∼= Pn where aut(X) = H0(X,TX)
is the Lie algebra of Aut(X).
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Chapter 10

Remmert-Van de Ven/Lazarsfeld
Problem

We refer [HM99], [HM04] and [Lau09].

Theorem 10.1.
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Chapter 11

About Campana-Peternell
Conjecture-II

Recall the conjecture in [CP91].
Conjecture 7 (Campana-Peternell Conjecture). Any Fano manifold whose tangent
bundle is nef is rational homogeneous.

This conjecture has showed in the following cases:
• For dimX ≤ 5, by [CP91][Hwa06][Wat14b][Kan17].
• For ρ(X) ≥ n− 4, by [Kan16] or [Wat15].
• For dimX ≤ ρ(X)(iX − 1) + 1, by [Wat15].
• For FT-manifolds to get G/B, by [MOSCW15][OSCWAW17].
• For Index(X) ≥ dimX − 2, by [Wat21].
• For dimX = 6 and ρ(X) = 1 and iX = 4, by [Wat21].
• For complete intersections of hypersurfaces, by [Pan13].
• For horospherial varieties, by [Li17].

11.1 One of Possible Way to the CP-Conjecture
Here we will follows the survey [MOESC+15]. To prove the Conjecture 7, in the original
paper [CP91] they find a way:
(1) First prove CP Conjecture for smooth varieties with Picard number one.
(2) Then prove that, given any Fano manifold with nef tangent bundle X and a

contraction f : X → Y , from the homogeneity of Y and of the fibers of f one can
recover the homogeneity of X.

145
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Unfortunately proving homogeneity in the Picard number one case turned out to be a
very hard problem. In [MOSCW15] they have have the following converse steps:

(A) Prove Conjecture 7 for maximal Picard number.
(B) Prove that any Fano manifold with nef tangent bundle is dominated by one of

such manifolds.

Then by the main theorem of [Lau09] we get the result! We will see in Section 11.3 and
Section 11.4 that how this process works.

11.1.1 Sketch Proof of the First Step
The original paper is [OSCWAW17] and we will follows the proof in Section 6 in the
survey [MOESC+15]. First we define the Fano manifold with nef tangent bundle with
maximal Picard number:

Definition 11.1. We define a variety X is a Flag-Type manifold (FT manifold) if it is a
Fano manifold of nef tangent bundle such that elementary contractions are P1-bundles.

Furthermore, we introduce the width of a Fano manifold X as a measure of how far
X is from being an FT-manifold.

Definition 11.2. Given a Fano manifold of nef tangent bundle X with Picard number
n, consider the Situation 1. We define

τ(X) :=
n∑
i=1

(−KX · Γi − 2) ∈ Z≥0.

Lemma 11.3. Let X be a Fano manifold of nef tangent bundle such that elementary
contractions are P1-bundles, then −KX · Γ = 2 for minimal rational curves in the
extremal ray Γ ∈ R.

Proof. Consider the contraction f : X → X ′ induced by R, then sinceKX = Kf+f
∗KX′

we get the result as Kf · Γ = −2.

Proposition 11.4. Let X be a Fano manifold of nef tangent bundle with Picard number
n and dimension m. Consider the Situation 1.

(a) If τ(X) = 0, then Ki
pi← Ui

qi→ X correspond to Γi satisfies that qi : Ui → X is an
isomorphism.

(b) If τ(X) = 0, then the elementary contraction correspond to Γi is pi : X ∼= Ui → Ki
which is a P1-bundle.

(c) We have X is an FT-manifold if and only if τ(X) = 0.
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(d) Let M be a Fano manifold of nef tangent bundle admit a contraction f :M → X
where X is an FT-manifold. Then there exists a smooth variety Y such that
M ∼= X × Y .

Proof. For (a), if τ(X) = 0, then for any i we have −KX · Γi = 2. By Lemma 7.3 we
know that qi is smooth. Now dimHomn

bir(P1, X) = m + 2 and hence by Theorem 1.31
we have dimKi = dimRatCurvesn(X) = m − 1. Hence dimUi = m = dimX. Hence qi
is étale. As X is Fano we have qi : Ui → X is an isomorphism.

For (b), this is trivial by (a).
For (c), if τ(X) = 0 then X is an FT-manifold by (b). Conversely if X is a FT-

manifold, then this follows from Lemma 11.3.
For (d) we refer Proposition 5 in [MOSCW15].

Remark 11.5. Note that (d) shows that FT-manifold is the ”maximal” Fano manifolds
of nef tangent bundles.

Here we fix some more notations:

Situation 3. See the Situation 1 in the case of FT-manifolds. By Proposition 11.4, the
families pi : Ui → Ki coincide with contractions πi : X → Xi.

Moreover given any subset I ⊂ D := {1, ..., n}, the rays Ri, i ∈ I, span an extremal
face by Theorem 7.4(b), that we will denote by RI . We will denote by πI : X → XI

the corresponding extremal contraction, by TI := TπI the relative tangent bundle, and
by KI := − detTI the relative canonical divisor. Alternatively, we will denote by πI :
X → XI the contraction of the face RI spanned by the rays Ri such that i ∈ D\I. For
I ⊂ J ⊂ D we will denote the contraction of the extremal face πI,∗(RJ) ⊂ N1(XI) by
πI,J : XI → XJ or by πD\I,D\J : XD\I → XD\J .

Bott-Samelson Varieties

We consider the Situation 3 without assume TX is nef. LetD = {1, ..., n} and a sequence
` = (l1, ..., lr) where li ∈ D. We define `[s] := (l1, ..., lr−s) and `[r] = ∅.

Definition 11.6. For any sequence ` = (l1, ..., lr) of D we will define smooth varieties
Zℓ[s] for s = 0, ..., r which is called the Bott-Samelson varieties of X associated with `,
together with morphisms

Zℓ[s+1] Zℓ[s] X
fℓ[s]

pℓ[s+1]

σℓ[s+1]

in the following way:
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For s = r we let Zℓ[r] := X and fℓ[r] = id. For s < r, if we have defined Zℓ[s+1] and
fℓ[s+1], then consider the cartesian diagram:

Zℓ[s] X

Zℓ[s+1] Xlr−s

pℓ[s+1]

fℓ[s]

πlr−s

gℓ[s+1]

fℓ[s+1]σℓ[s+1]

p

Note that pℓ[s+1] is a P1-bundle with a section σℓ[s+1] follows from fℓ[s+1]; more precisely
it is a projectivization of an extension of OZℓ[s+1]

by f∗ℓ[s+1]Klr−s which is the pullback
of relative Euler sequence of Zℓ[s] via σℓ[s+1].

For φ : Y → X, we may define Zℓ[s](Y ) := Zℓ[s] ×X Y which are called the Bott-
Samelson varieties of X associated with φ : Y → X and `. Note that this is functorial.
Note also that Zℓ[s](Y ) can be constructed as Zℓ[r] := Y and fℓ[r] = φ and do the same
thing as before. When Y = {x} via the inclusion φ, we let Zℓ[s] := Zℓ[s](Y ).

Here we mainly consider Zℓ[s]. We define βi(r−i) be the class of the fibers of pℓ[r−i+1]

in N1(Zℓ[r−i]). For s ≤ r− i we define βi(s) be the composition pushforward via σℓ[r−j],
j = i, ..., r − s− 1. By definition we have fℓ[s],∗βi(s) = [Γli ]. We define βi := βi(0).

Hence {βi, i = 1, ..., r} be a basis of N1(Zℓ) with a dual basis {Hi} in N1(Zℓ).

Proposition 11.7. Consider the same situation as before.

(a) Define
Na :=

∑
i≤a,li=la

Hi ∈ N1(Zℓ)

with dual elements γb ∈ N1(Zℓ). Then the Mori cone (resp. the nef cone) of Zℓ is
a simplicial cone generated by γb (resp. Na).

(b) Let J := {i : li = lk for some k > i}, then the Stein factorization of fℓ : Zℓ → X is
the contraction associated to the extremal face of NE(Zℓ) generated by {γi : i ∈ J}.

Proof. See Corollary 3.9, 3.10 in [OSCWAW17].

Definition 11.8. We call ` is a maximal reduced sequence if it satisfying that r = m :=
dimX and dim fℓ[s](Zℓ[s]) = m− s for every s (since X is rationally chain connected by
curves Γj, it is always possible to find a sequence of this kind).

Cartan Matrix of FT-Manifolds
Consider again the Situation 3.

Definition 11.9. Let X be an FT-manifold of Picard number n. We define the Cartan
matrix is M(X) = (−Ki · Γj)ij.
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Theorem 11.10. Let X be an FT-manifold of Picard number n.

(a) Let I ⊂ D which is not empty. Then every fiber of πI : X → XI is an FT-manifold
whose Cartan matrix is MI(X), the I × I-principal submatrix of M(X).

(b) We will write M(X) = MI(X) ×MJ(X) if M(X)ij = 0 for any (i, j) ∈ (I ×
J) ∪ (J × I) where I, J ⊂ D are complementary. Then in this case we have
X ∼= X(I) × X(J) where X(I), X(J) are FT-manifolds with Cartan matrices
MI(X),MJ(X), respectively.

(c) The Cartan matrix of X is the Cartan matrix of a semisimple Lie algebra.

Sketch of the proof. For (a) and (b) we refer Proposition 6,7 in [MOSCW15].
For (c), we use induction on Picard number n. For n = 2 this is directly from Lemma

2.13. Hence we may assume that n ≥ 3 and that the statement holds for FT-manifolds
of Picard number ≤ n− 1.

By some Lie theory, see the proof in [MOESC+15] Proposition 6.13, M(X) is either
of finite or of affine type. We let here is in the latter case. In this case, by some
Lie theory again there exists a linear combination

∑n
1 miΓi such that mi ∈ R>0 and

Ki ·
∑n

1 miΓi = 0 for all i. As M(X) is of integer coefficients, we may assume mi ∈ Z>0.
By some more theory of rational curves (see [Kol96] Section II.7),

∑n
1 miΓi is smoothable

and therefore it is numerically equivalent to an irreducible rational curve Γ.
Let f : P1 → Γ ⊂ X be the normalization morphism, and p ∈ P1 be any point.

Consider a maximal reduced sequence ` = (l1, ..., lm) of X for the point f(p), and the
corresponding Bott-Samelson varieties Zℓ[s] associated to ` and f(p). At the same time,
consider the associated Bott-Samelson varieties Z ′

ℓ[s] := Zℓ[s](P
1) associated to f . We

will denote by f ′ℓ[s] : Z ′
ℓ[s] → X their evaluations.

We first claim that Z ′
ℓ[s]
∼= P1 × Zℓ[s]. Indeed, Z ′

ℓ[s] is the projectivization of a rank
two bundle on Z ′

ℓ[s+1], which, by induction, is isomorphic to P1 × Zℓ[s+1], appearing as
an extension

0→ O((f ′ℓ[s])
∗Km−s)→ F ′

ℓ[s] → OZ′
ℓ[s]
→ 0.

By the construction of the curve Γ, (f ′ℓ[s])∗Km−s has intersection zero with the fibers of
the projection p2 : P1×Zℓ[s+1] → Zℓ[s+1], then F ′

ℓ[s] is trivial on these fibers. Hence the
sequence is the pullback via p2 of

0→ O(f∗ℓ[s]Km−s)→ Fℓ[s] → OZℓ[s]
→ 0.

Hence Z ′
ℓ[s]
∼= P1 × Zℓ[s] and we get the claim.

Let jℓ[s] : Zℓ[s] → Z ′
ℓ[s]
∼= P1 × Zℓ[s] as z 7→ (p, z), then by functorial we have
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f ′ℓ[s] ◦ jℓ[s] = fℓ[s]. Consider

Zℓ[1]

Z ′
ℓ[1]
∼= P1 × Zℓ[1] X

P1 Xlm−1

jℓ[1]

f ′
ℓ[1]

πlm−1p1

p2
fℓ[1]

Since the image of πlm−1 ◦ f ′ℓ[1] in X is numerically equivalent to Γ, then it does not
contract fibers of p2. By the choice of ` it is generically finite when restricted to fibers of
p1. Hence this implies that πlm−1 ◦ f ′ℓ[1] is generically finite (for details we refer Lemma
7 in [MOSCW15]). This is impossible since dimZ ′

ℓ[1] = dimXlm−1 + 1.

Relative Duality and Reflection Groups for General Spaces

We will now present a generalization of the previous result holds for Fano manifolds
whose elementary contractions are P1-bundles; in other words, it avoids the assumption
of the nefness of the tangent bundle of X.

Lemma 11.11. Let π :M → Y be a P1-bundle over a smooth manifold Y , denote by Γ
one of its fibers and by K its relative canonical divisor. Then for every Cartier divisor
D on M , setting l := D · Γ and sgn(α) := α/|α| for α 6= 0, sgn(0) := 1.

(a) We have:
H i(M,OM (D)) ∼= H i+sgn(l+1)(M,OX(D + (l + 1)K)).

In particular χ(M,OM (D)) = −χ(M,OM (D + (l + 1)K)).
(b) We have

(π∗OM (K −D))∨ ∼= π∗(OM (D + (l + 1)K)).

Proof. We refer Lemma 2.3 and Lemma 2.4 in [OSCWAW17].

Now let X be a Fano manifold whose elementary contractions are P1-bundles. We
use the similar notations as before. For every elementary contraction πi : X → Xi we
will consider the linear map ri : N1(X)→ N1(X) given by ri(D) = D+(D·Γi)Ki, which
is a reflection, i.e. it is an involution that fixes the hyperplane Γ⊥

i := {D : D · Γi = 0}.
Moreover ri(Ki) = −Ki by Lemma 11.3.

Theorem 11.12. The group W ⊂ GL(N1(X)) generated by the reflections {ri : i =
1, ..., n} is a finite group.
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Proof. Consider the dual action of W on the vector space N1(X) = N1(X)∨, defined
by w∨(C) · D = C · w(D), for all D ∈ N1(X), C ∈ N1(X). This action is clearly
faithful. Moreover the matrix of every element r∨i ∈ GL(N1(X)) with respect to the
basis {Γ1, ...,Γn} has integral coefficients and determinant±1, hence the same properties
hold for the matrices of any w∨ ∈ GL(N1(X)).

Consider the Euler characteristic which is a polynomial of degree ≤ dimX on
N1(X)Z which can be extended to N1(X). Define T : D 7→ D+ KX

2 . Let χT := χX ◦T ,
then by Lemma 11.3 and Lemma 11.11 we have χT (D) = −χT (ri(D)) for any ri
and D. Hence χT (D) = −χT (w(D)) for all D and w ∈ W . Hence χT (w(Γ⊥

i )) =
−χT (w ◦ ri ◦ w−1w(Γ⊥

i )) = −χT (w(Γ⊥
i )). Hence χT (w(Γ⊥

i )) = 0 and then χT vanishes
on any hyperplane of the form w(Γ⊥

i ).
Hence in particular, it follows that the cardinality of this set Z ⊂ P(N1(X)) of

hyperplanes is smaller than or equal to the degree of χT , i.e. the dimension of dimX.
Hence finite. Therefore, to show that W is finite, it is enough to consider the induced
action of W on Zn, and show that the isotropy subgroup W0 ⊂ W of elements of W
fixing the point ([Γ1], ..., [Γn]) is finite. If w ∈ W0, then the matrix of w∨ with respect
to the basis {Γ1, ...,Γn} is diagonal, hence all its diagonal coefficients are equal to ±1.
In particular the image of W0 in GL(N1(X)) is finite and, since the action of W on
N1(X) is faithful, W0 is finite as well.

Corollary 11.13. With the same notation as above, {−Ki : i = 1, ..., n} is a basis of
N1(X) and R := {w(−Ki) : w ∈W, i = 1, ..., n} (which is a finite set by Theorem 11.12)
is a root system with Weyl group W . In particular the Cartan matrix M(X), which
coincide as above, of a Fano manifold X whose elementary contractions are smooth
P1-fibrations is the Cartan matrix of a semisimple Lie algebra.

Proof. By Theorem 11.12 directly check, we refer Corollary 2.10 and Proposition 2.13
in [OSCWAW17]. Note that we consider any inner product (−,−) in N1(X). A new
inner product 〈−,−〉 defined by 〈x, y〉 :=

∑
w∈W (w(x), w(y)), for all x, y ∈ N1(X),

is W∨-invariant. The reflections r∨i are orthogonal with respect to the scalar product
〈−,−〉.

Dynkin Diagrams and Homogeneous Models

Now consider an FT-manifold, or more general, a Fano manifold whose elementary
contractions are P1-bundles X. By the previous two small sections we have the Dynkin
diagram associated to X:

Definition 11.14. The Dynkin diagram D(X) of X is the graph having n := ρ(X)
nodes, such that the nodes in the i-th and j-th position are joined by (−Ki ·Γj)(−Kj ·Γi),
which is equal to = 0, 1, 2 or 3 edges. When two nodes are joined by multiple edges we
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write an arrow on them pointing to the node j if −Ki · Γj < −Kj · Γi. The set of nodes
of D(X) will be identified with D = 1, ..., n.

Let G/B be the complete flag manifold associated to the Dynkin diagram D(X) where
B is the Borel subgroup. We call G/B be the rational homogeneous model of X. We
will use for G/B a similar notation as for X, adding an overline to distinguish the two
cases (so we will use π̄i,Γi,−Ki,...).

We will also consider the isomorphism of vector spaces ψ : N1(X) → N1(G/B)
defined by ψ(−Ki) = −Ki. This isomorphism sends −KX to −KG/B.

Proposition 11.15. Let X be a Fano manifold whose elementary contractions are P1-
bundles. With the same notation as above, for every line bundle L we have hi(X,L ) =
hi(G/B,ψ(L )) for any i. In particular the dimension of X equals the dimension of its
homogeneous model G/B.

Proof. See Corollary 2.25 in [OSCWAW17].

Proposition 11.16. Let X be a Fano manifold whose elementary contractions are
P1-bundles. Let ` = (l1, ..., lm) is a sequence such that w(`) := rl1 ◦ · · · ◦ rlm is a
reduced expression of the longest element in W , that is, w(`) cannot be written as a
composition of a smaller number of reflections ri and for every Weyl group W there is
a unique element of maximal length (see [OSCWAW17] section 3 for details). Then the
morphism fℓ : Zℓ → X is surjective and birational.

Sketch of the proof. By the Schubert variety of G/B, we can find that dim fℓ(Zℓ) =
dimZℓ, see Corollary 3.18 in [OSCWAW17]. As ` is of the longest, via the case of G/B
and Proposition 11.15 that dimX = dimG/B, we know that fℓ is surjective and of
same dimension.

Let L be an ample line bundle on X and let L := ψ(L ). Hence by Lemma
11.18 to show that fℓ is birational is enough to show that, for all s � 0, the re-
striction map H0(X,L ⊗s) → H0(Zℓ, f

∗
ℓ L

⊗s) which is an injection by the surjec-
tivity of fℓ, is an isomorphism. Note that for G/B we have f̄ℓ is birational and
H0(G/B,L

⊗s
) ∼= H0(Zℓ, f̄

∗
ℓ L

⊗s
) which are the well-known results, see paper [Dem74].

Hence by Proposition 11.15 we just need to show that

H0(Zℓ, f
∗
ℓ L

⊗s) ∼= H0(Zℓ, f̄
∗
ℓ L

⊗s
)

for all s � 0. This is an application of Euler characteristic and Kawamata-Viehweg
vanishing Theorem. We omit it and we refer Proposition 3.17 in [OSCWAW17].

Note that Theorem 11.10(b) holds more generally as we considered:
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Corollary 11.17. Let X be a Fano manifold whose elementary contractions are P1-
bundles. Assume that D(X) = D1tD2. Then X ∼= X1×X2, where X1 and X2 are Fano
manifolds whose elementary contractions are P1-bundles and whose Dynkin diagrams
are D1 and D2, respectively.

Proof. Actually if we consider the reduced sequence of maximal length `1, `2 of D1 and
D2, respectively, we have Zℓ1 × Zℓ2

∼= Zℓ1ℓ2 and `1`2 is also a reduced sequence of
maximal length, see Lemma 3.2 and in [OSCWAW17]. Hence fℓ1ℓ2 is birational.

By Proposition 11.7(b) fℓ1ℓ2 is the contraction determined by the extremal face of
NE(Zℓ1ℓ2) generated by R := {γi : li = lk for some k > i}. Hence this face is the convex
hull of the two extremal faces generated by the subsets in `1 and `2. This can give us
X ∼= X1×X2 such that both of them are Fano manifolds whose elementary contractions
are P1-bundles.

Lemma 11.18. Let f : X → Y be a surjective morphism between reduced projective
schemes and let L be an ample invertible sheaf on Y . Assume that H0(Y,L ⊗n) →
H0(X, f∗L ⊗n) is an isomorphism for all n� 0, then f∗OX = OY .

Proof. Consider the sheaf exact sequence 0 → OY → f∗OX → Q → 0 on Y since f
surjective and X,Y reduced. Then we have

0→ H0(Y,L ⊗n)→ H0(X, f∗L ⊗n)→ H0(Y,Q ⊗L ⊗n)→ H1(Y,L ⊗n)→ · · · .

Hence for all n � 0 we have H0(Y,Q ⊗L ⊗n) = 0. As L ample we get Q = 0. Well
done.

Homogeneity of FT-Manifolds and More General

Finally we will prove the following:

Theorem 11.19. Let X be a Fano manifold whose elementary contractions are smooth
P1-fibrations. Then X ∼= G/B where G is a semisimple algebraic group and B is a Borel
subgroup.

Remark 11.20. For FT-manifolds X, we may consider the Situation 3 and use the
smoothness of contractions πI : X → XI (Theorem 7.4(a)) by the following steps: let
X be the rational homogeneous model.

(1) Find an increasing sequence I1 ⊂ I2 ⊂ · · · ⊂ D such that ](Ik+1) = ](Ik) + 1 and
X
Ik+1 is a complete family of lines in XIk .

(2) Show that XI1 ∼= X
I1.

(3) Show that XIk ∼= X
Ik implies XIk+1 ∼= X

Ik+1.
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Moreover, it has been shown in [MOSCW15] that Step (3) works if we further assume that
FT-manifolds whose Dynkin diagrams are proper subdiagrams of D are homogeneous.
Thus, in principle one could use this strategy to prove Theorem 11.19 for FT-manifolds
by induction on the number of nodes of D, choosing appropriately the sequence Ik at
every step so that it assures suitable initial isomorphism XI1 ∼= X

I1.

Actually in the step (2), we need to find XI1 ∼= X
I1 case by case. But here in

general case we will use the different method in [OSCWAW17] which compare X and
X via Bott-Samelson varieties. By Corollary 11.17 we just need to consider the case
with connected Dynkin diagrams.

Proposition 11.21. Let X be a Fano manifold whose elementary contractions are P1-
bundles. Assume that its Dynkin diagram D is connected, different from F4 and G2.
Then there exists a reduced sequence ` = (l1, ..., lm) associated to the longest element of
W such that

Zℓ[s] ∼= Zℓ[s], for any s = 0, ...,m− 1.

Basic ideas of the proof. The arguments leading to the result are rather technical. We
refer the reader to [OSCWAW17] for details, and include here a few words about the
ideas behind them.

Now looking at the construction of the Bott-Samelson varieties, we know that given
Zℓ[s+1], the next Zℓ[s] come from the extension

0→ f∗ℓ[s+1]Klm−s → Fℓ[s] → OZℓ[s+1]
→ 0

which correspond to an element ζℓ[s] ∈ H1(Zℓ[s+1], f
∗
ℓ[s+1]Klm−s). Hence we just need

to find a reduced sequence of maximal length m such that for any s the cocycle ζℓ[s] is
uniquely determined up to homotheties.

By looking at the restriction of the sequence to curves βi(s + 1) one sees that the
extension cannot be trivial if J := {i < r− s : li = lm−s} is not empty. So we just need
to show that for any s = 0, ...,m− 1 we have

H1(Zℓ[s+1], f
∗
ℓ[s+1]Klm−s) =

{
0, J = ∅;
1, J 6= ∅

Now in [OSCWAW17] we check that if D 6= F4, G2 has no multiple edges any reduced
sequence of maximal length satisfies the required property. This is not the case when
D is of type B or C, but we may still choose carefully the sequence ` so that the whole
process works.

Proof of Theorem 11.19 different from F4 and G2. By Proposition 11.16 we know that
fℓ and f̄ℓ are birational, since Proposition 11.21 it is enough to compare the extremal
faces defining them, which are the same by Proposition 11.7(b).
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Proof of Theorem 11.19 for G2. This is follows from Lemma 2.13.

Ideas of Theorem 11.19 for F4. For F4 we can not use the similar way as Proposition
11.21, not that via the computer, authors has checked that for none of the 2144892
possible sequences providing a reduced expression of the longest element of W . Hence
we need to find another way. Actually we will consider the way we considered in Re-
mark 11.20. Here we only give the basic ideas and thee details we refer Section 5 in
[OSCWAW17].

So first we need to show that πI : X → XI are smooth. To do this, we prove first
that the fibers of these contractions are birational images of Bott-Samelson varieties,
and these images may be proved to be homogeneous because we know that Theorem
11.19 holds in the case in which the Dynkin diagram is a proper subdiagram of F4. Hence
Remark 11.20 reduce the problem to showing that X1 is isomorphic to its homogeneous
model X1. Now by Theorem 5.6 we just need to show that the VMRT’s at a general
point of both varieties are projectively isomorphic.

For the rational homogeneous model, this is the rational homogeneous space corre-
sponding to the Dynkin diagram C3 marked on the third node. For our manifold X1

we may consider the family of lines passing through one point, which is the image via
π1 of a Bott-Samelson variety Zℓ. We may then prove that Zℓ is isomorphic to the
corresponding Bott-Samelson variety of X, and hence the proof boils down to studying
the morphism from Zℓ into X1.

Corollary 11.22. Any Fano manifold X of nef tangent bundle with τ(X) = 0 is
isomorphic to the quotient of a semisimple group G by its Borel subgroup B.

Proof. Follows directly from Proposition 11.4(c) and Theorem 11.19.

11.1.2 The Second Step
Now by Corollary 11.22 we know that the CP-Conjecture 7 follows from the following
conjecture:

Conjecture 8. Given a Fano manifold X of nef tangent bundle satisfying τ(X) > 0
which is not the product of positive dimensional varieties. Then there exists a surjective
morphism f : X ′ → X from a Fano manifold X ′ of nef tangent bundle, which is not a
product of positive-dimensional varieties, such that τ(X ′) < τ(X).

Need to add.

11.2 For Lower Dimensions
Here is our main result:
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Theorem 11.23. Let X be a Fano manifold with nef tangent bundle of dimX := m ≤ 5,
then X is rational homogeneous. More precisely:

(1) For m = 1, we have X ∼= P1.
(2) For m = 2, we have X ∼= P2 or P1 × P1.
(3) For m = 3, we have X ∼= P3 or Q3 or P1 × P2 or P(TP2) or (P1)3.
(4) For m = 4, we have X ∼= P4 or Q4 or P1 × P3 or P1 × Q3 or (P2)2 or P(TP2) or

P(N ) for the null-correction bundle over P3 (see Definition 11.26), or (P1)2×P2

or P1 × P(TP2) or (P1)4.
(5) For m = 5, we have X ∼= P5 or Q5 or K(G2) or P1×P4 or P1×Q4 or P2×P3 or

P2×Q3 or P(TP3) or P(Si) or P1×(P2)2 or (P1)2×P3 or (P1)2×Q3 or P2×P(TP2)
or P1 × P(N ) = P1 × P(S ) or (P1)3 × P2 or (P1)2 × P(TP2) or (P1)5 where N
the null-correction bundle over P3 and Si be the spinor bundle on Q4.

For m ≤ 3, this is right in [CP91]. For m = 4 is completed by Hwang (as [Hwa06]).
The case n = 5 with ρ(X) > 1 solved by Watanabe in [Wat14b]. And for n = 5 with
ρ(X) = 1, this was solved by Kanemitsu in [Kan17].

For dimension ≤ 2. For m = 1, this is trivial. For m = 2, note that X is minimal.
Let X 6= P2, then X is a ruled surface over a curve C. By Theorem 7.4(a) we know
that C = P1. Hence X ∼= PP1(O(a) ⊕ O(b)). If a 6= b, then X contains an exceptional
rational curve induce the birational contractions. This is impossible by Theorem 7.4(a).
Hence X ∼= PP1(O ⊕ O) ∼= P1 × P1.

11.2.1 Fundamental Lemmas
We always use the following lemmas:

Lemma 11.24. Let f : X → Y be a Pd-bundle. If Y is a curve or is rational, then
there exists a vector bundle of rank d+ 1 on Y such that X ∼= PY (E ).

Proof. Consider group schemes over Y as 1 → Gm → GLd+1 → PGLd → 1 which
induce a long exact sequence

H1
ét(Y,GLd+1)→ H1

ét(Y,PGLd)→ H2
ét(Y,Gm) = Br(Y ).

It’s well-known that if Y is a curve or rational, then Br(Y ) = 0. Hence H1
ét(Y,GLd+1)→

H1
ét(Y,PGLd) is surjectve.
On the other hand, a Pd-bundle f defines a cocycle [f ] ∈ H1

ét(Y,PGLd). Then f is
given by the projectivization of a vector bundle if and only if there exists a preimage of
[f ] in H1

ét(Y,GLd+1). Hence well done.
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Lemma 11.25 (Sato-Hirschowitz-Schneider, 1976-1980). The uniform bundle on Pn is
a vector bundle E such that the splitting type of E |ℓ are the same for all lines in Pn.
Then any rank n uniform bundle on Pn is of the following types:

O(a1)⊕ · · · ⊕ O(an), TPn(a), ΩPn(a).

Proof. See the history in the Section 1.3 in [OSS80].

Definition 11.26. Let n is odd and consider n+ 1 matrix:

A :=



0 −1
1 0

0 −1
1 0

. . .
0 −1
1 0


which is non-singular and 〈Ax,x〉 = 0 for all x ∈ Cn+1. Choose a homogeneous basis
of Pn and its dual basis in Pn,∗, the matrix A induce Φ : Pn ∼= Pn,∗. Since 〈Ax,x〉 = 0,
we have (x,Φ(x))P(TPn) ⊂ Pn × Pn,∗. This defines a section g : Pn → P(TPn) of
p : P(TPn)→ Pn. Hence induce a surjection TPn � O(a).

Now we determine a. Now in this case we have
∫
cn(TPn(−a)) = 0. Moreover we

have∫
cn(TPn(−a)) =

n∑
i=0

(−a)n−i
∫
ci(TPn) = −

n∑
i=0

(−a)n−i+1

(
n+ 1

i

)
= 1− (1− a)n+1.

Hence a = 2 or 0. But a 6= 0 since
∫
cn(TPn) 6= 0. Hence a = 2 and we have TPn � O(2).

Now thsi forms a short exact sequence

0→ N → TPn(−1) � O(1)→ 0

and we call such N is the null correlation bundle over Pn (n odd). Note that we call
show that such N is simple bundle and c(N ) = 1 + h2 + h4 + · · ·+ hn−1.

Lemma 11.27. Let f : Z → S be a smooth contraction of Fano varieties, then ρ(F ) =
ρ(Z)− ρ(S) for every fiber F .

Proof. We know that Pic(Z) ⊗ Q ∼= H2(Z,Q) and Pic(F ) ⊗ Q ∼= H2(F,Q). As S
simply connected, the monodromy action is trivial. Hence H2(Z,Q) → H2(F,Q) is
surjective by Deligne’s invariant cycle theorem. Hence ρ(F ) = dimN1(F,Z). Note that
ρ(Z)− ρ(S) = dimN1(F,Z) by Lemma 3.3 in [Cas08]
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11.2.2 Lower Dimensions for Picard Number Bigger Than One
Here we give the basic idea for the case ρ(X) > 1 where X be a Fano manifold with nef
tangent bundle. Now X admits at least two contractions of extremal rays. By Theorem
7.4(a), these contractions are smooth morphisms, and their fibers and targets are again
Fano manifolds with nef tangent bundles. Hence, induction applies!

For dimension = 3 of ρ(X) > 1. This can be checked by the classification theory of
Fano 3-folds. But here we follows the arguments in [CP91].

Now ρ(X) > 1. In this case we will use the induction as above. Consider a contrac-
tion f : X → Y . Then Y is a Fano manifold with nef tangent bundle.

If dimY = 1, then Y ∼= P1. So the fibres are P2 or P1 × P1. If in the first case,
by Lemma 11.24 we have X = PP1(O(a) ⊕ O(b) ⊕ O(c)) on Y . Hence a = b = c by
Theorem 7.4(a). So X ∼= P1×P2. We claim that the second case is impossible. Indeed,
now X is a P1 × P1-bundle on P1. View as analytic topology, we have R2f∗Z ∼= Z⊕2

since it is locally constant. By the second page of Leray spectral sequence we can find
that H2(X,Z) = Z⊕3. By the proof in Proposition 1.62, we have Pic(X) ∼= H2(X,Z).
Hence ρ(X) = 3. This is impossible since ρ(X) = ρ(Y ) + 1. See also Theorem 7.4(c1).

If dimY = 2, then f : X → Y is a P1-bundle. By Lemma 11.24 we have X =
PY (E ) → Y . Here Y = P2 or P1 × P1. We just consider Y = P2 and the case P1 × P1

can be induced by the similar method and are much easier and hence X ∼= P1×P1×P1.
Now f : X = PY (E ) → Y = P2. For any line ` ⊂ Y , we let E |ℓ ∼= O(a) ⊕ O for

a ≥ 0, after some twist. If a > 0, we can find a section ¯̀⊂ P(E |ℓ) such that `2 = −a.
Consider the exact sequence

0→ Nℓ̄/P(E |ℓ) = O(−a)→ Nℓ̄/X → NP(E |ℓ)/X |ℓ̄ = O(−a)→ 0.

Hence we have
∫
c1(Nℓ̄/X) = 1− a. As TX |ℓ̄ nef, we have a = 1. Hence E |ℓ ∼= O(1)⊕O.

In this case we can easy to see that actually E |ℓ ∼= O(1) ⊕ O for any line ` ⊂ Y since∫
c1(E ) ∩ ` = 1. Hence by the theory of uniform bundle as in Lemma 11.25, we have E

is O(1)⊕O or TPn(−1) or ΩPn(2). When E is O(1)⊕O this is impossible. By Lemma
2.72 we have X ∼= P(TP2) ∼= P(ΩP2), well done.

Idea for dimension = 4 for ρ(X) > 1. For ρ(X) > 1, this was solved in [CP94]. The
main method is similar as above. But we need more detailed analysis. Here we give an
example and idea of these. Consider a contraction f : X → Y induced by one ray.

If dimY = 1, then Y ∼= P1 and its fibres F are either P3 or Q3 since ρ(X) = 2 now
and by the dimension 3 case as above. For F = P3 case X = P1 × P3 as before. For
F = Q3, we need to consider another contraction g : X → Y ′ induced by another ray.
As no curve in F is contracted by g, we know that g|F is finite! Hence dimY ′ = 3,
fibres of g are P1 and ρ(Y ′) = 1. Hence Y ′ ∼= P3 or Q3. So we need to consider the Fano
bundles of rank 2 on P3 and Q3. Fortunately we have the whole classifications of these
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objects, see the paper [SAW90a] for details. Except the obvious one, we can use the
follows principle to exclude the possible cases: (i) the number of contractions is more
than 2; (ii) another contraction is not f as above.

If dimY = 2, then Y ∼= P2 or P1 × P1. For Y ∼= P2, by the reason of Picard
number, we know that X be the projective bundle on it. So we need to find the Fano
bundle of rank 3 on P2. Fortunately we have the whole classifications of these objects,
see the paper [SAW90b] for details. Except the obvious one, we can show many cases
have tangent bundles which are not nef via the second contraction. For example in
this case we need to exclude X = PP2(TP2(−1) ⊕ O). The Euler sequence give use
PP2(TP2(−1) ⊕ O) ⊂ P3 × P2. The second contraction is the projection onto P3. If its
tangent bundle is nef, then this contraction is a P1-bundle. Now using the results in
[SAW90a] again and we can get the result.

For Y ∼= P1 × P1 this is much simpler. By the reason of Picard number again,
we know that X be the projective bundle P(E ) on it. So E |P1×{s} = O(a)⊕3 and
E |{t}×P1 = O(b)⊕3. So by normalisation we can get this for any s, t and hence E is
trivial. Hence X ∼= P2 × P1 × P1.

For dimY = 3, then there are many cases as above and below of case of ρ(Y ) = 1.
We omitted and it is similar as above. But note that X = P(TP2) ×TP2 P(TP2) in the
original paper [CP94] is not have nef tangent bundle! See the arguments in Lemma 3.3
in [Wat14b] which find a line ` in it such that −KX · ` = 1 which is impossible if it has
nef tangent bundle (note also that P(TP2)×TP2 P(TP2) ∼= Bl∆(P2 × P2)).

Idea for dimension = 5 with ρ(X) > 1. First we have the following general properties:
As before we have at least two contractions f : X → Y and g : X → Z by two

extremal rays.

(1) Let Xy and Xz are some fibres over Y, Z, then it is either Pd(1 ≤ d ≤ 4) or
Qd(3 ≤ d ≤ 4).

(2) We have dimXz ≤ dimY < 5 and dimXy ≤ dimZ < 5.
(3) If dimZ = dimXy and Xy

∼= Pd (resp. dimY = dimXz and Xz
∼= Pd), then we

have X ∼= Pd × Y (resp. X ∼= Pd × Z).
(4) If dimZ = dimXy and Xy

∼= Qd (resp. dimY = dimXz and Xz
∼= Qd) for

3 ≤ d ≤ 4, then Z is a Pd or Qd and X is a P5−d-(projective)bundle over Z (resp.
Y ).

Note that (1)(2) are easy and (3) follows directly from Lemma 11.24 and Proposition
2.11. (4) follows directly from Theorem 10.1 and (2).

Next as before we need to consider the case when the base variety Y varies: let
f : X → Y be a P1-(projective) bundle, the the following holds.

(a) If Y ∼= P4, then X ∼= P1 × P4.
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(b) If Y ∼= Q4, then X ∼= P1 ×Q4 or P(Si) for the two spinor bundles Si on Q4.
(c) If Y ∼= P1 × P3 (resp. P1 × Q3), then X ∼= (P1)2 × P3 or P1 × P(N ) (resp.

X ∼= (P1)2×Q3 or P1×P(S )) where N be the null-correlation bundle on P3, S
the spinor bundle on Q3.

(d) If Y ∼= P(N ), then X ∼= P1 × P(N ).
(e) If Y ∼= (P2)2, then X ∼= P1 × (P2)2 or P2 × P(TP2).

For the definition of spinor bundle we refer [Ott88]. This follows from directly check as
before using the lower situations. See Proposition 3.9 in [Wat14b] for the details and
we omitted them here.

Note that our case satisfies the conditions in Proposition 2.8, so if X be a Fano 5-fold
with nef tangent bundle of ρ(X) ≥ 4, then X ∼= (P1)5 or (P1)3 × P2 or (P1)2 × P(TP2).

Come back to the main theorem. LetX be such variety with at least two contractions
f : X → Y and g : X → Z by two extremal rays. We need to consider the dimY =
1, ..., 4 and using (1)-(4) to find all posibilities and then using (a)-(e) to find the answers.
During the process, we can also use the above situation in ρ(X) > 3. In some cases f, g
are two different projective bundles, we can also use Proposition 2.12. For details we
refer the Theorem 4.1 in [Wat14b].

11.2.3 Lower Dimensions for Picard Number One
First we recall the following fundamental result:

Theorem 11.28. Let X be a Fano manifold of dimension m ≥ 2 with Picard number
1 and has nef tangent bundle, then 3 ≤ iX ≤ n+ 1. Moreover we have the following.

(a) If iX = 3, then X ∼= P2 or Q3 or K(G2).
(b) If m = 5, then X is P5 or Q5 or K(G2) or iX = 4.

Proof. See Theorem 4.2 in [MOESC+15] and [Wat14b] Corollary 5.2.

For dimension = 3 with ρ(X) = 1. This can be checked by the classification theory of
Fano 3-folds. But here we follows the arguments in [CP91].

Now ρ(X) = 1. We will show that in this case we have X ∼= P3 or Q3. By Theorem
2.7(a)(b), we just need to show iX ≤ 2 are impossible. As TX nef, we let iX = 2 (and
Index(X) = 2 in this case). Let C be such rational curve. We first claim that C is
smooth. By Proposition 2.4, if H is the fundamental divisor, then H is base-point free
or has just one base point. If H is base-point free, as H ·C = 1 then well done. If H has
just one base point x0. Let s ∈ Csing, then we must have s ∈ Bs(|H|). Hence s = x0.
By H ·C = 1 again we have C ⊂ Bs(|H|). This is impossible. Hence C is smooth. This
proves the claim.
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Now by Lemma 7.3, we find that for this minimal rational components we have
u : U → X is finite étale. As X Fano we have U ∼= X and has Picard number 1. This is
impossible since we also have U → K with dimK = 2 > 0. Well done. See also Theorem
11.28.

Idea for dimension = 4 for ρ(X) = 1. By Theorem 11.28 we get thatX ∼= P4 orQ4.

For dimension = 5 for ρ(X) = 1. By Theorem 11.28(b) we get that X ∼= P5 or Q5 or
K(G2) or iX = 4. In the next section we will show that iX = 4 is impossible (Theorem
11.35).

11.3 Five Dimensions and Special Pseudoindex Four
Here we will finish the proof of CP-conjecture of dimension five. Moreover, we will
also show the case of with ρ(X) = 1 and iX = 4 such that the evaluation morphism
e : U → X as before is a P2-bundle. Note that in this case the universal family of
minimal rational components U has dimension dimX + 2. Here we mainly follows the
paper [Kan17].

11.3.1 Some Preparations
We consider two lemmas.

Lemma 11.29. Let X be a Fano manifold of nef tangent bundle with Picard number 1
and iX = 4, e : U → X the evaluation morphism of minimal rational curves and F an
arbitrary e-fiber. Then the following hold.

(a) H2(F,Q)→ H2(U,Q) is injective.
(b) H1,1(U,Q)→ H1,1(F,Q) is surjective.
(c) For distinct (−1)-curves C1, C2 ⊂ F we have [C1] ≁num [C2] in N1(U).

Proof. (a)(b) follows from Deligne’s invariant cycle theorem.
For (c), now we have [C1] ≁num [C2] in N1(F ), hence there exists L ∈ Pic(F )

such that degC1
(L ) 6= degC2

(L ). Consider [L ] ∈ H1,1(F,Q), by (b) we can get
D ∈ H1,1(U,Q) whose restriction to F is [L ]. By Lefschetz (1,1)-theorem we can get
such L ∈ Pic(U)⊗Q with L |F ∼num L . Well done.

Lemma 11.30. Let X be a Fano manifold of nef tangent bundle with Picard number
one and iX = 4. Consider again e : U → X of families of minimal rational curves.
Then there exists a KU -negative curve contained in an e-fiber. In particular, there exists
a KU -negative extremal ray R of NE(U) which is contracted by e.
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Proof. By cone theorem we just need to show KU is not e-nef. If not, KU is e-nef, then
every e-fiber is a minimal surface of non-negative Kodaira dimension. By the result
about families of minimal surface of non-negative Kodaira dimension, for any rational
curve C = P1 → X this family U ×X C → C is isotrivial (see [OV01] Theorem 0.1).
As C is simply connected, this family is trivial. Hence there exists a minimal surface
of non-negative Kodaira dimension S such that (U ×X C → C) ∼= (S × C → C), see
[OV01] Lemma 1.6.

Consider a section C1 of S × C → C correspond to [C] ∈ V and is contracted by
π ◦ fU : S × C → V . As the diagram below, taking base-change and taking another
section C2 correspond to C1 ⊂ S × C:

C X

C2 C1 × C S × C U V

C1 S

π

e

f

fU

p

p

Then easy to see that dimπ(S × C) = 2.
Finally we have two methods to finish the proof.
• This implies that all rational curves parametrized by π(S×C) ⊂ V have the same

image f(C). This contradicts the fact that V is a (normalization of) parameter
space of rational curves.

• Since dimπ(S × C) = 2, we know that π(e−1(x)) is independent of x ∈ C. More-
over, since ρ(X) = 1, X is V -rationally connected by Lemma 3 in [KMM92a].
Hence dimV = 2 as C varies. This contradicts the dimension of V .

Well done.

Then the result is follows:
Theorem 11.31. Let X be a Fano manifold of nef tangent bundle with Picard number
one and iX = 4, let dimX = n then one of the following holds:
(1) The evaluation morphism as before e : U → X is a P2-bundle.
(2) There exists the commutative diagram:

X

U W

V Y

e

f

g

π

p

q
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with the following properties:

(a) f and g are P1-bundles.
(b) p and q are smooth elementary Mori contractions.

Hence the evaluation morphism e : U → X is a composition of two P1-bundles.

Proof. By Lemma 11.30, we have a contraction φ and the factorization e : U ϕ→ W ′ ψ→
X.

IfW ′ ∼= X, then e is an elementary Mori contraction and every fiber of e is isomorphic
to P2 by Lemma 11.27. Hence the case (1) occurs.

Now we assume thatW ′ 6∼= X. Then every fiber of φ has dimension at most 1. Hence
we need the classification theory of Mori contractions of relative dimension 1, which is
the following:

• Theorem A. Let f : A → B be a Mori contraction of a smooth variety A of
dimension n around a fixed fiber F = f−1(b) such that dimF = 1.

(1) If f is birational then F is irreducible, F ∼= P1, −KA · F = 1 and its normal
bundle is NF/A = O(−1) ⊕ O⊕n−2. The target B is smooth and f is a
blow-up of a smooth codimension 2 subvariety of B.

(2) If f is of fiber type then B is smooth and f is a flat conic bundle. In particular
one of the following is true:

(2.a) F is a smooth P1 and −KA · F = 2, NF/A = O⊕n−1.
(2.b) F = C1 ∪ C2 is a union of two smooth rational curves meeting at one

point and −KA ·Ci = 1, NF/A|i = O⊕n−1 and NCi/A = O(−1)⊕O⊕n−2

for i = 1, 2.
(2.c) F is a smooth P1, −KA ·F = 1 and the fiber structure F ′ on F is of mul-

tiplicity 2 (a non reduced conic); the normal bundle of F ′ is trivial while
NF/A is either O(1)⊕O(−1)⊕2 ⊕O⊕n−4 or O(1)⊕O(−2)⊕O⊕n−3 de-
pending on whether the discriminant locus of the conic bundle is smooth
at b or not.

For the proof we refer [And85].

So we need to consider two cases.

(I) Case I. φ is birational.
In this case, by Theorem A, W ′ is a smooth projective variety and φ is a blow-
up of a smooth codimension two subvariety Z ⊂ W ′. We will denote by E the
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exceptional divisor. We prove that every e-fiber is isomorphic to F1 and the case
(2) occurs. Consider the diagram:

E Z

U W ′ X

V M

ϕ ψ

ψZ

π
α

β

πE

Note that α, β,M will appear later. We have the following steps:

(I.1) Step I.1. ψZ : Z → X is finite and hence surjective.
Indeed, otherwise there would exist a curve D ⊂ Z contracted by ψ. Then
e−1(ψ(D))φ−1(D) by the dimensional reason. Hence ψ−1(ψ(D)) = D, con-
tradicting the fact that ψ is of relative dimension two.

(I.2) Step I.2. ψZ : Z → X is an isomorphism.
Indeed, ψZ : Z → X is generically one-to-one by Lemma 11.29(c). Hence
this follows from Zariski main theorem.

(I.3) Step I.3. πE : E → V is surjective.
Otherwise, πE : E → V is a contraction of fiber type. Since π is a P1-bundle,
πE : E → π(E) is a P1-bundle and π(E) is smooth by descent theory. by
Theorem A we have Z ∼= P3 since iX = iZ = 4. However, the universal family
of lines on P3 is a P2-bundle. This contradicts the fact that φ is a birational
morphism.

(I.4) Step I.4. N1(E) ∼= N1(V ) and NE(E) ∼= NE(V ) by (πE)∗.
Indeed, this since φ(V ) = 2 since πE : E → V is surjective and ρ(V ) ≥ 2.

(I.5) Step I.5. Contraction M of V .
By Step I.4 and rigidity lemma, we have the α, β and M induced by same
ray of φE .

(I.6) Step I.6. dimM = n.
Indeed, β|Z : Z →M is a finite surjective morphism since it is surjective and
ρ(Z) = ρ(M) = 1.

(I.7) Step I.7. Every fiber of e is isomorphic to F1 and ψ is a P2-bundle.
If KW ′ is ψ-nef, then ψ is isotrivial on every rational curve on X as in
Lemma 11.30. Hence dimM = 2 by the same arguments in Lemma 11.30.
This contradicts Step I.6. Therefore ψ is an elementary Mori contraction,
and hence every fiber of ψ is isomorphic to P2 by Lemma 11.27.
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(I.8) Step I.8. Conclusions.
By Step I.7, e is a Mori contraction. Hence we get another factorization
e : U

f→W
g→ X. The same argument as in Case II below shows that f and

g are P1-bundles.

(II) Case II. φ is of fiber type. Hence by Theorem A we have thw following cases of
fibres F of φ:

(a) F ∼= P1 and −KU · F = 2 and NF/U = O⊕n.
(b) F = C1 ∪ C2 is a union of two smooth rational curves meeting at one point

and −KU · Ci = 1 for i = 1, 2.
(c) Fred ∼= P1 and F is of multiplicity 2 (a non reduced conic), NFred/U is either

O(1)⊕ O(−1)⊕2 ⊕ O⊕n−2 or O(1)⊕ O(−2)⊕ O⊕n−1.

Now let f := φ and g := ψ and W :=W ′. We will show that case (2) occurs.

(II.1) Step II.1. f is of type (a) as above.
Indeed, if f is of type (b), then as C1 ≁num C1 in N1(U) by Lemma 11.29(c),
this is impossible since f is elementary contraction.
Furthermore, if a (−1)-curve C in the fiber, then NC/U = O(−1) ⊕ O⊕n.
Hence (c) is impossible. Hence the only possible case is (a).

(II.2) Step II.2. g is also a P1-bundle.
By Step II.1, g is a smooth fibration of relative dimension one. By Theorem
2.14, there exists the V (resp. W )-rationally connected quotient morphism
q :W → Y (resp. p : V → Y ).
Assume that the genus of g-fibers are positive, then g is isotrivial on any
rational curve on X (see the introduction and Remark 1.5 in [OV01], for
example). Hence dimY = 1 and the relative dimension of q is n by the
similar arguments as the second method in Lemma 11.30. Therefore, the
restriction g|q-fiber is finite and surjective onto X. Note that any q-fiber is
rational homogeneous manifold as in Corollary 2.15 and that iX = 4. Hence,
by Theorem 10.1, we have X ∼= P3. This gives a contradiction. Hence g is a
P1-bundle, completing the proof.

Well done!

11.3.2 Main Results
Finally comes to our two main results. Here is our first main result in this section:
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Theorem 11.32. Let X be a Fano manifold of nef tangent bundle with Picard number
one and iX = 4 such that the evaluation morphism e : U → X as before is a P2-bundle,
then X is rational homogeneous. In particular X ∼= P3 or Lag(6) = SGrass(3, 6).

Proof. Fix any π-fiber C. We first claim that Te|C = O(−1)⊕2.
Indeed, consider base change:

UC C

V U X

eC

e

p

π

πC

We have a natural section s : C → UC of eC . As e is a P2-bundle, we have UC = PF → C
by Lemma 11.24 where F = O(a)⊕O(b)⊕O(c) for a ≥ b ≥ c and c1(F ) = 0, 1, 2 after
some twist. Let ξ = OUC

(1) now. Since πC contracts s(C), the section s correspond
to F → O(c). As by construction πC contracts only finite curves, we have a ≥ b > c
now. Moreover, we have KU · C = −2 and KX · C = −4, we have Ke · C = 2. As
−Ke = 3ξ + e∗C(−c1(F )), we have c1(F ) = 3c+ 2. Hence c1(F ) = 2 and c = 0. Hence
F = O(1)⊕2 ⊕ O and we get the claim.

Now consider M := P(Te)
p→ U , then the fiber of e ◦ p are P(TP2) which is a

rational homogeneous space. As ρ(M/X) = 2, consider another Mori-contraction of
it, then by Theorem 2.79 and Theorem 4.4 in [SCAW04] we have another P1-bundle
q :M → N with N → X factor through M → X. Similarly, since by the claim we have
Te|C = O(−1)⊕2, any fiber of π ◦ p is P1 × P1, hence we have third P1-bundle which fix
the following diagram:

L M N

V U X

q

p

e

r

π

with different p, q, r. By Theorem 2.14 for q, r, we have

M N

L Q

q

r

and M → Q is a contraction of a 2-dimensional extremal face. By Theorem 2.14
for p, q and for p, r, we know that NE(M) is simplicial. Then M is a Fano manifold
whose elementary contractions are P1-bundles since ρ(M) = 3. Hence M is a rational
homogeneous manifold by Theorem 11.19, and so is X by Theorem 10.1.

The we consider the second main result. But before that, we need two lemmas.
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Lemma 11.33. Let X be a Fano manifold of nef tangent bundle with Picard number
one and iX = 4 and consider the situation (2) in Theorem 11.31 with:

X

U W

V Y

e

f

g

π

p

q

Then
−Kf · C = −Kg · f(C) = −1

for any π-fiber C.

Proof. By assumption we have KU ·C = −2 and KX ·e(C) = −4, we have −Ke ·C = −2.
So we just need to show that −Kf · C < 0 and −Kg · f(C) < 0.

(1) Now U ×W C ∼= Fm and we have

Fm ∼= U ×W C C ∼= P1

U W X

V Y

f g

π

p

q

p

There exists a section C ′ over C corresponding to C ⊂ U . Since V is a family
of rational curves, π : U ×W C → π(U ×W C) is generically finite. Hence we
have m 6= 0 and C ′ is the negative section of this Hirzebruch surface. Hence
Kf · C ′ = KU×WC · C ′ − f∗KC · C ′ = m− 2 + 2 = m > 0. Well done.

(2) Consider W ×X C again be a Hirzebruch surface, consider:

W ×X C C

U W X

V Y

f g

π

p

q

p

First we claim that the morphism q :W ×X C → q(W ×X C) is generically finite
for some C. Otherwise, Hence dimY = 1 and the relative dimension of q is n by
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the similar arguments as the second method in Lemma 11.30. Therefore, g|q-fiber
is finite and surjective onto X. Note that any q-fiber is rational homogeneous
manifold as in Corollary 2.15 and that iX = 4. Hence, by Theorem 10.1, we have
X ∼= P3. This gives a contradiction. However, the evaluation morphism of lines on
P3 is a smooth P2-fibration. This contradicts our assumption. Hence we proved
the claim. Now as the section of W ×X C → C contracted by q, we find that
Kg · C > 0 as in (1).

Well done!

Lemma 11.34. Let X be a smooth Fano manifold of dimension 2n − 1 whose Picard
number is one and g : W → X a P1-bundle over X. Assume that there exists another
nontrivial contraction W → Y onto a variety Y of dimension ≤ n. Then −Kg is nef.

Proof. As g is a P1-bundle over X, we first claim that there exists a vector bundle G
such that W ⊂ P(G ) and W ∈ |2η| where η is the tautological divisor on P(G ) and
G ∼= G ∨.

Indeed, let E := (g∗(ω
−1
W/X))

∨ (this is not so good since we use Grothendieck’s
P instead of geometric P) which is a vector bundle of rank 3. Now W ⊂ P(E ) is
a conic in each fiber, so it is a divisor of relative degree 2, hence it is given by a
global section of a line bundle that can be written as OP(E )/X(2) ⊗ g∗L for some line
bundle L on X. Its global section, therefore, is a section of Sym2E ⊗ L , i.e., a
morphism E ∨ ⊗ L ∨ → E . Since all the conics are nondegenerate, this morphism is
an isomorphism. Hence E ∨ ∼= E ⊗L . Taking the determinants of E ∨ ∼= E ⊗L , one
gets (detE ∨)⊗2 ∼= L ⊗3. As Pic(X) is cyclic as the hypothesis and Proposition 1.62(b),
there exists a line bundle M such that L ∼= M⊗2. Hence let G := E ⊗M and we get
the claim.

By adjunction we have −Kg = ηW and η3 ∼num −g∗(c2(G ))η. Let H be the pullback
of the ample generator of Pic(X) via g and let τ := sup{Kg ·C

H·C : C are irreducible curves}
and if C is in the fiber of g, then define this value is −∞, see also Definition 11.39. In
this case −Kg + τH is nef but not ample. We claim that it is a pullback of a R-divisor
on Y .

Indeed, pick any curve C in the fiber of g, then (−Kg + τH) · C = −KW · C > 0.
As it is nef but not ample and W has Picard number 2, then for any curve D which is
not in any fiber of g, we have (−Kg + τH) ·D = 0. As we have another contraction Y ,
then pick any curve D in the fiber of W → Y , we also have (−Kg+ τH) ·D = 0. Hence
by cone theorem −Kg + τH it is a pullback of a R-divisor on Y (see Theorem 3.6(4) in
[KM98]). We get the claim.

By the claim we have (ηW + τH)i = 0 for i = n+ 1, ..., 2n. Hence on P(G ) we have
(η+τH)i ·η ·H2n−i = 0 for any i = n+1, ..., 2n. Using the relation η3 ∼num −g∗(c2(G ))η
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and H2n = 0, we have

n∑
i=1

(
2n− j + 1

2i− 1

)
M2i−1τ

2n−2i−j+2 = 0

for any j = 1, ..., n where M2i−1 = (−g∗(c2(E )))i−1 · H2n−i. Since M1 6= 0, the
matrix

((
2n−j+1
2i−1

)
τ2n−2i−j+2

)
n×n

maps the nonzero vector (M2i−1) to zero. Hence

det
((

2n−j+1
2i−1

)
τ2n−2i−j+2

)
= 0. But det

((
2n−j+1
2i−1

))
6= 0, by some argument of linear

algebra we get τ = 0. Hence −Kg is nef.

Now this is our second and the final main result in this section:

Theorem 11.35. The CP-conjecture holds for dimension five.

Proof. We have proved the case ρ(X) > 1. For ρ(X) = 1, by Theorem 11.28(b) we get
that X ∼= P5 or Q5 or K(G2) or iX = 4. Hence we just need to show that iX = 4 is
impossible.

Now by Theorem 11.31 and Theorem 11.32, we just need to consider the diagram

U W X

V Y

f g

qπ

p

such that f and g are P1-bundles and p and q are smooth elementary Mori contractions.
By Lemma 11.33 and Corollary 2.15 we know that q is a smooth morphism of relative
dimension 2, 3, 5 and fibres P2, Q3 and K(G2), respectively.

If q is a P2-bundle, then W has two P-bundles and we have b4(W ) = 1 + b2(Y ) +
b4(Y ) = b2(X) + b4(X) and b6(W ) = b2(Y ) + b4(Y ) + b6(Y ) = b4(X) + b6(X). As
b4(X) = b6(X) and b2(Y ) = b6(Y ), we have b4(X) = 1 and b4(Y ) = 0. But b4(Y ) ≥ 1
hence this is impossible.

If q is a Q3-bundle or a K(G2)-bundle, then −Kg is nef by Lemma 11.34. This is
impossible by Lemma 11.33. This finish the proof.

11.4 Large Picard Number
Here we will mainly follows [Kan16]. See also [Wat15] for another proof.
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11.4.1 CP Bundles
Definition 11.36. A vector bundle E on a projective manifold Y is called a CP bundle
if P(E ) is a Fano variety pf nef tangent bundle.
Lemma 11.37. Let M be a rationally connected manifold and F a rank r vector
bundle verifying that P(F |ℓ) ∼= `×Pr−1 for every rational curve ` in M . Then P(F ) ∼=
M × Pr−1.
Proof. Omitted, see Proposition 2.4 in [MOSC14].

Proposition 11.38. Let E be a CP bundle on a projective manifold Y and π : X :=
P(E )→ Y the projection. Then the following are equivalent.
(1) X = P(E ) is trivial.
(2) The relative anticanonical divisor −Kπ is nef.
(3) For every rational curve f : P1 → Y , the base change of π by f is trivial.
(4) For every rational curve f : P1 → Y whose image generates an extremal ray, the

base change of π by f is trivial.
(5) For every elementary contraction f : Y → Z and every fiber F of f , the base

change of π over F is trivial.
(6) E splits into a direct sum of line bundles.
(7) E ∼= L ⊕r for a line bundle L .

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) and (1)⇒ (7)⇒ (6) are obvious.
Consider (4) ⇒ (5) and (3) ⇒ (1). By Theorem 7.4, the fiber F and Y are Fano

manifolds. Hence they are rationally connected. The assertion follows from Lemma
11.37.

Consider (5) ⇒ (2). It is enough to see that −Kπ is nef on every extremal ray of
NE(X). Let R be the ray corresponding to π. Obviously −Kπ is nef on R. On the other
hand, by Theorem 7.4, there is a one-to-one correspondence between the set of rays in
NE(X) which are not R and the set of rays of NE(Y ). Hence the assertion follows.

We already see that the first five of the conditions are equivalent. Hence we may
assume that Y has Picard number one.

Consider (6) ⇒ (1). Since Pic(Y ) ∼= Z, we can write E ∼=
⊕

i O(ai) with integers
a1 ≥ · · · ≥ ar, where O(1) is the generator of Pic(Y ). By twisting with a line bundle,
we may assume that a1 = 0. Then, there is a splitting exact sequence:

0→ OY → E ∼=
⊕
i

O(ai)→ F :=
⊕
i>1

O(ai)→ 0.

This gives a projective subbundle P(F ) ⊂ P(E ) with normal bundle O(1) of P(F ).
Since P(E ) is a Fano manifold with nef tangent bundle, the normal bundle is nef, and
hence, ai = 0 for all i.
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Definition 11.39. Let Y be a projective manifold of Picard number 1 with π : P(E )→ Y
and let H be the pullback of the ample generator of Pic(X) via π. Define τ(E ) :=
sup{Kπ ·C

H·C : C are irreducible curves} and if C is in the fiber of g, then define this value
is −∞. We call τ(E ) the slope of E In this case −Kπ + τ(E )H is nef but not ample.

Proposition 11.40. Let X be a Fano manifold of Picard number 1 with π : P(E )→ X.

(1) If E is Fano bundle, then 0 ≤ τ(E ) < Index(X).
(2) If τ(E ) < Index(X), then

(2.a) τ(E ) ∈ Q.
(2.b) −Kπ + τ(E )H is semiample.
(2.c) There exists a rational curve ` for which ` · (−Kπ + τ(E )H) = 0.

Proof. See Remark 2.9 in [MOSC14] for the arguments. Note that the ≥ 0 part in (1)
follows from Fano and Proposition 1.65(a).

Corollary 11.41. If E be a CP bundle of rank r on a projective manifold Y of Picard
number 1, then τ(E ) = 0 if and only if X ∼= Pr−1 × Y .

Proof. Follows from Proposition 11.38.

11.4.2 Sixfolds which is CP Bundles
Now we will consider P(E )→ Y where E is a CP bundle and dimP(E ) = 6 and Y is of
Picard number 1.

Proposition 11.42. Let E be a CP bundle of rank two over Y ∼= P5 or Q5 or K(G2).
Then P(E ) is a rational homogeneous manifold. More precisely, X ∼= P1×P5 or P1×Q5

or P1 ×K(G2) or P(C ), a Cayley bundle.

Proof. The first two cases follows from the classification of Fano bundles over P5 and Q5,
see [APW94]. For K(G2), follows from Lemma 6.1 and Theorem 6.5 in [MOSC14].

Theorem 11.43. Let E be a CP bundle of rank 3 on P4 or Q4. Then P(E ) ∼= P2 × P4

or P2 ×Q4.

Sketch of the Proof. Here we just give the main ideas and omit the whole calculations.
For the details we refer Section 2.3 in [Kan16].

Let ξ = OP(E )(1) and π : X := P(E )→ Y = P4 or Q4. Let H be the pullback of the
ample generator of Y . Then we have

3∑
i=0

(−1)iπ∗ci(E ) · ξ3−i = 0.
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As ρ(X) = 2 and is a Fano manifold of nef tangent bundle, then there is another
contraction p : X → Z. Hence dimZ ≤ 4 since by Proposition 11.42.

When Y ∼= P4, after some calculation using above equations, we have

(−Kπ + τH)5 ·H = 9(10τ3 + 15τ∆+ γ);

(−Kπ + τH)6 = 27(5τ4 + 15τ2∆+ 2τγ + 3∆2)

where ∆ = c1(E )2−3c2(E ) and γ = 2c1(E )3−9c1(E )c2(E )+27c3(E ). But as dimZ ≤ 4,
we have (−Kπ + τH)5 ·H = (−Kπ + τH)6 = 0 since they are come from Z as before.
Hence ∆ = 5τ2±3τ2

√
5

2 ∈ Z. Hence τ = 0 and X ∼= P2 × P4 by Corollary 11.41.
When Y ∼= Q4, consider the Chow ring structure of it and the similar calculation

with the property dimZ ≤ 4 we have

δ = 5τ2 ± 3
√
5τ4 − (a− b)2

where δ = ∆2 = (c1(E ) − 3c2(E ))2. By the equations we got, we can find that τ ∈ Z
since we have Proposition 11.40. We claim that τ = 0.

Indeed, if not we have τ = 1, 2 or 3. Moreover we also have 5τ4− (a−b)2 ∈ Z, hence
|a− b| = τ2 or 2τ2. Hence δ = 5τ2 ± 6τ4

|a−b| .
In this case, we have (−Kπ + τH)4 ·H2 = 27(4τ2 + δ) > 0. This force dimZ = 4.

Since ρ(Z) = 1 and is a Fano manifold of nef tangent bundle. Hence Z ∼= P4 or Q4. If it
is P4, then we have proved X ∼= P2×P4 which is impossible in this case. Hence Z ∼= Q4

and p is a P2-bundle. As Z is rational, we have X ∼= P(F )
p→ Z for some vector bundle

with c1(F ) = 1, 2 or 3 after normalization and η = OP(F )(1).
By some arguments we can show that τ = c1 and c2(E ) = (c21, 0) or (0, c21) and

c3 = 0 and 27(4τ2 + δ) = 34c21. By the symmetry of π, p, we have ξ = p∗HZ and η = H
and −Kπ + τH = 3ξ. Hence (p∗HZ)

4 · η2 = c21 = τ2. As τ = 1, 2, 3, we have τ2 = 1, 4
or 9. But (p∗HZ)

4 · η2 = 2 as p is a P2-bundle over Z = Q4. Hence this is impossible.
Hence we get the claim.

Now τ = 0. Hence X ∼= P2 ×Q4 by Corollary 11.41.

11.4.3 Preparations for the Final Case
We will use the following result to prove that a certain Fano manifold of nef tangent
bundle is a product of Fano manifolds of nef tangent bundles.

Proposition 11.44. Let X be a smooth projective variety and suppose that, for some
integer r ≥ 2, there exist a smooth contraction f : X → Y of relative dimension r − 1
and another contraction g : X → Z onto an (r − 1)-dimensional manifold Z. Assume
that g does not contract any curve contained in an f -fiber, and assume moreover that
one of the following holds:
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(1) f is a Pr−1-bundle, or

(2) every f -fiber is a smooth hyperquadric of dimension r − 1 ≥ 3.

Then −Kf is nef.

Proof. We can find that f must be an elementary contraction (see [Wis91] Proposition
1.3) and ρ(X) = ρ(Y )− 1. Hence for any f -fiber F , g|F is a finite surjective morphism
since g does not contract any f -fiber and ρ(F ) = 1.

We claim that we can assume Y is a smooth projective curve. Indeed, take a curve
C in X and its normalization C̃ → C. Then by base-changing we have the following
diagram:

ZC̃

XC̃ X Z

C̃ Y

h g

fC̃ f
p

where ZC̃ is the Stein factorization of g◦h and s is a section of fC̃ . Then dimZC̃ = r−1

since g|F is a finite surjective morphism for any f -fiber F . Because −KfC̃
· s(C̃) =

−Kf · C, we may assume that Y is a smooth projective curve.
As before consider −Kf + τF is nef but not ample where F be a fiber of f . Now

ρ(X) = 2, hence the nef cone Nef(X) generated by F and −Kf + τF . As before we
have −Kf + τF ∼num g∗D for some ample divisor D ⊂ Z.

For case (1). If f is a Pr−1-bundle, then X ∼= PY (E ) by Lemma 11.24. Let ξ =
OPY (E )(1), then since dimZ = r − 1, we have (−Kf + τF )r = 0. Since ξr = deg detE
and −Kf ∼num rξ − (deg detE )F . This force τ = 0. Hence −Kf is nef.

For case (2). Let every f -fiber is a smooth hyperquadric of dimension r − 1 ≥ 3.
Now will need some embedding theorem about hyperquadric-bundle into the projective
bundle. Fortunately, we have! See [Ara09] Proposition 21, there exists a vector bundle
E of rank r + 1 and a line bundle L on Y and a section s ∈ H0(Y, Sym2E ⊗L ) such
that X = Z(s) ⊂ PY (E ).

Now we let d := deg detE and ` = degL and ξX := OPY (E )(1)|X . As f smooth,
we have −2d = (r + 1)`. By adjunction we have −Kf ∼num (r − 1)ξX − (d + `)F . As
dimZ = r − 1, we have (−Kf + τF )r = 0. Moreover, X ∼num 2ξ + `F ′ in N1(PY (E ))
where F ′ be the fiber of PY (E ) → Y . As ξr+1 = d, hence combine these we have
ξrX = 2d+ ` and ξr−1

X · F = 2. Combining all of these, we can get τ = 0. Hence −Kf is
nef.
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11.4.4 Main Results
In this small section we will prove our main results. But before that, we first consider
another result.

Proposition 11.45. Let X be a Fano n-fold of nef tangent bundle which does not admit
a contraction onto an FT manifold. Then n ≥ 2ρ(X). Furthermore, the following hold:

(1) If n = 2ρ(X), then X ∼= (P2)ρ(X).
(2) If n = 2ρ(X)+1, thenX ∼= (P2)ρ(X)−1×P3 or (P2)ρ(X)−1×Q3 or (P2)ρ(X)−2×P(Si)

or (P2)ρ(X)−2 × P(TP3) where Si are two spinor bundles on Q4.

Proof. First we show the first statement. By induction on n that every Fano n-fold of
nef tangent bundle with 2ρ(X) > n admits a contraction onto an FT-manifold. The
case n = 1 is trivial.

For n > 1, we have asequence of smooth elementary contractions

X = X0 → X1 → · · · → X2ρ(X)−n → · · · → Xρ(X)−1 → Xρ(X) = {point}

where each Xi is a Fano manifold of nef tangent bundle of dimension ≤ n−i with Picard
number ρ(X) − i. If dimX2ρ(X)−n = 2n − 2ρ(X) for any such contraction sequence,
then X2ρ(X)−n−1 is an FT-manifold. Well done. Otherwise there is a sequence such
that dimX2ρ(X)−n < 2n− 2ρ(X) = 2ρ(X2ρ(X)−n), by induction well done.

Next we consider the case in (1) and (2).
For (1), let n = 2ρ(X) and we induction on n. For n = 2, this is trivial. So we

let n > 2. We have an elementary contraction f : X → Y . If dimY < n − 2, then
2ρ(Y ) > dimY . Hence Y is admits a contraction onto an FT manifold. This contradicts
our hypothesis. Hence dimY ≥ n − 2 for every elementary contraction f : X → Y .
Furthermore, since X is not an FT manifold, there exists an elementary contraction
f : X → Y with dimY = n − 2. Then, by inductive hypothesis we have Y ∼= (P2)ρ(Y )

and f is a P2-bundle. Now we just need to consider each factor of Y . Then by our
results about CP-conjecture of dim ≤ 5 (Theorem 11.23), we can find that f is a trivial
bundle and hence X ∼= (P2)ρ(X).

For (2), let n = 2ρ(X) + 1 and we induction on n. For n = 3, 5, this is trivial
by our results before, like Theorem 11.23. Now we assume n > 5. Then we have
an elementary contraction f : X → Y with n − 3 ≤ dimY ≤ n − 2. If for any such
elementary we have dimY = n−1, thenX is an FT-manifold which is impossible. Hence
dimY ≤ n−2. If dimY < n−3, then dimY < 2ρ(Y ), hence by the first statement Y is
admits a contraction onto an FT manifold and this contradicts our hypothesis! Hence
dimY = n− 2 or n− 3.

Now we claim that there must exists an elementary contraction f : X →W such that
dimW = n− 2. Indeed, for any elementary contraction f : X → Y with dimY = n− 3,
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we have dimY = 2ρ(Y ) and by (1) we have Y ∼= (P2)ρ(X)−1. Then we may find an
elementary contraction f : X → Z such that the following diagram commutes:

X Z

Y ∼= P2 × (P2)ρ(X)−2 (P2)ρ(X)−2

P2 {pt}

f

g

p

Hence since the fiber of p ◦ f is a Fano 5-fold with nef tangent bundle of Picard number
2, by Theorem 11.23 the fiber is P2×P3 or P2×Q3. Hence now g is a P2-bundle. Hence
dimZ = n− 2 and we get th claim.

Let an elementary contraction f : X → W such that dimW = n − 2 and f is a
P2-bundle. Then n − 2 = 2ρ(W ) + 1. By induction we have W ∼= (P2)ρ(X)−2 × P3

or (P2)ρ(X)−2 × Q3 or (P2)ρ(X)−3 × P(Si) or (P2)ρ(X)−3 × P(TP3). Hence f is also a
P2-projective bundle. Furthermore, if the last three cases occur, then f is trivial on
any fiber of the elementary contractions of W by the classification of CP m-folds with
m = 3, 4 or 5 as in Theorem 11.23. Hence X ∼= P2 ×W by Proposition 11.38 (5)⇒(1).

Hence we can assume W ∼= (P2)ρ(X)−2×P3. By the similar diagram and arguments
again we can get another elementary contraction g : X → V such that g is a P2-bundle.
By induction again we have V ∼= (P2)ρ(X)−2×P3 or (P2)ρ(X)−2×Q3 or (P2)ρ(X)−3×P(Si)
or (P2)ρ(X)−3 × P(TP3). Hence g is also a P2-projective bundle. Since every g-fiber is
not contracted by X → W

p1→ P2, it follows from Proposition 11.44 that −Kg is nef.
Hence the assertion follows from Proposition 11.38 (2)⇒(1).

Here are our final two results:

Theorem 11.46. Let X be a Fano n-fold of nef tangent bundle with ρ(X) ≥ n − 3.
Then X is a rational homogeneous manifold.

Proof. By using the induction on n and Proposition 11.45 and the results on FT-
manifolds as Proposition 11.4(d) and Theorem 11.19, we may assume n ≥ 2ρ(X) + 2.
Hence in this case we have 2ρ(X) + 2 ≤ n ≤ ρ(X) + 3, hence n ≤ 4 and the result
follows from Theorem 11.23.

Theorem 11.47. Let X be a Fano n-fold of nef tangent bundle with ρ(X) = n − 4.
Then X is a rational homogeneous manifold.

Proof. By using the induction on n and Proposition 11.45 and the results on FT-
manifolds as Proposition 11.4(d) and Theorem 11.19, we may assume n ≥ 2ρ(X) + 2.
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Hence in this case we have 2ρ(X) + 2 ≤ n = ρ(X) + 4, hence n = 4, 5 or 6. If n = 4, 5,
then the result follows from Theorem 11.23. So we may consider n = 6.

Let n = 6 and in this case ρ(X) = 2. Hence there are two different smooth elemen-
tary contractions Y f← X

g→ Z and hence ρ(Y ) = ρ(Z) = 1. WLOG we may assume
that dimY ≥ dimZ. Furthermore, dimY ≥ 3 by the inequality dimX ≤ dimY +dimZ.

If dimY = 5, then Y ∼= P5,Q5 or K(G2) by Theorem 11.23. Since Y is rational, f
is a P1- projective bundle. Hence X is a rational homogeneous manifold by Proposition
11.42.

If dimY = 4, then Y ∼= P4 or Q4 by Theorem 11.23. Since Y is rational, f is a
P2-projective bundle. Hence X is isomorphic to P2 × P4 or P2 ×Q4 by Theorem 11.43.
Well done.

Finally, we need to consider the case dimY = dimZ = 3. Now Y, Z are isomorphic
to P3 or Q3 by Theorem 11.23. Note that in this case both f, g satisfies the conditions
in Proposition 11.44. Hence −Kf and −Kg are nef. Because ρ(X) = 2, the Nef(X)
is spanned by {−Kf ,−f∗KX} or {−Kg,−g∗KY }. Note that −KX = −Kf − f∗KX =
−Kg − g∗KY and −f∗KX 6= −g∗KY . Hence we have −Kf = −g∗KY . Therefore we
have −KX = −f∗KX−g∗KY . Then by purity of branch locus we find that X (f,g)→ Y ×Z
is étale. Since Y × Z is simply connected, we have X ∼= Y × Z. This completes the
proof.

Remark 11.48. The whole explicit form of these cases we refer the Remark 4.4 in the
original paper [Kan16].

11.5 Need to add
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