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Abstract. In this note we will give a survey about symplectic resolutions, symplectic duality and
Coulomb branches follows [Kam22].
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1. Introduction

We will mainly follows the survey paper [Kam22]. We work over C.

2. Symplectic resolutions

2.1. Basic definitions. Here we give some basic definitions.

Definition 2.1. We consider complex algebraic schemes.
‚ We say a scheme X carries a Poisson structure if there is a C-bilinear operation

t´,´u : OX ˆ OX Ñ OX

which is a Lie bracket.
‚ Let f : X Ñ Y be a morphism of Poisson schemes, we say it is a Poisson morphism if it

induce a homomorphism of Lie algebras.

Remark 2.2. Any Poisson structure can be induced by the OX-linear homomorphism H : Ω1
X Ñ

TX “ DerpOX ,OXq such that tf, gu “ Hpdfqpgq. In particular, any symplectic variety has a
canonical Poisson structure.

Definition 2.3. A symplectic resolution is a morphism π : Y Ñ X of complex algebraic varieties,
where

‚ Y is smooth and carries a symplectic structure.
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‚ X is affine, normal, and carries a Poisson structure.
‚ π is projective, birational, and Poisson.

Definition 2.4. Let π : Y Ñ X be a symplectic resolution.
‚ π is called conical if we are given actions of Cˆ on X and Y such that π is equivariant

and Cˆ contracts X to a single point, denoted as 0. We also assume that Cˆ scales the
symplectic form with weight 2. The central fiber F0 “ π´1p0q is called the core of Y .

‚ A conical symplectic resolution is called Hamiltonian if we are given Hamiltonian actions of
a torus T on X and Y , such that π is T -equivariant. We also assume that the T action
commutes under the conical Cˆ action, and that Y T is finite.

Here we introduce the most basic and important example:

Example 2.5 (Baby example). The simplest example of a symplectic resolution is

π : Y :“ T˚P1 :“ TotpΩ1
P1q Ñ X :“ Nsl2

where Nsl2 is the variety of nilpotent 2 ˆ 2 matrices, that is,

Nsl2 “

"ˆ

w u
v ´w

˙

P M2pCq : w2 ` uv “ 0

*

– C2{pZ{2Zq

which is the singular quadric cone in sl2pCq – C3 where the last isomorphism C2{pZ{2Zq – Nsl2

given by pa, bq ÞÑ

ˆ

ab a2

b2 ´ab

˙

. Here we have several descriptions of this morphism.

‚ Now via canonical exact sequence of tangent bundle of projective space, we have canonical
description TrLsP1 “ tw P C2 : w ¨ L “ 0u. Hence T˚

rLs
P1 is a space of linear functions over

TrLsP1. So this correspond to a matrix A P M2pCq such that AL “ 0 and Apwq P L for
w P TrLsP1. So

T˚P1 –
␣

prLs,Aq P P1 ˆ Nsl2 : ApC2q Ă L,AL “ 0
(

with canonical forgetful morphism π : T˚P1 Ñ Nsl2 .
‚ Regard Nsl2 Ă C3 as a cone of over a quadric plane curve C Ă C2. Then consider its

projective completion C Ă P2, then Nsl2 “ N zH8 where N Ă P3 be the cone of C. Now

Y – BlvNsl2 “ pBlvN qzH8 “ PCpOC ‘ OCp´1qqzPCpOCq

“ TotpOCp´1qq “ TotpOP1p´2qq,

well done. More precisely, we have the following:

TotpOP1p´2qq Ñ C2{pZ{2Zq, prz0 : z1s, λ2pz0, z1q2q ÞÑ λpz0, z1q.

Note that C2 admit a natural Poisson structure, then so is C2{pZ{2Zq – Nsl2 . It is also affine
and normal. Moreover T˚P1 is a smooth and carries a symplectic structure and π is projective,
birational, and Poisson. So π is a symplectic resolution.

Actually, we have a conical Cˆ-action which scales the matrix and a Hamiltonian action of
T :“ pCˆq2, inherited from its action on C2. So π is a Hamiltonian conical symplectic resolution.

2.2. Example: cotangent bundles of flag varieties. The first way to generalize the Example
2.5, we consider any semi-simple group G and its parabolic subgroup P . Then we consider T˚pG{P q

which will be seen as a resolution of a nilpotent orbit closure.

Definition 2.6. Consider a semi-simple Lie algebra g with a adjoint algebraic group G.
‚ For a nilpotent element v P g, its nilpotent orbit Ov is the orbit of v under the adjoint action

of G. Its closure Ov is a nilpotent orbit closure.
‚ Consider the standard sl2-action of g due to Jacobson-Morozov: for a nilpotent element
v P g, there exist two elements H,u P g such that rH, vs “ 2v, rH,us “ ´2u, rv, us “ H.
Thus g is decomposed as g “

À

iPZ gi, where gi :“ tx P g : rH,xs “ ixu. Let p “
À

iě0 gi
and P a correspond connected subgroup of G which is a parabolic subgroup. Let n :“

À

iě2 gi
and u :“

À

iě1 gi.
‚ The nilpotent orbit Ov is called even if g1 “ 0 or equivalently if g2k`1 “ 0 for all k P Z.
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Proposition 2.7 (Prop 2.8 and Cor 2.9 in [Fu06]). For a nilpotent orbit Ov, there exists a symplectic
form ω (hence Poisson) on Ov which is called the Kostant-Kirillov-Souriau form. Moreover, there
exists a G-equivariant proper resolution

π : G ˆP n Ñ Ov,

which is called the Springer resolution such that π maps the orbit G ¨ p1, vq isomorphically to Ov and
the symplectic form π˚ω on G ¨ p1, vq can be extended to a global 2-form Ω on G ˆP n. Moreover, Ω
is symplectic if and only if Ov is even.

As resolution π : G ˆP n Ñ Ov factor-through the normalization rO ν
Ñ Ov, we have the following

directly:

Corollary 2.8. The normalization rO of a nilpotent orbit closure Ov is a symplectic variety. The
Springer resolution G ˆP n Ñ rO is symplectic if and only if Ov is an even nilpotent orbit.

But not that for an even nilpotent orbit closure, there can exist some symplectic resolutions not
of the above form as we will talking about.

Note that not all nilpotent orbit closure admits a symplectic resolution. But this is true for sln
which we will be particularly interested.

Example 2.9. Every nilpotent orbit closure in sln`1 admits a symplectic resolution. Indeed, note
that we have bijction between the set of nilpotent orbit closures and the set of some special partitions,
see Proposition 2.2.1 in [Nam10]. In the case of sln`1, the set of nilpotent orbit closures correspond
to the all partitions of n ` 1.

Let O be the nilpotent orbit corresponding to the partition rd1, ..., dks. The dual partition is defined
by sj “ |ti|di ě ju|. The closure is O “ tA P sln`1 : dimkerAj ě

řj
i“1 sju which is normal, see

[KP79]. Consider the partial flag variety (which is of course SLn`1{P ) Fl :“ tpV1, ..., Vlq : dimVj “
řj

i“1 sj , Vj Ă Vj`1u with the similar description as baby example:

π : T˚Fl – tpA, V‚q P sln`1 ˆ Fl : AVi Ă Vi´1u Ñ O

which is of course a symplectic resolution.

But note that not every nilpotent orbit closure admits a symplectic resolution, see Proposition
5.2 in [Fu06]. But conversely we have the following nice result:

Theorem 2.10 (Thm 0.1 in [Fu03]). Suppose that we have a symplectic resolution π : Z Ñ rO where
rO is a normalization of a nilpotent orbit closure Ov, then there exists a parabolic subgroup P of G
such that Z – T˚pG{P q.

Such orbits are called the Richardson orbits.

Corollary 2.11. The normalization rO of a nilpotent orbit closure in a semisimple Lie algebra
admits a symplectic resolution if and only if

‚ O is a Richardson nilpotent orbit.
‚ There exists a polarization P such that the moment map T˚pG{P q Ñ O is birational.

The conical Cˆ acts by linear scaling on Ov (coming from its embedding in the vector space g).
The maximal torus T Ă G acts Hamiltonianly on T˚pG{P q in the natural way. The fixed point set
pT˚pG{P qqT is in bijection with W {WP .

2.3. More examples.

Example 2.12 (Resolutions of Kleinian singularities). Generalizing T˚P1 in a different direction,
we take Γ Ă SL2 a finite subgroup. Under the McKay correspondence, such subgroups are in bijection
with simply-laced ADE Dynkin diagrams. We only consider

Γ – Z{nZ “

"ˆ

ζ 0
0 ζ´1

˙

: ζn “ 1

*

ÐÑ An´1.

The affine GIT quotient X :“ C2{{Γ carries a Poisson structure by descending the usual symplectic
structure on C2. Then consider minial resolution. The conical Cˆ action comes from the scaling
action on C2. On the other hand, the Hamiltonian torus T is given by the diagonal matrices in SL2.
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Example 2.13 (Higgs branches of gauge theories). Consider a reductive group G and a represen-
tation V . Then we form T˚V “ V ‘ V ˚ which comes with a moment map Φ : T˚V Ñ g˚. We fix a
character χ : G Ñ Cˆ and form the GIT quotient

T˚V {{{0,χG :“ Φ´1p0q{{χG :“ Proj

˜

à

ně0

CrΦ´1p0qsG,nχ

¸

where CrΦ´1p0qsG,nχ “ tf P CrΦ´1p0qs : σpfq “ χ˚ptqn b fu where σ : CrΦ´1p0qs Ñ ΓpG,OGq b

CrΦ´1p0qs is the coaction and χ˚ induced by χ with Cˆ – SpecCrt, t´1s.
We have a natural projective morphism

π : Y :“ T˚V {{{0,χG Ñ X :“ T˚V {{{0,0G “ SpecCrΦ´1p0qsG

carry Poisson structures coming from the usual symplectic structure on T˚V . This construction will
not usually give a symplectic resolution; for example, Y may not be smooth and Y Ñ X might not
be birational. Here in the physics literature, Y is called the Higgs branch of the 3d supersymmetric
gauge theory defined by G,V . G is called the gauge group and N is called the matter.

There is a conical Cˆ action on Y coming from its scaling action of T˚V . In order to define a
Hamiltonian torus action, we need one piece of data. We choose an extension 1 Ñ G Ñ rG Ñ T Ñ 1,
where T is the flavor torus, and an action of rG on V , extending the action of G. Then we obtain a
residual Hamiltonian action of T on Y and X. In general, this action does not have finitely many
fixed points.

Example 2.14 (Hypertoric varieties). As above in a special case, let G a torus and rG “ pCˆqn, so
we have

1 Ñ G Ñ pCˆqn Ñ T Ñ 1.

This gives us a linear action of G on T˚Cn “ Cn ‘ pCnq˚. We have a moment map Φ : T˚Cn Ñ

Cn Ñ g˚ where the first map is given by pzi, wiq ÞÑ pziwiq. We fix a generic character χ : G Ñ Cˆ

and consider Y “ Φ´1p0q{{χG and X “ Φ´1p0q{{G as above.
The map pCˆqn Ñ T is equivalent to a map ϕ : Zn Ñ tZ between the coweight lattices of these

tori. We assume that ϕ is unimodular (this means if we choose a matrix representing ϕ, then every
invertible square submatrix has determinant ˘1). This ensures that Y is smooth. We also assume
that the map G Ñ pCˆqn is not contained in any coordinate subtorus. This is needed to ensure that
the natural Cˆ action on X is conical.

We have residual actions of T on Y and X with moment map X Ñ t˚. The structure of Y can
be visualized by means of a hyperplane arrangement. We consider the real vector space t˚R and define
affine hyperplanes H1, ..., Hn by

Hi :“ tv P t˚R : xϕpeiq, vy “ xei, χ̃yu,

where χ̃ P pRnq˚ is a lift of χ P g˚
R. These hyperplanes partition t˚

R into chambers, and Y contains
all the toric varieties associated to these chambers. In particular, the core F0 is the union of the
toric varieties associated to the compact chambers.

Note that given
1 Ñ G Ñ pCˆqn Ñ T Ñ 1

as above, we can dualize to
1 Ñ T_ Ñ pCˆqn Ñ G_ Ñ 1

where T_ is the dual torus which satisfies HompCˆ, T_q “ HompT,Cˆq. The resulting pair Y, Y _

of hypertoric varieties is called symplectic dual. See the survey [Pro08] for the details.

Example 2.15 (Quiver varieties). Another special case, we introduce the Nakajima quiver varieties,
first introduced by Nakajima [Nak94]. We fix a finite directed graph Q “ pI, Eq, with head and tail
maps h, t : E Ñ I. Also, we fix two dimension vectors v,w P NI . For i P I,let Vi “ Cui ,Wi “ Cwi

and consider the space of representations of the quiver Q on the vector space ‘Vi framed by ‘Wi.
N “

à

ePE

HompVtpeq, Vhpeqq ‘
à

iPI

HompVi,Wiq.

This big vector space N has a natural action of G “
ś

i GLpViq. We form the cotangent bundle
T˚N and take the Hamiltonian reduction by the action of G. The resulting space Y “ Φ´1p0q{{χG
is called a Nakajima quiver variety. Here we choose χ : G Ñ Cˆ to be given by the product of the
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determinants. On Y , we have a Hamiltonian action of T “
ś

ipCˆqwi inherited from its action on
‘Wi. (In other words, we take rG “ G ˆ T .)

Note that the space Y is always smooth but π : Y Ñ X is not always birational. Also, the
Hamiltonian torus action does not always have finitely many fixed points.

Here we give two examples of Nakajima quiver varieties.
‚ Consider a linearly oriented type An´1-quiver with v “ p1, ..., n ´ 1q,w “ p0, ..., 0, nq:

‚pV1q ‚pV2q ¨ ¨ ¨ ‚pVn´1q ■pCnq

Then N “
Àn´1

i“1 HompCi,Ci`1q with G “
śn´1

i“1 CLi. Then Y – T˚Fln with X “ Nsln .
‚ Another important example is a quiver with one vertex and one self-loop with V “ Cn and
W “ Cr.

‚pCnq ■pCrq

In this case, Y is the moduli space of rank r, torsion-free sheaves on P2, framed at 8 with
second Chern class n.

3. Topologies of symplectic resolutions

3.1. Symplectic leaves and the Springer sheaf. Before consider the symplectic resolution, we
review some basic things.

Definition 3.1. Consider a morphism of varieties f : X Ñ Y . Let Yt :“ ty P Y : f´1pY q “ tu.
Then f is said to be semismall if for each stratum Yt and each point y P Yt X fpXq, we have
dim f´1pyq ď 1

2 pdimX ´ dimYtq.

Remark 3.2. This is equivalent to that for any irreducible subvariety Z Ă X we have 2 dimZ ´

dim fpZq ď dimX. It is generically finite. If it is of same dimension, this is 2codimpZq ě

codimpfpZqq.

Theorem 3.3. Perverse; BBDG

For a symplectic resolution, we have the following topological properties:

Theorem 3.4. Let π : Y Ñ X be a symplectic resolution.
‚ X has a finite partition X “

Ů

j Xj where each Xj is locally closed, smooth, and symplectic.
(These are the symplectic leaves of X.)

‚ The map π is semismall.
‚ The pushforward π˚CY is constructible with respect to the stratification by the symplectic

leaves.

[Ach21]

3.2. Hyperbolic decomposition.

3.3. Transversal slices to symplectic leaves.

3.4. Quantum cohomology.

4. Deformations and quantizations

5. Symplectic duality

6. Geometrization and categorification of representations

7. Coulomb branches of 3d gauge theory

8. Affine Grassmannian slices as Coulomb branches
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