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1 Introduction
We will follows [BF97][AB84][GP99] and we will also use [Ric22].

We need [Har77][Ful98][EH16].
Here we will consider P(−) = Proj Sym(−)∨ for bundles and the vec-

tor bundle is both space and sheaf via Spec Sym(−)∨. For a cone C =
SpecXS ∗, we define P(C) := ProjXS ∗ and P(C ⊕ O) := ProjXS ∗[z]
which is the projective cone and projective completion, respectively. For
more details we refer Appendix B.5 of [Ful98].

2 Review of Basic Intersection Theory
We will follows [Ful98]. We will omit the basic things such as Segre classes
of bundles and cones, Chern classes of bundles and the technique of the
deformation to the normal cone. We refer Chapter 1-5 in [Ful98]. We work
over schemes of finite type over some field k.

2.1 Basic Facts of Refined Gysin Pullback
Here we will follows Chapter 6,8,9 of [Ful98]. We will state the results
without the most of the proof.

Definition 2.1 (Intersection Product). Let i : X ↪→ Y be a closed regular
embedding of codimension d with normal bundle NX/Y . Pick V be a scheme
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of pure dimension k. Consider the cartesian diagram

W V

X Y

g

j

f

i

⌜

Let I be the ideal of i and J be the ideal of j, then we have surjection⊕
n

f∗(I n/I n+1)→
⊕
n

J n/J n+1 → 0

which induce embedding CW/V ↪→ g∗NX/Y . Note that CW/V is also a
scheme of pure dimension k since P(CW/V ⊕O) is the exceptional divisor of
BlW (Y ×A1). Let 0 :W → g∗NX/Y be the zero-section of π : g∗NX/Y →W ,
then we define

X · V := 0∗[CW/V ] := (π∗)−1[CW/V ] ∈ CHk−d(W )

as the intersection class.

Proposition 2.2. Consider the situation of Definition 2.1.
(a) We have X · V = {c(g∗NX/Y ) ∩ s(W,V )}k−d.
(b) Let Q be the universal quotient bundle of q : P(g∗NX/Y ⊕ O) → W ,

then
X · V = q∗(cd(Q) ∩ [P(CW/V ⊕ O)]).

(c) If j : W ↪→ V is a regular embedding of codimension d′, then X · V =
cd−d′(g

∗NX/Y /NW/V ) ∩ [W ].

Proof. Easy, one omitted. See Proposition 6.1 and Example 6.1.7 in [Ful98].

Definition 2.3 (Refined Gysin Pullback). Let i : X ↪→ Y be a closed regular
embedding of codimension d with normal bundle NX/Y . Pick f : Y ′ → Y be
a morphism. Consider the cartesian diagram

X ′ Y ′

X Y

g

j

f

i

⌜

Then we define i! : Zk Y ′ → CHk−dX ′ as
∑
i ni[Vi] 7→

∑
i niX · Vi. Now i!

can be decomposed as:

i! : Zk Y ′ σ→ Zk CX′/Y ′ → CHk(g∗NX/Y )
0∗→ CHk−dX ′
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where σ : Zk Y ′ → Zk CX′/Y ′ given by [V ] 7→ [CV ∩X′/V ]. By the technique
of deformation to the normal cone, this can be descend to the Chow-group
level as σ : CHk Y ′ → CHk CX′/Y ′ (see Proposition 5.2 in [Ful98]) which
is called the specialization to the normal cone. Hence this induce the refined
Gysin pullback

i! : CHk Y ′ → CHk−dX ′,
∑
i

ni[Vi] 7→
∑
i

niX · Vi.

Proposition 2.4. Consider the situation of Definition 2.3. Consider

X ′′ Y ′′

X ′ Y ′

X Y

g

i′

f

i

⌜

q p

i′′

⌜

(a) If p proper and α ∈ CHk(Y ′′), then i!p∗(α) = q∗i
!(α) ∈ CHk−d(X ′).

(b) If p is flat of relative dimension n and α ∈ CHk(Y ′), then i!p∗(α) =
q∗i!(α) ∈ CHk+n−d(X ′′).

(c) If i′ is also a regular embedding of codimension d and α ∈ CHk(Y ′′),
then i!α = (i′)!(α) ∈ CHk−d(X ′′).

(d) If i′ is a regular embedding of codimension d′, then for α ∈ CHk(Y ′′)
we have

i!(α) = cd−d′(q
∗(g∗NX/Y /NX′/Y ′)) ∩ (i′)!(α) ∈ CHk−d(X ′′).

We call g∗NX/Y /NX′/Y ′ the excess normal bundle.
(e) Let F be any vector bundle on Y ′, then for α ∈ CHk(Y ′) we have

i!(cm(F ) ∩ α) = cm((i′)∗F ) ∩ i!(α) ∈ CHk−d−m(X ′).

Proof. See Theorem 6.2, Theorem 6.3 and Proposition 6.3 in [Ful98].

Corollary 2.5. Let i : X ↪→ Y be a regular embedding of codimension d,
then

i∗i∗(α) = cd(NX/Y ) ∩ α ∈ CH∗(X).

Proof. By Proposition 2.4(d) directly.

Proposition 2.6. The refined Gysin pullback have the following properties.
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(a) Let i : X ↪→ Y and j : S ↪→ T are regular embeddings of codimension
d, e, respectively. Consider cartesians:

X ′′ Y ′′ S

X ′ Y ′ T

X Yi

f

i′

g

jj′

⌜

⌜ ⌜

Then for any α ∈ CHk(Y ′′), we have

j!i!(α) = i!j!(α) ∈ CHk−d−e(X ′′).

(b) Let i : X ↪→ Y and j : Y ↪→ Z are regular embeddings of codimension
d, e, respectively. Consider cartesians:

X ′ Y ′ Z ′

X Y Zi

gh

i′ j′

⌜

j

f
⌜

Then ji is a regular embedding of codimension d + e and for all α ∈
CHk(Z ′) we have

(ji)!(α) = i!j!(α) ∈ CHk−d−e(X ′).

Proof. See Theorem 6.4 and Theorem 6.5 in [Ful98].

Proposition 2.7. Consider cartesians:

X ′ Y ′ Z ′

X Y Zi

gh

i′ p′

⌜

p

f
⌜

(a) If i is a regular embedding of codimension d and p and pi are flat of
relative dimension n, n−d, respectively. Then i′ is a regular embedding
of codimension d and p′, p′i′ are flat, and for α ∈ CHk(Z ′) we have

(p′i′)∗(α) = (i′)∗((p′)∗α) = i!((p′)∗α).

(b) If i is a regular embedding of codimension d and p is smooth of relative
dimension n, and pi is a regular embedding of codimension d−n Then
for α ∈ CHk(Z ′) we have

(pi)!(α) = i!((p′)∗α).
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Proof. See Proposition 6.5 in [Ful98].

Remark 2.8. Some remarks.
(a) For local complete intersection morphism f : X → Y , we can decom-

pose it into f : X
i→ P

p→ Y where i is a closed regular embedding of
constant codimension and p is smooth of constant relative dimension.
Then we can define f ! := i!(p′)∗. See Section 6.6 in [Ful98] for more
properties.

(b) If Y is nonsingular of dimension n, then we can define the following
intersection product: Let f : X → Y and p : X ′ → X and q : Y ′ → Y .
Let x ∈ CHk(X ′) and y ∈ CHl(Y ′), consider the cartesian

X ′ ×Y Y ′ X ′ × Y ′

X X × Y
γf

p×q
⌜

and define x ·f y := γ!f (x× y) ∈ CHk+l−n(X ′ ×Y Y ′).
So when x, y ∈ CH∗(Y ), then let X = Y and X ′ = |x|, Y ′ = |y|, then
we get the new intersection product. Note that this is compactible as
the definition before. See Chapter 8 in [Ful98] for more properties. In
this case CH∗(Y ) is a ring which is called Chow ring.

Finally we will discuss something about equivalence and supportness.
Definition 2.9. Let i : X ↪→ Y be a closed regular embedding of codimension
d with normal bundle NX/Y . Pick V be a scheme of pure dimension k.
Consider the cartesian diagram

W V

X Y

g

j

f

i

⌜

Let C1, ..., Cr be the irreducible components of CW/V , then [CW/V ] =
∑r
i=1mi[Ci].

Let Zi = π(Ci) where π : g∗NX/Y → W and we call them the distinguished
varieties of the intersection of V by X. Let Ni := (g∗NX/Y )|Zi and let
0i : Zi → Ni be the zero-sections. Let αi := 0∗i [Ci] ∈ CHk−d(Zi) and hence
we have X · V =

∑r
i=1miαi ∈ CHk−d(W ).

Pick any closed set S ⊂W , we define

(X · V )S :=
∑
Zi⊂S

miαi ∈ CHk−d(S)

as the part of X · V supported on S.
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Definition 2.10. Let Xi ↪→ Y be closed regular embeddings of codimension
di. Let V ⊂ Y be a k-dimensional subvariety. Consider∩

iXi ∩ V V

X1 × · · · ×Xr Y × · · · × Y

δ
⌜

Then we can get X1 · . . . · xr · V ∈ CHdimV−
∑
i di

(
∩
iXi ∩ V ).

Let Z be a connected component of
∩
iXi ∩ V , we will consider

(X1 · . . . ·Xr · V )Z ∈ CHdimV−
∑
i di

(Z)

as before.

Proposition 2.11. As in the previous situation, we have

(X1 · . . . ·Xr · V )Z =

{
r∏
i=1

c(NXi/Y |Z) ∩ s(Z, V )

}
dimV−

∑
i di

.

If Z ↪→ V is a regular embedding, then

(X1 · . . . ·Xr · V )Z =

{
r∏
i=1

c(NXi/Y |Z) · c(NZ/V )
−1 ∩ [Z]

}
dimV−

∑
i di

.

If V, Z are both non-singular, then

(X1 · . . . ·Xr · V )Z =

{
r∏
i=1

c(NXi/Y |Z)c(TV |Z)
−1c(TZ) ∩ [Z]

}
dimV−

∑
i di

.

Proof. See Proposition 9.1.1 in [Ful98].

2.2 Localized Chern Class
Here we will follows Chapter 14.1 of [Ful98]. This is the most important
part which is the local case of the virtual fundamental class.

Definition 2.12. Let E → X be a vector bundle of rank e over a purely
n-dimensional scheme X. Let s : X → E be a section, consider the cartesian

Z(s) X

X E0

si
⌜
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with zero-section 0 : X → E which is a regular section by trivial reason. We
define

cloc(E, s) := 0!([X]) = 0∗(CZ(s)/X) ∈ CHn−e(Z(s))
be the localized (top) Chern class of E with respect to s.

Proposition 2.13. Consider the situation of Definition 2.12.

(a) We have i∗(cloc(E, s)) = ce(E) ∩ [X].
(b) Each irreducible component of Z(s) has codimension at most e in X.

If codimZ(s)X = e, then cloc(E, s) is a positive cycle whose support is
Z(s).

(c) If s is a regular section, then cloc(E, s) = [Z(s)].
(d) Let f : X ′ → X be a morphism, s′ = f∗s be a induced section of f∗E.

Let g : Z(s′)→ Z(s) be the induced morphism.

(d1) If f flat, then g∗cloc(E, s) = cloc(f∗E, s′).
(d2) If f is proper of varieties, then g∗cloc(f∗E, s′) = deg(X ′/X)cloc(E, s).

Proof. For (a), by Proposition 2.4(a) and Corollary 2.5, we have

i∗0
![X] = 0∗s∗[X] = s∗s∗[X] = ce(E) ∩ [X].

For (b),(c), these follows from the trivial arguments of intersection multi-
plicities, see Lemma 7.1 and Proposition 7.1 in [Ful98]. Finally (d) follows
from the following cartesians

Z(s′) X ′

X ′ f∗E

X E
0E

0f∗E

s′
⌜

⌜

and Proposition 2.4.

3 A Brief of Cotangent Complexes
Here we will give a quike introduction of cotangent complexes. We will
consider Deligne-Mumford stacks locally of finite type over k. Morphisms
are quasicompact and quasiseparated. We work over étale site.
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Theorem 3.1. For every morphism f : X → Y of DM-stacks (resp. finite
type morphism of noetherian DM-stacks), there exists a complex

LX/Y : · · · → L−1
X/Y → L0

X/Y → 0

of flat OX-modules with quasi-coherent (resp., coherent) cohomology, whose
image D−

Qcoh(Xét) (resp. D−
Coh(Xét)) is also denoted by LX/Y . This is called

the cotangent complex of f . It satisfies the following properties.
(a) H0(X,LX/Y ) = Ω1

X/Y .
(b) The morphism f is smooth if and only if f is locally of finite presen-

tation and LX/Y is a perfect complex supported in degree 0. In this
case, there is a quasi-isomorphism LX/Y

∼= Ω1
X/Y [0].

(c) If f factors as X ↪→ Z defined by a sheaf of ideals I and a smooth
morphism Z → Y , then

L≥−1
X/Y

∼= [0→ I /I 2 → Ω1
Z/Y |X → 0]

in D−
Qcoh(Xét) with Ω1

X/Y in degree 0. If in addition f is generically
smooth, then LX/Y

∼= Ω1
X/Y [0]. Moreover, if f is lci, then LX/Y is

perfect of perfect amplitude contained in [−1, 0].
(d) If we have a cartesian diagram

X ′ X

Y ′ Y

g′

⌜
f

g

then there is a morphism (Lg′)∗LX/Y → LX′/Y ′ . When f or g is flat,
then it is a quasi-isomorphism.

(e) If X f→ Y → Z is a composition of morphisms of DM-stacks, then
there is an exact triangle

Lf∗LY /Z → LX/Z → LX/Y → Lf∗LY /Z [1]

in D−
Qcoh(Xét). This induces a long exact sequence on cohomology

· · · → H−1(LX/Z)→ H−1(LX/Y )→ f∗Ω1
Y /Z → Ω1

X/Z → Ω1
X/Y → 0.

Proof. In the level of ring maps A → B, this constructed by standard sim-
plicial free A-resolution B → P (B)∗ where P (B)n = A[· · · [A[B]] · · · ] as

LB/A := ΩP (B)∗/A ⊗P (B)∗ B.

See Tag 08UV Tag 0D0N Tag 0FK3 Tag 08QQ Tag 08T4.
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Remark 3.2. For the general algebraic stacks, any quasi-separated 1-morphism
f : X → Y with separated diagonal, there exists a relative cotangent complex

Lf ∈ D≤1
Qcoh(Xlis-ét)

over lisse-étale site of X . Existence is good, but the fact that the cotangent
complex trespasses to positive degree forces one to pay more attention when
performing the cutoff. If the diagonal of f is unramified (as we consider
now), then this problem goes away, in the sense that Lf ∈ D≤0

Qcoh(Xlis-ét).
We refer Chapter 17, espectially 17.3 in [LMB00] for more comments about
this and the generalization of the properties as above.

4 Fundations of Virtual Fundamental Class
We will follows [BF97]. Here an algebraic stack (or Artin stack) over a field
k is assumed to be quasi-separated and locally of finite type over k. The
Chow groups as we consider are all Q-coefficients. We thanks Zhiyu Liu’s
discussion and several useful helps about [BF97].

4.1 About Cones
We will let X be a Deligne-Mumford stack now.

Definition 4.1. Let X be a DM-stack.

(a) We call an affine X-scheme C = Spec
X

S is a cone over X if the
quasi-coherent algebra S is graded as S =

⊕
i≥0 S i with S 0 = OX

and S 1 is coherent and S is generated by S 1.
(b) A morphism of cones over X is an X-morphism induced by a graded

morphism of graded sheaves of OX-algebras. A closed subcone is the
image of a closed immersion of cones.

Remark 4.2. (a) The fiber product of cones over X is still a cone over
X.

(b) For every cone C → X, it has a zero section 0 : X → C induced by
S → S 0.

(c) For every cone C → X, the grade induce a Gm-action Gm × C =
Spec

X
S [t, t−1] → C induced by S → S [t, t−1] via s0 + · · · sd 7→∑

i ait
i where si ∈ S i. Since no negative power of t occurs, we can

in fact replace Gm by A1. So we have the A1-action γ : A1 × C → C
induced by S → S [x] via S i 3 s 7→ sxi. Note that here A1 is not a

10

https://sites.google.com/view/zhiyuliu


group scheme and the action here, as expected, to be the commutativity
of the following diagrams:

C A1 × C A1 × A1 × C A1 × A1 × C

C A1 × C C

(1,id)/(0,id)

γ
id/0

γ

γ

id×γ

m×id

where m(x, y) = xy.
(d) So a morphism of cones f : C → D over X is just the A1-equivariant

X-morphism respecting the zero section, that is, the following commu-
tativity of the diagram:

A1 × C C X

A1 ×D D

fid×f

0C

0D

Definition 4.3. LetF be a coherent sheaf of X, then we can define C(F ) :=
Spec

X
Sym(F ) which is a group scheme over X since it can be represented

as C(F )(T ) = Hom(FT ,OT ). We call a cone of this form is an abelian cone
over X.
Remark 4.4. (a) A fibered product of abelian cones is an abelian cone.
(b) A vector bundle E = Spec

X
Sym(E ∨) is a special case.

(c) Any cone C = Spec
X

⊕
i≥0 S i is canonically a closed subcone of an

abelian cone A(C) = Spec
X
SymS 1, called the abelian hull of C. The

abelian hull is a vector bundle if and only if S 1 is locally free.
(d) The abelianization C 7→ A(C) is a functor has the forgetful functor as

a right adjoint. So we have
HomAbConeX (A(C), A) ∼= HomConeX (C,A).

(e) Let AlgoX as the category of quasicoherent graded OX-algebras satisfy-
ing the condition in the definition of cones. So we have the following
commutative diagram of functors:

AlgoX ConeopX

LocFreeX VectopX

CohX AbConeopX

Sym

Spec
X

Spec
X

Sym(−)∨

Spec
X

Sym

11



Example 4.5. Tow important examples. Let X ↪→ Y be a closed immersion
of ideal I . Then CX/Y := Spec

X

⊕
n≥0 I n/I n+1 is called the normal cone

of X in Y . The associated abelian cone NX/Y = Spec
X
SymI /I 2 is called

the normal sheaf of X in Y .

Lemma 4.6. About smoothness:

(a) Let C = Spec
X

S be a cone over X. Then CX/C
∼= S 1 ∼= 0∗ΩC/X .

(b) A cone C over X is a vector bundle if and only if it is smooth over X.
(c) Let C → D be a smooth morphism of cones of relative dimension n

over X. Then the induced morphism A(C)→ A(D) is also smooth of
relative dimension n.

Proof. For (a), note that CX/C
∼= S 1 is trivial by definition. Morever, 0 :

X → C is the zero section and we have 0→ CX/C → 0∗ΩC/X → ΩX/X = 0
exact (see Tag 0474). Well done.

For (b), let C = Spec
X

⊕
i≥0 S i and assume that C → X has constant

relative dimension r. Then S 1 = 0∗ΩC/X is locally free of rank r. As
C ↪→ A(C) where A(C) is a vector bundle and dimC = dimA(C), we know
that C is a vector bundle.

For (c), apply the exact triangle of cotangent complex to X → C → D
and (a), we have an exact sequence

0→ T 1 → S 1 → 0∗CΩC/D → 0

where C = Spec
X

S andD = Spec
X

T . So locally we have A(C) = A(D)×X
Spec

X
Sym(0∗CΩC/D). Well done.

Definition 4.7. A sequence of cone morphisms

0→ E
i→ C → D → 0

is called exact if E is a vector bundle and locally over X there is a morphism
of cones C → E splitting i and inducing an isomorphism C ∼= E ×X D.

Remark 4.8. As E → X is smooth and surjective by Lemma 4.6, if 0 →
E

i→ C → D → 0 then locally we have C ∼= E×XD which force that C → D
is smooth and surjective! Similarly i : E → C is a closed embedding.

Lemma 4.9. We have the following useful results.

(a) Given a short exact sequence 0 → F ′ → F → E → 0 of coher-
ent sheaves on X, with E locally free, then 0 → C(E ) → C(F ) →
C(F ′)→ 0 is exact, and conversely is also true.
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(b) Let 0 → E → F
f→ G → 0 be an exact sequence of abelian cones over

X with E a vector bundle. Assume that D ⊂ G is a closed subcone,
then the induced sequence 0→ E → f−1(D) =: C → D → 0 is exact.

(c) Let f : C → D be a morphisms of cones over X which is smooth
surjective, then the induced diagram

C D

A(C) A(D)

f

A(f)

is cartesian. Moreover, we have D = [C/E] (see Lemma 4.12(a)) and
A(D) = [A(C)/E], where E := C ×D,0 X = A(C)×A(D),0 X.

(d) Let E be a vector bundle over X and then the sequence 0→ E → C →
D → 0 is exact if and only if the abelian hulls 0 → E → A(C) →
A(D)→ 0 is exact and C → D is smooth and surjective.

Proof. For (a), we refer Example 4.1.6 and Example 4.1.7 in [Ful98]. As
exactness is local, we may assume E is free. Then the first sequence is exact
if and only if F ′ ⊕ E = F if and only if the second sequence is exact as
cones, since Sym(F ′ ⊕ E ) = Sym(F ′)⊗ Sym(E ) = Sym(F ).

For (b), note that this can be checked locally, so we can let we can assume
that F = G ⊕ E ∨ where E = Spec

X
SymE ∨ and F = Spec

X
SymF and

G = Spec
X
SymG . Let D = Spec

X
T , then we have surjection Sym(G ) →

T . By definition, we have

C = F ×G D = Spec
X
(Sym(F )⊗Sym(G ) T )

= Spec
X
((Sym(G )⊗ SymE ∨)⊗Sym(G ) T )

= Spec
X
(SymE ∨ ⊗T ).

This means locally C = E ⊕ D and the splitting C → E is induced by
F → E. Well done.

For (c), let E := C ×D,0 X and E′ := A(C) ×A(D) D with embedding
E ↪→ E′, then both of them are vector bundles by Lemma 4.6(b)(c) and
hence E = E′. We have cartesians

E X E X

C D A(C) A(D)

⌜ ⌜

By the properties of commutative affine group schemes, we have A(D) =
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[A(C)/E]. But how about [C/E]? Now we have

D

C [C/E]

A(C) A(D)

⌜

Since C → [C/E] and C → D are both smooth and surjective, we know that
[C/E]→ D is flat and surjective. But by closed embeddings [C/E]→ A(D)
and D → A(D), we know that [C/E]→ D is also a closed embedding. Thus
D = [C/E], well done.

For (d), note that all the question is locally on X. First we assume
0→ E

i→ C
f→ D → 0 is exact. Then by (a), to show that 0→ E → A(C)→

A(D) → 0 is exact, we only need to show that 0 → T 1 → S 1 → E ∨ → 0
is exact where E = Spec

X
SymE ∨ and C = Spec

X
S and D = Spec

X
T .

First since f is faithfully flat and quasi-compact, we know that T 1 → S 1

is injective. And since i is a closed embedding, S 1 → E ∨ is surjective. Now
by local splitting, we know that locally we have Sym(E∨) ⊗ T = S . In
particular, we have T 1 ⊕ E ∨ = S 1. Thus the exactness of 0 → T 1 →
S 1 → E ∨ → 0 is obtained. Conversely we assume that after taking abelian
hull, the sequence is exact. Now the result follows from (a) and (c).

Proposition 4.10. Let C → D be a smooth, surjective morphism of cones.
If we let E = C ×D,0 X, then the sequence

0→ E → C → D → 0

is exact. Conversely if 0→ E → C → D → 0 is exact, then E ∼= C ×D,0 X.

Proof. Let C = Spec
X

⊕
i≥0 S i and D = Spec

X

⊕
i≥0 T i.

Let E = C ×D,0 X = Spec
X
SymE ∨, by Lemma 4.9(d) we just need to

show that 0→ E → A(C)→ A(D)→ 0 is exact, that is, 0→ T 1 → S 1 →
E ∨ → 0 is exact by Lemma 4.9(a). Note that SymE ∨ = S ⊗T (T /T ≥1)
which force E ∨ ∼= S 1/T 1. Well done.

Conversely, assume that the sequence 0 → E → C → D → 0 is exact
and F = C ×D,0X. Then by the universal property of fibre product, we get
a morphism E → F . From the construction, it is easy to see that F∨ → E ∨

surjective. Since they are both bundles of the same rank over X, we know
that E = F .
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Definition 4.11. (a) If E is a vector bundle and f : E → C(F ) a mor-
phism of abelian cones. The there is an E-action as E ×X C(F ) →
C(F ) as (ν, γ) 7→ fν + γ.

(b) If E is a vector bundle and d : E → C a morphism of cones, we say
that C is an E-cone, if C is invariant under the action of E on A(C).

(c) A morphism φ from an E-cone C to an F -cone D is a commutative
diagram of cones

E C

F D

dE

dF

ϕ ϕ

(d) If φ : (E, dE , C) → (F, dF , D) and ψ : (E, dE , C) → (F, dF , D) are
morphisms, we call them homotopic, if there exists a morphism of
cones k : C → F , such that kdE = ψ − φ = dF k.

Lemma 4.12. Some useful lemmas:

(a) Let f : C → D be a smooth surjective cone morphism with E =
C ×D,0 X, then C is an E-cone.

(b) Let 0 → E
i→ C

f→ D = [C/E] → 0 be a sequence of algebraic
X-spaces with E a bundle, C is a E-cone, i a closed embedding and
f : C → D = [C/E] is the universal family. Then locally on X, there is
a j : C → E split i and induces an isomorphism (f, j) : C → D×X E.

(c) Let 0 → E
i→ C

f→ D → 0 be a sequence of algebraic X-spaces with
sections and A1-actions such that E a bundle, C is a E-cone, i is a
closed embedding and f is A1-equivariant. Then D is a cone with the
sequence exact if and only if D ∼= [C/E].

Proof. For (a), this follows from directly check. We omit it.
For (b), since the question is local we can assume that E is a trivial

bundle and X is a scheme. Let i′ : E → A(C) and C = Spec
X

S and E =

Spec
X
SymE ∨. Then the surjection S 1 ↠ E ∨ has a splitting E ∨ ↪→ S 1,

which gives j′ : A(C) → E such that j′ ◦ i′ = idE . Then we just define
j : C → E as composition with C → A(C) and j′. Hence j ◦ i = idE .

Now since C → D is also a principal E-bundle, and we have a E-
equivariant D-morphism (f, j) : C → D ⊕ E from C to the trivial principal
bundle. Since they are both E-principal bundle, we know that (f, j) is an
isomorphism.

For (c), let D = [C/E]. We know that D → X is affine since locally on
X we have C ∼= D ×X E → E is affine and (b) and faithfully flat descent.
By construction we have E = C ×D,0 X, hence by Proposition 4.10 we just
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need to show D is a cone. Now as D → X affine we have D = Spec
X

T .
If C = Spec

X
S , then T ⊂ S as C → D is faithfully flat. Hence it has

graded structure T =
⊕

i≥0 T ∩S i as f is A1-equivariant. As it have zero
section, we have T 0 = OX . Finally we have A1-equivariant embedding D ↪→
[A(C)/E] and [A(C)/E] is a cone by Lemma 4.9(c). Hence T generated by
the coherent sheaf T 1.

Conversely, we assume D is a cone and that sequence is exact. Let
D′ = [C/E]. By the universal property of quotient, we have a natural map
g : D′ → D. Since 0 → E → C → D′ → 0 is also exact by the first case,
by exactness we have locally C ∼= E ×X D ∼= E ×X D′. Note that these
isomorphisms compatible with g : D′ → D, hence by faithfully flat descent
we have g is an isomorphism.

Proposition 4.13. Let X be a DM-stack.

(a) Let E be a vector bundle. Consider the sequence of cone morphisms
0 → E

i→ C
ϕ→ D → 0 with i a closed embedding. Then it is exact if

and only if C is a E-cone, φ : C → D is faithfully flat and the diagram

E × C C

C D

σ

p
⌜

ϕ

ϕ

is cartesian with projection p and action σ.
(b) Let (C, 0, γ) and (D, 0, γ) be algebraic X-spaces with sections and A1-

actions and let φ : C → D be an A1-equivariant X-morphism, which is
smooth and surjective. Let E = C ×D,0 X. Assume that E is a vector
bundle. Then C is an E-cone (resp. abelian cone, vector bundle) over
X if and only if D is a cone (resp. abelian cone, vector bundle) over
X and C is affine over X.

Proof. For (a), if it is exact, locally we have C ∼= E ×X D. So E act on C
locally as E×E×XD → E×XD given by (f, (e, d)) 7→ (i(f)+e, d). So C is
a E-cone. Now φ : C → D is trivially faithfully flat. The cartesian diagram
follows from Lemma 4.12(c).

Conversely, since φ is fppf, this diagram is also cocartesian by Proposition
V.1.3.1 in [Li18] which force D = [C/E]. Hence the results follows from
Lemma 4.12(c).

For (b), let C is an E-cone over X. Then we have g : [C/E] → D. We
claim that g is an isomorphism. Indeed, by the diagram in (a), we know
that g induces an isomorphism g′ : E ×X C = C ×[C/E] C → C ×D C. Note
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that we have a cartesian diagram:

C ×[C/E] C C ×D C

[C/E] [C/E]×D [C/E]

⌜

where C×DC → [C/E]×D [C/E] is faithfully flat, hence [C/E] ↪→ [C/E]×D
[C/E] is an isomorphism. So g is a monomorphism. But since C → [C/E]
and C → D are faithfully flat, hence epimorphism. Thus g is also an epi-
morphism, hence an isomorphism. Thus D ∼= [C/E] and the result follows
from Lemma 4.12(c).

Now assume that C = A(C) is an abelian cone, then taking hull to
0 → E → C → D = [C/E] → 0. By Lemma 4.9(c)(d) we have A(D) =
[A(C)/E] = [C/E] = D. Hence D is also an abelian cone.

Finally assume that C is a bundle. Then by the previous case we know
that D is an abelian cone. The T 1 = ker(S 1 ↠ E ∨) is clearly locally
free since C 1 and E are where C = Spec

X
S , D = Spec

X
T and E =

Spec
X
SymE ∨.

Conversely we let D is a cone and C is affine over X. Hence we have
C = Spec

X
S where S =

⊕
i≥0 S i and S 1 = OX . By the same reason E

is affine over X. Hence we have C = Spec
X

F where F =
⊕

i≥0 F i and
F 1 = OX . If we let D = Spec

X
T , then F = S /(T ≥1S ).

Apply the exact triangle of cotangent complex to X 0C→ C → D, we have
an exact sequence

0→ T 1 → S ≥1/(S ≥1)2 = CX/C → E ∨ := 0∗CΩC/D → 0.

As S ≥1/(S ≥1)2 = S 1 ⊕ S ≥2/(S ≥1)2, we have a commutative diagram
with exact rows and columns:

0 0

0 T 1 S 1 F 1 0

0 T 1 S ≥1/(S ≥1)2 E ∨ 0

S ≥2/(S ≥1)2 E ∨/F

0 0

=

=
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Locally on X we can assume that E is free and T 1 ⊕ E ∨ = S ≥1/(S ≥1)2.
Then as F 1 ⊂ E ∨, we know that F 1. Since T 1 is also coherent, we know
that so is S 1. Finally we just need to show S generated by S 1 as by
Lemma 4.12(a) here C will be an E-cone.

Then locally onX we can choose generators of T 1,F 1,E ∨/F 1 = S ≥2/(S ≥1)2

such that gives a surjective OX -algebra morphism φ : T ⊕ SymE ∨ ↠ S
which induce T ⊕ SymF 1 → T ⊕ SymE ∨ ↠ S is graded. Tensoring
(−) ⊗T OX with φ we get surjection φ′ : SymE ∨ ↠ F . This induce the
closed immersion E ↪→ Spec

X
SymE ∨. Since they are both smooth of a

same relative dimension over X and Spec
X
SymE ∨ is a vector bundle, hence

E ∼= Spec
X
SymE ∨ and φ′ is an isomorphism. Hence F = Sym(F 1) and

F 1 is locally free. As Sym(F 1) ⊂ SymE ∨ ϕ′

→ F = Sym(F 1) is identity,
this force E ∨ = F 1. As this can be check locally, we have E ∨ = F 1 in
whole X. By the diagram above, we have S ≥2/(S ≥1)2 = E ∨/F 1 = 0.
This means S generated by S 1. Well done.

Remark 4.14. In the original paper [BF97] they claim (a) is enough for
the surjectivity of f .

4.2 Cone Stack
Let X be a Deligne-Mumford stack.

Definition 4.15. Let C be an algebraic stack over X, together with a section
0 : X → C. An A1-action on (C, 0) is given by a morphism of X-stacks
γ : A1 × C → C and three 2-isomorphisms θ1, θ0 and θγ between the 1-
morphisms in the following diagrams.

C A1 × C

C

(1,id)/(0,id)

id/0 γ

θ1/θ0

A1 × A1 × C A1 × C

A1 × C C

id×γ

m×id γ

γ

θγ

The 2-isomorphisms θ1, θ0 and θγ are required to satisfy certain compatibil-
ities.

Definition 4.16. Let (C, 0, γ) and (D, 0, γ) be X-stacks with sections and
A1-actions. Then an A1-equivariant morphism φ : C→ D is a triple (φ, η0, ηγ),
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where φ : C → D is a morphism of algebraic X-stacks and η0 and ηγ are
2-isomorphisms between the morphisms in the following diagrams.

X C

D

0

0
ϕ

η0

A1 × C A1 ×D

C D

id×ϕ

γ γ

ϕ

ηγ

Again, the 2-isomorphisms have to satisfy certain compatibilities.

Definition 4.17. Let (φ, η0, ηγ) : C → D and (ψ, η′0, η
′
γ) : C → D be two

A1-equivariant morphisms. An A1-equivariant isomorphism ζ : φ → ψ is a
2-isomorphism ζ : φ→ ψ such that the diagrams

0 φ ◦ 0 φ ◦ γ γ ◦ (id× φ)

ψ ◦ 0 ψ ◦ γ γ ◦ (id× ψ)

η0

η′0
ζ◦0 ζ◦γ γ◦(id×ζ)

commute.

Example 4.18. Let C be a E-cone, then consider the quotient stack [C/E].
We claim that [C/E] a zero section and an A1-action.
Indeed, the zero section 0 : X → [C/E] given by X ← E → C. The

A1-action of α ∈ A1(T ) on (P, f) ∈ [C/E](T ) defined by (αP, αf) where
αP = P ×E,α E and αf : P ×E,α E → C given by [p, v] 7→ αf(p) + d(v)
where d : E → C.
Moreover, if φ : (E,C) → (F,D) is a morphism of vector bundle cones

we get an induced A1-equivariant morphism φ̃ : [C/E]→ [D/F ].

Lemma 4.19. Some useful results.

(a) A homotopy k : φ → ψ of two morphisms of vector bundle cones
φ, ψ : (E,C) → (F,D) gives rise to an A1-equivariant 2-isomorphism
k̃ : φ̃→ ψ̃ of A1-equivariant morphisms of stacks with A1-action.

(b) Conversely, let two morphisms of vector bundle cones φ, ψ : (E,C)→
(F,D) with an A1-equivariant 2-isomorphism ζ : φ̃→ ψ̃ of A1-equivariant
morphisms of stacks with A1-action. Then ζ = k̃ for unique homotopy
k : φ→ ψ.
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Proof. For (a), samilar to Proposition 4.29. For (b) TBC...

Proposition 4.20. Let C be an E-cone and D an F -cone and let φ :
(E,C)→ (F,D) be a morphism. If the diagram

E C

F D

⌜
ϕ

d

is cartesian and F ×X C → D by (µ, γ) 7→ dµ + φ(γ) is surjective, then
[C/E]→ [D/F ] is an isomorphism of algebraic X-stacks with A1-action.

Proof. For the same proof of Proposition 4.30.

Definition 4.21. (a) We call an algebraic stack (C, 0, γ) over X with sec-
tion and A1-action a cone stack, if, étale locally on X, there exists a
cone C over X and an A1-equivariant morphism C → C that is smooth
and surjective and such that E = C ×C,0X is a vector bundle over X.

(b) The morphism C → C is called a local presentation of C. The section
0 : X → C is called the vertex of C.

(c) Let C and D be cone stacks over X. A morphism of cone stacks φ :
C → D is an A1-equivariant morphism of algebraic X-stacks. A 2-
isomorphism of cone stacks is just an A1-equivariant 2-isomorphism.

(d) A cone stack C over X is called abelian cone stack (resp. vector bundle
stack), if, locally in X, one can find presentations C → C, where C is
an abelian cone (resp. vector bundle).

Remark 4.22. Some basic properties of cone stacks.

(a) If C → C is a global presentation with E = C ×C,0 X, then C is an
E-cone with C ∼= [C/E] as stacks with A1-action. This follows from
Proposition 4.10 and 4.13 and Lemma 4.12.

(b) If φ : C→ D is a morphism of cone stacks, then, étale locally on X, φ
is A1-equivariantly isomorphic to [C/E]→ [D/F ], where E → F is a
morphism of vector bundles over X and C → D is a morphism from
the E-cone C to the F -cone D.

(c) A 2-isomorphism of cone stacks ζ : φ → ψ, where φ, ψ : C → D, is
étale locally over X given by a homotopy of morphisms of vector bundle
cones. This follows from Lemma 4.19(b).

(d) Let C → C and D → D be two local presentation of a cone stack C
over X, then so is C ×C D → C.
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Indeed, we only need to show that C×CD is a cone. Since C → C and
D → X are affine, we know that C ×C D → D → X is also affine.
Then C×CD is a cone a by Proposition 4.13(b) and the result follows.

(e) Every fibered product of cone stacks is a cone stack.
(f) If C is a representable cone stack over X, then it is a cone.

Indeed, locally on X, C→ X is A1-isomorphic to a cone. In particular,
as C → X is representable, it is affine. Then we assume that C =
Spec

X
S . Since there is a non-trivial A1-action on C and has a section,

we know that S is a graded algebra with S 0 = OX . To show C is
a cone, we only need to show that S 1 is coherent and S is locally
generated by S 1. These are both local property, then they hold since
locally C→ X is A1-isomorphic to a cone.

(g) If C is abelian (a vector bundle stack), then for every local presentation
C → C the cone C will be abelian (a vector bundle).

Example 4.23. Note that all cones are cone stacks and all morphisms of
cones are morphisms of cone stacks. For a vector bundle E on X, the
classifying stack BXE is a cone stack. Every homomorphism of vector
bundles φ : E → F gives rise to a morphism of cone stacks.

Proposition 4.24. Every cone stack is a closed subcone stack of an abelian
cone stack. There exists a universal such abelian cone stack. It is called the
abelian hull.

Proof. Just glue the stacks obtained from the abelian hulls of local presen-
tations.

Definition 4.25. (a) Let E be a vector bundle stack and E → C a mor-
phism of cone stacks. We say that C is an E-cone stack, if E → C
is locally isomorphic (as a morphism of cone stacks) to the morphism
[E1/E0]→ [C/F ] coming from a commutative diagram

E0 F

E1 C

where C is both E1- and F -cone. The natural action E ×X C → C
induced by E1 × C → C.

(b) Let E→ C→ D be a sequence of morphisms of cone stacks where C is
an E-cone stack. If

(b1) C→ D is a smooth epimorphism.
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(b2) The diagram
E×X C C

C D

σ

p
⌜

is cartesian where σ is action and p is projection.

Then we call 0 → E → C → D → 0 is a short exact sequence of cone
stacks. As before, this is equivalent to C being locally isomorphic to
E×X D.

Proposition 4.26. The sequence 0 → E → C → D → 0 of morphisms
of cone stacks is exact if and only if locally in X there exist commutative
diagrams

0 E0 F G 0

0 E1 C D 0

where the top row is a short exact sequence of vector bundles and the bottom
row is a short exact sequence of cones, such that E→ C→ D is isomorphic
to [E1/E0]→ [C/F ]→ [D/G].
Proof. The statement is local on X. To prove the only if part we can assume
C = E×XD, and then it is trivial. To prove the if part, note that both short
exact sequences are locally split.

4.3 A Picard Stack of Special Type
General Theory
First we will consider the case of complex of two terms.
Definition 4.27. Let X be a topos.
(a) Let d : E0 → E1 a homomorphism of abelian sheaves on X, which we

shall consider as a complex of abelian sheaves on X. Via d, the abelian
sheaf E0 acts on E1 and we may consider the quotient stack of this
action, denoted

H1/H0(E•) := [E1/E0]

which is a Picard stack over X.
(b) Now if d : F 0 → F 1 is another homomorphism of abelian sheaves on

X and φ : E• → F • is a homomorphism of complexes, then we get an
induced morphism of Picard stacks

H1/H0(φ) : H1/H0(E•)→ H1/H0(F •)
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given by (P, f) 7→ (P ×E0,ϕ0

F 0, φ1(f)) where φ1(f) is the map

φ1(f) : P ×E
0,ϕ0

F 0 → F 1, [p, ν] 7→ φ1(f(p) + d(ν)).

(c) Now, if ψ : E• → F • is another homomorphism of complexes, then the
homotopy k : φ → ψ is a homomorphism of abelian sheaves k : E1 →
F 0, such that kd = ψ0 − φ0 and dk = ψ1 − φ1.

Remark 4.28. Note that roughly speaking, a Picard stack is a stack together
with an ‘addition’ operation, that is both associative and commutative. For
the precise definition of Picard stack see Sect. 1.4 of Exposé XVIII in
[AGV73].
Here the quotient stack is similar as before: the groupoid H1/H0(E•)(U)

is the category of pairs (P, f), where P is an E0-torsor over U and f : P →
E1|U is an E0-equivariant morphism of sheaves on U .

Proposition 4.29. As in the considtion of definition, if we have a homotopy
k : φ→ ψ, then this can induce isomorphism θ : H1/H0(φ)→ H1/H0(ψ) of
morphisms of Picard stacks from H1/H0(E•) to H1/H0(F •).

Proof. Pick object U ∈ ob(X) and (P, f) ∈ H1/H0(E•)(U), then θ(U)(P, f) :
H1/H0(φ)(U)(P, f)→ H1/H0(ψ)(U)(P, f) in H1/H0(F •)(U) is the isomor-
phism of F 0|U -torsors

θ(U)(P, f) : P ×E
0,ϕ0

F 0 → P ×E
0,ψ0

F 0

given by [p, ν] 7→ [p, kf(p) + ν] such that the diagram of F 0|U -sheaves

P ×E0,ϕ0

F 0

P ×E0,ψ0

F 0 F 1

θ(U)(P,f) ϕ1(f)

ψ1(f)

commutes.

Proposition 4.30. Let φ : E• → F • is a homomorphism of complexes of
abelian sheaves in the topos X. If φ induces isomorphisms on kernels and
cokernels (i.e. if φ is a quasi-isomorphism), then

H1/H0(φ) : H1/H0(E•)→ H1/H0(F •)

is an isomorphism of Picard stacks over X.
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Proof. First let us treat the case that φ is a homotopy equivalence, that is,
there is a homotopy inverse of φ such that compositions are homotopic to
idE• and idF• , respectively. By Proposition 4.29 well done.

Next we assume φ is an epimorphism. In this case E1 → [F 1/F 0] is an
epimorphism, so we just need to prove the diagram

E0 × E1 E1

E1 [F 1/F 0]

d+id

p

is cartesian as in this case this will be a cocartesian diagram! This quickly
reduces to proving that

E1 × E0 E1

E1 × F 0 F 1

is cartesian, which, in turn, is equivalent to

E0 E1

F 0 F 1

being cartesian, which is a consequence of the assumptions.
Finally in general case, let us note that a general φ factors as a homotopy

equivalence followed by an epimorphism, then well done. Indeed, consider
E• ⊕ F 0, which is homotopy equivalent to E•. Define a homomorphism
ψ : E• ⊕ F 0 → F • by ψ0(ν, µ) = φ0(ν) + µ and ψ1(ξ, µ) = φ1(ξ) + µ. Then
ψ is surjective and φ = ψ ◦ i where i : E• ↪→ E• ⊕ F 0 is the canonical
embedding.

Now we consider the general case.

Definition 4.31. Let X be a topos and E• be a complex of abelian sheaves
on X, then we define

H1/H0(E•) := H1/H0(τ [0,1]E•).

Lemma 4.32. Let X be a ringed topos with structure sheaf of rings OX .

(a) We can defineH1/H0(E•) and homomorphisms can defined overD(OX).
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(b) Let φ, ψ : E• → F • be two morphisms in D(OX). Then, if for some
choice of H1/H0(φ) and H1/H0(ψ) we have H1/H0(φ) ∼= H1/H0(ψ)
as morphisms of Picard stacks, then φ = ψ.

(c) Consider the zero morphism 0(E,F ) : H1/H0(E•) → H1/H0(F •).
Then Aut(0(E,F )) = Hom−1

D(OX)(E
•, F •).

Proof. For (b)(c), see Sect. 1.4 of Exposé XVIII in [AGV73]. For (a), the
quasi-isomorphism induce an isomorphism of Picard stacks, see Proposition
4.30.

Example 4.33. Consider E• an we focus on d0 : E0 → E1.

(1) If d0 is a monomorphism, then H1/H0(E•) = coker(d0) is a sheaf.
(2) If d0 is a epimorphism, then H1/H0(E•) = BX ker(d0) is a gerbe.

Application
Come back to our case, let X be a DM-stack over a field k, then consider the
big fppf topos Xfppf and small étale topos Xét. Then we have the morphism
of topoi

v : Xfppf → Xét.

(a) Then we we can get Lv∗ : D−(OXét) → D−(OXfppf). We may let
M•

fppf := Lv∗M• for any M• ∈ D−(OXét).
(b) We also have RH om(−,OXfppf) : D−(OXfppf) → D+(OXfppf). We may

let M•,∨ := RH om(M•,OXfppf) for any M• ∈ D−(OXfppf).

Remark 4.34. We will consider the stackH1/H0(M•,∨
fppf ) forM• ∈ D−(OXét).

Note that in this case

H1/H0(M•,∨
fppf ) = H

1/H0((τ≥−1M•
fppf)

∨).

Remark 4.35. For a complex E•, we define Zi(E•) = ker(Ei → Ei+1) and
Ci(E•) = coker(Ei−1 → Ei).

Definition 4.36. We call an object L• ∈ D(OXét) satisfies Condition (*) if

(1) Hi(L•) = 0 for all i > 0.
(2) Hi(L•) is coherent for all i = 0,−1.

Here are some fundamental results:

Proposition 4.37. Let X be a DM-stack.
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(a) Let L• ∈ D(OXét) satisfy Condition (*). Then theX-stackH1/H0(L•,∨
fppf)

is an abelian cone stack over X. Moreover, if L• is of perfect amplitude
contained in [−1, 0], then H1/H0(L•,∨

fppf) is a vector bundle stack.
(b) If φ : E• → L• is a homomorphism in D(OXét), where E• and L•

satisfy (*), then we get an induced morphism of algebraic stacks

φ∨ : H1/H0(L•,∨
fppf)→ H

1/H0(E•,∨
fppf).

Then φ∨ is a morphism of abelian cone stacks. Moreover, H0(φ) is
surjective if and only if φ∨ is representable.

(c) The morphism φ∨ is a closed immersion if and only if H0(φ) is an iso-
morphism and H−1(φ) is surjective. Moreover, φ∨ is an isomorphism
if and only if H0(φ) and H−1(φ) are isomorphisms.

(d) Let E• → F • → G• → E•[1] be a distinguished triangle in D(OXét),
where E• and F • satisfy (*) and G• is of perfect amplitude contained
in [−1, 0]. Then the induced sequence

H1/H0(G•,∨
fppf)→ H

1/H0(F •,∨
fppf )→ H

1/H0(E•,∨
fppf)

is a short exact sequence of abelian cone stacks over X.

Proof. For (a), as the claim is étale local, we may assume L• consists of
free OX -modules with Li = 0 for i > 0 and L0, L−1 have finite rank. Then
L•

fppf = v∗L• and L•,∨
fppf is taking dual of L•

fppf component-wise. Hence we
have

H1/H0(L•,∨
fppf) = [Z1(L∨,•)/L∨,0]

which is an abelian cone stack given by L∨,0 → Z1(L∨,•) = C(C−1L•).
When L• is of perfect amplitude contained in [−1, 0], then H1/H0(L•,∨

fppf)

is a vector bundle stack since étale locally as above we have Z1(L∨,•) = L∨,1.
For (b), the fact that φ∨ is a morphism of abelian cone stacks is immediate

from the definition. The second question is étale local in X, so we may
assume that E• and L• are complexes of free OX -modules and that Ei =
Li = 0, for i > 0, and that L0, L−1, E0 and E−1 are of finite rank. Consider
the commutative diagram

C−1(E•)

F E0

B−1(L•) L0

⌜
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of coherent sheaves with fiber product F . This force 0 → F → E0 ⊕
C−1(L•) → L0 exact. Then its easy to see that H0(φ) is surjective if and
only if 0 → F → E0 ⊕ C−1(L•) → L0 → 0 exact. Hence taking duality we
get 0→ L∨,0 → E∨,0×X Z1(L∨,•)→ C(F )→ 0 exact. Then by Proposition
4.20 we get

[Z1(L∨,•)/L∨,0] ∼= [C(F )/E∨,0].

This force the following cartesians

C(F ) Z1(E∨,•)

H1/H0(L•,∨
fppf) H1/H0(E•,∨

fppf)

⌜

ϕ∨

hence φ∨ is representable.
For the converse, note that φ∨ : [Z1(L∨,•)/L∨,0] → [Z1(E∨,•)/E∨,0]

representable implies that [Z1(L∨,•)/L∨,0] = [W/E∨,0]. Then we have the
commutative diagram:

Z1(L∨,•)×X L∨,0 Z1(L∨,•)

Z1(L∨,•)×X E∨,0 W

Z1(L∨,•) [W/E∨,0]

such that the the whole diagram and the lower diagram are cartesians, then
this force the upper square is cartesian. So we get cartesians

L∨,0 Z1(L∨,•)×X L∨,0 Z1(L∨,•)

E∨,0 Z1(L∨,•)×X E∨,0 W

⌜ ⌜

Hence L∨,0 ∼= E∨,0×W Z1(L∨,•)→ E∨,0×X Z1(L∨,•) is a closed immersion.
This implies that E0 ⊕ C−1(L•)→ L0 is an epimorphism.

For (c), following the previous argument in (b), φ∨ is a closed immersion
if and only if C(F ) → Z1(E∨,•) is. This is equivalent to C−1(E•) → F
being surjective. A simple diagram chase shows that this is equivalent to
H0(φ) is an isomorphism and H−1(φ) is surjective. The ‘moreover’ follows
similarly.
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For (d), the question is étale local, so assume that Ei and F i are 0 for
i > 0 and vector bundles for i = 0,−1, and that Gi = Ei+1 ⊕ F i, that is,
G• = cone(E• → F •). If we consider the small enough étale locally, we may
let Gi = 0 for i ≤ −2 as G• is of perfect amplitude contained in [−1, 0]. Now
we have to prove that

0→ [Z1(G∨,•)/G∨,0]→ [Z1(F∨,•)/F∨,0]→ [Z1(E∨,•)/E∨,0]→ 0

is a short exact sequence of cone stacks. Now by directly check, we have the
exact sequence of sheaves

0→ C−1(E•)→ C−1(F •)⊕ E0 → C−1(G•)→ 0.

Hence consider

0 C−1(E•) C−1(F •)⊕ E0 C−1(G•) 0

0 E0 F 0 ⊕ E0 G0 = F 0 0

with exact rows. Finally by Proposition 4.26 we get the result.

4.4 About Normal Cones
Here we will consider some useful results about normal cones of DM-stacks.

Consider the commutative diagram of algebraic stacks

X ′ Y ′

X Y

j

u v

i

with where i and j are local immersions. Then there is a natural morphism
of cones over X ′

α : CX′/Y ′ → CX/Y .

If the diagram is cartesian, then α is a closed immersion. If, moreover, v is
flat, then α is an isomorphism.

Proposition 4.38. Consider a commutative diagram of DM-stacks

X ′ Y ′

Y

i′

i
f
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where i and i′ are local immersions and f is smooth. Then the sequence of
morphisms of cones over X

(i′)∗TY ′/Y → CX/Y ′ → CX/Y

is exact.
Proof. The question is local, so we can assume them are schemes and that
i′ and i are immersions. This is then Example 4.2.6 in [Ful98].

Lemma 4.39. Let f : U → M be a local immersion of affine k-schemes of
finite type, whereM is smooth over k. Then the normal cone CU/M ↪→ NU/M

is invariant under the action of f∗TM on NU/M . In other words, CU/M is
an f∗TM -cone.
Proof. Consider projections pi :M ×M →M , we consider two diagrams:

U M ×M U M

M M ×M

∆f

f
pi

f

∆f
∆

The first one give us exact sequence of abelian cones on U :

0→ f∗TM
ji→ NU/M×M

pi,∗→ NU/M → 0

and the second one give us a homomorphism of abelian cones s : NU/M →
NU/M×M which is a section of both pi,∗.

Using (j1, p1,∗) we make the identification NU/M×M = f∗TM × NU/M

and p2,∗ is identified with the action of f∗TM on NU/M . Since the same
functorialities of normal sheaves used so far are enjoyed by normal cones, we
get that under the identification above the subcone CU/M×M ⊂ NU/M×M
corresponds to f∗TM ×CU/M and the action p2,∗ : f∗TM ×NU/M → NU/M

restricts to p2,∗ : f∗TM × CU/M → CU/M .

4.5 Intrinsic Normal Cone
Now let X be a Deligne-Mumford stack, locally of finite type over k. Now
we will construct the intrinsic normal cone and intrinsic normal sheaf of X
and their basic properties.
Definition 4.40. We denote the abelian cone stack

NX := H1/H0((L•
X,fppf)

∨)

and call it the intrinsic normal sheaf of X where L•
X ∈ D≤0(OXét) is the

cotangent complex which satisfies the condition (*).
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Definition 4.41. (a) A local embedding of X is a pair (U,M) with a
diagram X

i← U
f→M where

(a1) U is an affine k-scheme of finite type;
(a2) i : U → X is an étale morphism;
(a3) M is a smooth affine k-scheme of finite type;
(a4) f : U →M is a local immersion.

(b) A morphism of local embeddings φ : (U ′,M ′) → (U,M) is a pair of
morphisms φU : U ′ → U and φM :M ′ →M such that
(b1) φU is an étale X-morphism;
(b2) φM is smooth morphism such that

U ′ M ′

U M

f ′

ϕU ϕM

f

commutes.
Remark 4.42. If (U ′,M ′) and (U,M) are local embeddings of X, then
(U ′ ×X U,M ′ ×M) is naturally a local embedding of X which we call the
product of local embeddings, even though it may not be the direct product in
the category of local embeddings of X.

Now we consider the local presentation of intrinsic normal sheaf NX .
Indeed, consider a local embedding X

i← U
f→ M of X, then we have a

natural homomorphism
φ : L•

X |U → [I /I 2 → f∗Ω1
M ]

in D≤0(OUét) where I be the ideal correspond to f and [I /I 2 → f∗Ω1
M ] ∈

D[−1,0](OUét). Moreover, by Theorem 3.1(c) we know that φ induces an
isomorphism on H−1 and H0. By Proposition 4.30 we get an induced iso-
morphism of cone stacks

φ∨ : [NU/M/f∗TM ] ∼= i∗NX .

In other words, NU/M is a local presentation of the abelian cone stack NX .
Theorem 4.43. There exists a unique closed subcone stack CX ↪→ NX such
that for every local embedding (U,M) of X we have CX |U = [CU/M/f∗TM ],
that is, the diagram

CU/M NU/M

CX |U NX |U

⌜
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Proof. If χ : (U ′,M ′)→ (U,M) is a morphism of local embeddings, we have
a commutative diagram

L•
X |U ′

[I /I 2 → f∗Ω1
M ]|U ′ [I ′/(I ′)2 → (f ′)∗Ω1

M ′ ]

ϕ|U′
ϕ′

χ̃

inD≤0(OU ′
ét
) because of the naturality of φ and thus induce the commutative

diagram
[NU ′/M ′/(f ′)∗TM ′ ] [NU/M/f∗TM ]|U ′

NX |U ′

χ̃∨

(ϕ′)∨,∼=
ϕ∨|U′ ,∼=

in D≤0(OU ′
ét
). In particular, χ̃∨ is an isomorphism of cone stacks over U ′.

Now by Lemma 4.39 χ induce a morphism from the (f ′)∗TM ′ -cone CU ′/M ′

to the f∗TM |U ′ -cone CU/M |U ′ . By Proposition 4.26 the pair (CU/M ↪→
NU/M )|U ′ is the quotient of (CU ′/M ′ ↪→ NU ′/M ′) by the action of (f ′)∗TM ′/M

since the kernel of (f ′)∗TM ′ → f∗TM |U ′ is (f ′)∗TM ′/M . This implies that
the isomorphism above

χ̃∨ : [NU ′/M ′/(f ′)∗TM ′ ] ∼= [NU/M/f∗TM ]|U ′

identifies the closed subcone stack [CU ′/M ′/(f ′)∗TM ′ ] with the closed sub-
cone stack [CU/M/f∗TM ]|U ′ . This give us the unique closed subcone stack
CX ↪→ NX with the properties above.

Definition 4.44. This unique closed subcone stack CX is called the intrinsic
normal cone of X.

Theorem 4.45. The intrinsic normal cone CX is of pure dimension zero
which abelian hull is the intrinsic normal sheaf NX .

Proof. The second claim follows because the normal sheaf is the abelian hull
of the normal cone, for any local embedding.

To prove the claim about the dimension of CX , consider a local embedding
(U,M) of X, giving rise to the local presentation CU/M of CX . Assume that
M is of pure dimension. We then have a cartesian diagram of U -stacks

CU/M × f∗TM CU/M

CU/M [CU/M/f∗TM ]

⌜
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Thus CU/M → [CU/M/f∗TM ] is a smooth epimorphism of relative dimension
dimM . So since CU/M is of pure dimension dimM (see the comments on
the Definition 2.1), the stack [CU/M/f∗TM ] has pure dimension dimM −
dimM = 0.Well done.

Finally, we discuss some basic properties of them.

Proposition 4.46. Let X be a DM-stack.

(a) The following are equivalent.

(a1) X is a local complete intersection.
(a2) CX is a vector bundle stack.
(a3) CX = NX .

If X is smooth, we have CX = NX = BX(TX).
(b) We have NX×Y = NX ×NY and CX×Y = CX × CY .
(c) Let f : X → Y be a local complete intersection morphism. Then we

have a natural short exact sequence of cone stacks

NX/Y := H1/H0(T•
X/Y )→ CX → f∗CY .

Proof. (a) is trivial. (b) follows from the fact that if C is an E-cone and D is
an F -cone, then C×D is an E×F -cone and there is a canonical isomorphism
of cone stacks [C/E]× [D/F ]→ [C ×D/E × F ].

For (c), by Theorem 3.1(c)(e) we have an exact triangle

Lf∗LY → LX → LX/Y → Lf∗LY [1]

in D(OXét) and LX/Y is of perfect amplitude contained in [−1, 0]. By Propo-
sition 4.37(d) we have a short exact sequence of abelian cone stacks

NX/Y → NX → f∗NY .

So the claim is local in X and we may assume that we have a diagram

X M ′′ M ′

Y M

i

f

⌜

where the square is cartesian, the vertical maps are smooth, the horizontal
maps are local immersions, i is regular and M is smooth. Then we have a

32



morphism of short exact sequences of cones on X

i∗TM ′′/Y TM ′ |X TM |X

NX/M ′′ CX/M ′ CY /M |X

Hence by Proposition 4.26 we get the result.

4.6 About Obstruction Theories
Intrinsic Normal Sheaf as Obstruction
Let X be a DM-stack with intrinsic normal sheaf NX . Let T ↪→ T be a
closed immersion with ideal J such that J 2 = 0. If we have g : T → X,
may we have the extension g : T → X of g? What is the obstruction of this
deformation?

First, by Theorem 3.1(e) we have a composition of canonical morphisms

Lg∗L•
X → L•

T → L•
T/T

.

Since τ≥−1L•
T/T

= J [1], this homomorphism may be considered as an
element ω(g) ∈ Ext1(g∗L•

X ,J ). Then the basic deformation theory find
that an extension g : T → X of g exists if and only if ω(g) = 0 and if ω(g) = 0
the extensions form a torsor under Ext0(g∗L•

X ,J ) = Hom(g∗ΩX ,J ).
Here we will use the intrinsic normal sheaf NX to interpret this. Recall

the morphism as above

Lg∗L•
X → L•

T → L•
T/T

.

This induce a morphism

ob(g) : C(J ) = H1/H0(L•,∨
T/T ,fppf)→ H

1/H0(Lg∗L•,∨
X,fppf) = g∗NX

since τ≥−1L•
T/T

= J [1] by Theorem 3.1(c). Consider another morphism
0(g) : C(J )→ T

0→ g∗NX .

• Consider a sheaf I som(ob(g),0(g)) of 2-isomorphisms of cone stacks
from ob(g) to 0(g), restricted to Tét.

• Denote the sheaf of extensions T → X of g by E xt(g, T ) on Tét.

Proposition 4.47. There is a canonical isomorphism

E xt(g, T )
∼=→ I som(ob(g),0(g))
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of sheaves on Tét. Hence in particular, extensions of g to T exist if and only
if ob(g) is A1-equivariantly isomorphic to 0(g).

Proof. Locally we can have an embedding i : X ↪→ M where M is smooth
of ideal I . Then by the formally-smoothness of M we have the lifting:

X M

T T Spec(k)

i

g h

and such extensions is a Hom(g∗i∗ΩM ,J )-torsor. Now, any such h induce
h♯ : g∗I /I 2 → J . By the local description before the Theorem 4.43,
ob(g) induced by

h♯ : Lg∗[I /I 2 → i∗ΩM ]→ [J → 0].

Now the torsor structure induce the following homotopy

0 g∗I /I 2 g∗i∗ΩM 0

0 J 0 0

h♯,(h̃)♯ h♯,(h̃)♯

of extensions h♯, (h̃)♯.
Now let g : T → X be an extension of g. Then easy to see that (i◦g)♯ = 0,

so that we get a homotopy from any local h♯ as above to 0, or in other words
a local A1-equivariant isomorphism from ob(g) to 0(g) by Proposition 4.29.
Since these local isomorphisms glue, we get the required map

E xt(g, T )→ I som(ob(g),0(g)).

Now we consider the inverse. Let θ : ob(g) → 0(g) be a 2-isomorphism
of cone stacks. By Lemma 4.19(a), θ defines for every local h as above an
extension of h♯ to h♯ : g∗i∗ΩM →J . So we can get h′ : T → M such that
(h′)♯ = 0 by the changing via homotopy h♯. So h′ factor through X and we
get h′ : T → X. Gluing them we get the inverse.

Proposition 4.48. There is a canonical isomorphism

A ut(0(g)) ∼=→H om(g∗ΩX ,J )

of sheaves on Tét.
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Proof. Again similar as above, Lemma 4.19(a) shows that the automor-
phisms of 0(g) are (locally) the homomorphisms from g∗i∗ΩM to J vanish-
ing on g∗I /I 2. The exact sequence

I /I 2 → i∗ΩM → ΩX → 0

give the result.

Remark 4.49. This shows that the sheaf E xt(g, T ) ∼= I som(ob(g),0(g)) is
a formalH om(g∗ΩX ,J )-torsor. So if ob(g) ∼= 0(g), the set Hom(ob(g),0(g))
is a torsor under the group Hom(g∗ΩX ,J ).

Obstruction Theories
Here we consider more general setting.

Definition 4.50. Let X be a DM-stack and E• ∈ D(OXét) satisfies condition
(*). Then a homomorphism φ : E• → L•

X in D(OXét) is called an obstruction
theory for X if H0(φ) is an isomorphism and H−1(φ) is surjective.

Now we will give some equivalent conditions of obstruction theory which
is connected to the obstruction of extensions as above.

Situation 1. Let X be a DM-stack and E• ∈ D(OXét) satisfies condition
(*) with a homomorphism φ : E• → L•

X in D(OXét). Let E := H1/H0(E•,∨
fppf)

with induced morphism of cone stacks φ∨ : NX → E.
Let T ↪→ T be a closed immersion with ideal J such that J 2 = 0

with a morphism g : T → X. Then we can consider the obstruction class
ω(g) ∈ Ext1(g∗L•

X ,J ) Define φ∗ω(g) ∈ Ext1(g∗E•,J ) be the pullback and
φ∨(ob(g)) be the composition

C(J )
ob(g)→ g∗NX

g∗ϕ∨

→ g∗E

of cone stacks over T . Moreover 0 : C(J )→ T → g∗E is the vertex.

Theorem 4.51. Let X be a DM-stack and E• ∈ D(OXét) satisfies condition
(*) with a homomorphism φ : E• → L•

X in D(OXét). Let E := H1/H0(E•,∨
fppf)

with induced morphism of cone stacks φ∨ : NX → E. Then the following are
equivalent.

(a) φ : E• → L•
X is an obstruction theory for X.

(b) The induced φ∨ : NX → E is a closed immersion of cone stacks over X.
In this case we call φ∨(CX) ⊂ E the obstruction cone of the obstruction
theory for X where CX ⊂ NX is the intrinsic normal cone.
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(c) Consider any choice of Situation 1, then the obstruction φ∗ω(g) ∈
Ext1(g∗E•,J ) vanishes if and only if an extension g of g to T ex-
ists; and if φ∗ω(g) = 0, then the extensions form a torsor under
Ext0(g∗E•,J ) = Hom(g∗H0E•,J ).

(d) Consider any choice of Situation 1, then we have isomorphism

E xt(g, T )
∼=→ I som(φ∨ob(g),0)

of sheaves on Tét.
Proof. Note that (1)⇔(2) follows from Proposition 4.37(c). By the similar
proof as Proposition 4.47 we know that (2)⇒(4). By Lemma 4.32(b) we
know that (4)⇒(3). So we just need to consider (3)⇒(1).

We show H0(φ) is an isomorphism. Let X = SpecR as this is local. For
any R-algebra A and R-module M , let T := SpecA and T := Spec(A⊕M)
for the nilpotent extension. Easy to see that there is extension g : T → X.
So we have a bijection

Hom(H0(L•
X)⊗A,M)→ Hom(H0(E•)⊗A,M).

This implies easily that H0(φ) is an isomorphism.
We show H−1(φ) is surjective. As this is étale local and only depends

on τ≥−1E•, we may assume X is an affine scheme, i : X → W a closed
embedding in a smooth affine scheme W , and let I be the ideal of X in W .
Also E• = [E−1 → f∗ΩW ] as a complex of coherent sheaves (see the proof
of Proposition 4.37(b)). As in this case L≥−1

X = [I /I 2 → f∗ΩW ], we claim
that E−1 → I /I 2 is surjective.

Indeed, let M := Im(E−1 → I /I 2). Let T = X and M ′ ⊂ I be the
primage of M and let T ⊂ W defined by M ′. So we can extend g = idX to
the inclusion g : T →W . Let π : I /I 2 → I /M ′ be the natural projection.
By assumption π factors via E0 if and only if g extends to a map T → X, if
and only if π ◦ φ−1 factors via E0. As π ◦ φ−1 is the zero map, it certainly
factors. Therefore π also factors via E0. Consider now the commutative
diagram with exact rows

E−1 E0 H0(E•) 0

I /I 2 E0 H0(E•) 0

ϕ−1 = =

By an easy diagram chasing argument, the fact that π factors via E0 together
with π ◦ φ−1 = 0 implies π = 0, hence well done.

Remark 4.52. See more things about the obstruction ofsmall extensions we
refer the final part of Section 4 in [BF97].
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4.7 Vistoli’s Rational Equivalence
Before starting the theory of virtual class, we need some results of Vistoli.
We will follows something in [Vis89]. Recall that the Chow groups as we
consider are all Q-coefficients.

Definition 4.53. Let X be a stack.

(a) The group Zk(X) of cycles of dimension k is generated by all integral
closed substacks of dimension k. And Z∗(X) :=

⊕
k Zk(X).

(b) The group of rational equivalences on X is

Wk(X) :=
⊕
G

K(G)∗, W∗(X) :=
⊕
k

Wk(X)

where the direct sum is taken over all integral substacks G of X of
dimension k + 1.

(c) If X is a scheme, there is a canonical homorphism

∂X :W∗(X)→ Z∗(X).

This is commute with proper pushforward and flat pullback.

Remark 4.54. Note that when X be a DM-stack, we can restricting Z∗ and
W∗ to the étale site of X, we get two sheaves Z∗ and W∗ on X. As Z∗ and
W∗ commute with proper pushforward and flat pullback, ∂ : W∗ → Z∗ is a
morphism of sheaves, so we get a homomorphism ∂X :W∗(X)→ Z∗(X). So
CH∗(X) := coker(∂X)⊗Q.

Remark 4.55. Because these groups are defined in terms of closed substacks,
it is immediate that the Chow groups are non-zero only in dimensions between
zero and the dimension of the stack.
Note that the last condition would not be possible if one required a theory

with Z-coefficients satisfying the hypothesis that flat pullback to a vector
bundle gave isomorphisms in Chow groups.

Recall that we consider again the cartesian diagram of algebraic stacks

X ′ Y ′

X Y

i

u
⌜

v

j
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with i and j are local immersions and v is a regular local immersion and Y
is smooth of constant dimension. Then this induce the cartesians

NY ′/Y ×Y CX/Y u∗CX/Y CX/Y

j∗NY ′/Y X ′ X

NY ′/Y Y ′ Y

⌜ ⌜

⌜

u

j
⌜

i

ρ v

Theorem 4.56 (Vistoli). Consider the above situation, if Y is a scheme,
then there is a canonical rational equivalence β(Y ′, X) ∈ W∗(NY ′/Y ×Y
CX/Y ) such that

∂β(Y ′, X) = [Cu∗CX/Y /CX/Y
]− [ρ∗CX′/Y ′ ].

Proof. See Lemma 4.6 in [Vis89].

Corollary 4.57. In this case we have v![CX/Y ] = [CX′/Y ′ ] ∈ CH∗(u
∗CX/Y ).

Proof. Let 0 : u∗C → N ×Y C be the zero section, then by definition of
refined Gysin pullback

0∗[Cu∗CX/Y /CX/Y
] = v![C] ∈ CH∗(u

∗CX/Y ).

Moreover
0∗[ρ∗CX′/Y ′ ] = 0∗ρ![CX′/Y ′ ] = CX′/Y ′ .

By Theorem 4.56 we get v![C] = [CX′/Y ′ ] ∈ CH∗(u
∗CX/Y ).

But now we need to consider the Vistoli rational equivalence at the level
of stacks. So we need some base-change result about this:

Proposition 4.58. Vistoli’s rational equivalence commutes with any smooth
base change φ : Y1 → Y .

Proof. If φ is étale, this is Lemma 4.6(ii) in [Vis89]. Vistoli’s proof is based
on the fact that the following commute with étale base change: blowing up
a scheme along a closed subscheme; normalization; order of a Cartier divisor
along an irreducible Weil divisor on a reduced, equidimensional scheme. But
all these operations do in fact commute with smooth base change. Hence
well done.

Corollary 4.59. We have Vistoli’s rational equivalence β(Y ′, X) ∈W∗(NY ′/Y×Y
CX/Y ) for any algebraic stacks. Moreover, if Y is a DM-stack, then v![CX/Y ] =
[CX′/Y ′ ] ∈ CH∗(u

∗CX/Y ) holds.

38



Proof. Follows directly from the previous Proposition.

Now we again consider the general case. We assume i : X → Y can
factor as X ĩ→ Ỹ

π→ Y where ĩ is another local immersion and π is of
relative Deligne-Mumford type (i.e. has unramified diagonal) and is smooth
of constant fiber dimension.

Then the previous diagram can be fused into a large diagram of carte-
sians:

NY ′/Y ×Y CX/Ỹ u∗CX/Ỹ CX/Ỹ

NY ′/Y ×Y CX/Y u∗CX/Y CX/Y

j∗NY ′/Y X ′ X

π∗NY ′/Y Ỹ ′ Ỹ

NY ′/Y Y ′ Y

α

u

j̃ ĩ

ρ̃ ṽ

π

ρ v

Hence by Proposition 4.38 α : CX/Ỹ → CX/Y is a TỸ /Y ×Ỹ CX/Y -bundle.

Proposition 4.60. We have α∗(β(Y ′, X)) = β(Ỹ ′, X) ∈ W∗(NY ′/Y ×Y
CX/Ỹ ).

Proof. In the compatibilities of β proved in [Vis89] we reduce to the case that
Ỹ = AnY . Then one checks that Vistoli’s construction in the case directly.

Proposition 4.61. Back to the original diagram, assume that Y is of
Deligne-Mumford type. Vistoli’s rational equivalence β(Y ′, X) ∈W∗(NY ′/Y×Y
CX/Y ) is invariant under the natural action of j∗NY ′/Y ×Y TY on NY ′/Y ×Y
CX/Y .

Proof. The vector bundle i∗TY acts on the X-cone CX/Y by Lemma 4.39.
Pulling back from X to j∗NY ′/Y gives the natural action of j∗NY ′/Y ×Y TY
on NY ′/Y ×Y CX/Y . Using the construction of the proof of Lemma 4.39 the
claim follows from Proposition 4.60 applied to Ỹ = Y × Y and ĩ = ∆ ◦ i :
X → Y × Y .
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4.8 Virtual Fundamental Classes
Definition 4.62. Let X be a DM-stack and an obstruction theory φ : E• →
L•
X in D(OXét) for X. We say φ is a perfect obstruction theory if E• is of
perfect amplitude contained in [−1, 0].

We will construct the virtual fundamental class associated to a perfect
obstruction theory. But before that, we will discuss a toy version which is a
local model of the general theory.

Local Model, an Intuition
Consider Y be a smooth variety of dimension d with a vector bundle E =
Spec

Y
SymE ∨ over it of rank r. Let s : Y → E be a section and 0 : Y → E

be the zero section, then we cnsider the zero locus of s as:

X = Z(s) Y

Y E

⌜
s

0

Note that X = Z(s) defined by the ideal I := Im(s∨ : E ∨ → OY ).
Now the most nice condition is that when s is a regular section, then

dimZ(s) = d − r. But in general this might not be true! So we define
dvir(X) = d− r to be the virtual dimension of X.

Moreover, we define the virtual fundamental class of X is

[X]vir := cloc(E, s) := 0!([Y ]) = 0∗(CZ(s)/Y ) ∈ CHdvir(X)(X)

which is the localized (top) Chern class of E with respect to s.
In this case the perfect obstruction theory is

E• : E ∨|X ΩY |X

L≥−1
X : I /I 2 ΩY |X

s∨|X id
dX

Remark 4.63. Any perfect obstruction theory on a DM-stack is locally of
this form. See the Remark 1.7 in [Tod21].
Consider a perfect obstruction theory φ : E• → L•

X in D(OXét) for X.
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Locally, we embed X into a smooth scheme M with defining ideal I .

cone(ψ) = E ∨[1]

E• τ≥−1L•
X cone(φ) = P [2] E•[1]

ΩY |X

E ∨

ϕ

ψ

Here E locally free. Moreover wecan represent the morphism φ as a morphism
of complexes from [E ∨ → ΩY |X ] to [I /I 2 → ΩY |X ]. Then extend E to a
vector bundle F on Y and use the surjection E ∨ → I /I 2 and projectivity
of E ∨ to lift it to F∨ → I . This defines a section of F cutting out X ⊂ Y .

Remark 4.64. This also shows why we consider intrinsic normal cone and
the obstruction theory. We need a global version of the previous case.

General Construction
In the global version of a DM-stack X, fix a perfect obstruction theory
φ : E• → L•

X . We want to intersect the intrinsic normal cone CX with the
vertex of H1/H0(E•,∨

fppf) to get the virtual fundamental class [X]virϕ . Here we
begin our story.

Remark 4.65. Actually by the general theory of the intersection theory of
general algebraic stacks had been developed in [Kre99] after our [BF97], so
we can define [X]virϕ = 0∗[CX ] as the local case. But there we will follows the
original method in [BF97] instead of this by assume we have global resolution.

Definition 4.66. Let a DM-stack X and a perfect obstruction theory φ :
E• → L•

X . We define the virtual dimension of X with respect to the φ is

dvirϕ (X) := rank(E•) = dimE0 − dimE−1

if locally E• is written as a complex of vector bundles [E−1 → E0].

Definition 4.67. Let F • = [F−1 → F 0] be a homomorphism of vector
bundles on X considered as a complex of OX-modules concentrated in degrees
−1 and 0. An isomorphism F • → E• in D(OXét) is called a global resolution
of E•.
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Note also that the intersection theory in [Vis89] holds when we consider
the rational coefficient Chow group with there is a scheme F and a proper
surjective morphism F → X. In our case, if X → Spec k is separaed, then
this condition holds, see Theorem 4.12 in [DM69].

So in this whole section we will assume X to be a separated DM-stack
locally of finite type over a field k.

Definition 4.68. In this condition, consider a perfect obstruction theory φ :
E• → L•

X and admits a global resolution F • → E• with F • = [F−1 → F 0].
Then H1/H0(E•,∨

fppf) = [F−1,∨/F 0,∨]. Consider the cartesian

C(F •) F−1,∨

CX H1/H0(E•,∨
fppf) = [F−1,∨/F 0,∨]

⌜

Then define virtual fundamental class ofX associated to the perfect obstruction
theory φ is:

[X]virϕ := 0!(C(F •)) ∈ CHdvirϕ (X)(X)Q

where 0 : X → F−1,∨ be the zero section with refined Gysin pullback 0!.

Proposition 4.69. The virtual fundamental class [X]virϕ of X associated to
the perfect obstruction theory φ is independent of the global resolution F •

used to construct it.

Proof. Give another global resolution H•. WLOG assume that H• → E•

and F • → E• are given by morphisms of complexes. Then we get an induced
homomorphism H0 ⊕ F 0 → E0. Consider cartesian diagram

K−1 H0 ⊕ F 0

E−1 E0

⌜

Let K0 = H0 ⊕ F 0 and hence we get another global resolution K•. So we
just need to consider F • and K•.

Now K−1,∨ → E−1,∨ is an epimorphism. Consider cartesians

X C(K•) C(F •) CX

X K−1,∨ F−1,∨ H1/H0(E•,∨
fppf)

0

⌜ ⌜ ⌜

0 α
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Now α is smooth surjective, the virtual fundamental class using F • is equal
to

(α ◦ 0)![C(F •)] = 0!α![C(F •)] = 0![C(K•)]

which is also the virtual fundamental class using K•.

Remark 4.70 (Virtual Structure Sheaf). Let a perfect obstruction theory
φ : E• → L•

X . Let E := H1/H0(E•,∨
fppf) be the abelian cone stack.

Consider the presentation E = [E−1,∨/E0,∨], then CX ↪→ E induce a
subcone C ⊂ E−1,∨. We then set

[Ovir
X,ϕ] := [OC ⊗L

OE−1,∨ OX ] =
∑
i≥0

(−1)i[T or
OE−1,∨
i (OC ,OX)] ∈ K0(X)

which is called the virtual structure sheaf ofX relative to the perfect obstruction
theory φ.
Now assume that there is a Chern character c : K0(X)→ CH∗(X)Q and

E• admits a global resolution, then we can define the virtual fundamental
class as:

[X]virϕ = td(E•) ∩ c([Ovir
X,ϕ]) ∈ CHdvirϕ (X)(X)Q.

These two constructions agree when they are both possible.

Some Examples
Example 4.71 (Trivial Obstructions). Let L•

X is of perfect amplitude con-
tained in [−1, 0] (such as X is a complete intersection) then L•

X itself is a
perfect obstruction theory. Any embedding of X into a smooth DM-stack
gives rise to a global resolution of L•

X . The virtual fundamental class [X]vir

thus obtained is equal to [X], the ‘usual’ fundamental class.

Example 4.72 (No Obstructions). If E• is perfect, H0(E•) is locally free
and H1(E•) = 0, then X is smooth and dvirE•(X) = dimX and the virtual
fundamental class [X]virE• = [X], the usual fundamental class.

Example 4.73 (Locally Free Obstructions). If X is smooth, E• is perfect
and H1(E•,∨) is locally free, then dvirE•(X) = rank(H1(E•,∨)) and the virtual
fundamental class

[X]virE• = crank(H1(E•,∨))(H
1(E•,∨)) ∩ [X].

Example 4.74 (Products). Consider two perfect obstruction theories φ :
E• → L•

X and ψ : F • → L•
Y . Then L•

X×Y = L•
X ⊞ L•

Y , then we have also
a perfect obstruction theory φ⊞ ψ : E• ⊞ F • → L•

X×Y . If both E•, F • have
global resolutions, then so is E• ⊞ F •. By Proposition 4.46(b) we have

[X × Y ]virϕ⊞ψ = [X]virϕ × [Y ]virψ ∈ CHdvirϕ (X)+dvirψ (Y )(X × Y ).
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Pullback of Virtual Fundamental Class
We will show the pullback formula via local complete intersection morphism
for now as in [BF97]. For the general case, we refer [Man12].

Cnosider a cartesian diagram of DM-stacks

X ′ X

Y ′ Y

u

g
⌜

f

v

where v is a local complete intersection morphism. Let Φ : E• → L•
X and

Ψ : F • → L•
X′ be two perfect obstruction theories.

Definition 4.75. A compatibility datum (relative to v) for E• and F • is
a triple (φ, ψ, χ) of morphisms in D(OXét) giving rise to a morphism of
distinguished triangles

u∗E• F • g∗LY ′/Y u∗E•[1]

u∗L•
X L•

X′ L•
X′/X u∗L•

X [1]

ϕ ψ χ

Given a compatibility datum, we call E• and F • compatible (over v).
Assume that E• and F • are endowed with such a compatibility datum.

Then we get (Proposition 4.37(d)) a short exact sequence of vector bundle
stacks

g∗NY ′/Y = g∗H1/H0(T•
Y ′/Y,fppf)→ F = H1/H0(F•,∨

fppf)
ϕ→ u∗E = u∗H1/H0(E•,∨

fppf).

Lemma 4.76. If Y and Y ′ are smooth and v a regular local immersion,
then NY ′/Y = NY ′/Y is the normal bundle and we denote N := g∗NY ′/Y .
Then there is a (canonical) rational equivalence β(Y ′, X) ∈W∗(N ×F) such
that

∂β(Y ′, X) = [φ∗Cu∗CX/CX ]− [N × CX′ ].

Proof. Let X → M be a local embedding, where M is smooth. We get an
induced cartesian diagrams

N ×X CX/Y×M u∗CX/Y×M CX/Y×M

N X ′ X

NY ′/Y ×M Y ′ ×M Y ×M

u

j i

ρ v
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Now we have Vistoli’s rational equivalence β(Y ′ × M,X) ∈ W∗(N ×X
CX/Y×M ) such that

∂β(Y ′ ×M,X) = [Cu∗CX/Y×M/CX/Y×M ]− [N × CX′/Y ′×M ].

By Proposition 4.61, β(Y ′ × M,X) is invariant under the action of N ×
u∗i∗TY×M on N×XCX/Y×M . Hence in particular, β(Y ′×M,X) is invariant
under the subsheafN×j∗TY ′×M and thus descends toN×[u∗CX/Y×M/j∗TY ′×M ] =
N × F×C CX which is a closed subcone stack of F. So pushing forward via
this closed immersion, we get a rational equivalence on N × F which we
denote it by β(Y ′, X). Now we have

∂β(Y ′, X) = [φ∗Cu∗CX/CX ]− [N × CX′ ]

as we need. By Proposition 4.60, we can glue them up and well done.

Theorem 4.77 (Pullback). Let E• and F • be compatible perfect obstruction
theories, as above. If E• and F • have global resolutions then

v![X]virE• = [X ′]virF•

holds in the following cases:
(1) v is smooth.
(2) Y ′ and Y are smooth.
Proof. First note that one may choose global resolutions [E0 → E1] of E•,∨

and [F0 → F1] of F •,∨ together with a pair of epimorphisms φ0 : F0 →
u∗E0 and φ1 : F1 → u∗E1 with kernels Gi such that the following diagram
commute:

0 G0 F0 u∗E0 0

0 G1 F1 u∗E1 0

ϕ0

ϕ1

The induced short exact sequence of vector bundle stacks

[G1/G0]→ [F1/F0]→ [u∗E1/u
∗E0]

is isomorphic to g∗NY ′/Y → F → u∗E. Let C1 := CX ×E E1 and D1 :=

CX′×FF1 and by definition we have [X]virE• = 0!E1
[C1] and [X ′]virF• = 0!F1

[D1].
For case (1), let v is smooth. Then by Proposition 4.46(c) we get the

cartesian of the left following diagram:

CX′ u∗CX D1 u∗C1

F u∗E F1 u∗E1

⌜ ⌜
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which imply the right one is also cartesian. This shows 0!u∗E1
[u∗C1] =

0!F1
[D1]. Hence

v![X]virE• = v!0!E1
[C1] = 0!u∗E1

[u∗C1] = 0!F1
[D1] = [X ′]virF• .

Well done.
Now we consider case (2) where Y ′ and Y are smooth. First we claim

this is true for the case where v is a regular local immersion. Indeed, in this
case we may choose F1 as the fibered product

F1 u∗E1

F u∗E

⌜

Now lifting the rational equivalence in Lemma 4.76 to N × F1 we get [N ×
D1] = φ∗[Cu∗C1/C1

]. Hence we have

[X ′]virF• = 0!F1
[D1] = 0!N×F1

[N ×D1] = 0!N×F1
φ∗[Cu∗C1/C1

]

= 0!N×u∗E1
[Cu∗C1/C1

] = 0!u∗E1
v![C1] = v!0!E1

[C1] = v![X]virE• .

Well done. Now we back to the general case.
In the general case factor v as v : Y ′ Γv→ Y ′ × Y

p→ Y . Since Y ′ is
smooth it has a canonical obstruction theory ΩY ′ and an obstruction theory
on Y ′ ×X is ΩY ′ ⊞ E•. Then combine the previous two cases and the fact
that these obstruction theories are trivially compactible, well done.

Remark 4.78. See the relative version of this theory in Section 7 of [BF97]
and we will not consider them here.

4.9 Examples
Basic Case of Gysin Pullback
Example 4.79 (Basic Case of Gysin Pullback). Consider a cartesian dia-
gram of schemes

X V

Y W

j

g
⌜

f

i

that V and W are smooth and that i is a regular embedding.
Consider complex E• ∈ D[−1,0](X) be the composition

g∗N∨
Y /W → g∗i∗ΩW = j∗f∗ΩW → j∗ΩV .
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Then the morphism φ : E• → L•
X defined by g∗L•

Y → L•
X and j∗L•

V → L•
X .

This defines a perfect obstruction theory for X.

Now in this case we have cartesian

CX/V g∗NY /W

CX H1/H0(E•,∨
fppf) [g∗NY /W /j∗TV ]

⌜

=

and hence
[X]virϕ = 0∗[CX/V ] = i![V ]

be the refined Gysin pullback! This is also work if we consider DM-stacks.
An application of this:

Example 4.80 (Fibres of Morphism Between Smooth Stacks). Let f : V →
W be a morphism of algebraic stacks. We shall assume that V and W are
smooth over algebraically closed k and that f has unramified diagonal, so
that V is a relative Deligne-Mumford stack over W . Let w : Spec k →W be
a k-valued point of W and let X be the fiber of f over w.
Now we define an obstruction theory. Consider smooth cover W̃ → W

with fiber product Ṽ which is a smooth DM-stack:

X Ṽ V

Spec k W̃ W

⌜ ⌜

Then using the previous example and well done. This is a straightforward
verification to check that the obstruction theory so defined does not depend
on the choices of coverings.

Moduli Stacks of Projective Varieties
Let M and X be Deligne-Mumford stacks.

Definition 4.81. A morphism f : M → X is called a relatively Gorenstein
morphism if f has constant relative dimension and that the relative dualizing
complex ω•

M/X = ωM/X [− dimM − dimX] for some invertible sheaf ωM/X .

Example 4.82 (Moduli Stacks of Projective Varieties). Let X be a moduli
(sub-)stack of some flat, relatively Gorenstein projective morphism families
which is a DM-stack. Let M be its universal family.
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Lemma 4.83. Consider p :M → X, then for any cartesian

N M

T X

g

q
⌜

p

f

Then for any F • ∈ D−
Qcoh(M) and G• ∈ Db

Qcoh(X) we have

ExtkN (Lg∗F •, q∗G•) ∼= ExtkT (Lf∗(Rp∗(F • ⊗L ω•
M/X)), G•).

Proof. From flat base-change and Grothenieck duality directly.

Now we define E• := Rp∗(L•
M/X ⊗

L ω•
M/X)[−1]. The distinguished tri-

angle of cotangent complexes induce L•
M/X → p∗L•

X [1] (the derived Kodaira-
Spencer map) which induce φ : E• → L•

X .

Proposition 4.84. In this case, φ : E• → L•
X is an obstruction theory.

If moreover p is smooth of relative dimension ≤ 2, then it is a perfect
obstruction theory.

Proof. The fact that M is a universal family and X is DM-stack implies
that the fibers of p have finite and reduced automorphism group, hence E•

satisfies (*).
Next, let T be a scheme, f : T → X a morphism, and consider the

cartesian
N M

T X

g

q
⌜

p

f

If T → T is a square zero extension with ideal sheaf J , the obstruction to
extending N to a flat family over T lies in Ext2(L•

N/T , q
∗J ), and the ex-

tensions, if they exist, are a torsor under Ext1(L•
N/T , q

∗J ) (see Tag 08V5).
The map φ : E• → L•

X induces morphisms

φk : Extk−1
T (Lf∗L•

X ,J )→ Extk−1
T (Lf∗E•,J ) = ExtkN (L•

N/T , q
∗J )

by Lemma 4.83. The universality of M means that extending N to a family
over T is equivalent to extending f to a morphism to X defined on T . Hence
by Theorem 4.51, φ is an obstruction theory for X. The final statement is
trivial.
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5 About Atiyah-Bott Localization Formula
The original paper is [AB84]. The basic theory of equivariant cohomology
we refer Section 2 of [AB84] or Chapter 7 in [Ric22].

Here WLOGwe consider the homology/cohomology groups ofQ-coefficients.

5.1 Approximation Spaces
Let us now assume that X is a space and G is a Lie group. The fact that
the spaces involved, like EG and BG, are infinite-dimensional, is not quite
an obstacle to the computation of the equivariant cohomology groups. This
is the case because of the following “approximation” result.

Theorem 5.1 (Approximation). Let (Em)m≥0 be a family of connected
spaces on which G acts freely on the right. Let k : Z≥0 → Z≥0 be a function
such that πi(Em) = 0 for 0 < i < k(m) and such that lim

m→∞
k(m) = ∞.

Then, for any left G-action on a space X, there are natural isomorphisms

Hi
G(X) ∼= Hi(Em ×G X), for i < k(m).

Proof. Here we give a sketch. Consider the following:

Em ×X EG× Em ×X EG×X

Em ×G X (EG× Em)×G X EG×G X

where the vertical maps are the (free) quotient maps, and the horizontal
maps are locally trivial fibre bundles with fibre indicated on top of the cor-
responding arrow. As a consequence of the Leray-Hirsch Lemma, since k(m)
goes to infinity as m grows, we can apply it to k(m) directly, showing that
for all i < k(m) we have isomorphisms

Hi(Em ×G X) ∼= Hi((EG× Em)×G X) ∼= Hi(EG×G X) = Hi
G(X).

Well done.

Remark 5.2. In the smooth category, if G is a compact Lie group, then
EG→ BG is a colimit of smooth principal G-bundles Em → Bm where Em
is m-connected.

5.2 Equivariant Pullback and Chern Classes
Here and the next small section we will introduce some functorial things in
the category of equivariant objects.
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Definition 5.3 (Equivariant Pullback). Let G be a group acting on X and
H a group acting on Y . Suppose there are maps φ : G→ H and f : X → Y
such that f(gx) = φ(g)f(x), then induce EG ×G X → EH ×H Y which
induce the equivariant pullback:

f∗ : H∗
H(Y ) = H∗(EH ×H Y )→ H∗(EG×G X) = H∗

G(X).

Definition 5.4 (Equivariant Chern Classes). Consider a G-equivariant vec-
tor bundle π : E → X, then this induce a now vector bundle VE :=
EG ×G E → EG ×G X of the same rank as E. Then the equivariant Chern
classes of E → X are the characteristic classes

cGi (E) := ci(VE) ∈ H2i
G (X).

Moreover, the equivariant Euler class of E → X is the characteristic class

eG(E) := cGtop(E) = ctop(VE) ∈ H2·top
G (X).

Remark 5.5. These classes can clearly be computed through approximation
spaces. Indeed, the vector bundle VE → EG ×G X can be approximated by
vector bundles

VE,m := Em ×G E → Em ×G X

and ci(VE,m) ∈ H2i(Em ×G X) = H2i
G (X) for m� 0.

5.3 Equivariant Pushforward
Now we consider G be a compact Lie group. Let f : X → Y be a G-
equivariant map of compact manifolds. Set dimX = n, dimY = m and
d = m− n.

Definition 5.6 (Equivariant Pushforward). Fix a directed system of prin-
cipal G-bundles {Ei → Bi}i≥0 whose limit recovers the classifying space
EG→ BG. Let Xi

G := Ei ×G X and Y iG := Ei ×G Y , then

Hp
G(X) ∼= Hp(Xi

G) and Hp
G(Y ) ∼= Hp(Y iG), for p ≤ i.

Now let dimBi = `i, then dimXi
G = n+ `i and dimY iG = m+ `i. Then for

p ≤ i we define

Hp
G(X) = Hp(Xi

G) Hp+d
G (Y ) = Hp+d(Y iG)

Hℓi+n−p(X
i
G) Hℓi+n−p(Y

i
G)

fG,p∗

PD,∼=
fi∗

(PD)−1,∼=
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This yields a system of maps which compatible with the structure of inverse
system:

fG,p∗ : Hp
G(X)→ Hp+d

G (Y ), fG∗ : H∗
G(X)→ H∗+d

G (Y )

which is the equivariant pushforward.

5.4 Torus Fixed Loci
Here we give something about fixed locus in the algebraic settings. The
classical topological setting is more easier.

Definition 5.7 (Fixed Locus). Let X be a scheme over a field k with an
action of an affine algebraic group G, we define the fixed locus is

XG := HomG(Spec k,X) : Sch/k → Sets,

the set of G-equivariant maps from S to X where S with trivial action.

Before we consider the geometric properties of XG, we need an important
lemma:

Lemma 5.8. Let X be an algebraic space locally of finite type over an
algebraically closed field k with affine diagonal. Suppose that X has an action
of an affine algebraic group G. If x ∈ X(k) has linearly reductive stabilizer,
then there exists a G-equivariant étale neighborhood (SpecA, u) → (X,x)
inducing an isomorphism of stabilizer groups at u.
If G is a torus, then every point has a G-invariant étale neighborhood

(SpecA, u)→ (X,x) inducing an isomorphism of stabilizer groups at u.

Proof. By J. Alper’s theory (see the book [Alp24]) of the local structure of al-
gebraic stacks, there is an étale neighborhood ([SpecA/Gx], u)→ ([X/G], x)
such that w is a closed point and f induces an isomorphism of stabilizer
groups at w and such that [SpecA/Gx] → [X/G] → BG is affine. There-
fore, W := [SpecA/Gx] ×[X/G] X is an affine scheme and W → X is a
G-equivariant étale neighborhood of x. When G is a torus, then any sub-
group of G and in particular each stabilizer group is linearly reductive.

Theorem 5.9. Let X be a scheme of finite type over an algebraically closed
field k with affine diagonal and with an action of a linearly reductive algebraic
group G.

(a) The fixed locus XG is represented by a subscheme of X.
(b) If G is a torus, then XG ⊂ X be a closed subscheme.
(c) If X is smooth, so is XG.
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Proof. If G is connected and U → X is a G-equivariant étale morphism, we
claim that XG ×X U ∼= UG. Indeed, suppose S → U is a map such that
S → U → X is G-invariant. Let US → S be the base change of U → X
by S → X. Since US → S is G-equivariant, it suffices to show that the
section j : S → US is G-invariant. As U → X is étale, j : S → US is an
open immersion. Because G is connected, for each point s ∈ S, the G-orbit
Gj(s) ⊂ US is connected and thus contained in S.

For (a), given a fixed point x ∈ XG(k), Lemma 5.8 produces a G-
equivariant étale neighborhood (U, u)→ (X,x) with U affine and u ∈ UG(k).
If G is connected, then UG → XG is étale and representable by the previ-
ous argument. Thus it suffices to show that UG is representable. Since
U is affine, we can choose a G-equivariant embedding U ↪→ A(V ) into a
finite dimensional G-representation. In this case, A(V )G = A(V G) and
thus UG = U ∩ A(V )G is representable. In general, let G0 ⊂ G be the
connected component of the identity, and let g1, ..., gn ∈ G(k) be represen-
tatives of the finitely many cosets G(k)/G0(k). Then G/G0 acts on XG0

and XG =
∩
i(X

G0)gi , where (XG0)gi is identified with the fiber product
of the diagonal XG → XG × XG and the map XG → XG × XG given by
x 7→ (x, gx).

For (b), every subgroup of G is linearly reductive and Lemma 5.8 there-
fore produces a G-equivariant étale surjective morphism U → X from an
affine scheme. As G is connected, the argument above shows that UG ⊂ U
is a closed immersion and thus by étale descent so is XG ⊂ X.

For (c), if x ∈ XG(k), there is a G-equivariant étale morphism (U, u)→
(X,x) from an affine scheme and a G-invariant étale morphism U → TU,u
via Luna map. Since TGU,u is a linear subspace, it is smooth. Since UG → XG

and UG → TGU,u are étale at u, the statement follows from étale descent.

Remark 5.10. So this theorem is right for algebraic spaces. Note also that
we have the Białynicki-Birula stratification for the more results of Gm-action
(see Theorem 6.7.13 in [Alp24]).

5.5 The Localization Formula
Consider a compact Lie group G and T ⊂ G be a maximal torus. The case
G = T is the most important case, essentially by the following proposition:

Proposition 5.11. Let W = N(T)/Z(T) = N(T)/T be the Weyl group.
Then

H∗
G(X) ∼= H∗

T(X)W

where H∗
T(X)W is the W-invariant elements of the equivariant cohomology.

So we focus on the torus T and we need a key lemma.
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Lemma 5.12. If there is a T-equivariant map V → T/K for a closed
subgroup K ⊂ T, then

supp(H∗
T(V )) ⊂ kC

where kC be the complexification of the Lie algebra of K and we view H∗
T(V )

as H∗
T-module. Note that since H∗

T = C[u1, ..., uℓ] the supports of H∗
T-modules

lying over the affine space SpecH∗
T = tC.

Proof. The morphism V → T/K → {pt} induce H∗
T → H∗

T(T/K)→ H∗
T(V ).

Now

H∗
T(T/K) = H∗(ET×T T/K) = H∗(ET/K) = H∗(BK) = H∗

K = H∗
K0
.

So H∗
T → H∗

T(V ) factor through H∗
K0

and hence supp(H∗
T(V )) ⊂ kC.

Here are our main results:
Theorem 5.13 (Atiyah-Bott, 1984). Let X be a compact smooth manifold
equipped with an action of T. Let ι : XT ↪→ X be the inclusion of the fixed
point locus. For i∗ : H∗

T(X)→ H∗
T(X

T) and iT∗ : H∗
T(X

T)→ H∗
T(X), support

of their kernels and cokernels lie in
∪
K kC where K ranges for all proper

isotropy subgroups K ⊂ T.
Proof. We stratify X by T-orbits of varying isotropy groups. By the com-
pactness of T we can construct T-invariant tubular neighborhoods of these
orbits. Take U to be the neighborhood ofXT inX, andX\U by compactness
is covered by finitely many such neighborhoods of orbits.

By the Mayer-Vietoris on the finite cover of X\U by neighborhoods of
orbits, we see that H∗

T(X\U) is torsion over what we want by Lemma 5.12.
Now since U has a T-equivariantly deformation retracts ontoXT,H∗

T(X\XT)
is torsion similarly. The same proof shows that the result holds for all T-
invariant subspaces of X\XT, and consequently for all pairs of such sub-
spaces in X\XT.

In particular, H∗
T(X,X

T) ∼= H∗
T(X\U, ∂(X\U)) (by excision) is torsion.

The long exact sequence for the pair (X,XT) now shows the desired result
for the pullback i∗ : H∗

T(X)→ H∗
T(X

T).
The results for pushforward iT∗ : H∗

T(X
T) → H∗

T(X) is similar as using
Thom isomorphism

H∗
TX

T H∗+d
T X

H∗+d
T (NXT/X , NXT/X\XT) H∗+d

T (X,X\XT)

iT∗

Thom
∼=

Now the fact that H∗
T(X\XT) is torsion with the long exact sequence for the

pair (X,X\XT) implies the desired result.
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This show that if we invert the certain polynomials in the ring H∗
T that

vanish on all of kC for the proper isotropy subgroups K ⊂ T, the equivariant
cohomology of X becomes isomorphic to the equivariant cohomology of XT!
This is of course true if we invert the whole ring. as ι∗αιTα,∗(−) = eT(Nια)∩(−)
Since T act trivially on XT, we have ET ×T X ∼= BG × X which force
H∗

T(X
T) = H∗

T⊗H∗(X). Since ι∗αιTα,∗(−) = eT(Nια)∩ (−), then eT(Nια) will
be invertible after we invert the whole ring. Then we can get an integration
formula:

Theorem 5.14 (Atiyah-Bott Localization Formula). Let X be a compact
smooth manifold equipped with an action of T. Let ι : XT ↪→ X be the
inclusion of the fixed point locus and XT :=

⨿
α Fα be the decomposition of

connected components with inclusion ια : Fα ↪→ X. In this case H∗
T(X

T) =⊕
αH

∗
T(Fα). Let HT := Frac(H∗

T). Then the equivariant pushforward along
ι induces an isomorphism

ιT∗ : H∗
T(X

T)⊗H∗
T

HT
∼=→ H∗

T(X)⊗H∗
T

HT

with inverse morphism
ψ 7→

∑
α

ι∗αψ

eT(Nια)
.

In particular, every class ψ ∈ H∗
T(X)⊗H∗

T
HT writes uniquely as

ψ =
∑
α

ιTα,∗
ι∗αψ

eT(Nια)
.

Proof. The fact that

ιT∗ : H∗
T(X

T)⊗H∗
T

HT
∼=→ H∗

T(X)⊗H∗
T

HT

is an isomorphism follows from Theorem 5.13. Then the ι∗αιTα,∗(−) = eT(Nια)∩
(−) implies the theorem.

5.6 Some Applications of Localization Formula
First we consider a direct corollary.

Corollary 5.15. Let X be a compact smooth manifold equipped with an
action of T. Let ι : XT ↪→ X be the inclusion of the fixed point locus and
XT :=

⨿
α Fα be the decomposition of connected components with inclusion

ια : Fα ↪→ X. Let HT := Frac(H∗
T). Then we have an integration∫

X

: H∗
T(X)⊗H∗

T
HT →HT.
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Moreover, we have ∫
X

ψ =
∑
α

∫
Fα

ι∗αψ

eT(Nια)
∈HT

for all ψ ∈ H∗
T(X).

Proof. Consider the commutative diagram

X Fα

pt

q

ια

qα

Then q∗ induce this integration. Moreover, we have∫
X

ψ = qT∗ψ =
∑
α

qTα,∗
ι∗αψ

eT(Nια)
=
∑
α

∫
Fα

ι∗αψ

eT(Nια)
∈HT

and well done.

Then there are some easy but interesting applications.

Proposition 5.16. Let M be a smooth oriented compact manifold with a
torus T action having finitely many fixed points p1, ..., ps. Then

χ(M) = s.

Proof. By Gauss-Bonnet we have

χ(M) =

∫
M

e(TM ) =

∫
M

eT(TM )

=
∑

1≤i≤s

eT(TM )|pi
eT(Npi/M )

=
∑

1≤i≤s

1 = s.

Well done.

Proposition 5.17. Let T act on a complex smooth projective variety X,
then we have

χ(X) = χ(XT).

Proof. By Theorem 5.9(c) we know that XT smooth. Now we have a T-
equivariant exact sequence

0→ TXT → TX |XT → NXT/X → 0.
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This implies eT(TX |XT) = eT(TXT)eT(NXT/X). Then we have

χ(X) =

∫
X

e(TX) =

∫
X

eT(TX) =

∫
XT

eT(TX |XT)

eT(NXT/X)

=

∫
XT

eT(TXT) =

∫
XT

e(TXT) = χ(XT).

Well done.

5.7 To Solve Some Classical Enumerative Problems
Here we compute two classical toy enumerative problems. But before that
we need consider an example.

As the localization formula told us that we just need to consider the
integral over fixed loci. Here our example is that there are only finitely
many fixed points. So we need to calculate some equivariant Chern classes
of bundles over point, that is, the equivariant Chern classes of vector spaces.

Example 5.18. Consider a vector bundle E on Y and the frame bundle
Fr(d,E) → Y . Then Fr(d,E) ×GLd Cd is just the tautological subbundle
S ⊂ π∗E of rank d where π : Grass(d,E)→ Y be the Grassman bundle.

Example 5.19. For each integer a, Gm has the 1-dimensional representa-
tion Ca, where Gm acts on C by z · v = zav. Consider a approximation
with

(Cm\0)×Gm Ca O(−a)

(Cm\0)×Gm pt Pm−1

∼=

∼=

Hence cGm1 (Ca) = acGm1 (C1).

Example 5.20. Consider T := (Gm)n acting on Cn = V by the standard
action scaling coordinates. For i, we have one-dimensional representations
Cti . Then cTi (V ) = elesymi(t1, ..., tn) where ti = cT1 (Cti) and elesymi is
the elementary symmetric polynomial. Using Em = (Cm\0)n and Bm =
(Pm−1)n, the class ti is identified with the Chern class of the tautological
bundle from the i-th factor of Bm.

In general case we can use characters to compute them.

Two Lines in a Plane
Example 5.21. Two lines in P2 intersect at unique point.
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Proof. Consider Gm act at V := H0(P2,O(1)) = span{x0, x1, x2} with
weight w0, w1, w2, that is, t · xi = twixi. We let wi 6= wj for i 6= j. So
we have fixed points

(P2)Gm = {p0 = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1)}.

So the number we need is∫
P2

c1(O(1))2 =

∫
P2

cGm1 (O(1))2 =

2∑
i=0

cGm1 (O(1)|pi)
eGm(TpiP2)

.

Consider the universal sequence

0→ S → V ⊗ OP2 → OP2(1)→ 0.

Then restrict it to pi we get

0→ Vjk := span(xj , xk)→ V → V /Vjk = C · xi → 0.

This force TpiP2 = V ∗
jk⊗V /Vjk = span(x∗j ⊗xi, x∗k⊗xi) with weight wi−wj

and wi − wk. And O(1)|pi has weight wi. This shows eGm(TpiP2) = (wi −
wj)(wi − wk) and cGm1 (O(1)|pi) = wi. Hence

2∑
i=0

cGm1 (O(1)|pi)
eGm(TpiP2)

=
w2

0

(w0 − w1)(w0 − w2)
+

w2
1

(w1 − w0)(w1 − w2)

+
w2

2

(w2 − w0)(w2 − w1)
≡ 1

and well done.

The 27 Lines on a Smooth Cubic Surface
Example 5.22. A general cubic surface S ⊂ P3 contains exactly 27 lines.

Proof. Let Gm be a torus acting on P3 with distinct weights (w0, w1, w2, w3),
this means, t · xi = twixi. By the properties of Fano scheme of lines, our
number is∫

Grass(2,4)
e(Sym3 S∗), where S is the tautological subbundle.

The torus action has four fixed points p0, ..., p3 ∈ P3 and six invariant lines
`ij ⊂ P3 which are the lines joining the fixed points. These correspond to
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the fixed points of the Grassmannian Grass(2, 4) under the lifted Gm-action.
By localization formula we have∫

Grass(2,4)
e(Sym3 S∗) =

∑
ℓij

eGm(Sym3 S∗)|[ℓij ]
eGm(T[ℓij ] Grass(2, 4)) .

Now as before we consider universal sequence

0→ S → V ∗ ⊗ OGrass(2,4) → Q→ 0.

Restrict it to [`ij ], we get

0→ `ij = span(x∗i , x∗j )→ V ∗ → Q|[ℓij ] = span(x∗h, x∗k)→ 0

for {i, j, h, k} = {0, 1, 2, 3}. Hence we have

T[ℓij ] Grass(2, 4) = S∗|[ℓij ] ⊗Q|[ℓij ] = span(xi ⊗ x∗h, xj ⊗ x∗h, xi ⊗ x∗k, xj ⊗ x∗k)
Sym3 S∗|[ℓij ] = Sym3(Cxi ⊕ Cxj) = span(x3i , x2ixj , xix2j , x3j ).

Hence we have∑
ℓij

eGm(Sym3 S∗)|[ℓij ]
eGm(T[ℓij ] Grass(2, 4)) =

∑
0≤i<j≤3

(3wi)(2wi + wj)(wi + 2wj)(3wj)

(wi − wh)(wj − wh)(wi − wk)(wj − wk)
≡ 27.

Well done.

More examples we refer Chapter 9 in [Ric22].

6 Localization of Virtual Fundamental Class
We will mainly follows the original paper [GP99] and book [Ric22]. Here our
Chow groups are all Q-coefficients.

6.1 Equivariant Sheaves and Complexes
Let X be a noetherian separated scheme over C, equipped with an action of
a complex group scheme G.

Definition 6.1. Now we have the following commutative diagram:

G×X G×G×X G×X X

G×X X

p23 m×idX

idG×σ

p2

σ

σ
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(a) A G-equivariant quasicoherent sheaf on X is a pair (F , ϑ) where F ∈
Qcoh(X) and ϑ : p∗2F

∼= σ∗F and (m× idX)∗ϑ = (idG × σ)∗ϑ ◦ p∗23ϑ.
(b) A morphism (F , ϑ) → (F ′, ϑ′) of G-equivariant quasicoherent sheaves

is a morphism φ : F → F ′ in Qcoh(X) such that the diagram

p∗2F p∗2F
′

σ∗F σ∗F ′

p∗2ϕ

ϑ ϑ′

σ∗ϕ

commutes in Qcoh(G × X). Let QcohG(X) denote the category of
G-equivariant quasicoherent sheaves.

Remark 6.2. We have
HomQcohG(X)((F , ϑ), (F ′, ϑ′)) = HomX(F ,F ′)G.

Note also that there is an equivalence of abelian categories QcohG(X) ∼=
Qcoh([X/G]).

Now QcohG(X) is a C-linear Grothendieck abelian category and its de-
rived category will be denotedD(QcohG(X)). Every object inD(QcohG(X))
has a K-injective resolution and a K-flat resolution.

6.2 Brief of Equivariant Intersection Theory
We first define the equivariant Chow groups follows [EG98a]. We will see
that this definition of a suitable approximation of EG×GX in the definition
of equivariant cohomology. Here all spaces and groups are quasi-separated
and of finite type over an algebraically closed field k. We will working over
algebraic spaces which is naturally appear in the quotient.
Definition 6.3 (Equivariant Chow Groups). Let G be a smooth affine alge-
braic group over k of dimension g, and let X be an n-dimensional algebraic
space over k. For each i, choose an r-dimensional G-representation V such
that there is a nonempty open subscheme U ⊂ A(V ) such that
(a) G acts freely on U .
(b) The quotient U/G is a scheme (see Lemma 9 in [EG98a]).
(c) codim(A(V )\U) > n− i.
Such representations exist. The we define the i-th equivariant Chow group of
X is

CHGi (X) := CHi+r−g(X ×G U).

Note that this group is independent of the representation, see Definition-
Proposition 1 in [EG98a].
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Proposition 6.4. Let f : X → Y is G-equivariant, then if f is proper,
flat, smooth, regular embedding or lci, then so is fG : X ×G U → Y ×G U .
Moreover, wquivariant Chow groups have the same functoriality, such as
proper push forward, flat pullback, refined Gysin pullback of regular embed-
ding or lci maps, as ordinary Chow groups for equivariant morphisms with
the corresponding properties.
Proof. See Proposition 2 and 3 in [EG98a].

Proposition 6.5. If α ∈ CHGm(X), then there exists a representation V
such that

α =
∑
i

ai[Si]G,

where Si are m+ l invariant subvarieties of X × V , where l = dimV .
Proof. See Proposition 1 in [EG98a].

Definition 6.6. Let X be an algebraic space with a G-action, and let E be
an equivariant vector bundle (in the category of algebraic spaces) Consider
the quotient EG := E ×G U . Then EG → XG := X ×G U is also a vector
bundle. Now we define the equivariant Chern classes as

cGj (E) ∩ (−) : CHGi (X)→ CHGi−j(X), α 7→ cj(EG) ∩ α.

6.3 More on Torus Fixed Loci
Fix a torus T of dimension g act on a scheme X over C. Then T act trivially
on XT which force any T-equivariant coherent sheaf S on XT be decompos-
ited into

S =
⊕

χ∈X∗(T)∼=Zg
Sχ.

Now let F ⊂ XT be a component and E → X be a T-equivariant vector
bundle, then

E|F =
⊕

χ∈X∗(T)∼=Zg
EF,χ.

Now for any character χ ∈ X∗(T) correspond to a 1-dimensional vector
space V χ with T-action. The projection U × V χ → U induce a line bundle
Vχ → U/T, the weight is wχ = c1(Vχ) ∈ CHT

∗ = CH∗(U/T). It’s easy to see
that EF,χ ×T U ∼= EF,χ ⊠ Vχ over F ×T U = F × U/T, hence

cTi (EF,χ) =

i∑
k=0

(rank(EF,χ)− k
i− k

)
ck(EF,χ)w

i−k
χ ∈ CHT

∗(F )
∼= CH∗(F×(U/T)).

So if wχ 6= 0, then after localize the CHT
∗ , the class cTi (EF,χ) will be invertible.

(see also [Bri97])
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6.4 Equivariant Virtual Class and Localization For-
mula

In this section, we let X be a separated algebraic scheme over C with an
action by an algebraic group G.

Definition 6.7. A G-equivariant perfect obstruction theory φ : E• → L•
X

is a perfect obstruction theory which can be lifted to D(QCohG(X)). The
G-structure on L•

X is induced by the G-action on X.

Let X equipped with a G-equivariant perfect obstruction theory, and
carrying a G-equivariant closed embedding X ↪→ Y where Y is a nonsingular
scheme with ideal I (for the general case is similar and we can glue them
up). Then

L•,≥−1
X = [I /I 2 → ΩY |X ] ∈ D[−1,0](QCohG(X)).

Let the G-equivariant perfect obstruction theory φ : E• → L•
X with global

resolution, hence we can let E• = [E−1 → E0] with locally free sheaves Ei.
Then as by the construction of virtual class before the cones we need are all
G-equivariant! Hence we can get

[X]vir,Gϕ ∈ CHGdvirϕ (X)(X),

the G-equivariant virtual fundamental class of X respect to φ.
Now we consider the virtual localization formula. Now we set G = Gm =

C×. The same formula holds for an arbitrary torus T = Grm.
Let X fix := XGm ⊂ X and Y fix := Y Gm ⊂ Y . Hence X fix = X ∩ Y fix.

Then by Theorem 5.9(c), Y fix is smooth. Let Y fix =
⨿
i Yi the decomposition

of irreducible components and let Xi = X ∩ Yi.
Let S ∈ CohGm(Xi), then Gm-action induce a decomposition S =⊕
k∈Z S k where we are identitying the character group of Gm with Z. Define

the fixed part is S fix := S 0 and moving part is S mov :=
⊕

k ̸=0 S k. Of
course, the construction of fixed and moving part of a sheaf extends to
complexes in D(CohGmXi).

Lemma 6.8. There is an identity

ΩX |fixXi = ΩXi .

Proof. Note that we have
ΩY |fixYi = ΩYi .

Then this follows from Xi = X ∩ Yi.
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Lemma 6.9. Let E•
i := E•|Xi on Xi, define

ψi : E
•,fix
i

ϕfix
i→ (L•

X |Xi)fix δ
fix
i→ L•,fix

Xi
= L•

Xi .

Then ψi is a perfect obstruction theory on Xi. This is often called the
Gm-fixed obstruction theory on Xi.
Proof. Note that as E•,fix

i is perfect in [−1, 0], we just need to show that
H0(φfix

i ) and H0(δfix
i ) are isomorphisms and H1(φfix

i ) and H1(δfix
i ) are sur-

jective.
By some simple diagram chase, we know that v : A• → B• satisfies

these two conditions if and only if A−1 ⊕ B−2 → A0 ⊕ B−1 → B0 → 0 is
exact! Hence since φ : E• → L•

X is an obstruction theory, and because the
restriction (−)|Xi is right exact, this ensures that φi satisfies both conditions.
Since taking invariants is exact (as Gm reductive), the same holds for φfix

i !
Now we consider δfix

i . Now as Yi smooth, we have

L≥−1
Xi

= [IXi/Yi/I
2
Xi/Yi

→ ΩYi |Xi ].

As H0(δfix
i ) : H0((L•

X |Xi)fix) = (ΩX |Xi)fix = ΩXi = H0(L•
Xi

) by Lemma 6.8,
hence H0(δfix

i ) is an isomorphism.
Consider H−1(δfix

i ), it is the following diagram:

(IX/Y /I
2
X/Y )|

fix
Xi

ΩY |fixXi

IXi/Yi/I
2
Xi/Yi

ΩYi |Xi

d−1 d0,∼=

where d−1 is surjective follows from Xi = X ∩Yi. Moreover d0 is an isomor-
phism since ΩY |fixYi = ΩYi . This shows H−1(δfix

i ) is surjective. Well done.

Finally we give the statement of the virtual localization formula.
Definition 6.10. The virtual normal bundle to Xi is the moving part of the
derived dual:

Nvir
i := E•,∨,mov

i ∈ D[0,1](CohGm(X)).

As we talk about in the small section 6.3, eT(Nvir
i ) will be invertible since

all the characters are zero, hence we have:
Theorem 6.11 (Virtual Localization Formula, Graber-Pandharipande). Let
ι : X fix ↪→ X be the inclusion, then

[X]vir,Gmϕ = ι∗
∑
i

[Xi]
vir,Gm
ψi

eGm(Nvir
i )
∈ CHGm

∗ (X)⊗Q[t] Q[t, 1/t]

where t is the generator of CHGm
∗ (pt) = CH∗(BGm) = Q[t].
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Remark 6.12. The Euler class of [B0 → B1] is e(B0)/e(B1).

6.5 Basic Case of Virtual Localization Formula
We first prove the simple but fundamental case:

Example 6.13. Consider Y be a smooth variety of dimension d with Gm-
action and with a vector bundle F = Spec

Y
SymF∨ over it of rank r.

Let s : Y → F be a Gm-invariant section (that is, s ∈ H0(Y,F )Gm) and
0 : Y → F be the zero section, then we consider the zero locus of s as:

X = Z(s) Y

Y F

⌜
s

0

Note that X = Z(s) defined by the ideal I := Im(s∨ : F∨ → OY ). Now the
perfect obstruction theory is φ : E• → L•

X

E• : F∨|X ΩY |X

L≥−1
X : I /I 2 ΩY |X

s∨|X id
dX

which is naturally Gm-equivariant. In this case the Gm-equivariant virtual
fundamental class of X is

[X]vir,Gmϕ := 0!([Y ]) = 0∗(CX/Y ) ∈ CHGm
∗ (X).

Again we have ji : Yi ↪→ Y be the components of fixed locus Y fix and
ιi : Xi = Yi ∩ X ↪→ X. Hence F |Yi = F |fixYi ⊕ F |

mov
Yi
. Let si := s|Yi be the

section of F |Yi which is also Gm-invariant, this become a section s̃i of F |fixYi !
Now Xi = Z(si) = Z(s̃i).
We have defined the perfect obstruction theory on Xi as

E•,fix
i : F∨|fixXi ΩY |fixXi = ΩYi |Xi

L≥−1
Xi

: IXi/Yi/I
2
Xi/Yi

ΩYi |Xi

ψi s∨|X id
dX

where E•
i := E•|Xi .

Now we begin the prove the virtual localization formula in this basic
situation.
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Lemma 6.14. In the situation as above.

(a) We have 0!i[Yi] = (0fix
i )![Yi] ∩ e(Fmov

i ) ∈ CHGm
∗ (Xi) where 0i and 0fix

i be
the zero sections of F |Yi and F |fixYi , respectively.

(b) The K-theory virtual normal normal bundle to Xi has the following
expression:

[Nvir
i ] = ε∗i ([NYi/Y ]− [F mov

i ]) ∈ KGm
0 (Xi).

Proof. For (a), we have the cartesians

Xi Yi

Yi F |fixYi

Yi F |Yi

⌜
s̃i

0fix
i

id
⌜

0i

Hence by excess intersection formula we have

0!i[Yi] = (0fix
i )![Yi] ∩ e(Fmov

i ) ∈ CHGm
∗ (Xi).

For (b), we have

[Nvir
i ] = [E•

i ]− [E•,mov
i ]

= [TY |Xi ]− [F |Xi ]− [TYi |Xi ] + [F |fixXi ]
= ([TY ]− [TYi ])|Xi − [F |mov

Xi ]

= ε∗i ([NYi/Y ]− [F mov
i ]) ∈ KGm

0 (Xi).

Well done.

Proof of Theorem 6.11 for basic case. Now by Lemma 6.14(b) we have

eGm(Nvir
i ) = ε∗i

(
eGm(NYi/Y )

e(F mov
i )

)
.

By the Chow-version of Atiyah-Bott theorem ([EG98b]) we have

[Y ] =
∑
i

ji,∗
[Yi]

eGm(NYi/Y )
∈ CHGm

∗ (Y )⊗Q[t] Q[t, 1/t].
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So we by Lemma 6.14(a) and these things we have

[X]vir,Gmϕ = 0![Y ] =
∑
i

0!
(
ji,∗

[Yi]

eGm(NYi/Y )

)
=
∑
i

ιi,∗0
!
i

[Yi]

eGm(NYi/Y )
=
∑
i

ιi,∗
(0fix
i )![Yi] ∩ e(F mov

i )

eGm(Nvir
i )e(F mov

i )

=
∑
i

ιi,∗
(0fix
i )![Yi]

eGm(Nvir
i )

=
∑
i

ιi,∗
[Xi]

vir
ψi

eGm(Nvir
i )
∈ CHGm

∗ (X)⊗Q[t] Q[t, 1/t].

Well done.

6.6 General Case of Virtual Localization Formula
Consider the general case where X ↪→ Y be an embedding for smooth Y .
Now pick a Gm-equivariant obstruction theory φ : E• → L•

X with global
resolution. For simplicity we assume this is actually a morphism of complexes
(this always right if X has enough locally free sheaves).

As in the proof of Proposition 4.37(b), we have the following commutative
diagram with exact rows of cones

0 L∨,0
X = f∗TY E∨,0 ×X CX/Y Dvir 0

0 L∨,0
X = f∗TY E∨,0 ×X C(IX/Y /I

2
X/Y ) C(Q) 0

id

with two embeddings of the right square. By Proposition 4.20 we have
CX = [CX/Y /f

∗TY ] ∼= [Dvir/E∨,0] which force

Dvir C(Q) E−1,∨

CX ∼= [Dvir/E∨,0] [C(IX/Y /I
2
X/Y )/f

∗TY ] ∼= [C(Q)/E∨,0] [E−1,∨/E∨,0]

⌜ ⌜

Hence [X]virϕ = 0!E−1,∨ [Dvir].
Here is another description, by Proposition 4.10 we have cartesians

f∗TY E0,∨ ×X CX/Y

X Dvir

X E−1,∨

p
⌜

q

idX
⌜
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Then we have

[X]virϕ = 0∗f∗TY p
∗0!E−1,∨ [Dvir] = 0∗f∗TY 0

!
E−1,∨q∗[Dvir]

= 0∗f∗TY 0
!
E−1,∨ [E0,∨ ×X CX/Y ].

Now we have X fix = X ∩ Y fix and Y fix =
⨿
i Yi the decomposition of

irreducible components and let Xi = X ∩ Yi. Here we need some notations
for convenience:

Xi Yi

X fix X Y Y fix

εi

ιi ji

ι f j

Now we have the perfect obstruction theory

ψi : E
•,fix
i

ϕfix
i→ (L•

X |Xi)fix δ
fix
i→ L•,fix

Xi
= L•

Xi

of Xi where E•
i := E•|Xi as before. Since we consider all Gm-fixed cones, the

constructions as above is right for our case, that is, we have exact sequence
of cones

0→ ε∗i TYi → CXi/Yi ×Xi (E
0,∨
i )fix → Dvir

i → 0

with embedding Dvir
i ↪→ (E−1,∨

i )fix with [Xi]
vir
ψi

= 0!
(E−1,∨
i )fix [D

vir
i ].

Remark 6.15. Since Xi is possibly disconnected, it should be noted that
the ranks of the bundles (E0,∨

i )fix and (E−1,∨
i )fix may vary on the connected

components. The Euler classes of these bundles on Xi are taken with respect
to their ranks on each component.

Now apply the localization formula to Y , we get

[Y ] = j∗
∑
i

[Yi]

eGm(Tmov
Y )

∈ CHGm
∗ (Y )⊗Q[t] Q[t, 1/t].

Hence by refined intersection with [X]virϕ , we have

[X]virϕ = ι∗
∑
i

[X]virϕ · [Yi]
eGm(f∗Tmov

Y )
∈ CHGm

∗ (X)⊗Q[t] Q[t, 1/t].

So to show Theorem 6.11, we just need to show that

[X]virϕ · [Yi]
eGm(f∗Tmov

Y )
=

[Xi]
vir
ψi
∩ eGm((E−1,∨

i )mov)

eGm((E0,∨
i )mov)

∈ CHGm
∗ (Xi)⊗Q[t] Q[t, 1/t].
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Lemma 6.16. In this case, we have the following:
(a) Write D = CX/Y ×XE0,∨ and Di = CXi/Yi×Xi (E

0,∨
i )fix, then we have

j!i[D] = [Di ×X (E0,∨
i )mov] ∈ CHGm

∗ (j∗iD).

(b) Let B0 and B1 are Gm-equivariant bundles on Xi with equivariant
inclusions:

Z B1

B0 Xi

j1

j0

Then for any ζ ∈ CHGm
∗ (Z), we have

0∗B0
j0,∗(ζ) ∩ eGm(B1) = 0∗B1

j1,∗(ζ) ∩ eGm(B0) ∈ CHGm
∗ (Xi).

Proof. For (a), by Gm-equivariant Vistoli’s rational equivalence (Corollary
4.59) we have j!i[CX/Y ] = [CXi/Yi ] ∈ CHGm

∗ (ι∗iCX/Y ). Then via this condi-
tion we can get

j!i[D] = [Di ×X (E0,∨
i )mov] ∈ CHGm

∗ (j∗iD).

For (b), consider the family of inclusions jt : Z ↪→ B0 ×X B1 as jt =
(1− t)j0 + tj1. This shows

0∗B0×XB1
j0,∗(ζ) = 0∗B0×XB1

j1,∗(ζ).

Hence the results follows from Proposition 2.4(d).

Proof of Theorem 6.11. As we have told, we just need to show that
[X]virϕ · [Yi]
eGm(f∗Tmov

Y )
=

[Xi]
vir
ψi
∩ eGm((E−1,∨

i )mov)

eGm((E0,∨
i )mov)

∈ CHGm
∗ (Xi)⊗Q[t] Q[t, 1/t].

First, by Lemma 6.16(a) we have
[X]virϕ · [Yi] = j!i0

∗
f∗TY 0

!
E−1,∨ [D] = 0∗ι∗i f∗TY 0

!
E−1,∨
i

j!i[D]

= 0∗ι∗i f∗TY 0
!
E−1,∨
i

[Di ×X (E0,∨
i )mov] ∈ CHGm

∗ (Xi)

Easy to see that we have cartesians

ι∗i f
∗TY j∗iD

(ι∗i f
∗TY )/(ε

∗
i TYi) = (ι∗i f

∗TY )
mov (j∗iD)/(ε∗i TYi)

Xi E−1,∨
i

⌜

⌜
0
E

−1,∨
i

67



Hence

0∗ι∗i f∗TY 0
!
E−1,∨
i

[Di ×X (E0,∨
i )mov] = 0∗(ι∗i f∗TY )mov0!E−1,∨

i

[Dvir
i ×X (E0,∨

i )mov].

Now the scheme-theoretic intersection 0−1

E−1,∨
i

(Dvir
i ×X(E0,∨

i )mov) ⊂ (ι∗i f
∗TY )

mov

and the morphism Dvir
i ×X (E0,∨

i )mov → E−1,∨
i is the product of Dvir

i ⊂
(E−1,∨

i )fix and (E0,∨
i )mov → (E−1,∨

i )mov. Hence 0−1

E−1,∨
i

(Dvir
i ×X (E0,∨

i )mov)

also lies in (E0,∨
i )mov. Hence we have

0−1

E−1,∨
i

(Dvir
i ×X (E0,∨

i )mov) (E0,∨
i )mov

(ι∗i f
∗TY )

mov Xi

commutes! By Lemma 6.16(b) to 0!
E−1,∨
i

[Dvir
i ×X (E0,∨

i )mov] we have

[X]virϕ · [Yi] = 0!
(E0,∨
i )mov0

!
E−1,∨
i

[Dvir
i ×X (E0,∨

i )mov] · e
Gm((ι∗i f

∗TY )
mov)

eGm((E0,∨
i )mov)

,

where 0!
E−1,∨
i

[Dvir
i ×X (E0,∨

i )mov] considered in CHGm
∗ ((E0,∨

i )mov).
As this class does not depend on the bundle map (E0,∨

i )mov → (E−1,∨
i )mov,

we may assume it is trivial (namely, we use the trivial map to compute it)!
Then by the following cartesian

(E0,∨
i )mov Dvir

i × (E0,∨
i )mov

Xi (E−1,∨
i )fix × (E−1,∨

i )mov

⌜

we have 0!
E−1,∨
i

[Dvir
i ×X (E0,∨

i )mov] = [Xi]
vir
ψi
×X 0!

(E−1,∨
i )mov((E

0,∨
i )mov). More-

over as map is trivial we also have the following cartesian

(E0,∨
i )mov (E0,∨

i )mov

Xi Xi

Xi (E−1,∨
i )mov

⌜

⌜
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Hence by excess intersection theorem, Proposition 2.4(d), we have

0!
(E0,∨
i )mov0

!
E−1,∨
i

[Dvir
i ×X (E0,∨

i )mov] = [Xi]
vir
ψi ∩ e

Gm((E−1,∨
i )mov).

This give us

[X]virϕ · [Yi]
eGm(f∗Tmov

Y )
=

0!
(E0,∨
i )mov0

!
E−1,∨
i

[Dvir
i ×X (E0,∨

i )mov] · eGm((ι∗i f∗TY )mov)

eGm(f∗Tmov
Y )eGm((E0,∨

i )mov)

=
[Xi]

vir
ψi
∩ eGm((E−1,∨

i )mov)

eGm((E0,∨
i )mov)

.

This is what we want. Well done.

6.7 Localization Formula for DM-stacks
Here we follows the Appendix C in [GP99]. We consider DM-stacks of finite
type over C. Note that the equivariant intersection theory is similar as we
have told in the case of schemes. That is, we have CHGi (X) := CHi+r−g(X×G
U) for a DM-stack X and since the action is free, the space X ×G U is also
a DM-stack.

Here we consider the Gm-equivariant embedding X ↪→ Y to a smooth
DM-stack Y .

Lemma 6.17. If U is a Deligne-Mumford stack on which Gm acts with-
out fixed points, then the equivariant Chow groups CHGm

∗ (U) vanish after
localization.

Proof. As Gm acts without fixed points, [U/Gm] is also a DM-stack. Easy
to prove that CHGm

∗ (U) ∼= CH∗([U/Gm]). As we consider the Q-coefficients
Chow groups, by Remark 4.55 we know that CHGm

∗ (U) has only finite may
graded components! So CHGm

∗ (U)t = CHGm
∗ (U)⊗Q[t] Q[t, 1/t] is trivial.

Now consider the fixed locus which is a closed stack ι : Y fix ⊂ Y (is defined
as the stack theoretic zero locus of the canonical vector field determined in
TY by the flow). Note that in the category of stacks, this can not imply that
Gm action on Y fix is trivial. This is true after a finite cover Gm → Gm.

Lemma 6.18. In this case Y fix is also smooth.

Sketch. Let ȳ be a Gm-fixed geometric point. The stack analogue of the local
ring is the strict Henselization Osh

ȳ of the local ring of ȳ determined in an
étale neighborhood. Gm (more precisely a finite cover of original Gm) acts
equivariantly on all quotients of Osh

ȳ /mpȳ where mȳ is the maximal ideal. The

69



ideal Jȳ ⊂ Osh
ȳ of the Gm-fixed scheme at ȳ may be analyzed via the Gm-

actions on these quotients. In fact, Thomason in [Tho92] p.456 has proven
in this case Jȳ is generated via a regular sequence in regular local ring Osh

ȳ .
It follows that the Gm-fixed stack Y fix is nonsingular.

Proposition 6.19. The map ιGm∗ : CHGm
∗ (Y fix) → CHGm

∗ (Y ) is an isomor-
phism after localization.
Proof. Now let U := Y \Y fix which has no fixed points. By Lemma 6.17 and
the exact sequence

CHGm
∗ (Y fix)

ιGm∗→ CHGm
∗ (Y )→ CHGm

∗ (U)→ 0

we know that ιGm∗ is surjective after localization.
Conversely we will show that ιGm∗ is injective after localization. Let Y fix =⨿

i Yi as connected components. As they are smooth, we have pullback
ι∗ : CHGm

∗ (Y )→ CHGm
∗ (Y fix). Let α =

∑
i αi ∈ CHGm

∗ (Y fix)t pushes forward
to zero, then

0 = ι∗ιGm∗ α =
∑
i

e(NNi)αi

whereNi = NYi/Y . Hence e(NNi)αi = 0 for all i. Now e(NNi) is invertible as
in section 6.3, this force αi = 0 and hence ιGm∗ is injective after localization.
Well done.

If X ⊂ Y is a Gm-equivariant embedding, the fixed substack X fix may
be defined by X fix = X ∩ Y fix. It follows from this definition that

ΩX |fixX fix = ΩX fix .

It is not difficult to show the substack structure X fix is independent of the
choice of nonsingular equivariant embedding. The constructions and argu-
ments for the virtual localization formula for equivariant perfect obstruction
theories on X now go through unchanged. Well done.

6.8 First Example: Gromov-Witten Invariants
Here we will follows [CK99], [Beh97] and section 4 in [GP99]. We will work
over C. We will ignore the definitions of stable maps which is classical, we
refer 7.1 in [CK99].

For a projective variety X, we will consider the moduli stack of stable
maps M g,n(X,β) of genus g, marked n points and class β ∈ H2(X,Z).

Indeed, M g,n(X,β) maps S to the groupoid of the collections (C →
S, f : C → X; s1, ..., sn) where C → S is proper flat and for any geometric
points s, fs : Cs → X together with the images of si defines a stable map
such that the arithmetic genus of Cs are g and (fs)∗[Cs] = β.
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Theorem 6.20. In this case, the stack M g,n(X,β) is a proper Deligne-
Mumford stack with coarse moduli space Mg,n(X,β) which is a projective
scheme. Moreover, the stack M 0,n(Pr, β) is smooth.

Proof. The proof can be found in [BM96].

Now we assume X is smooth with Gm-action. Choose a Gm-equivariant
polarization L on it which induce a Gm-equivariant embedding X ⊂ Pr.
Now M g,n(X,β) will be a Gm-equivariant closed substack of M g,n(Pr, β).

Proposition 6.21. In this case M g,n(Pr, β) will have an Gm-equivariant
closed embedding into a smooth DM-stack. Hence so is M g,n(X,β).

Proof. We recall the constructions and properties of M g,n(Pr, β): Note that
M g,n(Pr, β) ∼= [J/PGLN ] for some locally closed subscheme J of some
Hilbert scheme, with following properties

(a) In this case there is a Gm × PGLN -action on J which give us a Gm-
action on M g,n(Pr, β) ∼= [J/PGLN ].

(b) There is a Gm×PGLN -equivariant embedding J ↪→ G for some smooth
Grassmannian G since it is a subscheme of Hilbert scheme.

Now the PGLN -equivariant open set U ⊂ G on which the PGLN -action has
finite stabilizers contains J and is Gm-equivariant. Note that ∆ = J\J is
closed in G and is Gm×PGLN -equivariant. After discarding ∆∩U , it may
be assumed that J is closed in U . Let Y be the nonsingular quasi-separated
(need not be separated) Deligne-Mumford stack [U/PGLN ] and we have an
Gm-equivariant closed embedding M g,n(Pr, β) ↪→ [U/PGLN ].

Now we will define the Gm-equivariant perfect obstruction theory and
hence a Gm-equivariant virtual class of M g,n(X,β).

Note that we consider the moduli stack of prestable curves M pre
g,n, it is a

smooth quasi-separated algebraic stack over C with separated diagonal and
dimension 3g − 3 + n. We have the forgetful morphism of stacks:

F : M g,n(X,β)→M pre
g,n

by forget the maps to X.
Now consider the universal curve U pre

g,n →M pre
g,n and

X U pre
g,n ×M pre

g,n
M g,n(X,β) M g,n(X,β)

U pre
g,n M pre

g,n

f π

π′ ⌜
F
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Hence we have

Lf∗L•
X → L•

U pre
g,n×M

pre
g,n

Mg,n(X,β)
→ L•

π′ ∼= π∗L•
F

by the flatness of π. Now we have

(Rπ∗Lf∗T•
X)∨ ∼= Rπ∗RH om(Lf∗T•

X , π
!O) ∼= Rπ∗(Lf∗L•

X ⊗L ω•
π)

→ Rπ∗(π∗L•
F ⊗L ω•

π)
∼= L•

F ⊗L Rπ∗ω•
π
∼= L•

F .

Let G• := (Rπ∗Lf∗T•
X)∨ = (Rπ∗f∗T •

X)∨ (as X is smooth) and then this
morphism induce a relative perfect obstruction theory ψF : G• → L•

F of
M g,n(X,β) over M pre

g,n (for the proof we refer Proposition 6.3 in [BF97]).
Note that the constructions about are Gm-equivariant.
Lemma 6.22. In this case, the complex G• = (Rπ∗f∗T •

X)∨ has Gm-
equivariant global resolution.
Proof. This is easy and we refer Propisition 5 in [Beh97].

Recall that by Remark 3.2 we have exact triangle of cotangent complexes:

LF ∗L•
M pre
g,n
→ L•

Mg,n(X,β)
→ L•

F → LF ∗L•
M pre
g,n

[1].

Since M pre
g,n is smooth we have a global resolution LF ∗L•

M pre
g,n

= [A0 → A1].
Let G• = (Rπ∗f∗T •

X)∨ = [G−1 → G0], then we have the morphism of
distinguished triangles in DGm(M g,n(X,β)):

G• A•[1] E•[1] G•[1]

L•
F LF ∗L•

M pre
g,n

[1] L•
Mg,n(X,β)

[1] L•
F [1]

ψF ϕ[1] ψF [1]

where E• := [G−1 → G0 ⊕ A0 → A1]. By taking long exact sequence of
this diagram and use 5-lemma and 4-lemma several times, we know that
H−1(φ) is surjective, H0(φ) is an isomorphism and H1(φ) : H1(E•) →
H1(L•

Mg,n(X,β)
) = 0 is an isomorphism which force H1(E•) = 0. Hence as

G0⊕A0 → A1 surjective, we can take the truncation to get a global resolution
of E• of two vector bundles, hence we can define the Gm-equivariant virtual
class

[M g,n(X,β)]
vir
ϕ ∈ CHGm

dvir(Mg,n(X,β))
(M g,n(X,β))

where the virtual dimension is

dvir(M g,n(X,β)) = χ(C, f∗TX) + 3g − 3 + n

=

∫
β

c1(TX) + (dimX − 3)(1− g) + n.
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Definition 6.23. In this case, for α1, ..., αn ∈ H∗(X,Q) the Gromov-Witten
invariant is

IXg,n,β(α1, ..., αn) =

∫
[Mg,n(X,β)]virϕ

e∗1(α1) ∪ · · · ∪ e∗n(αn)

where ei : M g,n(X,β) → X be the evaluation map sending (f, p1, ..., pn) 7→
f(pi).
Example 6.24. Next we give some basic idea how to find the

IP
r

g,n,d(H
ℓ1 , ..., Hℓn) =

∫
[Mg,n(Pr,d)]virϕ

e∗1(H
ℓ1) ∪ · · · ∪ e∗n(Hℓn).

The details we refer Section 4 in [GP99].
First we consider a T = (Gm)r+1 as full-diagonal torus act on Pr, then

we can describe M g,n(Pr, d)T as follows:
Let f : C → Pr be a T-fixed stable map. The image of C is a T-

invariant curve in Pr, and the images of all marked points, nodes, contracted
components, and ramification points are T-fixed points. The T-fixed points
on Pr are p0, ..., pr, and the only invariant curves are the lines joining the
points pi. It follows that each non-contracted component of C must map
onto one of these lines, and be ramified only over the two fixed points!
To an invariant stable map f , we associate a marked graph Γ as follows.

Γ has one edge for each non-contracted component. The edge e is marked
with the degree de of the map from that component to its image line. Γ
has one vertex for each connected component of f−1({p0, ..., pr}). Define the
labeling map i : vertices(Γ)→ {0, ..., r} by f(v) = pi(v). The vertices have an
additional labeling g(v) by the arithmetic genus of the associated component
(Note the component may be a single point, in which case its genus is 0).
Now we define M Γ :=

∏
v∈vertices(Γ) M g(v),val(v) where val(v) be the num-

ber of marked points and curves passing the objects correspond to v. Note
that we let M 0,1 = M 0,2 = {pt}. Then we have a canonical morphism
γ : M Γ → M g,n(Pr, d). Define a semidirect product 1 →

∏
edges(Γ) Z/de →

A → Aut(Γ) → 1 and one can show that this induce a closed embedding
γ/A : M Γ/A ↪→M g,n(Pr, d) and they shows that

M g,n(Pr, d)T ∼= M Γ/A ⊂M g,n(Pr, d)

Now pick a generic action Gm ⊂ T on Pr with generic weights −λ0, ...,−λr,
in this case M g,n(Pr, d)T = M g,n(Pr, d)Gm .
Taking the POT as defined above and restrict it into M Γ/A, using virtual

localization and a long arguments, we can show that

IP
r

g,n,d(H
ℓ1 , ..., Hℓn) =

∑
Γ

1

|AΓ|

∫
MΓ

∏
[n] λ

ℓm
i(m)

e(Nvir
Γ )

73



where
1

e(Nvir
Γ )

=
∏

v∈vertices(Γ)

∏
j ̸=i(v)

c(λi(v)−λj)−1(E∨) · (λi(v) − λj)g(v)−1

∏
e∈edges(Γ)

(−1)ded2dee

(de!)2(λi − λj)2de
∏

a+b=de,k ̸=i,j

1
a
de
λi +

b
de
λj − λk

.

Well done.

7 Further Useful Results
Here we give some glipmes about several important results.

7.1 Virtual Pullbacks
7.2 Torus Localization
Note that in [GP99] we assume the following assumptions:

(a) The scheme X admits a T-equivariant closed immersion into a smooth
scheme.

(b) The virtual tangent bundle of X admits a global resolution by T-
equivariant vector bundles.

In [HC17], they remove the condition (a) and relaxed the second assumption
(b) to the existence of a global resolution for the virtual normal bundle. See
more general results about Derived Artin stacks, we refer [AKL+22] and
[AKL+24a] splitted from original [AKL+24b].

7.3 Cosection Localization
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